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Topological phases in half-integer higher spin J1-J2 Heisenberg chains

Sahinur Reja 1 and Satoshi Nishimoto 2,3

1Department of Physics, Jadavpur University, Kolkata 700032, West Bengal, India
2Department of Physics, Technical University Dresden, 01069 Dresden, Germany

3Institute for Theoretical Solid State Physics, IFW Dresden, 01069 Dresden, Germany

(Received 6 June 2024; revised 26 July 2024; accepted 7 August 2024; published 23 August 2024)

We study the ground-state properties of antiferromagnetic J1-J2 chains with half-integer spins ranging from
S = 3

2 to S = 11
2 using the density-matrix renormalization group method. We map out the ground-state phase

diagrams as a function of J2
J1

containing topological phases with alternating 2S−1
2 and 2S+1

2 valence bonds. We
identify these topological phases and their boundaries by calculating the string order parameter, the dimer order
parameter, and the spin gap for those high-S systems in the thermodynamic limit (finite-size scaling). We find
that these topological regions narrow down inversely with S and converge to a single point at J2

J1
= 1

4 in the
classical limit—a critical threshold between commensurate and incommensurate orders. In addition, we extend
the discussion of the Majumder-Ghosh state, previously noted only for S = 1

2 , and speculate about its possible
presence as a ground state in half-integer high-spin systems over a substantial range of J2

J1
values.

DOI: 10.1103/PhysRevB.110.054436

I. INTRODUCTION

Topological phases of matter have been a major focus of
study since the discovery of the quantum Hall effect [1],
driven by their fundamental physics and potential applica-
tions like lossless power transfer and quantum computing,
thanks to their robustness against local perturbations. Interest
in this field surged with the discovery of topological insulators
in the 2000s, which feature conductive surface states while
remaining insulating in the bulk [2,3]. Theoretical advance-
ments, including the development of topological invariants
and symmetry-protected topological (SPT) phases [4,5], have
deepened our understanding of these exotic states. Experi-
mental breakthroughs, such as high-quality sample fabrication
and advanced measurement techniques [6,7], have facilitated
detailed investigations, paving the way for innovations in spin-
tronics [8] and quantum computing [9].

Quantum spin-chain systems with integer spin offer a
fertile playground for studying topological phases. A prime
example is the S = 1 Heisenberg chain with nearest-neighbor
interactions, which exemplifies an SPT phase [5,10,11]. The
ground state of this system is characterized by a gapped va-
lence bond solid (VBS) phase with hidden antiferromagnetic
(AFM) order, known as the Haldane phase [12–14], vividly
described by the Affleck-Kennedy-Lieb-Tasaki model [15].
Edge states decouple exponentially with chain length in open
chains, leading to a fourfold degenerate ground-state manifold
[16]. The phase richness expands with modifications like bond
alternation [17–20], XXZ anisotropy [21,22], and single-ion
anisotropy [23,24]. The Haldane phase is also realized in
integer-spin Heisenberg AFM chains with S > 1.

The exploration of topological phases, as demonstrated
in the S = 1 Heisenberg chain, reveals significant effects
of modifications such as magnetic frustration in higher-spin
systems. In general, magnetic frustration not only diversifies
the quantum phases but also enhances our understanding of

their topological properties [25,26]. A simple realization of a
frustrated spin model is the Heisenberg spin chain with nearest
and next-nearest neighbor interactions, known as the so-called
J1-J2 spin chain. This model allows us to emphasize how
lattice geometry, interaction details, and spin magnitude affect
topological robustness. For example, the integer spin (S = 2,
3, and 4) J1-J2 model has been investigated using Berry-phase
analysis to show sequential transitions between topological
phases [26]. However, these transitions are understood from
the perspective of energetically favorable VBS states rather
than the effect of magnetic frustration.

On the contrary, for half-integer spin J1-J2 chains, the ef-
fects of magnetic frustration are more pronounced, making
the problem more challenging. For S = 3

2 , earlier density-
matrix renormalization group (DMRG) studies [25,27] laid
the groundwork, and recent research [28] has identified four
phases as a function of J2

J1
: a Tomonaga-Luttinger liquid (TLL)

phase for J2
J1

� 0.31, a partially dimerized (PD) gapped phase

for 0.31 � J2
J1

� 0.52, a critical floating phase for 0.52 �
J2
J1

� 1.20, and a fully dimerized (FD) phase for J2
J1

� 1.20.
Despite the quantitative differences, similar phase diagrams
have been observed for S = 5

2 [29]. However, the evolution
of the topological phases arising in these quantum models and
how these phases connect to the classical limit with increasing
spin remain nontrivial and open questions. To answer these
questions, we revisit the S = 3

2 and S = 5
2 J1-J2 systems and

extend our study up to S = 11
2 .

In this paper, we study the ground states of AFM J1-J2

chain with half-integer spins ranging from S = 3
2 to S = 11

2 ,
using the DMRG method. We calculate the dimer order pa-
rameter, the spin gap, and the string order parameter in the
thermodynamic limit for a wide range of J2

J1
to obtain the phase

diagrams. We find that the range of PD phase narrows down
with 1/S approximately and converges to a single point at
J2
J1

= 1
4 in the classical limit (S → ∞). We also extend the
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FIG. 1. (a) Lattice structure of spin-S J1-J2 Heisenberg chain
where each empty circle denotes a spin-S site. (b) Schematic illus-
trations of dimerized VBS states for an S = 3

2 system, depicting the
partially dimerized (2,1) phase and the fully dimerized (3,0) phase.
Each link represents a spin- 1

2 singlet bond.

discussion of the Majumder-Ghosh (MG) state, previously
noted only for S = 1

2 , showing its potential presence as a
ground state in higher-spin systems over a substantial range
of J2

J1
values.

II. MODEL

The Hamiltonian of the AFM J1-J2 chain is given by

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2, (1)

where Si is the spin operator at site i, interacting with near-
est and next-nearest neighbor spins with coupling strengths
J1 (> 0) and J2 (> 0), respectively. The lattice structure of the
system is depicted in Fig. 1(a). Here we fix J1 = 1 as the unit
of energy hereafter.

For S = 1
2 , due to its simplicity and the possibility of

experimental realizations, the model (1) has been extensively
studied [30], and the ground state is well known across the en-
tire parameter region. At J2 < 0.2411, the system is in a TLL
phase, and at J2 > 0.2411, it transitions into a spontaneously
dimerized VBS phase [31]. One of the most interesting as-
pects is that within this dimerized VBS phase, at the specific
point J2 = 1

2 , known as the MG point, the ground state of the
system is given analytically and exactly [32]. This discussion
can be extended to general S as follows. The Hamiltonian
(1) can be reformulated as H = 1

4

∑
i[(Si + Si+1 + Si+2)2 −

(S2
i + S2

i+1 + S2
i+2)]. For a spin-S system, the total energy

achieves its minimum when (Si + Si+1 + Si+2)2 = S(S + 1),
resulting in the ground-state energy: EMG = − 1

2 S(S + 1)L,
where L denotes the number of lattice sites. Although for
S > 1

2 , this state is not the ground state, it potentially connects
to the ground state for a large region of J2 for half-integer S,
as demonstrated later.

III. METHOD

A. Density-matrix renormalization group

We employ the DMRG method [33] to explore the model
described in Eq. (1) for spin magnitudes S = 3

2 , . . . , 11
2 . Our

simulations are conducted under open boundary conditions
(OBCs), modifying the spin values at the chain edges (un-
less specified otherwise). For instance, in the S = 3

2 systems,
we test three kinds of edge spins—S = 1

2 , 1, and 3
2 —and

calculate the relevant physical quantities for each case. We
simulate systems up to L = 180 sites with up to χ = 5000 ba-
sis states retained in the density matrix, achieving the largest
discarded weight wd = 4.4 × 10−8. For spins higher than
S = 3

2 , the maximum system sizes, the number of retained
eigenstates of the density matrix, and the discarded weights
for these simulations are (L, χ,wd ) = (128, 3000, 1.6 ×
10−7) for S = 5

2 , (L, χ,wd ) = (96, 3000, 4.0 × 10−8) for
S = 7

2 , (L, χ,wd ) = (64, 3800, 3.9 × 10−9) for S = 9
2 , and

(L, χ,wd ) = (40, 3400, 1.1 × 10−9) for S = 11
2 . All numer-

ical results are extrapolated to the thermodynamic limit to
ensure broad applicability of our findings.

B. (m, n)-type Schwinger-boson representation

To describe the dimerized VBS state, we introduce
the (m, n)-type Schwinger-boson representation as follows
[34,35]:

|(m, n)〉 = 1√
N

∏
j=1

(B†
2 j−1,2 j )

m(B†
2 j,2 j+1)n|vac〉, (2)

where B†
i, j = a†

i b†
j − b†

i a†
j involves the bosonic operators a†

i

and b†
i , N is the normalization factor, and |vac〉 denotes

the boson vacuum. In this representation, the spin operators
are defined by the Schwinger-boson expressions: S+

i = a†
i bi,

S−
i = b†

i ai, and Sz
i = 1

2 (a†
i ai − b†

i bi ). The integers m and n
satisfy m + n = 2S. It is noteworthy that in half-integer spin
systems, the (m, n) and (n, m) states are degenerate for a peri-
odic chain, though this degeneracy can be lifted by adjusting
the edge spins under OBCs.

C. Physical quantities

1. Dimer order parameter

The spontaneous dimerization transition can be directly
detected by calculating the dimer order parameter. This
parameter is quantitatively assessed by the difference in
spin-spin correlations between neighboring bonds and is
defined as

DSedge = lim
L→∞

|〈Si−1 · Si〉 − 〈Si · Si+1〉|, (3)

where the site i is chosen to be the middle site of the system,
i.e., i = L

2 . Nonzero DSedge in thermodynamic limit effectively
captures the emergence of long-range dimer order, highlight-
ing the critical point of the transition.

2. String order parameter

The presence of the dimerized VBS phase can be further
confirmed by examining the behavior of correlation functions
similar to the string order originally introduced for spin-1
systems. The VBS state exemplifies a state with topological
and hidden nonlocal order. Thus, even in half-integer spin
systems, one can define a string order parameter, particularly
in a generalized VBS context where the spins form pairs
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(dimers) [36,37]:

SSedge = lim
k− j→∞

〈
Sz

j exp

⎛
⎝iπ

k−1∑
l= j

Sz
l

⎞
⎠Sz

k

〉
. (4)

This order parameter captures the essence of the nonlocal
correlations characteristic of VBS states which are not de-
tectable through conventional order parameters. However, its
definition depends on the positions of the strong and weak
bonds. We calculate this quantity for various edge spins using
open chains. Universally, Eq. (4) attains a finite value when
there are string bonds between sites j − 1, j and k − 1, k.
Specifically, if an even number of strong bonds lie between
these two strong bonds, then SSedge < 0; if an odd number
of strong bonds lie between them, SSedge > 0. With larger S,
the convergence of the string order parameter with respect to
k − j becomes slower due to the larger correlation length.

3. Singlet-triplet spin gap

Further, calculating the singlet-triplet spin gap is cru-
cial for understanding the dimerized VBS state because its
behavior depends on the kind of edge spin. This gap signals
the presence of a gapped, nonmagnetic phase, helps charac-
terize the nature of dimerization and singlet structures, and
differentiates the VBS phase from critical magnetic phases. It
is defined as the energy difference between the lowest-energy
triplet state and the singlet ground state:

�Sedge = lim
L→∞

[E0(1) − E0(0)], (5)

where E0(Sz ) is the lowest energy for a total spin Sz sector.
Changes in the gap due to edge conditions can reveal the
dimerization pattern and whether the edge spins form effective
singlets or remain free, indicating the nature of the VBS and
possible critical behavior.

IV. NUMERICAL RESULTS

A. For S = 3
2 spin chain system

Let us first examine the results for the case of S = 3
2 .

As mentioned earlier, this case has already been investigated
in Refs. [25,28]. Our analysis here serves as a benchmark
for these results. In Figs. 2(a)–2(c), we plot the extrapolated
values of the dimer order parameter DSedge , the string order
parameter SSedge , and the spin gap �Sedge as functions of J2 for
edge spins Sedge of 1

2 , 1, and 3
2 as indicated.

Within the range 0.34 � J2 � 0.58, all three physical
quantities are finite for Sedge = 1

2 and 1. This suggests the
formation of a dimerized VBS state with a topological hidden
order in this region. However, for Sedge = 3

2 , the behavior of
these quantities differs, indicating another phase transition at
J2 ≈ 0.50. Although this behavior is an artifact of using an
open chain, it intriguingly reflects the physics of edge states.
Specifically, for 0.34 � J2 � 0.50, the spin gap is 0, indicat-
ing the presence of edge states and suggesting that the VBS
state is of the (2,1)- or (1,2)-type, characteristic of a PD phase.
The schematic illustration of the dimerized (2,1) VBS state is
shown in Fig. 1(b). We note that this VBS state is of the (1,2)-
type for Sedge = 1

2 and of the (2,1)-type for Sedge = 1 with an
explicit breaking of translation symmetry in our open chains.

PDC

PDIC floatingVBSLLT DF

FIG. 2. Extrapolated values of (a) the dimer order parameter
DSedge , (b) the string order parameter SSedge , and (c) the spin gap
�Sedge as a function of J2 for the S = 3

2 system, considering edge
spins S = 1

2 , S = 1, and S = 3
2 . The corresponding phases are also

indicated. Insets of panels (a) and (b) show magnified views of the
low-value regions. (d) Energy spectrum of the lowest 45 states for an
eight-site S = 3

2 periodic chain, with the MG state highlighted in red.

In the remaining range 0.50 � J2 � 0.58, both the dimer and
string order parameters vanish, while the spin gap remains fi-
nite. These observations are consistent with the disappearance
of edge states, as noted in Ref. [28]. For Sedge = 3

2 , the explicit
breaking of translation symmetry is absent in this region,
leading to 0 values for the dimer and string order parameters.
Concurrently, the vanishing of edge states, coupled with finite-
size effects under OBCs, allows for the formation of a special
VBS structure at the ends of an open chain, thereby giving rise
to a finite spin gap. However, it is crucial to note that this spin
gap primarily reflects excitations near the edges and differs
from the bulk limit. Note that for Sedge = 1

2 and 1, edge states
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do not exist, and therefore, no anomaly is observed around
J2 ≈ 0.50. In the bulk limit, the range 0.34 � J2 � 0.58
would correspond to a PD phase. This illustrates that the
absence of edge states in finite systems does not necessarily
imply the absence of topological order in infinite systems.
The PD phase can be further categorized into commensurate
(PDC) and incommensurate (PDIC) types, as differentiated
by the presence or absence of oscillations in the size depen-
dence of physical quantities [28]. Our analysis confirms this
classification based on the oscillatory behavior in the size
dependence of the measured quantities (see Appendix A) .

In the regime 0.58 � J2 � 1.0, both the dimer and string
order parameters vanish, yet a small but finite spin gap exists.
This observation seems to be consistent with the floating
VBS picture proposed by Ref. [28]. As J2 increases further,
near J2 = 1, the dimer and string order parameters begin to
increase. The magnitude of the spin gap appears to be in-
dependent of edge spins and reaches its maximum around
J2 = 1.2. This indicates that the region J2 > 1 corresponds
to the FD phase characterized by a (3,0)-type VBS state.
The schematic illustration of the dimerized (3,0) VBS state
is shown in Fig. 1(b). Due to the intrinsic incommensurability
of the system, estimating the spin gaps for the floating VBS
and FD phases is challenging, necessitating careful finite-size
scaling analysis. A more detailed analysis is presented in the
Appendices.

To further substantiate this, we examined whether the MG
eigenstate, which is adiabatically connected to the (3,0)-type
VBS state, can be the ground state over a broad range of J2

using a periodic chain with L = 8. In Fig. 2(d), we plot the
energy spectrum relative to the ground state as a function of J2.
At J2 = 1

2 , the exact MG eigenstate appears as the 39th excited
state. As J2 increases, its energy decreases relative to other
eigenstates. Although finite-size effects preclude definitive
conclusions, the eigenstate nearly degenerates with the ground
state around J2 ∼ 0.72.

B. For S > 3
2 spin chain systems

Next, we examine the case for S > 3
2 . In Fig. 3, the extrap-

olated values of the dimer order parameter DSedge , the string
order parameter SSedge , and the spin gap �Sedge are plotted as
functions of J2 for S = 5

2 , 7
2 , 9

2 , and 11
2 systems. Here, we

present results for Sedge = 2S−1
2 and 2S+1

2 . Note that it is hard
to estimate SSedge in the thermodynamic limit for S = 9

2 and
11
2 systems due to the large correlation length. The regions

where the dimer order parameter is finite are estimated to
be 0.30 � J2 � 0.42 for S = 5

2 , 0.29 � J2 � 0.36 for S = 7
2 ,

0.275 � J2 � 0.33 for S = 9
2 , and 0.265 � J2 � 0.31 for S =

11
2 . For S = 5

2 , this is consistent with the range 0.3 � J2 � 0.4
estimated in Ref. [29]. Although not shown here, it is evident
that the edge state exists since the spin gap vanishes for all
other possible sets of edge spins. Thus, for spin-S cases, in
these regions, the system forms a ( 2S−1

2 , 2S+1
2 )-type VBS PD

state for Sedge = 2S−1
4 and a ( 2S+1

2 , 2S−1
2 )-type one for Sedge =

2S+1
4 . Similar to the S = 3

2 case, the presence or absence of
oscillations in the size dependence of the physical quantities
allows us to distinguish between the PDC and PDIC phases.
More details are given in Appendix A. Furthermore, since the

PDIC floatingVBSTLL PDC

FIG. 3. Extrapolated values of the dimer order parameter DSedge ,
the string order parameter SSedge , and the spin gap �Sedge as a function
of J2 for the S = 5

2 , S = 7
2 , S = 9

2 , and S = 11
2 systems, considering

edge spins S = 2S−1
2 and S = 2S+1

2 . Results for the string order pa-
rameter for S = 9

2 and S = 11
2 systems are not shown (see text). The

corresponding phases are also indicated.

spin gap remains finite at the upper bound of the PDIC phase,
it suggests that the region beyond the PDIC phase connects
to a floating VBS phase with a finite spin gap. For these
high-S systems, determining whether the FD phase emerges
at even larger J2 beyond the floating VBS phase is extremely
challenging, and we have not yet been able to confirm it.

It is also worth mentioning that a ( 2S−1
2 , 2S+1

2 )-type or a
( 2S+1

2 , 2S−1
2 )-type PD phase is likely the only type present in

a spin-S system. To confirm this, as an example, we perform
finite-size scaling analyses of the dimer order parameter and
the spin gap for the spin- 5

2 case with Sedge = 1
2 and Sedge = 2,

as demonstrated in Appendix C. There appears to be no region
with a clearly sizable dimer order parameter and spin gap over
a wide range of J2(> 0.45), which indicates the absence of a
(1,4) or (4,1) PD region.

054436-4



TOPOLOGICAL PHASES IN HALF-INTEGER HIGHER … PHYSICAL REVIEW B 110, 054436 (2024)

PDC

PDIC

FIG. 4. Lower and upper bounds of the PD phase (J2,c1 and J2,c2,
respectively) as a function of 1/S. The boundary between PDC and
PDIC phases is also plotted. Inset: The width of the PD region,
J2,c2 − J2,c1, as a function of 1/S, where the solid line represents
J2,c2 − J2,c1 = 1/(4S).

C. Approaching the classical limit

Based on the results obtained, we can speculate on how the
PD phase evolves as S increases and approaches the classical
limit S → ∞. In Fig. 4, we plot the lower and upper bounds
of the PD phase, J2,c1 and J2,c2, respectively, as well as the
boundary between the PDC and PDIC phases as functions of
1/S. It is observed that both J2,c1 and J2,c2 approach J2 = 1

4
in the classical limit. Consequently, the boundary between the
PDC and PDIC phases converges to J2 = 1

4 . In the classical
model, J2 = 1

4 represents the boundary between the commen-
surate phase with Q = π and the incommensurate phase with
Q = ± cos−1( 1

4J2
). Therefore, these results appear to be quite

reasonable. Additionally, as shown in the inset of Fig. 4, the
width of the PD phase region behaves as J2,c1 − J2,c2 ∝ 1

4S in
the high-S regime.

V. SUMMARY

We investigate the ground-state properties of antiferro-
magnetic J1-J2 chains with half-integer spins ranging from
S = 3

2 to S = 11
2 using the density-matrix renormalization

group method. Our study focuses on calculating the dimer or-
der parameter, the spin gap, and the string order parameter as
a function of J2

J1
for those high-S systems. We have confirmed

that topological dimerized phase characterized by alternating
2S−1

2 and 2S+1
2 valence bonds appears in a finite J2 range up

to S = 11
2 . These topological phases shrink inversely with S,

converging to a single point at J2
J1

= 1
4 in the classical limit—a

critical threshold between commensurate and incommensu-
rate orders. Additionally, we have extended the discussion of

FIG. 5. Size dependence of the physical quantities: the dimer
order parameter DSedge , the string order parameter SSedge , and the
spin gap �Sedge around the boundary between PDC and PDIC phases
for S = 5/2, S = 7/2, S = 9/2, and S = 11/2. The thermodynamic
limit value for each quantity is subtracted and the finite-size scaling
is depicted with solid lines.

the Majumder-Ghosh state, previously noted only for S = 1
2 ,

showing its potential presence as a ground state in half-integer
higher-spin systems over a substantial range of J2

J1
values.
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APPENDIX A: BOUNDARY BETWEEN PARTIALLY
DIMERIZED COMMENSURATE

AND INCOMMENSURATE PHASES

As discussed in the main text, the PD phase is further
classified into the PDC phase with commensurate wave num-
ber q = π and the PDIC phase with incommensurate wave
number q < π . In our analyses, the PDC phase is character-
ized by the absence of oscillations, whereas the PDIC phase
exhibits oscillations in the size dependence of physical quan-
tities. The boundaries between the PDC and PDIC phases are
estimated as J2 = 0.345 ± 0.005 for S = 5/2, J2 = 0.320 ±
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FIG. 6. Finite-size-scaling analysis of the spin gap for S = 3/2 at
(a) J2 = 0.80, (b) 1.00, (c) 1.20, and (d) 1.50, considering edge spins
S = 1/2, 1, and 3/2. The open circles denote the bare data �Sedge and
the solid circles denote the refined data �1,Sedge (L1) (see text).

0.005 for S = 7/2, J2 = 0.3025 ± 0.0025 for S = 9/2, and
J2 = 0.295 ± 0.0025 for S = 11/2.

To illustrate this, we present the size dependence of the
physical quantities: the dimer order parameter DSedge, the
string order parameter SSedge, and the spin gap �Sedge for
S = 5/2, S = 7/2, S = 9/2, and S = 11/2 in Fig. 5. To
demonstrate the presence or absence of oscillations clearly,
the thermodynamic-limit value is subtracted for each quantity
and is depicted by the finite-size scaling with solid lines. The
data points are fitted with one of the following functions:
quadratic f (1/L) = a/L + b/L2 or linear f (1/L) = a/L, with
L being the system size. In all cases, the data points align
smoothly with the scaling line when J2 is less than the
boundary value. Conversely, when J2 exceeds the boundary
value, the data points oscillate around the scaling line. This
clearly indicates that the boundary between the PDC and
PDIC phases can be identified by the presence or absence of
oscillations in the size scaling of physical quantities.

APPENDIX B: FINITE-SIZE SCALING ANALYSIS
OF THE SPIN GAP FOR THE FLOATING VBS

AND FULLY DIMERIZED PHASES

As detailed in the main text, estimating spin gaps for the
floating valence bond solid (VBS) phase (0.58 � J2 � 1.0)
and the fully dimerized (FD) phase (J2 � 1.0) proves chal-

lenging. The first reason for this difficulty is the oscillatory
behavior of the spin gap as a function of system size due to
the incommensurate nature of the spin correlation functions. A
second complicating factor is the increasing bandwidth of the
magnon dispersion with larger J2 values, which exacerbates
the size dependence of the spin gap. Conversely, the extrap-
olated spin gap size in the thermodynamic limit appears to
decrease.

To address these challenges, we perform two types of
finite-size-scaling analyses to analyze the results complemen-
tarily. Initially, we compute the spin gap, �Sedge , for system
sizes ranging from L = 12 to L = 180, in increments of four
sites. In the first scaling analysis, we employ a polynomial
fit of �Sedge against 1/L, aiming to estimate the spin gap

FIG. 7. Finite-size scaling analyses of the dimer order parameter
DSedge and the spin gap �Sedge for the spin- 5

2 chain: (a) within the PD
phase (0.30 � J2 � 0.42) with Sedge = 1 and 3

2 , and (b) for larger J2

range (0.45 � J2 � 1.00) with Sedge = 1
2 and 2. Polynomial functions

are used as fitting functions in panel (a).
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in the limit of L → ∞. The characteristic oscillations and
pronounced size dependence are evident, particularly at larger
values of J2, as illustrated in Fig. 6.

In a subsequent scaling analysis, we extrapolate the size
by a two-step procedure: Initially plotting �Sedge from L = L1

to L = 180 against 1/L and applying a linear fit to derive
the value at L → ∞, denoted as �1,Sedge (L1). We then sys-
tematically vary L1 from L = 12 to L = 144 and perform
scaling for each L1. This procedure yields a set of values
for �1,Sedge (L1), which we subsequently plot and fit linearly
against 1/L1. As shown in Fig. 6, while oscillations persist,
the size dependence of �1,Sedge (L1) is significantly reduced
compared to the original measurements. Nevertheless, achiev-
ing reliable size scaling remains challenging at J2 = 1.20
and 1.50 when setting Sedge = 1/2 or 1, suggesting that edge
states, possibly indicative of symmetry breaking localized at
the system’s edges, might emerge in the FD phase. However,
the size scaling stabilizes most effectively in the FD phase
when setting Sedge = 3/2.

APPENDIX C: ABSENCE OF (1,4)- OR (4,1)-TYPE
PD PHASE IN SPIN- 5

2 CHAIN

As mentioned in the main text, a ( 2S−1
2 , 2S+1

2 )-type or a
( 2S+1

2 , 2S−1
2 )-type PD phase is likely the only type present in

a spin-S system. We demonstrate this explicitly by finite-size
analysis of the dimer order parameter and the spin gap for a
spin- 5

2 chain system.

First, as a reference, we examine how the dimer order
parameter and the spin gap extrapolate to the thermody-
namic limit in the (2,3)-type and (3,2)-type PD phases
when Sedge = 1 and Sedge = 3

2 , respectively. The finite-size
scaling for several J2 values depicted in Fig. 7(a) clearly
shows that both the dimer order parameter and the spin
gap extrapolate to finite values, especially in regions where
the (2,3)-type and (3,2)-type VBS states are well stabi-
lized, indicating minimal size dependence and straightforward
scaling.

On the contrary, the scaling behavior for Sedge = 1
2 and

Sedge = 2 is qualitatively different as shown in Fig. 7(b).
Since the (2,3)-/(3,2)-type VBS state cannot coexist with the
(1,4)-/(4,1)-type VBS state, we perform scaling for several
J2 values in a wide parameter region where J2 � 0.45, as
shown in Fig. 7(b). As discussed in Appendix B, the physical
quantities exhibit oscillations as functions of system size for
larger J2, complicating the scaling analysis. However, in none
of these cases do the quantities extrapolate to sizable values in
the thermodynamic limit. Furthermore, if the PD phase were
stabilized, the correlation length would be relatively short,
making finite-size scaling easier, as seen in Fig. 7(a). No such
signs are observed.

Therefore, we conclude that there is no (1,4) or (4,1) PD
region in the spin- 5

2 system. Although not shown here, similar
analyses for higher-S systems confirm that a ( 2S−1

2 , 2S+1
2 )-type

or a ( 2S+1
2 , 2S−1

2 )-type PD phase is likely the only type present
in a spin-S system.
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