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Onsager relations between spin currents and charge currents
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We consider the macroscopic dynamics of systems with charge and spin currents, using the methods of
Onsager’s irreversible thermodynamics. Applied to systems with spin-orbit interaction (SOI), we derive Onsager
relations showing that, if electrical disequilibrium leads to spin currents, magnetic disequilibrium leads to charge
currents. We consider three examples of such SOI. Two of these predicted charge currents have not previously
appeared. By measuring these charge currents one can infer the corresponding spin currents.
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I. INTRODUCTION

Although spin flux (or, effectively, spin current) is essential
to the field of spintronics, except for optical techniques that
usually do not apply to metals, spin flux cannot be observed
directly. Typically spin flux is inferred from a measurement
like the inverse spin Hall effect, whereby for a surface (e.g.,
x-y) along which the spin polarization points (e.g., x), a spin
flux leaving a material (here, along z) produces a spin-orbit
interaction (SOI)-induced charge flux (and thus voltage differ-
ence) in the other surface plane direction (e.g., y). Generally,
measurement of charge flux is much easier than that of spin
flux.

The main result of this paper is that, for two theoretical
models of systems with SOIs that predict spin fluxes driven
by electrical disequilibrium, Onsager reciprocity predicts cor-
responding charge fluxes driven by magnetic disequilibrium.
It would be of interest to measure such charge fluxes.

In 1971 the effects of SOI were studied in two pioneering
works by Dyakonov and Perel, DP1 [1] and DP2 [2], in
which (dimensionless) charge flux and (dimensionless) spin
flux were considered for semiconductors. Later the charge
flux measurement was called the spin Hall effect and the spin
flux measurement was called the inverse spin Hall effect, and
their theory implied the anomalous Hall effect [3]. DP2 [2],
which was submitted a week after DP1 [1], gave additional
spin flux terms due to previously neglected spin-orbit effects.
These new terms were later expanded on and named “spin-
swapping” by Lifshits and Dyakonov [4]. We refer to these
works [1,2,4] and one by Dyakonov alone [5] collectively as
the DP model.

DP considered only a nonequilibrium, flux-carrying spin
density that they called the accumulation of spin. Later, in a
context without SOI, Valet and Fert [6] introduced the term
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spin accumulation for this nonequilibrium spin density. Often
spin density �S and the proportional magnetization density �M
are used interchangeably.

For a ferromagnet with local equilibrium magnetization �M
along ẑ, versions of the charge flux and spin flux including
spin-orbit effects were given by Taniguchi et al. (TGS) [7].
This included the anisotropic magnetoresistances (relative to
the magnetization direction M̂) associated with gradients of
the electrochemical potential μ̃ and gradients of only the
longitudinal part M̂ · �μ of the spin electrochemical potential
�μ [8]. Here μ and M̂ · �μ are the symmetric and antisymmetric
combinations of the up-spin and down-spin electrochemical
potentials. Reference [7] includes the anomalous Hall flux due
to both of these gradients, but ignores the transverse part of the
spin electrochemical potential �μ. (In equilibrium �μ = �0; see
Sec. II.)

More recently, Amin et al. (ALSH) gave additional SOI-
induced spin flux terms [9]; they are new and are not
analogous to the spin-swapping terms of Dyakonov [2,4].

Because of the role of the SOI in the powerful spintronics
probes of the spin Hall effect and the inverse spin Hall ef-
fect, SOI-related spin currents in ferromagnets have been the
subject of ongoing theoretical and experimental interest. The
purpose of the present work is to apply Onsager reciprocity
to the three theoretical models with SOI mentioned above,
namely, the DP2 [2], TGS [7], and ALSH [9] models. This
reciprocity holds for any model where the spin current arises
primarily from a single energy band, in which case the spin
chemical potential is associated with that band.

We consider weakly spin-polarized systems (paramagnets)
in Sec. IV and strongly spin-polarized systems (ferromagnets)
in Sec. V. We find that TGS [7] are consistent with that
reciprocity, but that for consistency the other two theories
[2,9] must be given new charge fluxes that correspond to the
spin flux already in the models. For the new charge current
associated with DP2 [2], see Eq. (29); for the new charge
current associated with ALSH [9], see Eq. (33). In Sec. VI we
estimate the size of these effects and propose experiments to
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measure them. The Appendix compares notation in the current
work and in previous work.

These two new charge currents, together with the proposal
to measure them to verify the original spin currents, are the
main points of this paper.

II. THERMODYNAMICS AND EQUATIONS OF MOTION

We approach the problem using Onsager’s irreversible
thermodynamics. We consider charge carriers with negative
charge −e and gyromagnetic ratio −γ , as normally appro-
priate for electrons. They are in an electrical potential V and
have chemical potential μ. The electrochemical potential μ̃ =
μ − eV . With Ei = −∂iV , we employ the effective electric
field

E∗
i = 1

e
∂iμ̃ = Ei + 1

e
∂iμ. (1)

A. Thermodynamics

We take the energy density to be a function of the entropy
density s (with thermodynamic conjugate the temperature T ),
the carrier density n (with thermodynamic conjugate the elec-
trochemical potential μ̃ = μ − eV ), and the spin density �S
(proportional to the magnetization �M and the vector polariza-
tion density �n), where

�M = −γ �S = −γ h̄

2
�n. (2)

We use units where B is in tesla (T) and both M and H are in
A/m: �B = μ0( �H + �M ).

Then for the differential of the energy density we take

dε = T ds + μ̃dn + �μ · d�n. (3)

Here �μ is the spin-space vector chemical potential, as defined
in Eq. (16) of Ref. [8], which calls �μ the spin accumulation, a
term that properly refers to either �S or �M [1,6].

�μ is related to the effective magnetic field �B∗ ≡ −∂ε/∂ �M,
which includes both the applied field �B and the internal field.
In local equilibrium �B∗

le = �0. This condition is satisfied by
writing the (effective) magnetic field energy as

−�B∗ · d �M = �μ · d�n, (4)

from which we deduce that

�μ = γ h̄

2
�B∗. (5)

Thus, in equilibrium �μ = �0.

B. Equations of motion

With unknown fluxes (we use J rather than j, in order to
free j to be used as an index) and unknown sources R, the
equations of motion are taken to be

∂tε + ∂iJ
ε
i = 0, (6)

∂t s + ∂iJ
s
i = Rs � 0, (7)

∂t n + ∂iJ
n
i = 0, (8)

∂t �n + ∂i �J �n
i = γ �n × �B + �R�n, (9)

where Jε
i , Js

i , Jn
i , and �J �n

i are the energy density flux, the
entropy density flux, the charge current (charge flux), and
the spin current (spin polarization flux), respectively, Rs is the
entropy density production rate, and �R�n is the source of the
vector number density. �R�n can include decay of the magneti-
zation �M = −(γ h̄/2)�n.

We now rewrite T Rs in terms of a divergence and of prod-
ucts of thermodynamic fluxes or sources with their respective
thermodynamic forces. To do so we use the energy differential
(3) and the equations of motion. We find that

0 � T Rs = −∂i
(
Jε

i − T Js
i − μ̃ jn

i − �μ · �J �n
i

)
− Js

i ∂iT − Jn
i ∂iμ̃ − �J �n

i · ∂i �μ − �μ · �Rn. (10)

The divergence term in Eq. (10) must vanish since otherwise
it can be of either sign, and T Rs � 0 cannot be satisfied.

We can think of the thermodynamic forces as an abstract
vector F = (∂iT, ∂iμ, ∂i �μ, �μ) and the thermodynamic fluxes
and sources as another abstract vector C = (Js

i , Jn
i , �J �n

i , �Rn
i ).

They are connected by

Ca = −LabFb, (11)

where Lab is the Onsager matrix of transport coefficients and
we sum on the index b. The entropy production equation (10)
then becomes (on summing over repeated indices)

0 � T Rs = −CaFa = LabFbFa. (12)

If a pair of forces has the same time-reversal signature, then
Onsager showed that Lab = Lba, leading to dissipation. If a
pair of forces have the opposite time-reversal signature, then
their product is odd under time reversal. Thus if their product
is nonzero, it can change sign under time reversal. However,
this is forbidden by the non-negative rate of entropy produc-
tion. Therefore, if their product is nonzero, Lab = −Lba, with
no dissipation.

Because Lab can have parts that are both dissipative (irre-
versible) and nondissipative (reversible, or reactive), we can
summarize this by writing Lab = LD

ab + LR
ab, where

LD
ab = LD

ba (dissipation), LR
ab = −LR

ba (no dissipation).
(13)

Another way to look at dissipation (irreversibility) versus
nondissipation (reversibility) is to consider a flux term driven
by a thermodynamic force. If that driven flux term has the op-
posite (as opposed to the same) time-reversal signature to the
intrinsic time-reversal signature of the flux—see below—then
that driven flux term is dissipative (as opposed to nondissipa-
tive).

The intrinsic time-reversal signature of a flux is determined
by the product of the time-reversal signatures of its corre-
sponding density and velocity. Thus, the entropy density flux
Js

i has entropy density s (even) times velocity (odd), so its in-
trinsic time-reversal signature is odd, but the spin polarization
flux J �n

i has spin polarization density �n (odd) times velocity
(odd), so its intrinsic time-reversal signature is even.
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C. Fluxes and sources

For the diagonal transport coefficients, where the fluxes are
proportional to the associated thermodynamic forces, we have

Js
i = − κ

T
∂iT, (14)

Jn
i = − σ

e2
∂iμ̃, (15)

�J �n
i = −σ ′

e2
∂i �μ, (16)

�Rn = −� �μ. (17)

For completeness, note that the intrinsic time-reversal sig-
natures of the “fluxes” (Js

i , Jn
i , �J �n

i , �Rn) are (odd, odd, even,
even), and the time-reversal signatures of the “forces”
(∂iT, ∂iμ̃, ∂i �μ, �μ) are (even, even, odd, odd). Therefore, all
of the above terms are dissipative. Here κ , σ , and σ ′ all
represent diagonal dissipative processes (of s, n, and �n), and
� represents a decay process. To have T Rs � 0 these all are
non-negative.

We do not include anisotropy due to the magnetization
�M, although each of the dissipative coefficients (κ , σ , σ ′, �)

can be replaced by a tensor of the form A‖M̂αM̂β + A⊥(δαβ −
M̂αM̂β ). These represent diffusion and decay effects that de-
pend on whether they involve processes along or normal to
M̂.

D. Off-diagonal Onsager relations

We now consider the off-diagonal Onsager coefficients. In
the remainder of this section only, we give them the cumber-
some subscript od. In the present case, the SOI causes mixing
of transport from μ̃ and �μ [10]. We neglect temperature
gradients.

Therefore, when the off-diagonal transport coefficients cor-
respond to reactive (nondissipative) processes, the cross terms
cancel. Thus

Jn,R
i,od∂iμ̃ = − �J �n,R

i,od · ∂i �μ (nondissipative). (18)

When the off-diagonal transport coefficients correspond to
dissipative processes (either diffusion or decay), the cross
terms add, thus doubling the rate of entropy production. Thus,

Jn,D
i,od ∂iμ̃ = �J �n,D

i,od · ∂i �μ (dissipative). (19)

Relation (19) is analogous to what is used to derive the recip-
rocal relations between heat current driven by electrochemical
potential gradients and charge current driven by temperature
gradients.

We apply Eqs. (18) and (19) to the spin currents of the
theories of DP [2], TGS [7], and ALSH [9].

III. DISSIPATIVE (IRREVERSIBLE) FLUXES VS
NONDISSIPATIVE (REVERSIBLE) FLUXES

Fluxes can be driven by the intrinsic signature of fluxes,
such as of charge and heat, and are determined independently
of their cause. The charge and heat fluxes are proportional to
the velocity of the excitations, and thus their intrinsic time-
reversal signature is always odd, independent of what drives
these fluxes. The time-reversal signatures of thermodynamic
forces are determined from those forces alone.

Because of Joule heating, the charge flux Jn
i , driven by

a gradient in the electrochemical potential ∂ jμ̃, has an even
signature under time reversal. This is opposite the intrinsic
time-reversal signature of the charge flux and thus is dissipa-
tive, or irreversible.

On the other hand, the intrinsic flux has an odd signature
under time reversal. When the flux driven by a thermodynamic
force has the same (opposite) time-reversal signature as that of
the intrinsic flux, the driven flux is reversible (irreversible).

For the ordinary Hall effect, the Hall charge flux, driven
by the gradient ∂ jμ̃, is normal both to that gradient and to the
applied magnetic field �B. As above, the intrinsic time-reversal
signature of the charge flux is odd. Also, the Hall charge flux
has an odd time-reversal signature. Therefore, the Hall charge
flux is reversible.

In the Nernst effect, a temperature gradient in a normal
magnetic field drives a charge flux that is normal to both of
them. The charge flux driven by the temperature gradient has
an odd time-signature because it is proportional to the (odd)
magnetic field. This is the same as the time-reversal signature
of the intrinsic charge flux and therefore is reversible.

In the thermoelectric effect, a charge flux is induced by a
temperature gradient, and in the electrothermal effect, a heat
flux is driven by an electrochemical potential gradient. The
rate of heating from the thermoelectric effect involves the
product of the temperature gradient and the electrochemical
potential gradient

IV. WEAKLY SPIN-POLARIZED SYSTEM WITH SOI:
REWRITING THE DP MODEL

Before considering ferromagnets, we discuss paramagnets,
as considered in the DP model [1,2], which we consider to be
weakly spin-polarized systems. Dyakonov and Perel consid-
ered the spin flux first and then the charge flux [1,2], but we
consider them in the opposite order.

For a paramagnet in equilibrium, we define χ via �M =
(χ/μ0) �B. Then, out of equilibrium, we take

�B∗ = �B − μ0

χ
�M = �B + γ h̄

2

μ0

χ
�n, (20)

so

�μ = γ h̄

2
�B + λ�n, λ ≡ μ0

χ

(
γ h̄

2

)2

. (21)

Also, for a spin-1/2 paramagnet,

χ =
(

γ h̄

2

)2 nc

kBT
, (22)

where nc is the average number density of charge carriers.

A. Charge flux Jn
i

Following (8.7) of Ref. [11], and eliminating gradients of
the density by using E∗

i for Ei, with μc being the charge
mobility (μ has already been used for the chemical potential),
we have

Jn
i = −μcncE∗

i − β( �E∗ × �n)i − δ( �∇ × �n)i, (23)
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where β and δ (which can have either sign) are parameters due
to the SOI. For a nondegenerate semiconductor, β = eδ/kBT
[1,2]. For a paramagnet, the conductivity σ = encμc. For a
non-negative rate of entropy production, we have σ,μc � 0.
In Eq. (23) the first term is dissipative, and the second and
third terms are reactive.

We now use Eqs. (1) and (21) at fixed �B. Then we may
rewrite Eq. (23) as

Jn
i = −ncμc

e
∂iμ̃ − β

e
( �∇μ̃ × �n)i − δ

λ
( �∇ × �μ)i. (24)

The first term is the ordinary conductivity, the second term
leads to the anomalous Hall effect, and the third term leads
to the inverse spin Hall effect. Consistent with Onsager’s ir-
reversible thermodynamics, the driving terms are gradients of
μ̃ and �μ; these gradients are zero in equilibrium. In Ref. (24),
the first term is dissipative, and the second and third terms are
reactive.

B. Spin polarization flux�J�n
i

It is not uncommon for “spin flux” to refer to spin polariza-
tion flux (a density times a velocity), spin flux (an extra factor
of h̄/2), or magnetization flux (for electrons, an extra factor of
−γ h̄/2).

We follow Eq. (37) of Ref. [12], which is a rewritten
version of Eq. (8.8) of Ref. [11]:

( �J �n
i

)
j ≡ Ji j = −μc

e
(∂iμ̃)n j − D

λ
∂iμ j + εi jk

βnc

e
∂kμ̃, (25)

where for simplicity we denote ( �J �n
i ) j ≡ Ji j . For a semicon-

ductor, an Einstein relation gives the diffusion constant

D = σ

e2

∂μ

∂nc
≈ σ

e2

kBT

nc
= nμc

e
kBT . (26)

In Eq. (25), the first and second terms are dissipative, and the
third term is reactive.

C. DP1 and Onsager reciprocity

Equation (10) contains the terms −Jn
i ∂iμ̃ − �J �n

i · ∂i �μ, which
must be non-negative. Using Eq. (24) for Jn

i , the first term of
−Jn

i ∂iμ̃ and, using Eq. (25) for �J �n
i , the second term of − �J �n

i ·
∂i �μ, are indeed non-negative. Being quadratic in the respective
thermodynamic forces ∂iμ̃ and ∂i �μ, Onsager reciprocity does
not apply to these terms.

Onsager reciprocity applies to the off-diagonal terms as-
sociated with the third terms of Eqs. (24) and (25). These
give products of ∂iμ̃ and ∂i �μ with respective coefficients δ/λ

and βnc/e, which can be shown to satisfy Onsager reciprocity.
These cross terms can be of either sign and thus must not be
too large or T Rs can become negative.

The second term of Eq. (24), multiplied by ∂iμ̃, is iden-
tically zero. The first term of Eq. (25), multiplied by ∂i �μ,
is nonzero, but proportional to the small quantity �n, so we
neglect it. Thus, in the end, the original theory of DP1 satisfies
Onsager reciprocity [1].

D. DP2 spin-swapping spin flux

A week after giving the first version of the spin flux, DP2
added to the spin flux some additional terms due to the SOI
[2]. Decades later, Lifshits and Dyakonov called these “spin-
swapping” terms [4].

The spin-swapping terms, which are corrections to
Eq. (25), are written implicitly in Eq. (3) of Ref. [4], which
introduces the new spin-swapping parameter κ . Reference
[12], in Eq. (38), gives them as

�Ji j = −κμc

e
(ni∂ jμ̃ − δi j �n · �∇μ̃)

− κD

λ
(∂ jμi − δi j �∇ · �μ). (27)

Reference [12] uses κs for κ; these are dimensionless. In
Eq. (27), all of the terms are dissipative.

The κD terms in the spin-swapping part of the spin flux
are diagonal in the matrix of fluxes vs thermodynamic forces.
However, the κμc terms are off-diagonal, so by Onsager’s
reciprocity principle they must have corresponding terms in
the charge current. Let us write these κμc terms in Eq. (27),
involving gradients of μ̃ explicitly:

�J μ̃
i j = −κμc

e
(ni∂ jμ̃ − δi j �n · �∇μ̃). (28)

DP2 gives no corresponding charge flux terms, which by
Onsager should appear in the theory.

E. Onsager gives DP2 a spin-swapping charge flux

The intrinsic (and reversible) time signature of �Ji j is
that of spin times velocity, and thus is even. On the other
hand, irreversible thermodynamics gives Eq. (27) for �Ji j , for
which the time signature of each term on the right-hand-side
is odd; this is because μ̃ is even, but �n and �μ are odd. Thus,
the intrinsic and irreversible thermodynamics time signatures
are opposite, indicating that �Ji j is irreversible. This is con-
sistent with the condition that the dissipation rate �Ji j∂iμ j be
positive and invariant under time reversal.

By Onsager’s reciprocity principle for dissipative terms,
Eq. (19) then gives

�J �μ
i = −κμc

e
(n j∂ jμi − ni∂ jμ j ). (29)

This result is implicit, but not commented on, in Ref. [12].

V. STRONGLY SPIN-POLARIZED SYSTEM:
SPIN AND CHARGE FLUXES FROM TGS AND ALSH

We now present the spin and charge flux from both TGS
and ALSH, which are specifically for ferromagnets and, more
generally, for strongly spin-polarized systems.

A. TGS has spin flux and charge flux

TGS [7] use the spin flux Qji = (h̄/2)Ji j , with indices
opposite of the DP convention that we employ. Their Eqs. (6)
and (7) use conductivities σ , σAH, and σAMR and introduce the
dimensionless coefficients β (which we write as βT because
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it differs from β of DP), ζ , and η. We write their charge flux
as JT

i and their spin flux as JT
i j :

JT
i = − σ

e2
∂i{μ̃ + βT (M̂ · �μ)}

− σAH

e2
(M̂ × �∇)i{μ̃ + ζ (M̂ · �μ)}

− σAMR

e2
M̂i(M̂ · �∇){μ̃ + η(M̂ · �μ)}, (30)

JT
i j = − σ

e2
M̂ j∂i{(M̂ · �μ) + βT μ̃}

− σAH

e2
M̂ j (M̂ × �∇)i{(M̂ · �μ) + ζ μ̃}i

− σAMR

e2
M̂iM̂ j (M̂ · �∇){(M̂ · �μ) + ημ̃}. (31)

The off-diagonal terms in �JT
i and �JT

i j for which Onsager
relations apply are those proportional to βT , ζ , and η. [We
neglected these terms in Eqs. (15) and (16).] Indeed they
satisfy the appropriate Onsager relations.

Because TGS omit transverse spin diffusion, this Ji j in-
cludes no terms normal to M̂ j . Note that the third set of terms
in Eqs. (30) and (31) can be thought of as due to “tensoriza-
tion” of the gradients of its first set of terms. In Eqs. (15) and
(16), the only reversible terms are those proportional to σAH ;
the others are dissipative.

B. ALSH has only spin flux

ALSH find a new spin flux term, which in its general
form is given in their footnote [16] in Ref. [9]. Their sym-
bol σ , which is associated with spin-scattering, is not the
conventional conductivity; to avoid confusion in sections in-
volving ALSH, only in these sections do we employ σ̃ for the
conductivity.

On rewriting their spin flux in tensor form, we find

JA
i j = σ̃‖ − σ̃⊥

e2
M̂ jM̂kεikl∂l μ̃ + σ̃⊥

e
εi jl∂l μ̃. (32)

This JA
i j is driven by ∂i�μ̃, which means that the Onsager

coefficients are off-diagonal. Therefore, there must be corre-
sponding JA

i terms driven by ∂i �μ. The first term above has
the symmetry of the ζ term in Eq. (31). The second term
corresponds to the last (spin Hall effect) term in Eq. (25). In
Eq. (32) all of the terms are reversible.

C. Onsager reciprocity and ALSH spin flux implies ALSH
charge flux

The time signature of JA
i j is even, and each of the new terms

in Eq. (32) is even under time reversal. Therefore the new
terms are nondissipative and do not contribute to the rate of
entropy production. Thus, Eq. (18) applies.

From Eq. (18) we deduce that

JA
i = − 1

e2
[(σ̃‖ − σ̃⊥)M̂lM̂kεi jk + σ̃⊥εi jl ]∂ jμl . (33)

For M̂ = ẑ, so M̂k = δkz, this gives

JA
i = − 1

e2
[(σ̃‖ − σ̃⊥)εi jz∂ jμz + σ̃⊥εi jl∂ jμl ]. (34)

FIG. 1. Experimental geometries for measuring voltages corre-
sponding to the new charge currents that will verify the existence of
the spin currents predicted by (a), (b) the ALSH model and (c) the
DP model.

The first term and the second term with l = z together
give a contribution of Ji = −(1/e2)σ̃‖εi jz∂ jμz, and the sec-
ond term with l = (x, y) gives a contribution of Ji =
−(1/e2)σ̃⊥εi jl∂ jμl . The sum is thus

JA
i = − σ̃‖

e2
εi jz∂ jμz − σ̃⊥

e2
[εi jx∂ jμx + εi jy∂ jμy]. (35)

In Eq. (35), all of the terms are reversible.

VI. EXPERIMENTAL CONSEQUENCES

A. ALSH

This charge current can be measured. Consider a thin
sample with dimensions lx, ly, and lz, where lx 	 ly, lz (as
shown in Fig. 1). Recall that, by Eqs. (5) and (20) d �μ =
(γ h̄/2)d �B∗ ≈ (γ h̄/2)d �B, where we assume that �M is nonzero
but effectively pinned in place, so that for purposes of making
an estimate the deviation d �M can be neglected. According to
Eq. (35), if we apply a field �B = Bz(y)ẑ, then a charge current
along x, of JA

x,1 = −(σ̃‖/e2)∂yμz, will be generated.
Let us assume isotropic charge conductivity σ . If there

are no leads along x̂, then the equilibrium �V1 along x is
determined by the condition that the charge current JA

x,1 is can-
celed by the conventional dissipative charge current σx�V1/lx.
Thus,

�V1 = − lxσ̃‖
eσ

∂yμz = − σ̃‖
σ

γ h̄

2e
lx∂yBz, (36)

where the negative sign means that the electric potential at
the x = lx surface is higher than that at the x = 0 surface [see
Fig. 1(a)].

Similarly, if a magnetic field of the form �B = By(z)ŷ is
applied, then a charge current along x, of JA

x,2 = (σ̃⊥/e2)∂zμy,
will be generated, and there should be a voltage �V2 along x:

�V2 = lxσ̃⊥
eσ

∂zμy = σ̃⊥
σ

γ h̄

2e
lx∂zBy. (37)
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Therefore, measurements of finite �V1 and �V2 will test the
present theory and determine the values of σ̃‖ and σ̃⊥ [see
Fig. 1(b)].

We now estimate the magnitude of the magnetic field gradi-
ent needed to produce a measurable voltage �V . From Table I
of Ref. [9], values of σ̃‖ and σ̃⊥ for Fe, Ni, and Co range from
102 to 2 × 103 �−1 cm−1. We take σ = 1.0 × 105 �−1 cm−1,
which is not far from the values for Fe, Ni, and Co, and
lx = 1 mm. Then to produce a voltage of |�V | = 100 µV, we
estimate the field gradient ∂yBz or ∂zBy to be from 0.086 to
1.7 T/µm.

B. DP2

We now discuss possible experimental observation of the
spin-swapping charge currents (29) from DP. Again consider
a thin sample with dimensions lx, ly, and lz, where lx 	 ly, lz.
From Eq. (29), we have

�Jx = −κμc

e
(ny∂yμx + nz∂zμx − nx∂yμy − nx∂zμz ). (38)

If �n = Pŷ and we apply a field �B = Bx(y)x̂, then a charge cur-
rent �Jx = −(κμc/e)P∂yμx will be generated, and analysis
similar to that for ALSH predicts the following voltage:

�V3 = − lxκμcnc

σ
∂yμx = −κμcP

σ

γ h̄

2
lx∂yBx (39)

[see Fig. 1(c)].
We take P = 0.01nc, where nc is the charge car-

rier density and note that μ/σ = 1/(nce). Then �V3 =
−0.01κγ h̄/(2e)lx∂yBx. Lifshits and Dyakonov [4] estimate κ

to be 0.3 for InSb (large SOI) and 0.003 for GaAs (small
SOI). Thus, to produce a voltage of |�V3| = 100 µV for a
lx = 1 mm sample, we estimate ∂yBx = 0.57 T/µm for κ =
0.3 and ∂yBx = 57 T/µm for κ = 0.003.

One may be concerned about the feasibility of the proposed
experiments because the estimated magnetic field gradients
are large. However, these estimates are done for a sample
thickness of lx = 1 mm and a measured voltage of |�V | =
100 µV, whereas in an experiment one could take a larger lx
and/or a smaller |�V | to reduce the required magnetic field
gradient. Moreover, one could also employ other materials
with material parameters requiring a smaller field gradient,
e.g., one with a smaller charge conductivity σ . The expres-
sions for �V1, �V2, and �V3 show clearly how to choose
experimental parameters to achieve a smaller field gradient.

VII. SUMMARY AND CONCLUSIONS

We have developed the irreversible thermodynamics of
magnets supporting spin currents and charge currents. We
specifically showed that Onsager relations imply that, when
there are spin currents driven by voltage gradients, there are
also charge currents driven by field gradients, which may
enable measurement of effects predicted by Dyakonov and
Perel [2] and by Amin et al. [9] Observation of these charge
currents would corroborate the spin currents predicted by
Refs. [2,9].
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APPENDIX: COMPARISON OF VARIOUS NOTATIONS

This Appendix compares the notation of the current work
and several previous works. Recall that we use �n, Jn

i , and �J �n
i

for the vector polarization density, the charge current, and the
spin current, respectively.

DP and Ref. [12] use qi and �qi to denote the dimensionless
charge and spin currents. Their relations to our notation are

qi ≡ Jn
i , �qi ≡ �J �n. (A1)

Their dimensionless spin polarization �P is equivalent to the
vector number density �n used in this work:

�P ≡ �n. (A2)

The corresponding charge and magnetization currents are
related by

Jq
i ≡ −Jn

i = −qi, �J �M
i ≡ −γ h̄

2
�J �n
i = −γ h̄

2
�qi. (A3)

As discussed in the main text, TGS use the spin flux
Qji = (h̄/2)Ji j , with indices opposite those of our notation.
Also note that in Eqs. (30) and (31) we have changed TGS’s
coefficient β to βT , since β has been used in Eq. (23)
of DP.
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