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Interchain interactions, multimagnon condensation, and strain effect
in the chain compound NaVOPO4
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Employing first-principles modeling and many-body methods, the magnetic properties of the spin-1/2 chain
compound NaVOPO4 are explored. The extensive first-principles calculations establish an intricate three-
dimensionally-coupled model that consists of weakly alternating J − J ′ antiferromagnetic chains running along
cris-cross directions between two consecutive ab planes, connected via two subleading couplings: a ferromag-
netic exchange along the c direction (Jc) and a weaker antiferromagnetic exchange (Ja) along the body-diagonal
direction. The exact diagonalization and density matrix renormalized group study has been carried out on a
two-dimensional spin model with J − J ′ − Jc and effective Jd couplings, constructed based on the full model, for
numerical ease. The Jc − Jd phase diagram is found to host a disorder phase with a finite spin gap for comparable
values of Jc and Jd , arising out of the competing nature of these two interactions, other than two ordered
phases. The calculated thermodynamic properties of this model provide a fair description of experimentally
measured data. The predominant manifestation of Jc and Jd in the disorder phase happens in the stabilization of
a multimagnon condensed phase upon gap closing by application of an external magnetic field. We further
explore the effect of tensile uniaxial strain, which is found to drive the system from a gapful to a gapless
ground state.

DOI: 10.1103/PhysRevB.110.054441

I. INTRODUCTION

Over the years, one-dimensional antiferromagnetic S =
1/2 chain compounds have attracted the interest of re-
searchers. They offer a fascinating playground to study
properties such as spin-gap states, spin-charge separation, and
quantum criticality, dictated by the quantum fluctuation effect
arising from the low dimensionality and smallness of spin
[1–4]. Many of these one-dimensional spin compounds host
a spin gap in the spin excitation spectra between the singlet
ground state and the triplet excited state, which may arise from
different competing exchanges. As expected, these spin chains
with spin gaps are sensitive to perturbations such as sublead-
ing interchain interactions, strain, and/or external magnetic
field. In particular, the spin gap can be reduced or even closed
by applying an external field above a threshold value, which
leads to the emergence of a multitude of field-induced phases
[5–10].

In this context, the family of vanadate compounds with
V4+ ions separated by PO4 or AsO4 tetrahedral units have
drawn attention in recent time [11–14]. Among them, in the
present study, we focus on NaVOPO4 (NVOPO). Although
this compound was synthesized in the early 1990s [15,16],
there is a renewed interest due to the possible realization of
a spin-1/2 chain system [14] as well as for its potential use
as cathode material [17]. Low-temperature x-ray diffraction
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measurements rule out possible Peierls transition [14]. The
magnetic susceptibility data [14] confirm the nominal 4+
valence of V, with S = 1/2 spin, and dominance of antifer-
romagnetic coupling. The magnetic susceptibility data could
be fitted with an alternating-chain spin model with an ex-
tremely weak alternation parameter close to 1, suggesting the
compound may be at the boundary of the uniform chain and
the alternating-chain model. Magnetization isotherm mea-
surement [14] established the existence of a spin gap with the
critical field of gap closing � 2 T leading to a possible Bose-
Einstein condensed (BEC) phase [18–21] at low temperature.
The absence of long-range order in the absence of an external
magnetic field was further confirmed in NMR measurements
[14]. While the above observations support the spin-gapped
ground state of NVOPO and an external field-driven possi-
ble condensed phase, the detailed analysis of the underlying
spin model and its implication have not been explored. The
theoretical modeling reported in the same work [14] finds
evidence of subleading interchain interactions. However, the
experimental results are interpreted as a bond-alternating spin
chain model with an extremely weak alternation parameter of
0.98 and negligible interchain couplings. The issue of inter-
chain interactions thus remains unresolved.

The simple fitting treatment to magnetic susceptibility
data, as often adapted, makes it hard to predict details of the
microscopic model. Such a model would typically involve
the prediction of exchange paths and the relative magnitudes
of various magnetic interactions. This in turn calls for a mi-
croscopic investigation in terms of ab initio calculations to
derive the underlying spin model coupled with many-body
methods for calculation of magnetic properties. Very often,
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the true nature of the exchange networks in these compounds
differs from the mere expectation from the crystal structure.
A famous example in this context is that of (VO)2P2O7 [22],
which turns out to be an alternating spin chain compound
while originally it was thought of as a two-leg spin ladder
system based on structural considerations.

In this study, we thus revisit the modeling of the compound
through rigorous and extensive density functional theory
(DFT) calculations. Our calculations are based on the con-
struction of a three-orbital, low-energy Wannier Hamiltonian
and solution of total energy calculations of a large num-
ber of equations, to rule out the dependency of the derived
model on the chosen spin configurations. This rigorous study
established a robust nature of intrachain couplings with an
alternation ratio of 0.92 as opposed to 0.98 as predicted from
susceptibility fit [14]. Most importantly, this investigation re-
sulted in two additional subleading interchain interactions, the
values of which are found to depend strongly on the chosen
spin configurations. Employing the exact diagonalization and
density matrix renormalization group study of a DFT-inspired
model spin Hamiltonian, we establish the important contribu-
tion of these subleading interactions in introducing frustration
in the system, in terms of the competing nature of these
interactions. We map out an intriguing phase diagram in the
phase space of subleading interchain interactions, rationalized
by large variations in their values in first-principles estimates.
Due to the competing nature, interestingly at the point when
the two subleading terms become equal, thereby compensat-
ing each other, the spin gap value can be described by a single
alternating chain model. The gap value reduces in moving
away from the compensation point, finally leading to ordered
states when one subleading term becomes substantial and
completely dominates the other. These competing subleading
interactions, however, manifest themselves in the excited-state
properties upon gap closing by the application of an external
magnetic field, and a multimagnon condensed phase [23–30]
is observed. Importantly, at the compensation point, although
the gap value can be mimicked by a single alternating chain
model, the same model will fail to describe the multimagnon
condensed phase. We compute different thermodynamic prop-
erties and compare them with experimental measurements.
We demonstrate the goodness of the model with subleading
interactions in capturing the experimental data. We further
explore the effect of strain. The introduction of a moderate
amount of uniaxial strain is found to tune the subleading
interactions, driving a strain-assisted quantum transition from
gapful to a gapless phase. Our prediction may be verified in
future experiments. The 2D spin model introduced in this
study, inspired by the NVOPO physics, will be of general
interest in study of frustrated magnets.

II. METHOD

The first-principles DFT calculations were carried out in
two different basis sets: (a) a pseudopotential, plane-wave
basis, and (b) a muffin-tin orbital basis. The consistency of
the two different basis-set calculations has been cross-checked
in terms of band structure and density of state plots. The
construction of a low-energy Hamiltonian was achieved in a

muffin-tin orbital basis, while for accurate total energy calcu-
lations and structural relaxation, a plane-wave basis was used.

The plane-wave calculations were carried out employing
projector augmented-wave potential [31], as implemented in
the Vienna Ab-initio Simulation package [32–34]. The con-
vergence of energies and forces was ensured by using a
plane-wave energy cutoff of 600 eV and Brillouin zone (BZ)
sampling with 6 × 6 × 6 Monkhorst-Pack grids. During the
structural relaxation, the ions were allowed to move until the
atomic forces became lower than 0.0001 eV/Å.

The Perdew-Burke-Ernzerhof generalized gradient ap-
proximation (GGA) [31] was used to approximate the
exchange-correlation functional. To check the influence of the
correlation effect at the transition-metal site, beyond GGA,
GGA+U with supplemented Hubbard U correction was car-
ried out [35].

The muffin-tin orbital (MTO) basis was used in deriv-
ing a low-energy, few-band Hamiltonian in the effective t2g

Wannier basis of the transition-metal ions. For this pur-
pose, the NMTO-downfolding technique [36] of integrating
out degrees of freedom that are not of interest, starting
from the all-orbital DFT band-structure, was employed.
The self-consistent potentials required for these calcula-
tions were generated through Stuttgart implementation of the
linear-MTO (LMTO) package [37]. For muffin-tin orbital cal-
culations, the MT radii were chosen as 1.89, 1.25, 1.161, and
0.86 Å for Na, V, P, and O, respectively.

State-of-the-art numerical techniques of ED [38–40] and
DMRG [41–43] were used to solve the DFT-derived spin
model. While for small system sizes, ED was used, for larger
system sizes the DMRG method of systematic truncation of
irrelevant degrees of freedom and renormalization of cou-
pling parameters for growing the system sizes was used.
The accuracy in DMRG is known to decrease for systems
with long bonds or multiple times renormalized operators
used in the construction of the Hamiltonian. To reduce the
number of multiple times renormalized operators used in the
Hamiltonian, a four-new-site algorithm is used. It demon-
strates better convergence in the J − J ′ model with the same
computational cost [44]. In particular, in the present work,
we used this modified DMRG method [44] on a rectangular
lattice with cylindrical geometry. Cylinders are labeled XC
or YC, corresponding to open boundary conditions (OBCs)
along the larger lattice direction (X-direction) and periodic
boundary conditions (PBCs) along the smaller direction (Y-
direction). We retain up to m = 700 density matrix eigenstates
during the renormalization process. We perform ∼10–12
sweeps until the ground-state energy converges within an error
of ∼10−5 J.

III. CRYSTAL STRUCTURE

The NaVOPO4 compound crystallizes in the monoclinic
structure with P21/c (no. 14) space group and Z = 4. Starting
from the experimentally determined crystal structure [14], for
an accurate determination of the positions of light atoms such
as O, we optimize the structure, keeping the lattice parame-
ters as well as high-symmetry atomic positions fixed, under
the selective dynamics scheme. In the optimized geometry,
the magnetic ion in the structure, V4+, is surrounded by six
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FIG. 1. Crystal structure of NaVOPO4. (a) Structural units of distorted VO6 octahedra surrounded by six inequivalent oxygen atoms
(O1–O6) and PO4 square pyramid formed by O1–O4 inequivalent oxygen atoms. (b) Corned-shared VO6 octahedra forming structural chains
along the crystallographic c axis. The rectangular box represents the unit cell. (c) VO6 octahedra connected by a pair of PO4 square forming
VO6-PO4-PO4-VO6 chains running along [110] and [1̄10] in two consecutive ab layers. (d) Three-dimensional network formed by cris-cross
running chains and Na atoms.

inequivalent oxygen atoms (O1–O6) with four equatorial V-
O bonds in the range 1.98–2.01 Å, and one long and one
short apical bond of length 2.13 and 1.62 Å, respectively.
This results in a distorted VO6 octahedron of C2h symmetry,
instead of Oh symmetry of an ideal octahedra. The P5+ ions,
on the other hand, form a nearly regular PO4 tetrahedron with
P–O bond lengths of ∼1.54 Å [cf. Fig. 1(a)]. The corner-
shared VO6 octahedra form structural chains, running along
the crystallographic c-axis, as shown in Fig. 1(b). A pair of
VO6 octahedra bridged by a pair of PO4 tetrahedra also form
chains running along [110] and [−110] axes in two consec-
utive ab plane, as shown in Fig. 1(c). A three-dimensional
cris-cross connected network is formed by corner sharing of
VO6 octahedra and PO4 tetrahedra, in which Na+ ions sit in
the hollows to bring cohesion in the structure, as shown in
Fig. 1(d).

IV. DFT ESSENTIALS

A. Basic electronic structure

The non-spin-polarized GGA-PBE density of states (DOS)
of NVOPO, projected onto V-dxy, dyz, dxz, dx2−y2 , and d3z2−r2

orbital characters, is shown in Fig. 2(a). The local coordinate
system is chosen with the local z-axis and x-axis pointing
along V-O6 and approximately along the V-O3 bond, respec-
tively. Following the nominal d1 valence of the V4+ ion, the
V-d states are found to be mostly unfilled, with 1/6 of the
states being filled. The crystal-field splitting of the V-d states
computed from the real-space representation of the V-d-only
Hamiltonian obtained from NMTO-downfolding calculations

by integrating all other degrees of freedom is shown in the in-
set of Fig. 2(a). As is seen, the octahedral environment pushes
the dx2−y2 and d3z2−r2 levels, belonging to the eg manifold
2–3 eV away from the dxy, dyz, dxz levels, forming the t2g

manifold. The octahedral distortion leads to further splitting
of about 1 eV between dx2−y2 and d3z2−r2 and 0.7–0.8 eV
between dxy and dyz/dxz along with a tiny splitting between
dyz and dxz. The crystal-field splitting between dxy and dyz/dxz

being smaller than the dispersional width associated with dxy,
dyz, and dxz, the t2g manifold consisting of 12 bands arising
out of 4 V ions in the unit cell [cf. Fig. 2(b)] crosses the Fermi
level (EF ), separated from the eg manifold by about 0.5 eV.
The metallic nature of the GGA-PBE non-spin-polarized elec-
tronic structure, contrary to the insulating character of the
compounds, suggests the inadequacies of the GGA to cap-
ture the strong correlation effect at the V site. Inclusion of
Hubbard correction (U ), within the GGA calculation supple-
mented with U (GGA+U ), pushes the dxy bands below EF ,
well separated from other t2g bands, opening a gap at EF . See
the Supplemental Material (SM) [45]. The non-spin-polarized
GGA electronic structure, however, serves as a good starting
point for identifying the predominant V-V hopping pathways
in a low-energy representation of the problem that is respon-
sible for the magnetic exchanges.

Although the basic GGA electronic structure shows an
overall similarity with the LDA electronic structure of one of
the related compounds, AgVOAsO4, studied in past literature
[11] in terms of the presence of partially filled low-lying dxy

bands strongly hybridizing with higher-lying dyz/dxz bands,
there are subtle differences in terms of crystal-field splittings
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FIG. 2. The non-spin-polarized GGA density of states and band
structure of NVOPO. (a) Density of states, projected to different V-d
characters, dxy (red), dyz (green), dxz (orange), dx2−y2 (brown), and
d3z2−r2 (blue). Zero of the energy is set at EF . Inset shows the crystal-
field splitting (in eV) of the V-d levels. (b) Orbital projected band
structure, plotted in an energy range close to EF . Fatness of the bands
denotes the associated orbital character (dxy, red; dyz, green; and dxz,
orange).

and bandwidths, which are expected to bring about crucial
differences in the spin model of the two compounds.

B. Low-energy Hamiltonian and effective
V-V exchange pathways

In an attempt to derive a V-d-only low-energy Hamilto-
nian from DFT calculations, we resort to the energy-selective
N th-order muffin-tin orbital-based (NMTO-based) downfold-
ing technique [36]. Starting from a self-consistent DFT
calculation in the linear muffin-tin orbital basis [37], an
NMTO-downfolding calculation arrives at a low-energy V-d
Hamiltonian by integrating out degrees that are not of interest.
This defines effective V Wannier functions with the head of
the function shaped as V-d orbital characters, and tails shaped

as integrated-out orbitals having appreciable hybridization
with V-d .

To construct the low-energy model of NVOPO, we con-
sider a three-orbital model in which V-dxy, dyz, and dxz are
kept active, and all the rest, Na-s, O-p, P-p, as well as V-
eg degrees of freedom, are integrated out. Construction of a
three-orbital t2g-only model is justifiable because the DFT-
estimated t2g − eg crystal field of 2–3 eV gets renormalized to
4–5 eV upon application of the missing correlation effect (see
the SM [45]), which would weaken the t2g − eg hybridization.
A very similar approach was also adopted in Ref. [11] for
modeling AgVOAsO4.

We would like to stress that, in contrast to the DFT results
of Ref. [14] in which a dxy-only model was proposed, we find
that such a one-orbital description does not work satisfactorily
due to strong hybridization between three t2g’s and the entan-
gled nature of these bands.

The three-orbital downfolded band structure provides a
faithful representation of the DFT bands, as shown in
Fig. 3(a). The real-space representation of the three-orbital
model leads to 3 × 3 on-site and hopping matrices joining
the two V sites with a connecting vector. The detailed results
are presented in Appendix A. The two leading hopping path-
ways appear to be V-V interactions through the PO4 bridges,
t and t ′ forming alternating chains running along the [110]
and [−110] directions in the ab planes, as shown in Figs. 3(b)
and 3(c). The next subleading interactions appear to be be-
tween corner-shared VO6 running along [001], tc, and the V-V
pairs in the body-diagonal positions connecting two ab planes,
ta, as shown in Figs. 3(d) and 3(e).

To understand the dominating effect of t and t ′ connecting
V pairs with no shared O, over tc between V’s with cor-
ner shared connectivity, we plot the overlap of V effective
Wannier functions, placed at 1NN and 3NN V sites [cf.
Figs. 3(f) and 3(g)]. As is seen, for tc, due to the titled ge-
ometries of the octahedra and their corner-shared nature, the
overlap of the two functions is minimal at the connecting O
site. On the other hand, due to finite hybridization between
O-p and P-p, the O-p like tails of Wannier functions bend
and make a connection at the intervening P site for V pairs,
separated by PO4 bridges, resulting in a well-defined hop-
ping path for t . This general aspect is found to be similar
to that found for AgVOAsO4 [11], although the details are
different.

Starting from the information of the hopping integrals, a
second-order perturbation theory can be employed to provide
a rough estimate of the exchange integrals (J) in the limit
of the Coulomb interaction U that is much larger than the
hopping integrals. Considering the dxy orbitals to be majorly
half-filled and dxz/dyz orbitals to be majorly empty leads to
(a) an antiferromagnetic interaction due to the hopping of
an up-electron from an occupied dxy state to a neighboring
dxy state, occupied by a down-electron, costing U amount
of energy; and (b) a ferromagnetic interaction arising from
electronic hopping from occupied dxy to unoccupied dyz, dxz

states, separated by charge-transfer energy of �, as shown
in the schematic figure in the SM [45]. The latter process
involves the energy gain between electrons in a parallel spin
configuration by Hund’s coupling (JH ). Thus the effective
exchange interaction can be written following the formulation
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FIG. 3. Low-energy three-orbital model. (a) Downfolded band structure (dotted red lines) in comparison to full DFT band structure (solid
black lines) plotted along the high-symmetry directions of monoclinic BZ. Zero of the energy is set at EF . The energy points (E0 and E1) used
for energy-selective NMTO-downfolding calculation have been marked. (b) and (c) The alternating chains of V ions, connected by hopping
interactions t and t ′. The blue and magenta shaded planes denote two successive ab planes. (d) and (e) V ions connected by tc and ta hoppings.
Different ab and ac planes are shaded to highlight the complex connectivity. (f) Overlap of effective Wannier functions dxy − dxy placed at
neighboring V sites connected by hopping t . Shown are the constant value isosurfaces with lobes of opposite signs colored as magenta and
yellow for one site and blue and purple for a neighboring site. (g) Same as (f) but between dxy and dxz placed at V sites connected through
hopping tc.

of Kugel-Khomskii [46], which has been applied successfully
to several cases [11,47,48] as

J = JAFM + JFM

= 4t2
xy,xy

U
−

∑
α=xy,β=yz,xz

4t2
α,βJH

(U + �α,β )(U + �α,β − JH )
. (1)

In the above we have assumed that the intra-atomic
Coulomb interaction and Hund’s coupling do not depend on
the particular orbital, i.e., the repulsion between different
orbitals (Umm′ ) is the same as that between the same orbital
(Umm) = U , and Jmm′

H = JH , where m and m′ are orbital in-
dices that run over the three t2g orbitals.

The exchange interactions estimated employing the above
formula, and using DFT inputs for � and tα,β’s with a

choice of U = 4 eV and JH = 1 eV, are listed in Table II of
Appendix A. This gives rise to the antiferromagnetic nature
of the two dominating exchanges, J and J ′, related to hop-
ping integrals t and t ′, two subleading exchanges, one of
a ferromagnetic nature, Jc related to tc, and another of an
antiferromagnetic nature, Ja related to ta.

C. Exchange Interactions from total energy calculations

The second-order perturbative formula employing DFT
inputs of effective hopping integrals and on-site matrix
elements, as discussed above, provides a rough estimate of the
relative importance of different exchanges. This step, there-
fore, serves as an important step for the identification of the
underlying spin model in the complex geometry of NVOPO.
However, once this identification is done, in the next step
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an accurate determination of exchanges is required. For this
purpose, we employ the total energy method in which various
J’s are evaluated by mapping the GGA+U total energies of
different possible spin configurations of V ions to an effective
J − J ′ − Jc − Ja spin Hamiltonian. As opposed to earlier cal-
culations in this context [14], our total energy calculations are
carried out by solving a large number of equations (∼ 11C4)
obtained from GGA+U total calculations of 12 different spin
configurations to avoid any bias on the chosen spin configura-
tions. The details of the results are presented in Appendix B.
Our rigorous analysis established a robust alternation ratio of
0.92 in comparison to 0.98 extracted from susceptibility fit
[14]. The obtained alternation ratio, however, is in good agree-
ment with the DFT value of 0.93, as reported in Ref. [14].
Our analysis, importantly, uncovered a strong dependency of
the values of Ja and Jc on the chosen spin configurations. The
AFM and FM nature of Ja and Jc, though, is maintained in
each choice. Thus the subleading terms Jc and especially Ja

show a large variation (cf. Table III in Appendix B).

V. SOLUTION OF THE SPIN-HAMILTONIAN

We employed the many-body techniques of exact diago-
nalization and density matrix renormalization group to solve
the ab initio derived spin Hamiltonian. However, the three-
dimensionally-coupled network of alternating chains poses a
numerical challenge in solving the Hamiltonian, which may
involve the application of complex numerical tools such as
a functional renormalization group [49]. To make the prob-
lem numerically tractable, we consider a two-dimensional
(2D) model that captures the essential features of the full 3D
problem. Figures 4(a) and 4(b) show the full 3D model and
the 2D model derived from the 3D model, respectively. See
Appendix C for details. In the full model, a parallel array
of J − J ′ chains runs along two perpendicular directions, in
two consecutive ab planes, stacked along the c direction, con-
nected by Jc. In its two-dimensional projection, this is mapped
onto the J − J ′ chain, alternating with a uniform chain of
average interaction (J + J ′)/2, connected via Jc. Furthermore,
in order to capture the effect of Ja present on the body diagonal
of the 3D Hamiltonian, an effective, renormalized interaction
Jd , which is a combination of Ja and Jc, is considered on
the phase diagonal of the 2D plane. While the projection
establishes a 2D model of J − J ′ chains that alternate with
a uniform chain of average interaction (J + J ′)/2, connected
via Jc (see Fig. 14 in Appendix C), the exact estimate of Jd is
nontrivial, given the complex intricacy of the 3D model, as is
evident from the 3D and 2D structures, presented in Fig. 15
of Appendix C. We thus approximate it as Ja + γ Jc, where
γ is a variational parameter chosen to reproduce the correct
ground state of NVOPO. It should be noted that both 3D and
the constructed 2D models are frustrated, as demonstrated in
Appendix C. Ja and Jc in the 3D model and Jd in the 2D
model are primary factors for introducing the frustration in
the system. In the 3D model this involves one FM and three
AFM couplings of four bond units, and in the 2D model this
involves two FM and one AFM coupling of three bond units.
Thus, two main aspects are ensured in this construction: (i)
the coordination number of each interaction is the same as
in the full model, and (ii) the frustrated nature arising due to

FIG. 4. (a) The 3D spin model of NVOPO, where solid green,
dashed green, red, and dotted blue lines represent V-V magnetic
exchanges, J , J ′, Jc, and Ja, respectively. (b) Effective 2D spin
model, with solid green, dashed green, black, and dashed orange
representing J , J ′, J̃ = (J+J ′ )

2 , and Jd interactions, respectively. While
the exchanges J and J ′ are the same as in the 3D model, J̃ and Jd are
effective interactions arising from 3D to 2D mapping. See the text
and Appendix C for details.

competing antiferromagnetic and ferromagnetic interactions
is kept intact.

The Hamiltonian for the 2D model of the spin-1/2 isotropic
Heisenberg system in an axial magnetic field B is given by

H =
LY∑

j=1,3,...,

LX∑
i=1

(
J �Si, j · �Si+1, j + J ′ �Si+1, j · �Si+2, j

+ J + J ′

2
�Si, j+1 · �Si+1, j+1

)

+
LY∑
j=1

LX∑
i=1

(
Jc �Si, j · �Si, j+1 + Jd �Si, j · �Si+1, j+1 − BSz

i, j

)
.

(2)

�Si, j is the spin-1/2 operator at a site with coordinates (i, j) in
a 2D geometry (LX × LY ), as shown in Fig. 4(b). The first and
second terms of the Hamiltonian represent the odd-numbered
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FIG. 5. (a) Second-order derivative of the ground-state energy
per site, −E ′′

0 /N , calculated from ED on a 24-site torus as a function
of Jd/J for different Jc/J values. The two prominent peaks in −E ′′

0 /N
serve as indicators of the phase boundaries separating phase I and
phase II, and phase II and phase III, as shown in (b).

and even-numbered spin chains in the 2D plane, with al-
ternating J − J ′ antiferromagnetic exchanges and uniform
antiferromagnetic exchanges, respectively. The third term rep-
resents the subleading competing ferromagnetic exchanges
Jc along the Y-direction and Jd along the diagonal between
spins on nearest-neighbor chains as shown in Fig. 4(b). The
model exhibits a high degree of frustration due to ferromag-
netic subleading exchanges Jc and Jd . Based on the inputs of
ab initio calculations, in all subsequent calculations we fix
the dominant exchange ratio J ′/J to 0.92. Keeping in mind
the large variation in Jc and Ja values with |Jc| two to four
times larger than |Ja|, the subleading exchange ratios Jc/J
and Jd/J are varied within the ranges −0.5 � Jc/J � 0 and
−1 � Jd/J � 0, respectively.

VI. QUANTUM PHASES AT B = 0

In this section, we study the ground-state (GS) properties
of the Hamiltonian given in Eq. (2) in the Jc/J and Jd/J
parameter space. To characterize the quantum phases and
possible boundaries between them, we employ two numerical
techniques: exact diagonalization (ED) and density matrix
renormalization group (DMRG). The second derivative of en-
ergy −E ′′/N was calculated from ED for a 24-site system, and
spin correlations C(r) = 〈�Si · �Si+r〉 in the GS were calculated
from DMRG for relatively larger system sizes of 80–120 sites.

A. Second derivative of energy

The second derivative of the GS energy is expected to
show maxima or discontinuity at the transition points between
different phases, and it serves as an indicator of the existence
of different phases. Figure 5(a) shows −E ′′/N as a function of
Jd/J for two representative values of Jc/J = −0.4,−0.5 with

a fixed value of J ′/J = 0.92. A similar nature was found for
Jc/J = −0.1,−0.2,−0.3 (not shown in the figure for clarity).
The two maxima in −E ′′/N , as seen in the figure, suggest that
there are three distinct phases. Figure 5(b) shows the transition
points between three phases for Jc/J = −0.4,−0.5. We char-
acterize these phases—phase I, phase II, and phase III—in
the following section through spin correlations obtained from
DMRG for larger system sizes.

B. Spin correlations C(r)

To further characterize the three phases found in ED, we
have used DMRG to analyze the nature of the ground state
of H on cylindrical geometries, which is discussed in detail
in Appendix D. We computed spin correlations in the three
different phases identified in ED: (i) weak Jc, strong Jd (phase
I: Jc/J = −0.3, Jd/J = −0.8); (ii) comparable Jd , Jc (phase
II: Jc/J = Jd/J = −0.3); and (iii) strong Jc, weak Jd

(phase III: Jc/J = −0.5 and Jd/J = −0.1). Since the Hamil-
tonian is isotropic, the correlations Sx, Sy, and Sz are identical.
We computed the total correlation, defined as

C(r) = 〈�S0 · �Sr〉
= 〈

Sx
0 · Sx

r

〉 + 〈
Sy

0 · Sy
r

〉 + 〈
Sz

0 · Sz
r

〉
. (3)

Figures 6(a) and 6(b) present the spin correlations C(r)
on the 80-site XC-cluster along the paths P-1 and P-2 (cf.
Appendix D for reference). Since the path P-1 is considered
along the alternating AFM J − J ′ chain, the spin correlations
in all three phases mentioned above exhibit short-range AFM
correlation with exponential decay. On the other hand, the spin
correlations along path P-2 show different behavior in differ-
ent phases. We note that this path includes the subleading FM
exchange Jd . In phase I, correlations indicate FM long-range
order (mFM ≈ 0.08), while in phase III, a short-range AFM
correlation with exponential decay is observed. The AFM
correlations in phase III, however, decay faster than those of
path P-1. However, in phase II, correlations vanish even at the
next-nearest neighbor, which suggests that spins are highly
disordered in this phase.

The spin correlations on the 80-site YC-cluster along the
path P-1 (cf. Appendix D), which includes the subleading FM
exchange Jc, are shown in Fig. 6(c). In phase I and phase III,
correlations exhibit short-range AFM order with exponential
decay and FM long-range order (mFM ≈ 0.05), respectively.
This is opposite to that found for the path P-2 in XC geometry.
However, in phase II, similar to path P-2 in the XC-cluster, the
spin correlations vanish at the next-nearest neighbor.

The findings of spin correlation calculations are summa-
rized in Table I. As is evident, phase I, characterized by a
strong Jd , exhibits short-range AFM correlation both in the
J-J ′ (X) as well as the Jc (Y) direction, which makes the
correlation along Jd ferromagnetic with long-range order. In
phase III, characterized by a strong Jc, on the other hand,
correlation is of an AFM nature in the J-J ′ (X-direction)
and Jd (diagonal) directions, making the correlation along Jc

FM. On the other hand, in phase II, with comparable values
of Jc and Jd , the spins are disordered along both Jc and Jd

with short-range AFM correlation along the leading J-J ′ chain
direction. This suggests a staggered and stripy spin orientation
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TABLE I. Characterization of three different phases, based on the analysis of spin correlation, presented in Sec. VI B.

Phase I Phase II Phase III
Path (Staggered) (Disorder) (Stripy)

XC P-1 AFM order AFM order AFM order
(along X-direction) (short-range) (short-range) (short-range)
(J-J ′ chain)
XC P-2 FM order Nearest-neighbor correlation AFM order
(along diagonal direction) (long-range) [C(r) = 0 for r > 1] (short-range)
(Jd chain)
YC P-1 AFM order Nearest-neighbor correlation FM order
(along Y-direction) (short-range) [C(r) = 0 for r > 1] (long-range)
(Jc chain)

in phase I and phase III, respectively. In phase II, where both
subleading terms are comparable (Jc ≈ Jd ), the system expe-
riences significant frustration in terms of fierce competition
between Jc and Jd . This results in vanishing correlations along
the Y and diagonal directions, leading to what we term the
“disorder” phase. It is worth noting that in this “disorder”
phase, however, there exists weak short-range order along the
X-direction due to the presence of weakly alternating AFM
chains.

Armed with information on spin correlations, which char-
acterizes three different phases, we construct the zero-field
phase diagram of this model, as shown in Fig. 7, in the param-
eter space of Jc/J and Jd/J for fixed J ′/J = 0.92 based on the
energy derivative. The local spin orientations in the staggered
phase (phase I) and the stripy phase (phase III) are also shown
in the inset of the phase diagram (Fig. 7).

VII. EFFECT OF AXIAL MAGNETIC FIELD

Upon clarification on the nature of the GS in the absence
of any external perturbation, the next interesting question is,
what is the effect of an external magnetic field on the GS of
the Hamiltonian in Eq. (2)? In the “disorder” phase, the low-
est singlet-triplet (ST) gap [Em = E (Sz = 1) − E (Sz = 0)] is
found to be finite, though the gap value is found to vary within
the phase space of phase II. The gap value is found to be
largest along the Jc = Jd line and decreases upon moving
away from this line. For fixed choice of J ′/J = 0.92, the
gap value for Jc/J = −0.3 and Jd/J = −0.3 is found to be
≈ 0.2 J while it reduces to ≈ 0.05 J for Jc/J = −0.3 and
Jd/J = −0.5.

We note that at the Jc = Jd point, due to the competing na-
ture of Jc and Jd , they compensate. This results in a system that
can be mimicked by decoupled alternating chains with a finite
ST gap. This can be appreciated by considering the fact that
the spin gap for a weakly dimerized chain is given by �(δ) =
Aδβ , where δ is dimerization, connected to the alternation ratio
by the relationship J ′/J = 1−δ

1+δ
and A = 2.0375, β = 0.7475

[50]. Setting J ′/J = 0.92 yields a value of 0.189 J, very close
to our estimate of ∼ 0.2 J for the case of Jc = Jd . Moving
away from the Jc = Jd line, which is the compensation point,
the resultant uncompensated subleading interactions suppress
the gap value from the single chain limit. The estimated value
of 0.05 J for Jc/J = −0.3 and Jd/J = −0.5 is very close to
the experimental estimate of 2 K for the compound and is

also supported by the DFT estimates of exchanges. Thus the
spin gap can be reproduced either by considering a single
alternating chain with an alternation parameter of 0.98, as
employed in susceptibility fitting [14], or by considering a
stronger alternation parameter of ∼0.92 as found in the DFT
study, but including uncompensated subleading interactions.
The latter scenario turns out to be the realistic representation.
The nonuniqueness of the fitting process of the susceptibility
fit is demonstrated in Sec. IX. In comparison to the DFT,
the estimate of J ′/J is found to be robust, consistently ob-
tained in a large number of solutions. It should be stressed
that the effect of subleading interactions, either compensated
or uncompensated, will be manifested in the excited-state
properties. This would enable the difference between a single
alternating chain model, as invoked in Ref. [14], and the
interchain coupled chain model of the discussed system. This
will be taken up in the following section.

The system size dependence of the spin gap is shown in
the SM [45]. This shows that a gapped solution in the disorder
phase survives even in the asymptotic limit [see Fig. 3(a) in
the SM]. The gap can be closed at a critical field B = Bc1. For
the parameters Jc = −0.3 and Jd = −0.5, the critical field is
found to be ≈1.8 T, close to the experimentally found gap
of �2 T [14]. However, in the staggered and stripy phases,
the dominant ferromagnetic Jd and Jc lead to ordering along
the diagonal and Y-direction, respectively, which result in the
closing of the spin gap upon extrapolation to infinite size (see
the SM [45]).

To understand the magnetization processes, we further
computed the magnetization as a function of B. The results
for the staggered and stripy phases are shown in Fig. 8(a),
and that for the disordered phase is shown in Fig. 8(b). The
results for the 20 × 4 lattice in XC geometry reveal that
while in the staggered and stripy phases the magnetization
M = Sz

total = ∑
i Sz

i increases with B in steps of �Sz
total = 1,

in the disordered phase the magnetization (M) changes in
steps of �Sz

total = 4. Interestingly, throughout phase II, M
changes in steps of �Sz

total = 4, as in seen in Fig. 8(b) for
a range of Jd/J values of −0.25, −0.3, and −0.5, although
the critical field for closing the gap varies. To probe this
further, we carried out calculations on a (20 × 6)-site system
in XC geometry, thereby increasing the system along the Jc

bond direction, and focusing on the disordered phase with
Jd/J = −0.3. We notice that while the critical field Bc1 for
the 20 × 4 and 20 × 6 XC clusters remains nearly the same
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FIG. 6. Correlations C(r), computed for different paths and ge-
ometries in the DMRG calculation (see Appendix D) in three
different phases: (a) along path P-1 in XC geometry, (b) along path
P-2 in XC geometry, and (c) along path P-1 in YC geometry.

(≈0.2J), the magnetization changes in steps of �Sz
total = 6 in

comparison to 4, as found in a (20 × 4)-site system. Thus, the
magnetization step scales with the system size along the Jc

bond direction, signaling multimagnon condensation in phase
II. We call this phenomenon magnon condensation, as the
quasiparticles generated in the weakly dimerized chains are
identified as magnons [51]. The magnons on each leg develop
attractive interactions with the magnons on the neighboring
chains. Consequently, a multimagnon condensate is formed

FIG. 7. Phase diagram of the 2D effective model Hamiltonian H
in Eq. (2) in parameter space of Jd/J and Jc/J , constructed out of ED
total energy and DMRG computed spin correlations. The inset shows
the local spin orientations in the staggered and stripy phases.

in a finite field that regulates the magnon density within the
system.

VIII. MULTIMAGNON CONDENSATION

In the multimagnon condensation phase, a large number of
magnons form a bound state, and there are two quantities to
characterize this phase. The first is the order parameter, which
is discussed in Appendix E, and the second is the binding
energy of the bound state. We computed the binding energy
of an n-magnon condensed state [23,24]. The per magnon
binding energy of an nn-magnon bound state can be defined
as

Eb(n) = 1

n
{[E (Sz − n) − E (Sz )] − n[E (Sz − 1) − E (Sz )]},

(4)

FIG. 8. DMRG computed magnetization in XC geometry with
system size 20 × 4 in (a) staggered and stripy phase, (b) disorder
phase plotted as a function axial magnetic field. In all the calcula-
tions, J ′/J and Jc/J are fixed at 0.92 and −0.3, respectively. Jd/J
values are chosen to be −0.8, and −0.1 in (a) and −0.25, −0.3, and
−0.5 in (b). The inset in (b) shows the system size dependence of
magnetization in disorder phase, shown for the representative case of
Jd/J = −0.3.
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FIG. 9. DMRG computed absolute value of the binding energy
per magnon [|Eb(n)|] as a function of external magnetic field (B/J)
for 10 × 2, 10 × 4, and 10 × 6 system sizes in XC geometry. The
parameters of the spin model are chosen to belong to the disorder
phase with a choice of Jd/J = −0.35, −0.5 for fixed J ′/J = 0.92,
Jc/J = −0.3.

where E (Sz = S) is the GS energy in the Sz = S sector.
For stabilization of the n-magnon condensed state, the cor-
responding binding energy Eb(n) should be negative. We
computed the binding energy of two-magnon, four-magnon,
and six-magnon states in the disordered phase in 10 × 2, 10
× 4, and 10 × 6 XC geometry for the representative cases of
Jd/J = −0.35 and −0.5, with fixed J ′/J = 0.92 and Jc/J =
−0.3 values. Figure 9 shows the plot of |Eb(n)| as a function of
the external magnetic field B/J . We find that the magnitude of
binding energy increases with the magnetic field, suggesting
increased stabilization of a multimagnon bound state with
increasing field strength. The binding energy is found to be
maximum at Jc = Jd when the system is highly frustrated, and
it decreases away from the Jc = Jd line.

The finite binding energy indicates a multimagnon con-
densed state, which can be rationalized as follows. The ground
state of the disordered phase exhibits a singlet state character-
ized by short-range AFM correlations along the J-J ′ chain,
while only a weak nearest-neighbor ferromagnetic correlation
persists along the Y and diagonal directions. To understand
the attractive nature of the magnon, we use the mean-field
approximation for weak subleading exchange interactions Jc

and Jd . In this limit, these subleading terms act as an effective
magnetic field generated by the magnetic moments on neigh-
boring chains, and the field strength is proportional to Jc and
Jd . The mean-field model Hamiltonian is the sum over all J-J ′
spin-1/2 chains under the effective field of the magnetic mo-
ments of other neighboring chains, and the external magnetic
field B and the Hamiltonian can be expressed as

HMF ≡
∑

i

∑
j

J �Si, j · �Si+1, j + J ′ �Si+1, j · �Si+2, j

− �Beff (Jc, Jd , B) · �Si, j, (5)

where �Si, j represents the spin at the ith site of the jth ef-
fective single J-J ′ chain model, and J and J ′ are effective
exchange interactions of dimerized chains. The total effective

FIG. 10. Magnetic susceptibility of NaVOPO4 in an applied field
of 1 T, subtracting the impurity contribution. The experimental data
are reproduced from Ref. [14]. The theoretically computed suscepti-
bilities for various models are compared.

field, Beff , is given by [B − Jc(〈�Si, j + 1〉 + 〈�Si, j − 1〉) −
Jd (〈�Si + 1, j + 1〉 + 〈�Si − 1, j − 1〉)], where B is the external
field and 〈�Si, j〉 is the average magnetic moment generated in
the 2D model at the site with coordinates (i, j) at field B. We
notice that both ferromagnetic interactions Jc and Jd induce
an effective field that aligns the i jth spin along the moment of
the neighboring spin, i.e., they induce attractive interactions
between the magnons on the neighboring chains.

Our analysis thus highlights the importance of the sublead-
ing ferromagnetic exchanges Jc/J and Jd/J in the stabilization
of the multimagnon condensed phase. The presence of these
two subleading interactions helps the process in two ways.
First, the presence of competing Jc and Jd causes frustration,
which significantly reduces the correlation length along the Y
and diagonal directions. Second, the ferromagnetic subleading
exchanges between the chains give rise to a finite binding
energy between the magnons on different chains, acting as a
glue for the multimagnon condensation.

IX. CALCULATED THERMODYNAMIC PROPERTIES:
COMPARISON TO EXPERIMENTAL MEASUREMENTS

We next compute the measurable thermodynamic proper-
ties, taking into account the subleading interchain interac-
tions, treated in a mean-field manner, and we compare with
the published literature [14].

For this purpose, we first compute the magnetic suscep-
tibility. The comparison of different models with experi-
mentally measured susceptibility [14] in the presence of the
magnetic field of 1 T after subtracting the impurity contribu-
tion is shown in Fig. 10. As is seen from the plot, an equally
good fit of the measured susceptibility can be obtained either
by a 1D alternating chain model with an alternation param-
eter of 0.98, or by a model including subleading interchain
interactions with a slightly stronger alternation parameter
of 0.92, upon a slight variation in value of J (36.5 versus
35.5 K).

We also compute the specific heat and compare it with
the experimental data from Ref. [14] at zero magnetic field
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FIG. 11. Magnetic contribution of the specific heat. The theoret-
ically computed results for various models are compared with the
experimental data from Ref. [14].

(Fig. 11). It should be noted that the measured specific heat
always has a dominating phonon contribution, and subtraction
of the phonon contribution is not straightforward. We consider
the magnetic contribution of specific heat as published in
Ref. [14]. The 1D alternating chain model and our proposed
model produce comparable results.

X. THE MATERIALS PERSPECTIVE—EFFECT
OF STRAIN

Following the construction of a Jc/J − Jd/J phase dia-
gram, through a solution of the model spin Hamiltonian, it
is a worthwhile exercise to put the material’s perspective in it.
Using the DFT-derived average value of parameters, as given
in Table III, the positioning of NVOPO in the phase diagram
is marked with the red symbol, while the box depicts the
probable position taking into account the standard deviation
in estimates of exchanges (cf. Table III). As is seen, the box
falls in region II, characterized by multimagnon condensation,
separated from the one-magnon state.

Considering the important effect of competing ferro-
magnetic couplings Jc and Jd in driving the multimagnon
condensed phase, we next investigate the effect of uniaxial
tensile strain applied along the c-axis in tuning these ex-
changes. The system was subject to 1–3 % tensile strain.
The system was fully relaxed for the in-plane a and b lattice
parameters, keeping the volume intact, and for the free atomic
positions. As a first approximation, for a 3D solid without
significant anisotropy, the assumption of fixed volume is ex-
pected to hold well, especially for uniaxial strain. We have
explicitly checked this by carrying out relaxation without the
constraint of constant volume. The fixed-volume constraint is
found to have a minimal effect, with the lattice parameters and
the free atomic positions differing by less than 1%.

The application of strain is found to affect mostly the
structural parameters related to V-V chains running along the
c-axis. In particular, for 1% and 3% tensile strain, 1NN V-V
bond length is found to change from 3.56 Å to 3.60 Å to
3.70 Å, while the V-O-V bond-angle is found decrease slightly
from 144.9◦ to 144.8◦ to 144.2◦.

 

FIG. 12. Phase diagram: Jc/J − Jd/J phase diagram divided into
multimagnon condensed phase (marked in green) and the one-
magnon, dipolar phase (marked in light blue). The data-point marked
as V1 represents the positioning of NVOPO in the phase diagram,
based on DFT estimates of the average value of exchanges. The box
represents the positioning taking into account the standard deviations
in DFT estimated exchanges. The data points V2 and V3 show the
positioning upon application of 1% and 3% tensile uniaxial strain
along the c-axis, respectively.

The structural changes upon application of 1% strain re-
sulted in an increase in the average value of Jc by 67.5%,
a decrease in Ja by 30.24%, and thus increments in Jd of
116.11% compared to the corresponding average J values in
an unstrained condition. Interestingly, the alternation param-
eter α was found to remain more or less unchanged. Thus,
application of 1% strain, as seen in Fig. 12, pushes the system
deeper into the disordered phase. A further increase of the
strain value to 3% increases the Jc with a substantial increase
in Jd , thus driving a quantum phase transition from a gapful to
a gapless state.

XI. SUMMARY AND DISCUSSION

The physics of quantum spin chain compounds has
been discussed at length in the literature. The NaVOPO4

compound, in this context, has been recently studied ex-
perimentally by x-ray diffraction, magnetic susceptibility,
high-field magnetization, specific heat, electron spin reso-
nance, as well as nuclear magnetic resonance measurements
[14]. The fit of susceptibility resulted in a J − J ′ model with
an extremely weak alternation parameter α of 0.98 [14], in
agreement with an estimated spin gap value of 2 K. The DFT
study [14] indicated the possible presence of other sublead-
ing interactions. The effect of the subleading interactions in
the description of the field-induced excited-state properties
remains to be explored.

In our study, we first revisit the first-principles modeling
of NVOPO. In this context, we extend beyond Ref. [14]
through two complementary techniques: (a) application of the
downfolding technique to define a low-energy three-orbital
model Hamiltonian in an effective Wannier function basis,
and (b) mapping of GGA+U total energy to the spin model.
The tight-binding representation of the low-energy Hamilto-
nian suggests that first, third, fourth, and eighth neighboring
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hopping pathways are enough to capture the low-energy
physics. Following this finding, we construct a minimal spin-
Hamiltonian with four exchange integrals. We estimate the
average values and the standard deviations of these four ex-
changes by solving a large number of equations (∼11C4)
obtained from GGA+U total calculations of 12 different spin
configurations. This led to a spin model with the hierarchy
of exchange coupling, two major, similar AFM interactions,
J and J ′, as found previously [14], and two other subleading
interactions, FM Jc and AFM Ja with Jc > Ja. This led to an
intricate 3D spin model of a parallel array of J − J ′ chains
running along two perpendicular directions, in two consec-
utive ab planes, stacked along the c direction, connected by
Jc and a body-diagonal interaction of Ja. Our rigorous first-
principles modeling establishes a robust J − J ′ alternation
parameter of ∼0.92, and a large variation in the values of the
two subleading interactions, dependent rather strongly on the
chosen spin configuration.

The constructed spin model is solved using ED and
DMRG. To make the problem numerically tractable, a 2D
approximation of the full 3D model is used, with J − J ′ AFM
chains alternating with uniform AFM chains of (J + J ′)/2
exchanges, connected via an FM Jc and a renormalized FM
exchange, Jd . The large variation in the DFT estimated values
of subleading interchain interactions prompted us to construct
a phase diagram in the parameter space of Jc and Jd . The
constructed Jc/J − Jd/J phase diagram with J ′/J fixed at a
DFT-derived value results in three distinct phases: two long-
range ordered phases with staggered and stripy local spin
orientations, and a spin-gapped disorder phase, characterized
by short-range correlation along the J − J ′ chain, and van-
ishing correlation along Jc and Jd . Our analysis brings out
the competing nature of the two subleading interactions, Jc

and Jd . This competing nature leads to a cancellation of inter-
chain interactions at the Jc = Jd line in the GS. The system
thus can be represented as a collection of decoupled weakly
dimerized chains having a finite spin gap. Away from the
Jc = Jd line, the gap is suppressed due to partial cancellation
between Jc and Jd , and finally an ordered state prevails driven
by the dominance of one competing interaction over the other.
The computed spin gap value for choices of Jc and Jd in the
disordered phase agrees well with the experimentally mea-
sured value. The calculated thermodynamic properties, such
as magnetic susceptibility and specific heat, also provide a
faithful representation of the experimental data [14].

The disorder phase, stabilized by comparable values of
competing interactions Jc and Jd , as opposed to that of a
single alternating dimerized chain, is found to host a mul-
timagnon condensed phase upon gap closing by a critical
magnetic field. The competing subleading exchanges Jc and
Jd are found to play a key role in driving the observed field-
induced multimagnon condensation state by providing the
glue to the magnetic field generated magnons on different
chains [25–27]. In contrast to the dipolar XY order in the BEC
[20], the multimagnon condensed phase exhibits finite multi-
magnon binding energy and hosts multipolar order [26,29,30].
We computed the multipolar order parameter and found it to
be finite in the multimagnon condensed phase. Note that, very
recently, the Tomonaga-Luttinger-liquid physics of NVOPO
was studied experimentally [52]. This is a finite-temperature

phase, with a temperature scale above the scale of interchain
interactions. Our focus is the low-T behavior, below the scale
of subleading interactions Ja (Jd ) and Jc, that leads to the
condensed phase rather than the liquid phase.

A transition from a gapful to a gapless state is envisaged
upon the application of moderate-strength uniaxial strain,
driving a quantum phase transition. We further note that
among the class vanadate compounds with chainlike struc-
tures, NVOPO is unique due to the weak nature of the
alternation. The underlying physics upon application of a
magnetic field is expected to be different for AgVOAsO4 [11]
or NaVOAsO4 [13] with a significantly stronger alternation
ratio of ∼0.6, and thus stronger dimerization. In particular, the
scenario of multimagnon condensation in the disorder phase
proposed in the present study relies on the phenomena of weak
dimerization where magnons from each J − J ′ chain generate
an n-magnon bound state. Note that the observed disorder
phase in the present system arises due to frustration in the
system, not because of the dimerization. This scenario is thus
expected to change in the presence of strong dimerization. A
detailed study on this will be taken up in the future.

Finally, while the studied 2D model was devised to over-
come the numerical restrictions, motivated by the electronic
aspects of NVOPO, it will, in general, be important in under-
standing the physics of the 2D frustrated model with possible
implications to various gapped quantum magnets. In partic-
ular, the stabilization of the multimagnon condensed phase,
driven by the frustration in weakly dimerized systems, will be
of potential interest to the community.
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APPENDIX A: THREE-ORBITAL MODEL

Table II lists the non-negligible hopping, connecting first-
neighbor (1NN) (tc), 3NN (t), 4NN (t ′), and 8NN (ta) V pairs.
The on-site matrix elements show the presence of small off-
diagonal elements due to angular distortion of O-V-O bond
angles in the VO6 octahedra.

APPENDIX B: DETAILS OF TOTAL ENERGY
CALCULATIONS AND EXCHANGES

We consider a 3 × 3 × 1 supercell, containing 36 V ions
(cf. Fig. 13). There should thus be 236 configurations of V-
spins possible, out of which 12 were found to be independent
(distinct), including the FM arrangement. This leads to 11
different energy differences, measured from FM energy, and
thus 11 different equations with four unknown J’s. Choosing
four out of 11 available equations leads to 330 possible sets
of J values. Table III shows the spin arrangements, energy
differences, and exchange values in four representative sets,
obtained from GGA+U calculations with U = 4 eV. We note
that the U values estimated by linear response for vanadium
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TABLE II. 3 × 3 on-site matrices and hopping integrals of the V t2g only three-orbital model. The matrix elements are given in eV. Listed
are also the J values in K, obtained employing the perturbative approach.

ti Bond-length (Å) Connecting vector dxy dyz dxz Ji (K)

On-site [0.000, 0.000, 0.000]
dxy

dyz

dxz

⎧⎨
⎩

−1.057 0.048 −0.001
0.048 −0.432 −0.018

−0.001 −0.018 −0.373

⎫⎬
⎭

t1 = tc 3.565 [0.000,−0.024, −0.421]
dxy

dyz

dxz

⎧⎨
⎩

0.000 0.043 −0.007
−0.073 −0.261 0.128
−0.031 −0.152 −0.075

⎫⎬
⎭ −5.336

t3 = t 5.337 [−0.354, 0.476, 0.216]
dxy

dyz

dxz

⎧⎨
⎩

0.089 0.014 0.009
−0.014 0.005 −0.002

0.009 0.002 0.003

⎫⎬
⎭ 91.212

t4 = t ′ 5.385 [0.344,−0.524, −0.114]
dxy

dyz

dxz

⎧⎨
⎩

0.120 −0.035 0.028
0.035 −0.003 0.003
0.028 −0.003 0.002

⎫⎬
⎭ 161.665

t8 = ta 5.952 [−0.698, −0.024, −0.091]
dxy

dyz

dxz

⎧⎨
⎩

0.048 −0.002 0.003
0.024 0.010 −0.004

−0.002 0.004 −0.000

⎫⎬
⎭ 25.120

oxides lie in a range of 4–5 eV [53]. In all the cases, J and
J ′ turn out to be the dominant exchanges of antiferromagnetic
nature of comparable magnitude, along with subleading ex-
changes, Jc and Ja, of an antiferro- and ferromagnetic nature,
in agreement with the perturbative estimates. The average
along with the percentage standard deviation of J values,

considering all the sets, are also shown in Table III. In addition
to the estimates obtained from total energies calculated with
U = 4 eV, those obtained with the choice of U = 5 eV are
presented for comparison. The qualitative trend remains the
same. This leads to a spin model of a three-dimensionally-
coupled, weakly alternating spin chain.

TABLE III. The spin arrangements (cf. Fig. 13 for numbering of the V ions) with “+” and “−” denoting up and down spins, total energy
difference �E , and exchange integral estimates for four representative sets. The bottom table lists the average values and standard deviation of
J’s obtained from GGA+U calculations with a choice of U = 4 and 5 eV, and Hund’s coupling of JH = 1 eV, as appropriate for 3d transition
metal.

AFMi 1–8 9 10 11 12 13 14 15 16–19 20 21 22 23 24 25 26 27 28–36 �E (meV)

AFM1 + + + + − + + − + + + + + + + + + + −2.218
AFM2 + − − − + + + + + + + + + + + + + + −10.989
AFM3 + + + + + + + + + − − − + + + + + + −5.598
AFM4 + + + + + + + + + + + + + + − − − + −9.243

Set I: Exchange integral (K) J = 45.77, J ′ = 42.30, Jc = −10.14, and Ja = 1.86

AFM1 + − − − + + + + + + + + + + + + + + −10.989
AFM2 + + + + + + + + + − − − + + + + + + −5.598
AFM3 + + + + + + + + + + + + + + − − − + −9.243
AFM4 + + + + − + + − + − + + + + + + + + −1.730

Set II: Exchange integral (K) J = 44.89, J ′ = 42.30, Jc = −10.14, and Ja = 2.30

AFM1 + + + + − − − + + + + + + + + + + + −8.582
AFM2 + + + + + + + + + + − − − + + + + + −7.482
AFM3 + + + + + + + + + + + + − − − + + + −5.067
AFM4 + + + + − + + − + − + + + + + + + + −1.730

Set III: Exchange integral (K) J = 43.20, J ′ = 40.78, Jc = −11.77, and Ja = 4.47

AFM1 + + + + + + + + + − − − + + + + + + −5.598
AFM2 + + + + + + + + + + + + − − − + + + −5.067
AFM3 + + + + + + + + + + + + + + − − − + −9.243
AFM4 + + + + − + + − + − + + + + + + + + −1.730

Set IV: Exchange integral (K) J = 44.89, J ′ = 42.30, Jc = −13.99, and Ja = 6.16

U (eV) JH (eV) Jc (K) J (K) J ′ (K) Ja (K)

4 1 −12.17 ± 12.56% 44.51 ± 2.07% 40.59 ± 2.41% 4.71 ± 31.34%
5 1 −11.13 ± 11.02% 36.33 ± 2.03% 32.84 ± 2.38% 3.89 ± 30.30%
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FIG. 13. 3 × 3 × 1 supercell containing 36 V ions, employed
for total energy calculations. The numbering of V atoms is used to
represent the magnetic arrangements given in Table III. The V ions
connected via Jc, Ja, and J − J ′ are shown as magenta, blue, and
green bonds, respectively.

APPENDIX C: CONSTRUCTION OF AN EFFECTIVE 2D
MODEL FROM THE 3D MODEL

Construction of an effective 2D model from the 3D model
involves a rotation of planes. As shown in Fig. 1(c), the alter-
nating chains belong to two perpendicular planes, rotated by
90◦ with respect to each other, giving rise to a 3D character,
even in the absence of the diagonal interaction, Ja, and the
out-of-plane interaction, Jc. The 2D mapping of the 3D model
containing two perpendicular planes of alternating chains is
illustrated in Fig. 14. As is seen from the figure, the site V5
(marked in blue) is common between the two planes, i.e., the
plane of 2D projection and the plane to be projected. The
plane can be projected through clockwise [cf. panel (a)] and
anticlockwise [cf. panel (b)] rotation, which maps sites V14
and V11 from the plane to be projected to sites V6 and V4 in
the plane of 2D projection. The clockwise (anticlockwise) ro-
tations connect V6 to V14 (V11) and V4 to V11 (V14). While
in the 3D model, the site V5 is not connected to V4 and V6, in
the effective 2D model, a J or J ′ bond is established following
either clockwise or anticlockwise rotation. The resultant one,
combining the two paths of rotation, is shown in panel (c) of
the figure, where the site V5 gets connected to effective sites
V6 and V4 via an average interaction (J+J ′ )

2 .
Finally, the frustration in a 3D model involving three AFM

exchanges and an FM exchange, and that in an effective
2D model involving one AFM and two FM exchanges, is
illustrated in Fig. 15. As in seen, frustration originates from Ja

and Jc in the 3D model, while it originates from Jd in the 2D
model. Jd is thus approximated as Ja + γ Jc, with a variational
parameter γ . With |Jc| (FM) two to four times larger than

FIG. 14. Mapping of the 3D model of J − J ′ chains to an effec-
tive 2D model. (a) Following clockwise rotation and (b) following
anticlockwise rotation. The resultant 2D model is shown in (c).

|Ja| (AFM), Jd is of FM nature, driving the frustration in the
effective 2D model.

APPENDIX D: DMRG DETAILS

For DMRG calculations, we considered cylinders of two
geometries XC and YC. In XC geometry, shown in Fig. 16(a),
a periodic boundary condition (PBC) is applied along Jc

bonds, while an open boundary condition (OBC) is applied
along the J-J ′ chain. This geometry enables the calculation of
spin correlation along X (J-J ′ chain direction) and diagonal
(Jd chain direction) paths, P-1 and P-2, highlighted by green

FIG. 15. Frustration effect in the 3D model (left) and in the
effective 2D model (right).
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FIG. 16. XC/YC geometry used in DMRG calculations, as
shown in (a)/(b) with PBC along Y/X and OBC along X/Y.

and orange lines in the figure. The YC geometry is a 90◦
rotation of the XC geometry, with the PBC along the J-J ′
chain and the OBC along Jc, as shown in Fig. 16(b). In this ge-
ometry, we consider only one path P-1 along the X-direction
(Jc chain direction) highlighted by the magenta line.

APPENDIX E: MULTIPOLAR ORDER

In the presence of competing exchange interactions,
magnons can bind together and form a bound state. In some
cases, only two magnons pair up and form a quadrupolar state
in the presence of an axial field [26,30], and they have the
symmetric order parameter defined as Qx2−y2

i j = 1
2 (S+

i S+
j +

S−
i S−

j ), where S+
i /S−

j is a raising/lowering spin operator at
site i/ j. For a three-magnon bound pair, the order parameter
is defined as Ô123 = (S−

1 S−
2 S−

3 + H.c.). This order parameter
can be generalized to an n-magnon bound state as

Ô123...n = (S−
i,1S−

i,2S−
i,3S−

i,4 · · · S−
i,n + H.c.). (E1)

We notice that in Fig. 8(b) the step jump in the magneti-
zation curve is proportional to the width of the 2D geometry.
At the point of the jump, the GS state is twofold-degenerate,
and the GS energies of the Sz and Sz = n sectors are the same,

FIG. 17. Multipolar order parameter (Ô1234) as a function of Jd/J
in the multimagnon condensed phase with system size 8 × 4. In all
the calculations, J ′/J and Jc/J are fixed at 0.92 and −0.3, respec-
tively. The inset shows the system size dependence of multipolar
order for the representative case of Jd/J = −0.3.

i.e., E (sz ) = E (Sz + n). Therefore, the expectation value of
Ô1234...n can be calculated as an eigenvalue of the 2 × 2 matrix
with elements 〈ψα|Ô123...n|ψβ〉, where |ψα/β〉 are a GS wave
function with spin multiplicity α/β, where α/β can take the
value of Sz or Sz + n. Thus one can write the 2 × 2 matrix as

Ô123...n =
[ 〈ψSz |Ô123...n|ψSz 〉 〈ψSz |Ô123...n|ψSz+n〉
〈ψSz+n|Ô123...n|ψSz 〉 〈ψSz+n|Ô123...n|ψSz+n〉

]
,

(E2)

where 〈ψSz/Sz+n|Ô123...n|ψSz/Sz+n〉 = 0 and
〈ψSz/Sz+n|Ô123...n|ψSz+n/Sz‘〉 
= 0.

In this case, the order parameter for a system with a width
of four sites along the Jc bond is Ô1234 = (S−

i,1S−
i,2S−

i,3S−
i,4 +

H.c.), where S−
i acts at site i along the Jc bond. We computed

the order parameter (Ô1234) in the multimagnon condensed
phase in 4 × 4, 6 × 4, and 8 × 4 toroidal geometries for fixed
values of J ′/J = 0.92 and Jc/J = −0.3. Figure 17 shows the
plot of the order parameter (Ô1234) as a function of Jd/J for the
8 × 4 toroidal geometry. The Jd/J values were chosen over a
range ensuring the system remains in the disordered phase.
We find that the order parameter is maximum at Jc/J = Jd/J ,
where the four-magnon binding energy is also maximum. The
inset of Fig. 17 shows the system size dependence of the order
parameter (Ô1234). The system size dependence confirms that
the order remains finite (∼0.01) in the thermodynamic limit.
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Paduan-Filho, B. Chiari, and O. Piovesana, Quantum-critical
spin dynamics in quasi-one-dimensional antiferromagnets,
Phys. Rev. Lett. 109, 177206 (2012).

[5] R. Chitra and T. Giamarchi, Critical properties of gapped spin-
chains and ladders in a magnetic field, Phys. Rev. B 55, 5816
(1997).

[6] M. Klanjšek, H. Mayaffre, C. Berthier, M. Horvatić, B. Chiari,
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