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Magnon spin photogalvanic effect induced by Aharonov-Casher phase
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Magnons are electrically neutral bosonic quasiparticles emerging as collective spin excitations of magnetically
ordered materials, and they play a central role in next-generation spintronics due to its obviating Joule heating. A
difficult obstacle for quantum magnonics is that the magnons do not couple to the external electric field directly so
that a direct electric manipulation via bias or gate voltage as in conventional charge-based devices seems not to be
applicable. In this work, we propose a mechanism in which magnons can be excited and controlled by an electric
field of light directly. Since the electric field of light can be tuned in a wide and easy way, the proposal should
be of great interest in realistic applications. We call it the magnon spin photogalvanic effect (SPGE), which
comes from five contributions: Drude, Berry curvature dipole (BCD), injection, shift, and rectification, with
distinct geometric origins. We further show that the responses to linearly polarized or circularly polarized light
are determined by a band-resolved quantum metric or Berry curvature, both of which, when combined, comprise
a quantum geometric tensor. The proposed magnon SPGE can be measured by a characterized topological phase
transition. We also discuss a breathing kagome-lattice model of ferromagnets, and we suggest possible candidate
materials to implement it.
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I. INTRODUCTION

Spin transport plays a central role in the field of spintron-
ics [1,2]. Currently there is significant interest in exploring
the magnons in magnetic materials. The magnons, which are
collective spin excitations of magnetically ordered materials,
are electrically neutral bosonic quasiparticles. The transport
of magnons obviates Joule heating at a fundamental level,
and thus magnons are regarded as a candidate with which
to pursue next-generation spintronics [3,4]. For this purpose,
a deeper understanding of the properties of magnons and
their precise manipulation is urgently called for. However,
due to the electrical neutrality of magnons, their coupling to
an external electric field has been considered less frequently.
Therefore, much of the progress has been made in studying the
thermal control of magnons [5–12]. However, thermal control
is not easy to maintain accurately, and sometimes it is even
cumbersome.

One of the most promising approaches is to use the optical
method to control the magnons. Since magnons possess spin
degrees of freedom, it has been proposed that the dc magnon
spin photocurrent (MSPC) can be generated in antiferromag-
nets by the Zeeman coupling of magnon spin and the magnetic
field component of light, where the angular momentum trans-
fer between magnons and photons is invoked by applying a
circularly polarized (CP) light [13]. Using the magnetic field
component, the generation of the MSPC via linearly polarized
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(LP) light has been proposed recently [14,15]. A desired goal
is to achieve an enhanced MSPC by using the electric field
component of the light. For example, the MSPC driven by
CP light was proposed via a two-magnon Raman process
with coupling to the electric field [16]. It is a direct spin
angular momentum transfer process in which right-handed
photons turn into left-handed photons by imparting spin angu-
lar momentum and creating a magnon pair carrying a net spin
current. Therefore, the current is proportional to the chirality
of the incident light, and it vanishes if the light is linearly
polarized. The magnetoelectric coupling generally exists in
multiferroic materials, for which the magnon can be gener-
ated and controlled by an electric field [17–19]. Recently,
the MSPC has been predicted in collinear antiferromagnets
via the coupling between electric field and polarization with
a broken inversion symmetry [20]. Nevertheless, the spin
photocurrent induced by the interaction between the electric
field and the magnons has not been fully understood, and it is
unclear how it is affected by the quantum geometry of magnon
bands [21].

In this paper, we develop a general formalism for the
MSPC mediated via the Aharonov-Casher (AC) effect of
magnons induced by an electric field. It can be understood
that magnons moving in an electric field acquire a geometric
phase through the AC effect during the processing as [22–24]

θi j = gμB

h̄c2

∫ r j

ri

[E(t ) × êz] · dr, (1)

where E(t ) is the electric field of light. In Eq. (1) we assume
that the magnetization is along the z-direction and then the
magnetic moment of magnon points in the −z-direction with
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μ = −gμBêz, where g is the Landé factor and μB is the Bohr
magneton. This phase (θi j) will enter into the coupling be-
tween spins or the hopping integral of electron operators (see
Appendixes A and B). The Hamiltonian is thus modified in a
form in which the effect of the electric field of light will serve
as a driving force. Because this electric field couples to the
local magnetization, magnons (variations of magnetization)
will consequently be excited.

II. THEORETICAL FRAMEWORK

A. Light-magnon coupling and density matrix
equations of motion

For a general two-body spin interaction Hamiltonian in the
absence of an external field,

H0 = 1

2

L∑
i, j

N∑
n,m

∑
αβ

Sα
i,nHαβ

nm (i − j)Sβ
j,m, (2)

where Si,n is a spin operator at the nth sublattice (with total
number N) of the ith magnetic unit cell (with total number
L), with Hαβ

nm (i − j) the magnetic exchange interaction. The
classical ground state is identified by treating the quantum-
mechanical spin operators as classical vectors and minimizing
the classical ground-state energy. By setting the global (ref-
erence) coordinates (x̂, ŷ, ẑ), the local coordinates (spherical
coordinates) of each spin are related to the global coordinates
via Si,n = Rn(θi, φi )S0. The magnons are the usual low-energy
excitations in ordered magnets, which are considered via the
Holstein-Primakoff transformation in local coordinates [25],

Sθ
i,n =

√
S

2
(ai,n + a†

i,n), Sφ
i,n = −i

√
S

2
(ai,n − a†

i,n),

Sr
i,n = S − a†

i,nai,n, (3)

and we obtain

Sα
i,n =

√
S

2
ûnai,n +

√
S

2
û∗

na†
i,n + ẑn(S − a†

i,nai,n), (4)

where α = x, y, z, and the coefficients ûn and ẑn are re-
lated to the relative rotation between the global and
local coordinates. Using Eq. (4) and the transformation
into the momentum space, the magnon Hamiltonian is
written as H = 1

2

∑
k �

†
kH(k)�k, with the kernel H(k)

being a 2N × 2N bosonic Bogoliubov–de Gennes (BdG)
Hamiltonian with the vector boson operator, where �

†
k =

(a†
k,1, . . . , a†

k,N , a−k,1, . . . , a−k,N ) [for details on H(k), see
Appendix A].

In general, the bosonic Hamiltonian H(k) does not con-
serve the particle number, e.g., the ferromagnets with elliptical
magnons (where an anisotropy deforms the formerly circular
precession) or in nonferromagnets. In addition, the Hamilto-
nian is diagonalized with the Bogoliubov transformation

U †
k HkUk = Ek, (5)

which satisfies Uk�zU
†
k = �z, where the diagonal matrix

�z = diag(1, 1, . . . ,−1,−1, . . . ) with N positive 1’s and N
minus 1’s along the diagonal. The vector boson operator trans-
forms as �k = Uk�k. The mth column vector encoded in the
matrix Uk stands for the (periodic part of the) Bloch wave

function for the mth magnon band [26]. Note that �k does not
satisfy the commutation relation of bosons. Instead it satisfies

[�k,�
†
k′] = �zδk,k′ . (6)

The equilibrium density matrix in band space is given as

ρ
(0)
km (t ) ≡ 〈(�†

k)m(t )(�k)m(t )〉0, (7)

where the subscript “0” denotes the equilibrium state, and
(�†

k)m is the mth element of the vector �
†
k. For later conve-

nience, we write (�†
k)m as �

†
km. By using Eq. (6), one obtains

ρkm =
{

g(Ekm), [�km,�
†
km] = 1,

−g(−Ekm), [�km,�
†
km] = −1,

(8)

where g(Ekm) is the Bose-Einstein distribution g(Ekm) =
1/(eβEkm − 1), which is abbreviated as gm in the following.
It is convenient to introduce the matrix εk [20]:

εk = �zEk = U −1
k �zHkUk, (9)

and the density matrix is simplified as ρkm = �z,mmg(εkm).
For a general operator, with Bogoliubov’s representation, it
transforms as

Ô =
∑

k

�
†
k Ok�k =

∑
k

�
†
k�zÕk�k, (10)

with the definition Õk = U −1
k �zOUk.

There are two ways for the electric field to enter into the
Hamiltonian. First, introducing an “electric” vector potential
AE ≡ 1

c E(t ) × êz [27–30] (see Appendix B), we have

H(k) = H0

(
k + gμB

c
AE

)
(11)

via the minimal coupling scheme and making use of the
Peierls substitution. Secondly, introducing an effective “elec-
tric field” Ẽ(t ) = −∂AE/∂t , the Hamiltonian is modified in
the dipole interaction scheme (see Appendix C)

H(t ) = H0(k) + gμB

c
Ẽ(t ) · r. (12)

In Eq. (12), the second term is just the effective dipole inter-
action.

Recently, it was recognized that the operator r in the crystal
lattice is linked to the Berry curvature of Bloch bands of
magnons in momentum space. Thus, a covariant derivative
operator rather than a usual partial over the momentum to r
must be introduced, which is given by [31,32]

(DkOk)mn = ∇kO(k)mn − i[Ak, O(k)]mn, (13)

where Ak is the Berry connection whose matrix elements
are Akmn = i〈ukm|∇kukn〉, with |ukn〉 the periodic part of the
Bloch functions, and O is an operator. The definition of the
covariant derivative operator in Eq. (13) applies to the gen-
eral magnetic ground state when the magnon Hamiltonian
takes the unified transformation H(k) → H(k − gμb

h̄c AE ) in
the presence of an AC phase. The perturbed Hamiltonian is
formally the same as the electron Hamiltonian in the presence
of an electric field (though the vector potential and the coeffi-
cient in front are different).
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FIG. 1. (a) A schematic of the magnon spin current generated via AC effect with time-dependent electric field. It requires a nonzero electric
field along the direction perpendicular to magnetization. (b)–(d) Schematics of five different magnon SPGE currents: (b) the Drude contribution
is solely dominated by the nonequilibrium distribution [the dashed (solid) lines represent the distribution with (without) electric field]; (c) the
BCD magnon spin current, which is determined by the anomalous velocity and the nonequilibrium distribution; (d) the injection, shift, and
rectification spin currents give a combined effect of the dipole transition and group velocity, positional shift, and nonequilibrium distribution.

The effect of the electric field is thus incorporated into
the von Neumann equation (see Appendix E) as the optical
driving term (Dopt term)

(∂t + iεkmn/h̄)ρkmn(t ) = Dopt[ρ(t )]kmn, (14)

where εkmn = εkm − εkn, ρkmn(t ) ≡ 〈�†
km�kn〉 is the reduced

density matrix in band space given by the average of the
product of a creation and a destruction operator in Bloch
states, and

Dopt[O] = gμB

h̄c2
E(t ) × ez · Dk[O]. (15)

The von Neumann equation can be solved by expand-
ing ρ = ∑

n=0 ρ (n), where the zero-order density matrix is
the Bose-Einstein distribution ρ

(0)
kmn = gkmδmn. The recursion

equations for the reduced density matrices are obtained as

ρ (n+1)
mn (ω) = dmn(ω)

∫
dω1

2π
ω1Dopt[ρ

(n)(ω − ω1)]mn,

(16)

with dmn(ω) = 1/(h̄ω + i0+ − εmn).

B. Magnon spin current

Due to the conservation of the z component of the total
spin, the local magnon spin density n(ri ) = h̄

∑
m zma†

i,mai,m

satisfying the continuity equation ∂nq/∂t + iq · Js = 0 [nq is a
Fourier component of n(ri )] in the long-wavelength limit. The
magnon spin current operator is found as (see Appendix D)

Ĵs = h̄
∑

k

�
†
k(∂kHk − i[Ak,Hk])�k. (17)

Since the interaction with the electric field has been incor-
porated into the magnon Hamiltonian via an effective gauge
potential caused by the AC phase, the nonlinear spin photocur-
rent can now be handled with standard perturbation theory.
The nth-order magnon spin current is calculated via the for-
mula Jα,(n)

s = ∫
[dk]Tr[ρ (n)Ĵα

s ].

C. Magnon spin photoconductivity tensors

It is instructive to consider the magnon SPGE in ordered
ferromagnetic insulators, which is a dc spin photocurrent re-
sponse

Js = χαα1α2 Eα1 (�)Eα2 (−�), (18)

with � being the frequency of the light. The photocurrent
response is classified as the linearly polarized LP and CP
light-induced currents, and the LP (CP) photocurrent is
given by the real symmetric (imaginary antisymmetric)
component of the photoconductivity tensor ηαα1α2 =
1
2 Re(χαα1α2 + χαα2α1 )[καα1α2= 1

2 Im(χαα1α2−χαα2α1 )]. We
show that χαα1α2 ∝ εα1zβεα2zγ (εα2zγ is the Levi-Civita
symbol). That is, the electric field is restricted to the plane
perpendicular to the axis of magnetization, attributed to the
orthogonality between the electric field and the magnon
magnetic moment, as illustrated by Eq. (1) and a schematic
in Fig. 1(a). For the charge photocurrent, however, there is no
such constraint, making it a prominent character. Leaving the
details of the calculation in Appendix E, we obtain

χαα1α2 = χ
αα1α2
D + χ

αα1α2
BCD + χ

αα1α2
Inj + χ

αα1α2
Sh + χ

αα1α2
Rec ,

(19)

with the functional forms of all contributions tabulated in
Table I. We denote different contributions as follows: Drude
(χαα1α2

D ), Berry curvature dipole (BCD) (χαα1α2
BCD ), injection

(χαα1α2
Inj ), shift (χαα1α2

Sh ), and the rectification current (χαα1α2
Rec ).

Note that in Ref. [14] a magnon shift spin current is proposed
that is driven by the magnetic field component of the elec-
tromagnetic wave. In contrast, the magnon shift current here
manifests as the response of the electric field.

The physical meaning of each contribution in Eq. (19)
is schematically shown in Figs. 1(b)–1(d). The Drude-spin
current (DSC) arises from the second-order correction to the
distribution function and the band gradient velocity, hence it
manifests as a pure intraband effect. As with the nonlinear
Drude contribution for charge spin current [33,34], the nonlin-
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TABLE I. Different terms leading to the magnon SPGE [see Eq. (19)]. The spin photoconductivities are evaluated in terms of the
following gauge invariant quantities: group velocity vα

m = 1
h̄ ∂αεm, where ∂α = ∂/∂kα; velocity difference �α

mn = vα
m − vα

n ; Berry curva-
ture �τ

m = εαγ τ ∂γAτ
nn; band-resolved quantum metric (Berry curvature) Gβγ

mn = {Aβ
mn,Aγ

nm}/2 (�βγ
mn = i[Aβ

mn,Aγ
nm]); shift vector Rαα1

mn =
Aα

mm − Aα
nn − ∂α argAα1

mn; chiral shift vector Rα,±
mn = Aα

mm − Aα
nn − ∂α argA±

mn with the Berry connection in circular representation A±
mn =

1√
2
(Ax

mn ± iAy
mn). ς = α� = 1/τ , where α is the Gilbert damping constant and τ is the relaxation time. The conductivities can be written

as ηαα1α2 = (νc/2)
∫

[dk]Iαα1α2 and καα1α2 = (νc/2)
∫

[dk]Kαα1α2 , with I and K being the integrand, and νc being the constant g2μ2
B/(h̄2c4).

The symbols � and � denote photocurrents induced by LP and CP light, respectively. Note that the LP responses include a factor ς = 1 for
α1 = α2 and ς = −1 for α1 �= α2. A phenomenological scattering rate � is introduced for the injection current.

Current Spin photoconductivity T ′ PT ′ Physical origin

Drude� Iαα1α2
D = ς (2/h̄)

∑
m vα

m∂α1∂α2 gm × � Nonequilibrium distribution
BCD� Kαα1α2

BCD = (�/h̄)
∑

m(εαα2τ ∂α1 − εαα1τ ∂α2 )�τ
mgm � × Anomalous velocity

+ nonequilibrium distribution
Injection� Iαα1α2

Inj = −ς4h̄
∑

m,n
�2

(h̄�−εmn )2+ς2 �α
mnGα1α2

mn gmn × � Velocity difference
+ dipole transition

Injection� Kαα1α2
Inj = −2π h̄

∑
m,n

�2

(h̄�−εmn )2+ς2 �α
mn�

α1α2
mn gmn � × Velocity difference

+ dipole transition
Shift� Iαα1α2

Sh = ς2π
∑

m,n �2δh̄�−εmn Rαα1
mn Gα1α1

mn gmn � × Position shift
+ dipole transition

Shift� Kαα1α2
Sh = −4π

∑
m,n �2δh̄�−εmn (Rα,+

mn |A+
nm|2 − Rα,−

mn |A−
nm|2)gmn × � Position shift

+ dipole transition
Rectification� Iαα1α2

Rec = ς4
∑

m,n
�2

h̄�−εmn
Gα1α2

mn ∂αgmn × � Dipole transition
+nonequilibrium distribution

Rectification� Kαα1α2
Rec = −∑

m,n
�2

h̄�−εmn
�α1α2

mn ∂αgmn � × Dipole transition
+nonequilibrium distribution

ear Drude current for the magnon has an additional symmetry
for swapping the current and field direction indices. As a
consequence, it is allowed under LP light but is forbidden
under the CP light.

Similar to the BCD-resulting nonlinear charge current, the
BCD-spin current (BSC) for the magnon originates from a
dipole moment of the magnon Berry curvature in momentum
space, and it is classified as a CP response. However, contrary
to the charge counterpart, the BSC for the magnon scales with
the frequency of light and hence vanishes as � approaches
zero. It is worth noting that the magnon BSC driven by the
temperature gradient has been proposed [35], while here we
show that there is a BCD contribution as an electric field
response, which has not been reported yet.

For the charge case, the shift current due to an instanta-
neous shift in the charge distribution upon the absorption of
light, and the injection current due to the injection of a carrier
distribution that is asymmetric in momentum space, have been
studied extensively, and they are considered to be the main
bulk photovoltaic effect [36–39]. In analogy, we found that
the shift-spin current (SSC) for the magnon can be described
as a coherent response associated with the real-space shift of
a magnon induced by a dipole-mediated vertical interband
transition. For LP light response, the shift vector Rα,α1

mn re-
covers the well-known expression as the charge case [40,41],
which implies a wave-packet shift of the excited magnons
along the α direction through the interband transition m ↔ n.
Notably, the chiral shift vector Rα,±

mn characterizes the chirality
of the dipole-transition amplitude denoted by A±

mn excited
by CP light, resulting in a gyration MSPC. A similar gyra-
tion charge current was recently discovered in a magnetically
parity-violating system [37].

The injection spin current (ISC) arises from the velocity
difference (�mn) during the interband transition. It is known
that the charge injection current scales linearly with respect
to the relaxation time τ and is expected to exhibit a large
current response when the electron lifetime is long [38], and
it vanishes with strong scattering as τ → 0. In contrast, we
found that the ISC in our proposal remains finite within the
limit τ → 0. It is worth noting that the ISCs proposed are
found to be both CP and LP responses.

Finally, the rectification spin currents (RSCs) as both LP
and CP responses are demonstrated in this work. They are
proportional to the derivatives of the distributions, and they
can be regarded as an analog of the “intrinsic Fermi surface ef-
fect” in an electronic system [37]. Interestingly, from Table I,
it is found that the LP responses (apart from the DSC since it
is not geometry-related) are determined by the band-resolved
quantum metric, while the CP responses are determined by
the Berry curvature. Our quantum kinetic theory-based treat-
ment of the electric field interaction via the effective dipole
interaction provides a complete picture of the magnon SPGE,
as summarized in Figs. 1(b)–1(d).

D. Symmetry characters

Since the present method and the developed theory have
been proposed, a symmetry analysis is quite useful to outline
the scope of this study. For a magnet with collinear magnetic
order, it is invariant under the combined symmetry operation
of the time-reversal T and a π spin rotation about the axis
perpendicular to the plane of the magnetic order. This is
called the effective time-reversal symmetry T ′ [42,43]. A gen-
eral Hamiltonian can be transformed with the effective TRS
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TABLE II. Classification on the spin photoconductivities the Drude, BCD, injection, shift, and rectification spin current for LP and CP
light by the point-group operation and the effective time-reversal T ′. The allowed (forbidden) conductivities are indicated by � (×).

P Cy
2 Cz

2 PCy
2 PCz

2 Cz
3 Cz

4 PCz
4 Cz

4σv T ′ PT ′ Cy
2T ′ Cz

2T ′ PCy
2T ′ PCz

2T ′ Cz
3T ′ Cz

4T ′ PCz
4T ′ Cz

4σvT ′

η
αα1α2
D × � × � � � × × � × � � � � × × × × ×

κ
αα1α2
BCD × � × � � × × × � � × � � � � × × × ×

η
αα1α2
Inj × � × � � � × × � × � � � � × × × × ×

κ
αα1α2
Inj × � × � � × × × � � × � � � × × × × ×

η
αα1α2
Sh × � × � � � × × � � × � � � � × × × ×

κ
αα1α2
Sh × � × � � × × × � × � � � � � × × × ×

η
αα1α2
Rec × � × � � � × × � × � � � � × × × × ×

κ
αα1α2
Rec × � × � � × × × � � × � � � × × × × ×

operation T ′ as

T ′Hk(T ′)−1 = H−k = H∗
k. (20)

It gives rise to

U †
k HkUk = U †

k H
∗
−kUk = Ek. (21)

Noting that the eigenvalues are real, we have

U T
−kHkU ∗

−k = (U ∗
−k)†HkU−k = E−k. (22)

The superscript T stands for transpose. Equations (21) and
(22) indicate that U †

k and U ∗
−k differ only by a phase factor

matrix, and they share the same eigenvalue equation with Ek =
E−k. The element of the Berry connection matrix is

Aα
kmn = i

∑
p

(U †
k )mp

∂ (Uk)pn

∂kα

= i
∑

p

U ∗
kpm

∂Ukpn

∂kα

.

The T ′ symmetry gives a constraint on the Berry connec-
tion Aα

kmn = Aα
−knm, and the Berry curvature then satisfies

�τ
km = −�τ

−km. Similarly, with T ′, the band-resolved Berry
curvature, the band-resolved quantum metric, and the shift
vector satisfy

�
αβ

kmn = − �
αβ

−kmn, (23)

Gαβ

kmn = Gαβ

−kmn. (24)

Rαβ

kmn = Rαβ

−kmn. (25)

Let us consider the magnon spin photoconductivities.
η

αα1α2
s,Drude is T ′-odd, indicating that they are finite only when

T ′ are broken. The integrand of κ
αα1α2
s,BCD transforms as

∂α1�τ
km = ∂α1�τ

−km. (26)

It results in κ
αα1α2
s,BCD being T ′-even. For the LP injection current

η
αα1α2
s,inj , we have

�α
kmpGβγ

kmpgkmp = −�α
−kmpGβγ

−kmpg−kmp, (27)

leading to the LP ISC being odd under T ′. Similarly, the
integrand of CP ISC κ

αα1α2
s,inj satisfies

�α
kmp�

βγ

kmpgkmp = �α
−kmp�

βγ

−kmpg−kmp, (28)

i.e., the CP ISC is T ′-even. For the LP SSC η
αα1α1
s,shift , the inte-

grand satisfies

Rα1α1
kmn Gα1α1

kmn gkmn = Rα1α1
−kmnGα1α1

−kmng−kmn, (29)

suggesting that η
αα1α2
s,shift is T ′-even. The CP SSC κ

αα1α2
s,shift is jus-

tified to be T ′-odd in a similar way. In analogy, the LP RSC
η

αα1α1
s,rect is T ′-odd and the CP RSC κ

αα1α2
s,rect is T ′-even.

Now we consider the point-group symmetry transforma-
tions. With a point-group symmetry M, the eigenvalues
satisfy εnk = εnM−1k, and the Berry connection transforms as

Aα
kmn = MαβAβ

M−1kmn. (30)

The derivative operation transforms as

∂gkm

∂kα

= Mαβ

∂gM−1km

∂kβ

. (31)

From these properties, for a general conductivity tensor, one
can find that

χα′α′
1α

′
2 = Mα′αMα′

1α1Mα′
2α2χαα1α2 . (32)

For a CP response tensor, it is antisymmetric by permuting
the last two indices, and it is convenient to transform it to an
equivalent rank-2 pseudotensor

�αβ = εβα1α2καα1α2/2, (33)

and the operation of M yields

�α′β ′ = det (M)Mα′αMβ ′β�αβ. (34)

The constraints on the in-plane magnon spin photoconductiv-
ity tensors from the point-group symmetries and the effective
time-reversal T ′ are listed in Table II. It is seen that the
existence of the magnon spin current requires either T ′ or
PT ′ symmetry to be broken. For example, the Drude contri-
bution is forbidden by T ′, while the Berry curvature dipole
contribution is forbidden by PT ′. Further constraints on
the magnon spin currents are introduced by the point group
symmetries. For example, the C3z symmetry forces all the
circularly-polarized-light responses of the magnon spin cur-
rent to vanish.

III. RESULTS

A. Application to breathing kagome ferromagnet

The breathing kagome lattice has gained growing interest
in studies of the quantum spin liquid [44–49]. To illustrate
the proposed magnon spin photogalvanic effect, we study
a breathing kagome-lattice ferromagnet in the absence of
inversion symmetry, as shown in Fig. 2(a). With a nonuni-
form strain field, the three sublattices are deformed farther
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FIG. 2. (a) Schematics for the kagome ferromagnet with lattice constant a. The NN vectors are labeled by ai. Sublattices A, B, and C are
placed at the corners of the triangles. Dzyaloshinskii-Moriya vectors are aligned normal to the lattice plane, and their directions (up and down)
are represented by the symbols � and ⊗, depending on the chirality of the triangles. The dashed lines represent a unit cell. (b),(c) Strain is
introduced by letting the sublattice be farther away (δ > 0) or closer (δ < 0).

away (positive perturbation δ > 0) or getting closer (negative
perturbation δ < 0) from their shared corner, as shown in
Figs. 2(b) and 2(c). The Hamiltonian is

H = −
∑
〈i, j〉

Ji jSi · S j +
∑
〈i, j〉

Di j · Si × S j . (35)

J > 0 is the nearest-neighbor (NN) ferromagnetic
coupling strength. The second term is the out-of-plane
NN Dzyaloshinskii-Moriya interaction (DMI); the
Dzyaloshinskii-Moriya (DM) vector is specified as
Di j = vi jDz with vi j = ±, depending on the chirality of
the triangles in the kagome lattice. The ferromagnetic
exchange interaction and the DMI are given by [48,50]
J± = (1 ∓ √

3ηδ)J , D± = (1 ∓ √
3ηδ)D, where subscript

+ (−) denotes intracell (intercell) NN couplings, η is
a parameter describing the response of the couplings
to the displacements of sublattices, and δ is the strain
parameter. The bosonic Hamiltonian can be derived
as Hk = H0 − HNN

J − HDM, where H0 = 4JI3×3. The
nearest-neighbor magnetic exchange coupling reads

HNN
J =

⎛⎝ 0 γ2 γ ∗
3

γ ∗
2 0 γ1

γ3 γ ∗
1 0

⎞⎠,

HDM = i

⎛⎝ 0 d1 −d∗
3−d∗

1 0 d2

d3 −d∗
2 0

⎞⎠, (36)

with γi = J+eik·(1+δ)ai + J−e−ik·(1−δ)ai and di=D+eik·(1+δ)ai +
D−e−ik·(1−δ)ai .

Different topological phases are characterized by sets of
Chern numbers (C1,C2,C3) of the lower, middle, and upper
magnon bulk bands. A topological phase transition has been
discovered by tuning δ [50]. Figure 3(a) shows the magnon
bulk bands along the high-symmetry directions (�-K-M-�)
of the Brillouin zone. For δ = 0 the topological phase is
(−1, 0, 1), and for δ = 0.1 the topological phase is (0,−1, 1).
A topological phase transition occurs at δc = 0.05, where the
two magnon branches cross linearly at the K point.

The DMI breaks the effective T ′ symmetry, and it also
reduces the C6z symmetry to C3z, yet it preserves the C2x sym-
metry. Then both of the LP and CP responses are forbidden.
It is worth noting that the breathing geometry preserves the

C3z symmetry and breaks C2x, hence all the CP responses are
forbidden but the LP responses are allowed. In Fig. 3(b) we
show the magnon spin photoconductivities ηxxx of the allowed
injection, rectification, and shift spin current in response of
the LP light, varying with the lattice deformation. For δ = 0,
the LP responses are zero due to the C2x symmetry. As δ

increases, finite LP responses appear as required by symmetry.
The (−1, 0, 1) phase and the (0,−1, 1) phase are separated
by the critical points of the phase transition represented by
the dashed black lines. Remarkably, both the injection and the
rectification spin current exhibit a peak at the critical point,
while the derivative of the shift spin current maximizes at the
critical point. As for the DSC, there is no such drastic change
at the critical point, because the DSC is exclusively deter-
mined by the group velocities and their derivatives, which is
independent of the magnon topology. This clearly indicates
a topological phase transition that is also manifested as a
plateau of the total LP photoconductivity at the critical point,
which can serve as a prominent indicator to determine the
topological phase transition in experiments.

A breathing kagome-lattice ferromagnet preserves the C3z

symmetry, hence all the CP responses are forbidden. Now
we consider an additional uniaxial strain along the x-axis
breaking the C3z symmetry, for which the spins along the
x-axis are pushing closer, δ′ > 0, or farther, δ′ < 0, as shown
in Figs. 2(d) and 2(e). The remaining point-group symme-
try is σx, for which the CP responses are allowed. In the
presence of δ′, the diagonal component H0 is modified as
H0 = J diag(4, 2(2 + δ′), 2(2 + δ′)). For HNN

J , only the (1,2)
and (2,1) elements are changed to γ ′

2 = (1 + δ′)γ2 [51]. By
increasing δ′ from zero, a topological phase transition occurs
at the critical point δ′

c = 1
2 [1 − (D/J )2], where the upper band

and the middle band cross at the M point. In Fig. 3(c) we
show the magnon bands along the high-symmetry points for
different δ′ but with fixed δ = 0.02 (and D/J = 0.2). Similar
to Ref. [51], a topological phase transition occurs when the
system is tuned from the (−1, 0, 1)-phase to the (−1, 1, 0)-
phase by increasing δ′, while the critical point is found at
δ′

c = 0.54. In Fig. 3(d) we show the CP spin conductivities
κ

xyx
s as functions of δ′, where we set the circular polarization

of light to be in the xy plane, and we measure the z-direction
spin current. One observes that all four kinds of CP responses
change abruptly at δ′ = δ′

c, indicating a topological magnon
phase transition, which is a direct manifestation of the change
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FIG. 3. (a) Magnon band structures of a breathing kagome-lattice ferromagnet with different lattice deformation δ. Considering that δ > 0
and δ < 0 are equivalent, only cases δ > 0 are plotted. (b) LP photoconductivities as a function of the lattice deformation. The critical point of
the phase transition is shown as a vertical dashed line. (c) Magnon band structures of a breathing kagome-lattice ferromagnet in the presence
of δ = 0.02 with different uniaxial strain δ′. The critical point is δ′ = 0.54. (d) The CP photoconductivities vs the uniaxial strain δ′, where the
critical point of the phase transition is shown as a vertical dashed line. Parameters are set as J = 3.405, D = 1.02, h̄� = 0.15 in units of meV.
Gilbert damping constant α is estimated as α = 10−2, temperature is T = 50 K.

of the topological properties, such as the Berry curvature and
the shift vector in momentum space.

B. Materials realization

In the previous section, we qualitatively analyze the re-
sponse tensors by symmetry, and we characterize the behavior
near the phase-transition point. Now we consider the magni-
tude for the magnon spin photoconductivity. The candidate
materials can be the three-dimensional (3D) ferromagnetic
pyrochlore oxides Lu2V2O7, In2Mn2O7, as well as Ho2V2O7

[8], with a nonuniform strain applied. Instead of considering a
true 3D lattice, we can realize our idea by treating the system
as a stack of noninteracting (or weakly interacting) kagome
layers. Here we consider the Lu2V2O7 with nonuniform strain

applied. The lattice constant is a = 7.024 Å and the Curie
temperature is 70 K [8]. The nearest Heisenberg interaction is
estimated as J1 = 3.405 meV [52], and we set the temperature
to T = 50 K with a ferromagnetic ground state. From these
values and our numerical result in Figs. 3(c) and 3(d), we
obtain that the total magnon spin photoconductivity under the
LP and CP light can reach 10−2 e/V near the phase-transition
points. When applying an ac electric field of E ∼ 103 V/m, it
leads to a magnon spin current Js ∼ 10−2 eV/cm2, which is
experimentally detectable. The generated magnon spin current
can be detected via the inverse spin Hall effect [53].

Though the AC phase scales with 1/c2, the obtained
observable magnon spin currents induced by the AC
phase can be understood as follows. We can compare
the AC-phase-resulting magnon spin currents to electron
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spin currents in response to the electric field. To be
specific, suppose that we consider a circularly polarized
laser (electromagnetic) field with the electric field com-
ponent E(t ) = E0(cos ωt, sin ωt, 0). With use of E(t ) =
−∂t A(t ), the magnetic vector potential is written as A(t ) =
A0(sin ωt,− cos ωt, 0). The AC phase is given by θAC

i j =
gμB

h̄c2

∫ r j

ri
[E(t ) × êz] · dr, which can be rewritten as θAC

i j =
gμBω

h̄c2

∫ r j

ri
[A(t + π

2ω
) × êz] · dr. As is known, the Aharonov-

Bohm phase is θAB
i j = q

h̄

∫ r j

ri
A(t ) · dr. This means that for the

same vector potential A or electric field E, there is a relation
θAC

i j /θAB
i j ∼ gμBω/qc2, implying a considerable AC effect

with large ω. For example, a 100 THz electric field yields
gμBω/qc2 ∼ 10−6. Consequently, when increasing the elec-
tric field to three orders larger (considering that the magnon
spin photogalvanic effect is of the second-order response), the
magnitude of the magnon spin current can approach that of
the charge spin current case.

Note that the intrinsic (without nonuniform strain) breath-
ing kagome ferromagnet has been synthesized in rare-earth-
based pyrochlore materials such as Ba3Yb2Zn55O11 [54] as
well as LiZn2Mo3O8 [55]. Also, a field-aligned ferromagnetic
phase was experimentally observed in the centrosymmetric
breathing kagome lattice Gd3Ru4Al12 [56]. We expect that
the MSPC we proposed can be observed in these candidate
materials. With symmetry analysis, this study can be naturally
extended to other materials by using the magnetic structure
database MAGNDATA [57].

IV. DISCUSSION AND CONCLUSION

To conclude, we proposed a magnon spin photogalvanic
effect, and we uncovered the geometric origin due to an AC
phase accumulation. It provides a mechanism for the optical
(electric) generation and control of the magnons. Because
the electric component of light is of a wide, tunable param-
eter scale and is very fast, this method may have a realistic
platform in applications. We further identify five new mech-
anisms: Drude, BCD, injection, shift, and rectification spin
current. It is found that the linearly-polarized-light responses
(except Drude) are determined by the band-resolved quan-
tum metric, while the circularly-polarized-light responses are
determined by the Berry curvature. In general, the magnon
does not conserve spin angular momentum in processes such
as the dipolar interaction [58] and the magnon-magnon in-
teraction, which involve the pair creation and annihilation
of magnons, as well as scattering with magnetic impurity,
which disturbs the magnon spin angular momentum [59].
Here we assume that the Heisenberg exchange coupling is
strong enough to suppress the dipolar interaction [60], the
temperature is low, and the impurities are sufficiently sparse
that the magnon-magnon interaction and impurity scattering
are negligible [61]. We can then restrict the study to a situation
in which the magnon preserves the spin angular momentum
±h̄ when it transfers among sites; we leave the generalization
in which the magnon does not conserve the spin angular
momentum for future study. Finally, we emphasize that the
present calculation is also valid for the case of an ac bias
applied to the sample, and it may be of great interest to
experimenters.
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APPENDIX A: LINEAR SPIN-WAVE THEORY AND
MAGNON HAMILTONIAN

Here we rewrite the general two-body spin interaction
Hamiltonian,

H = 1

2

L∑
i, j

N∑
n,m

∑
αβ

Sα
i,nHαβ

nm (i − j)Sβ
j,m. (A1)

By setting global (reference) coordinates (x̂, ŷ, ẑ), the local
coordinates (spherical coordinates) of each spin are related to
the global coordinates via

Si,n = Rn(θi, φi )S0. (A2)

The classical ground state is identified by treating the
quantum-mechanical spin operators as classical vectors and
minimizing the classical ground-state energy. The magnons
have the usual low-energy excitation in ordered magnets,
which is considered via the Holstein-Primakoff transforma-
tion in local coordinates [25,62],

Sθ
i,n =

√
S

2
(ai,n + a†

i,n),

Sφ
i,n = −i

√
S

2
(ai,n − a†

i,n), (A3)

Sr
i,n = S − a†

i,nai,n,

and we obtain

Sα
i,n =

√
S

2
ûnai,n +

√
S

2
û∗

na†
i,n + ẑn(S − a†

i,nai,n), (A4)

where α = x, y, z. The coefficients ûn and ẑn are related to
the relative rotation between the global and local coordinates,
which are written explicitly as⎛⎜⎝ux

n

uy
n

uz
n

⎞⎟⎠ =

⎛⎜⎝cos θn cos φn + i sin φn

cos θn cos φn − i sin φn

− sin θn

⎞⎟⎠,

⎛⎜⎝zx
n

zy
n

zz
n

⎞⎟⎠ =

⎛⎜⎝sin θn cos φn

sin θn sin φn

cos θn

⎞⎟⎠. (A5)

Expanding the coupling interaction, we obtain

Sα
i,nSβ

j,m = 1
2 uα∗

n a†
i,n

(
uβ

maj,m + uβ∗
m a†

j,m

)
+ 1

2 uα
n ai,n

(
uβ∗

m a†
j,m + uβ

maj,m
)

− zα
n zβ

m

(
a†

i,nai,n + a†
j,maj,m

)
. (A6)
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By inserting Eq. (A6) into Eq. (A1), we have

H =
∑

i, j,n,m

Anm(i − j)a†
i,na j,m

+ 1

2

∑
i, j,n,m

[Bnm(i − j)a†
i,na†

j,m + H.c.]

+ 2
∑
i,n,m

Cnma†
i,nai,n, (A7)

in which

Anm(i − j) =
√

SnSm

2

∑
αβ

uα∗
n Hαβ

nm (i − j)uβ
m,

Bnm(i − j) =
√

SnSm

2

∑
αβ

uα∗
n Hαβ

nm (i − j)uβ∗
m , (A8)

Cnm = δnmSl

∑
αβ

zα
n

∑
j

∑
l

Hαβ
nm (i − j)zβ

l .

By transforming Eq. (A6) to the reciprocal space, we have

ai,n = (1/
√

L)
∑

k

exp [ik · (ri + tn)]ak,n, (A9)

where ri is the position of the ith unit cell, and tm is the relative
vector of the mth sublattice. We have H = 1

2

∑
k �

†
kH(k)�k,

where

H(k) =
(

A(k) − C B(k)
B†(k) AT (−k) − C

)
(A10)

is a 2N × 2N bosonic Bogoliubov–de Gennes (BdG)
Hamiltonian with a vector boson operator, where �

†
k =

(a†
k,1, . . . , a†

k,N , a−k,1, . . . , a−k,N ), and the N × N block ma-
trix is given by

Amn(k) =
∑
α,β

uα∗
n

[∑
d

e−ik·dHαβ
nm (d )

]
uβ

m,

Bmn(k) =
∑
α,β

uα∗
n

[∑
d

e−ik·dHαβ
nm (d )

]
uβ∗

m , (A11)

Cmn = δmn

∑
α,β

∑
l

zα∗
n

[∑
d

Hαβ

nl (d )

]
zβ

l ,

where d = (ri + tn) − (r j − tm) is the difference vector be-
tween the mth and the nth spin. In deriving Eq. (A11), the
relation∑

k

∑
n,m

Anm(k)a†
k,nak,m =

∑
k

∑
n,m

AT
nm(−k)a−k,na†

−k,m

(A12)

is used. For collinear ferromagnets, the Hamiltonian
Eq. (A10) is block-diagonal with an identical block, which
can be reduced to H = ∑

k �kHk�k with Hk = (Ak − C) and
�

†
k = (a†

k,1, . . . , a†
k,N ).

APPENDIX B: PERTURBATION OF ELECTRIC FIELD IN
THE FORM OF MINIMAL COUPLING

Now we consider the AC effect. In Eq. (A6), the first two
terms describe the magnon hopping. In the presence of an
electric field, the magnon acquires a phase while traveling
between the mth and the nth spin on the ith and jth site, which
is given by

θin, jm = −gμB

h̄c2

∫ r j,m

ri,n

[E(t ) × ên] · dr. (B1)

Note that Eq. (B1) is general despite the dependence of the
local coordinates on each site. To see this, let us recall the
original expression of the AC phase, θAC

i j = 1
h̄c2

∫ r j

ri
[E(t ) ×

μ] · dr, with μ being the magnetic moment of the magnon. If
the direction and magnitude of the magnon magnetic moment
do not change during the hopping processes (i.e., we neglect
the magnon scattering that involves the angular momentum
transfer), then θAC

i j is determined by the distance between the
sites once the magnetic ground state is fixed, irrespective of
the local coordinates. Similar demonstrations can be found in
Refs. [30] and [63]. The coupling interaction is modified as

Sα
i,nSβ

j,m = 1
2U α∗

n a†
i,n

(
U β

m aj,m + U β∗
m a†

j,m

)
eiθin, jm

+ 1
2U α

n ai,n
(
U β∗

m a†
j,m + U β

m aj,m
)
e−iθin, jm

− V α
n V β

m (a†
i,nai,n + a†

j,maj,m). (B2)

If the scale of the spatial variance of E is much larger than the
lattice constant, and introducing the effective vector potential
AE

n = 1
c E × ên, one obtains

θin, jm = gμB

h̄c
AE

n · d. (B3)

Following the same procedure, we have

Anm(k) → Anm

(
k − gμB

h̄c
AE

n

)
,

Bnm(k) → Bnm

(
k − gμB

h̄c
AE

n

)
, (B4)

while the matrix Cnm is unchanged because there is no magnon
hopping involved.

Now we consider two special cases, namely the collinear
ferromagnet and the collinear antiferromagnet.

1. Collinear ferromagnet

For ferromagnets, due to the absence of the magnon
pairing a†

i,na†
j,m and ai,na j,m, the 2N-dimensional basis is re-

duced to N-dimensional �
†
k = (a†

k,1, . . . , a†
k,N ). Accordingly,

the Hamiltonian Eq. (A10) is reduced to Hk = A(k) − C. It
is obvious that the global coordinates are the same as the
local coordinates for each spin, which can be chosen such that
the z-direction is identical to the magnetization direction. In
that regard, the magnetic moment of a magnon is −h̄êz, and
the effective vector potential is AE

n = AE = 1
c E × êz. Con-

sequently, the kernel Hamiltonian becomes H(k) = A(k −
gμB

h̄c AE ) − C.
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2. Collinear antiferromagnet

To be specific, we consider a collinear antiferromagnet
honeycomb lattice that has two spins in a unit cell, with the
Hamiltonian given by

H = J1

∑
〈i, j〉

Si · S j + D
∑
〈〈i j〉〉

ξi j ẑ · Si × S j + K
∑

i

S2
iz, (B5)

where J1 > 0 is the antiferromagnetic exchange interaction,
D is the DMI interaction along the z direction, and ξi j =
1 (−1) when Si and S j are arranged in a counterclockwise
(clockwise) manner. K < 0 is the easy-axis anisotropy. One
can choose the local coordinates of the first spin of the unit
cell as the global coordinates, while the local coordinates
of the second spin are obtained by a π rotation about the
x-axis or y-axis of the global coordinates. Subsequently, the
HP transformation is performed as

Sα
i,1 =

√
S

2
û1ai,1 +

√
S

2
û∗

1a†
i,1 + ẑ1(S − a†

i,1ai,1),

Sα
i,2 =

√
S

2
û2ai,2 +

√
S

2
û∗

2a†
i,2 + ẑ2(S − a†

i,2ai,2), (B6)

where ⎛⎜⎝ux
1

uy
1

uz
1

⎞⎟⎠ =

⎛⎜⎝ 1

−i

0

⎞⎟⎠,

⎛⎜⎝zx
1

zy
1

zz
1

⎞⎟⎠ =

⎛⎜⎝0

0

1

⎞⎟⎠,

⎛⎜⎝ux
2

uy
2

uz
2

⎞⎟⎠ =

⎛⎜⎝1

i

0

⎞⎟⎠,

⎛⎜⎝zx
2

zy
2

zz
2

⎞⎟⎠ =

⎛⎜⎝ 0

0

−1

⎞⎟⎠. (B7)

Therefore, the magnon Hamiltonian is H = HJ + HD + HK ,
with

HJ = J1S
∑
〈i, j〉

(ai,1a j,2 + a†
i,1a†

j,2),

HD = −
∑
〈〈i, j〉〉

iD2S(a†
i,1a j,1 − a†

j,1ai,1 − a†
i,2a j,2 + a†

j,2ai,2),

HK =
∑

i

(3J1 − K )S(a†
i,1ai,1 + a†

i,2ai,2). (B8)

The operator ai,1 (a†
i,1) annihilates (creates) a magnon with

magnetic moment −h̄êz, and the effective vector potential is
given as AE

n = AE = 1
c E × ez. The magnon Hamiltonian in

the presence of an electric field is written as

HJ = J1S
∑
i,δ

(
ai,1ai+δ,2eiθN

ri ,ri+δ + H.c.
)
,

HD = −
∑
i,ϑ

iD2S
(
a†

i,1ai+ϑ,1e−iθNN
ri ,ri+ϑ

− a†
i,2ai+ϑ,2eiθNN

ri ,ri+ϑ + H.c.
)
, (B9)

where the phase accumulated along the nearest-neighbor
(second-nearest-neighbor) hopping is given as

θN
ri,ri+δ = − gμB

h̄c2

∫ ri+δ

ri

[E(t ) × ez] · dr,

θNN
ri,ri+ϑ = − gμB

h̄c2

∫ ri+ϑ

ri

[E(t ) × ez] · dr. (B10)

If the scale of the spatial variance of E is much larger than the
lattice constant, one obtains

θN
ri,ri+δ = gμB

h̄c
AE · δ,

θNN
ri,ri+ϑ = gμB

h̄c
AE · ϑ. (B11)

Making use of the Fourier transformation Eq. (A9),
one directly obtains H = ∑

k �
†
kH(k − gμB

h̄c A)�k, with the
Nambu basis given by �

†
k = (a†

k,1, a†
k,2, a−k,1, a−k,2), where

Amn(k) − Cmn is diagonal with A11(22)(k) − C11(22) = S
2 [3J1 −

K (2S − 1)/S ± D
∑

δ 2 sin(k · δ)], and Bmn(k) is nondiagonal
with B12(k) = B∗

21(k) = S
2 [

∑
ϑ exp (ik · ϑ)].

APPENDIX C: GAUGE TRANSFORMATION
AND DIPOLE INTERACTION

In this Appendix, we present a gauge transformation to
derive a perturbed Hamiltonian in the form of a dipole
interaction. The single-particle Hamiltonian and the Bloch
Hamiltonian satisfy

H0(−i∇, r) = eik·rH0(k)e−ik·r. (C1)

According to Sec. II, the perturbed Hamiltonian is written as

HA = H0

(
− i∇ + gμB

h̄c
A, r

)
. (C2)

The time-dependent Schrödinger equation is

ih̄
∂|ψ (r, t )〉

∂t
= HA|ψ (r, t )〉. (C3)

There is a freedom of choice regarding the phase of the wave
functions. A unitary gauge transformation of |ψ (r, t )〉 takes
the form

|ψ ′(r, t )〉 = U (t )|ψ (r, t )〉. (C4)

The time-dependent Schrödinger equation transforms as

ih̄
∂|ψ ′(r, t )〉

∂t
=

[
UHAU†|ψ (r, t )〉 + ih̄

∂U (t )

∂t
U†(t )

]
|ψ ′(r, t )〉.

(C5)

The unitary transformation is chosen as U (t ) = eiS(t ), with

S (t ) = gμB

h̄c
A(t ) · r. (C6)

For the first term on the right-hand side of Eq. (C5), with use
of the Baker-Campbell-Hausdorff identity

eiSHAe−iS =H + i[S,HA] − 1

2
[S, [S,HA]] · · ·

+ in

n!
[S, . . . , [S,HA]] + · · · , (C7)

it is obtained that

U (t )HAU†(t ) = H0. (C8)

For the second term on the right-hand side of Eq. (C5), by
introducing the effective electric field Ẽ = −∂t A, it is straight-
forward to show that

ih̄
∂U (t )

∂t
U†(t ) = gμB

c
Ẽ(t ) · r. (C9)
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Then the Hamiltonian in the velocity gauge transforms to

HE (t ) = H0(k) + gμB

c
Ẽ(t ) · r. (C10)

APPENDIX D: MAGNON SPIN CURRENT

Now we define the magnon spin current. Because the z
component of the total spin is conserved, the local magnon
spin density (LMSD) is nz(ri ) = h̄

∑
m zma†

i,mai,m, satisfying
the continuity equation. The Fourier transformation of the
LMSD is written as

nz(ri ) = h̄

N

∑
kqm

zme−iq·(ri+tm )a†
k+q,mak,m. (D1)

The Heisenberg equation of motion for ak,m is used to derive
the equation of motion for nz(ri ):

ȧk,m = 1

ih̄
[ak,m, H]

= 1

ih̄

∑
n

(Ak,mnak,n + Ak,mnak,n + B∗
k,mna−k,n)

= 1

ih̄

∑
n

(2Ak,mnak,n + Bk,mna†
−k,n + B−k,nma†

−k,n),

(D2)
where H is given by Eq. (A10), and we obtain

∂nz(ri )

∂t
= 1

iN

∑
kqmn

e−iq·ri,m zm[−(2Ak+q,nma†
k+q,n

+ (B∗
k+q,mn + B∗

−k−q,nm)a†
−k−q,n)ak,m

+ a†
k+q,m(2Ak,mnak,n + (Bk,mn + B−k,nm)a†

−k,n)].
(D3)

In the case of
∑

δ = 0, and assuming the long-wavelength
limit q → 0, the magnon spin current is obtained with use
of the continuity equation ∂nzq/∂t + iq · Js,z = 0, which is
given as

Js,z = h̄
∑
kmn

zm

(
∂Ak,mn

∂k
a†

k,mak,n + ∂A−k,nm

∂k
a−k,ma†

−k,n

+ ∂Bk,mn

∂k
a†

k,ma†
−k,n + ∂B∗

k,nm

∂k
a−k,mak,n

)
= h̄

∑
k

�
†
kZ

∂Hk

∂k
�k. (D4)

When the long-wavelength limit is invoked, the continuous
translational symmetry is respected by removing the
dependences on the lattice structure’s long-wavelength
limit. In the low temperature we considered, the spin-wave
excitation is dominated by the long-wave modes, which
justifies the use of the long-wave approximation. In Eq. (D4)
we define the diagonal matrix Z ,

Z = diag(z1, . . . , zN , z1, . . . , zN ). (D5)

Making use of Eq. (10), we have

Js,z = h̄
∑

k

�
†
k�z

˜∂ZHk

∂k
�k. (D6)

It is found that

˜∂ZHk

∂k
= ∂Z̃Hk

∂k
− Z̃HkU −1

k

∂Uk

∂k
− ∂U −1

k

∂k
UkZ̃Hk,

(D7)

and we obtain

Js,z = h̄
∑

k

�
†
k�z

(
∂ ˜ZHk

∂k
− i[Ak, ˜ZHk]

)
�k, (D8)

where the Berry connection is defined by

Ak = iU −1
k

∂Uk

∂k
= i�zU

†
k �z

∂Uk

∂k
. (D9)

Note that the Berry connection given in Eq. (D9) is different
from iU †

k
∂Uk
∂k . This is because the Bogoliubov transformation

is generally not unitary [64].
For collinear ferromagnets, due to the reduction of the

2N-dimensional basis to the N-dimensional basis �
†
k =

(a†
k,1, . . . , a†

k,N ), the direction matrix Z in Eq. (D5) becomes a
unit matrix, and the magnon spin-current operator in Eq. (D8)
becomes

Js = h̄
∑

k

�
†
k

(
∂Hk

∂k
− i[Ak,Hk]

)
�k. (D10)

APPENDIX E: MAGNON SPIN PHOTOCURRENT IN
COLLINEAR FERROMAGNETS

In this Appendix, we derive the equations of motion for
the magnon density matrix in the presence of the AC phase
induced by the electric field of light. A similar method for
electron second-order optical responses is used to calcu-
late the electric bulk photogalvanic effect [37,65]. We give
the formalism of nonlinear responses for the magnon spin
photocurrent using the standard perturbation technique. Ac-
cording to Eq. (7) in the main text, the recursion equation can
be rewritten as

ρ (n+1)
mn (ω) = gμB

h̄c2
dmn(ω)

×
∫

dω1

2π
ω1ε

α1zβEα1 Dβ[ρ (n)(ω − ω1)]mn,

(E1)

where εα1zβ is the Levi-Civita symbol, and summation is
implied over repeated spatial indices. In deriving the second-
order reduced density matrix, it can be divided into terms
originating from the intraband (i) and interband (e) compo-
nents of the Dopt operator:

ρ (2)
mn (ω) = νc

∑
X

∫
dω1dω2

(2π )2
ω1ω2Eα1 (ω1)

× Eα2 (ω2)εα1zβεα2zγ �X,βγ
mn (ω1, ω2), (E2)

where the constant g2μ2
B

h̄2c4 is denoted as νc. Then, the contribu-
tion of each term in Eq. (E2) to the spin photoconductivities is
denoted as σ

αα1α2
X for X = ii, ie, ei, and ee. Keeping in mind
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that the energy conservation ω = ω1 + ω2 is always satisfied, the expressions for each term are obtained as

�ii,βγ
mn (ω1, ω2) = − dmn(ω)dmn(ω2)(∂β∂γ gm)δmn,

�ei,βγ
mn (ω1, ω2) = − idmn(ω)dmm(ω2)Aγ

mn∂
βgnm,

�ie,βγ
mn (ω1, ω2) = − idmn(ω)

(
∂γ

[
dmn(ω2)Aβ

mngnm
] − i

(
Aγ

mm − Aγ
nn

)[
dmn(ω2)Aβ

mngnm
])

,

�ee,βγ
mn (ω1, ω2) =

∑
p�=m,n

dmn(ω)
[
Aγ

mpdpn(ω2)Aβ
pngnp − Aγ

pndmp(ω2)Aβ
mpgpm

]
, (E3)

where we define gmn = gm − gn. Note that �ii and �ei include the derivative to the Bose-Einstein distribution. Together with
Eqs. (D8) and (E3), the second-order magnon spin current is given as

J (2),α
s (ω1, ω2) =

∑
X

Eβ (ω1)Eγ (ω2)χαβγ
X (ω1, ω2), (E4)

with

χ
αα1α2
ii = −νc

2

∫
[dk]

∑
m

εα1zβεα2zγ ω1ω2Jα
s,mmdmm(ω2)dmm(ω)∂β∂γ gm (E5)

+ [(α1, ω1) ↔ (α2, ω2)], (E6)

χ
αα1α2
ei = −νc

2

∫
[dk]

∑
m,n

iεα1zβεα2zγ ω1ω2Jα
s,mndnm(ω)dmm(ω2)Aγ

nm∂βgnm (E7)

+ [(α1, ω1) ↔ (α2, ω2)], (E8)

χ
αα1α2
ie = −νc

2

∫
[dk]

∑
m,n

iεα1zβεα2zγ ω1ω2Jα
s,mndnm(ω)

(
∂β

[
dnm(ω2)Aγ

nmgnm
] − i

(
Aβ

nn − Aβ
mm

)
×[

dnm(ω2)Aγ
nmgnm

]) + [(α1, ω1) ↔ (α2, ω2)], (E9)

χαα1α2
ee = νc

2

∫
[dk]

∑
m,n,p

εα1zβεα2zγ ω1ω2Jα
s,mndnm(ω)

[
dpm(ω2)Aβ

npAγ
pmgmp − dnp(ω2)Aβ

pmAγ
npgpn

] + [(α1, ω1) ↔ (α2, ω2)].

(E10)

Note that the conductivity tensors are symmetrized by the indices and frequencies of electric fields. This is because the physical
observables should not be affected by an arbitrary permutation of applied external fields, that is, the conductivity tensor has
intrinsic permutation symmetry [37,66]. It is clearly seen that the magnon photocurrent is quite different from the case of charge
photocurrent. For the magnon photocurrent, the electric field is restricted to the plane perpendicular to the axis of the magnon
spin, while for the charge case the direction of the electric field can be arbitrary.

1. Drude spin current

According to Eq. (E6), χ
αα1α2
ii only involves the intraband contribution, which is given by

χ
αα1α2
ii = − lim

ω→0

νc

2h̄2ω

∫
[dk]

∑
m

(
εα1zβεα2zγ 1

−�
+ εα2zβεα1zγ 1

ω + �

)
�(ω + �)Jα

s,mm∂β∂γ gm. (E11)

It describes the drift movement of magnons driven by the optical field, and it is called the Drude contribution. Following the
definitions

ηαα1α2 = 1
2 Re(χαα1α2 + χαα2α1 ),

καα1α2 = 1
2 Im(χαα1α2 − χαα2α1 ), (E12)

we obtain the LP spin photocurrent conductivity

η
αα1α2
D = νc

2h̄2

∫
[dk]

∑
m

(εα1zβεα2zγ + εα2zβεα1zγ )vα
m∂β∂γ gm. (E13)

In Eq. (E11) we use the relation Jα
s,mm = h̄vm, with vm = 1

h̄∂αεm being the group velocity. To simplify the formulas, we define
the symmetric combination of the Levi-Civita symbols as

Eα1α2βγ
S = εα1zβεα2zγ + εα2zβεα1zγ (E14)

054434-12



MAGNON SPIN PHOTOGALVANIC EFFECT INDUCED … PHYSICAL REVIEW B 110, 054434 (2024)

and the antisymmetric combination as

Eα1α2βγ
A = εα1zβεα2zγ − εα2zβεα1zγ , (E15)

and we have

η
αα1α2
D = νc

2h̄

∫
[dk]

∑
m

Eα1α2βγ

S vα
m∂β∂γ gm. (E16)

Note that the integrand vα
m∂β∂γ gm in Eq. (E16) is symmetric by exchanging the external field indices β and γ , hence Eα1α2βγ

S = 2
for α1 = α2 while Eα1α2βγ

S = −2 for α1 �= α2, and Eq. (E16) can be rewritten as

η
αα1α2
D = ς

νc

h̄

∫
[dk]

∑
m

vα
m∂α1∂α2 gm, (E17)

where we define ς = 1 for α1 = α2 and ς = −1 for α1 �= α2. Note that for the LP Drude response, it is independent of the
frequency of the light.

The CP-component is given as

κ
αα1α2
ii = − lim

ω→0

iνc

2h̄ω

∫
[dk]

∑
m

Eα1α2βγ

S

(
1

−�
− 1

ω + �

)
�(ω + �)vα

m∂β∂γ gm

= − lim
ω→0

iνc

h̄ω

∫
[dk]

∑
m

Eα1α2βγ
S �vα

m∂β∂γ gm. (E18)

For the CP responses, the external field indices are restricted by α1 �= α2. Making use of the exchanging symmetric property of
the integrand vα

m∂β∂γ gm, it is easy to verify that the CP-response vanishes.

2. Berry curvature dipole spin current

In this subsection, we consider the spin photocurrent originating from χ
αα1α2
s,ei . For the dc current, it is given as

χ
αα1α2
ei = lim

ω→0

νc

2h̄

∫
[dk]

∑
m �=n

(
εα1zβεα2zγ 1

−�
+ εα2zβεα1zγ 1

ω + �

)
�(ω + �)Aα

mnAγ
nm∂βgnm, (E19)

where we used the relation limω→0 dnm(ω)Jμ
s,mn = ih̄−1Aμ

mn for m �= n. The LP-photocurrent tensor is

η
αα1α2
ei = lim

ω→0

νcω

2h̄

∫
[dk]

∑
m �=n

(
εα1zβεα2zγ + εα2zβεα1zγ

)
Aα

mnAγ
nm∂βgnm

= lim
ω→0

νcω

2h̄

∫
[dk]

∑
m �=n

Eα1α2βγ
S

(
Aα

mnAγ
nm − Aγ

mnAα
nm

)
∂βgm. (E20)

It can be seen that the LP response vanishes for the dc current. The CP-photocurrent tensor is derived as

κ
αα1α2
BCD = i

νc�

2h̄

∫
[dk]

∑
m �=n

(εα1zβεα2zγ − εα2zβεα1zγ )Aα
mnAγ

nm∂βgnm = νc�

2h̄2

∫
[dk]

∑
m

Eα1α2βγ
A iεαγ τ ∂β�τ

mgm. (E21)

The magnon Berry curvature is defined as

�τ
m = i

2
εαγ τ

∑
n �=m

(
Aα

mnAγ
nm − Aγ

m,nAα
nm

)
. (E22)

With use of Eq. (E22) and partial integration, Eq. (E21) can be rewritten depending on the frequency of incident light as O(�),

κ
αα1α2
BCD = νc�

2h̄

∫
[dk]

∑
m

Eα1α2βγ
A εαγ τ ∂β�τ

mgm = νc�

2h̄

∫
[dk]

∑
m

(
εαα2τ ∂α1 − εαα1τ ∂α2

)
�τ

mgm. (E23)

It is clear that this comes from the dipole of Berry curvature in momentum space. The BCD contribution is classified as a
CP photocurrent. The BCD-induced nonlinear current has been extensively studied in electric systems. In bosonic systems, the
magnon BSC driven by temperature gradient has been proposed [35]. Here we reveal the BCD contribution to magnon spin
current generated via the light method.
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3. Injection and rectification spin currents

Now we study the spin photocurrent coming from χee. First we consider the contribution from the diagonal component of χee

with m = n, denoted as χee,d, which is given by

χ
αα1α2
ee,d = lim

ω→0

νch̄

2ω

∫
[dk]

∑
m �=p

εα1zβεα2zγ ω1ω2�
α
mpdpm(ω2)Aβ

mpAγ
pmgmp + [(α1, ω1) ↔ (α2, ω2)]

= lim
ω→0

νch̄

2h̄ω

∫
[dk]

∑
m �=p

(
εα1zβεα2zγ 1

−h̄� − εpm
+ εα2zβεα1zγ 1

h̄ω + h̄� − εpm

)
�(ω + �)�α

mpAβ
mpAγ

pmgmp, (E24)

where �α
mp is the interband-transition of the velocity. Making use of Eqs. (E14) and (E15), we have

η
αα1α2
ee,d = lim

ω→0

νch̄

2ω

∫
[dk]

∑
m �=p

Eα1α2βγ

S

(
1

−h̄� − εpm
+ 1

h̄ω + h̄� − εpm

)
�(ω + �)�α

mpAβ
mpAγ

pmgmp

= lim
ω→0

νch̄

2ω

∫
[dk]

∑
m �=p

Eα1α2βγ

S

(
1

−h̄� − εpm
Aβ

mpAγ
pm + 1

h̄ω + h̄� + εpm
Aβ

pmAγ
mp

)
�(ω + �)�α

mpgmp . (E25)

Because of the prefactor 1/ω, Eq. (E25) diverges with the limit ω → 0. Therefore, O(ω) and O(ω0) are retained. Performing the
Taylor expansion,

1

h̄ω + � + εnm
= 1

h̄� + εnm
− ω

(h̄� + εnm)2
+ O(ω2), (E26)

and with use of the Cauchy principal integral,

1

h̄� + i0+ + εnm
= P(

1

h̄� − εmn
) − iπδ(h̄� − εmn), (E27)

where P denotes the principal value. We have

η
αα1α2
ee,d = − lim

ω→0

iπνch̄

2ω

∫
[dk]

∑
m �=n

Eα1α2βγ
S δ(h̄� − εmn)�(ω + �)�α

mn

(
Aβ

mnAγ
nm + Aβ

nmAγ
mn

)
gmn

− lim
ω→0

νch̄

2ω

∫
[dk]

∑
m �=n

Eα1α2βγ
S

ω

(h̄� − εmn)2
�(ω + �)�α

mnAβ
nmAγ

mngmn. (E28)

Define the quantum metric and the Berry curvature,

Gβγ
mn = 1

2

(
Aβ

mnAγ
nm + Aγ

mnAβ
nm

)
, (E29)

�βγ
mn = i

(
Aβ

mnAγ
nm − Aγ

mnAβ
nm

)
. (E30)

The first term in Eq. (E28) diverges as ω → 0, which is recognized as the injection current. Considering that the band-resolved
quantum metric is symmetric with the indices permutation β ↔ γ , the injection current is

η
αα1α2
Inj = − lim

ω→0

iπνch̄

ω

∫
[dk]

∑
m �=n

Eα1α2βγ
S δ(h̄� − εmn)�2�α

mnGβγ
mngmn

= − lim
ω→0

ς
i2πνc

ω

∫
[dk]

∑
m �=n

δ(h̄� − εmn)�2�α
mnGα1α2

mn gmn. (E31)

Note that the LP injection current diverges in the dc limit. This seemingly unphysical behavior can be eliminated by introducing
the phenomenological scattering rate �, and the calculations are carried out by shifting the poles, i.e., the matrix dmn(ω) is
modified as

dmn(ω) = 1

h̄ω − εmn + iς
. (E32)

In Eq. (E32) the relaxation-time approximation is invoked with ς = αω = 1/τ , α is the Gilbert damping constant, and τ is the
relaxation time. The δ function holds the property

δ(h̄� − εmn) = lim
ς→0

1

π

ς

(h̄� − εmn)2 + ς2
. (E33)
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With use of Eq. (E33), the injection current is given by

η
αα1α2
Inj = − ς2νch̄

∫
[dk]

∑
m �=n

�2

(h̄� − εmn)2 + ς2
�α

mnGα1α2
mn gmn, (E34)

hence it converges in the dc limit. The second term in Eq. (E28) is

η
αα1α2
ee,d,2 = −νch̄

2

∫
[dk]

∑
m �=n

Eα1α2βγ

S

1

(h̄� − εmn)2
�2�α

mnAβ
nmAγ

mngmn

= −2ςνch̄
∫

[dk]
∑
m �=n

1

(h̄� − εmn)2
�2�α

mnGα1α2
mn gmn

= −2ςνch̄
∫

[dk]
∑
m �=n

∂α

(
1

h̄� − εmn

)
�2Gα1α2

mn gmn. (E35)

We will show in the following that Eq. (E35) is a part of the LP rectification current. The CP response of χ
αα1α2
ee,d is

κ
αα1α2
ee,d = lim

ω→0

iνch̄

2ω

∫
[dk]

∑
m �=n

Eα1α2βγ
A

(
1

−h̄� − εnm
− 1

h̄ω + h̄� − εnm

)
�(ω + �)�α

mnAβ
mnAγ

nmgmn

= lim
ω→0

iνch̄

2ω

∫
[dk]

∑
m �=n

Eα1α2βγ
A

(
1

−h̄� − εnm
Aβ

mnAγ
nm − 1

h̄ω + h̄� + εnm
Aβ

nmAγ
mn

)
�(ω + �)�α

mngmn. (E36)

With use of Eqs. (E26) and (E27), we have

κ
αα1α2
ee,d = lim

ω→0

πνch̄

2ω

∫
[dk]

∑
m �=n

Eα1α2βγ
A δ(h̄� − εmn)�(ω + �)�α

mn

(
Aβ

mnAγ
nm − Aβ

nmAγ
mn

)
gmn

− lim
ω→0

iνch̄

2ω

∫
[dk]

∑
m �=n

Eα1α2βγ
A P

1

h̄� − εmn
�(ω + �)�α

mn

(
Aβ

mnAγ
nm + Aβ

nmAγ
mn

)
gmn

+ lim
ω→0

iνch̄

2ω

∫
[dk]

∑
m �=n

Eα1α2βγ
A

ω

(h̄� − εmn)2
�(ω + �)�α

mnAβ
mnAγ

nmgmn. (E37)

The first term in Eq. (E37) is the CP injection current, which is written as

κ
αα1α2
Inj = lim

ω→0

πνch̄

2ω

∫
[dk]

∑
m �=n

Eα1α2βγ

A δ(h̄� − εmn)�(ω + �)�α
mn

(
Aβ

mnAγ
nm − Aβ

nmAγ
mn

)
gmn

= − lim
ω→0

iπνch̄

2ω

∫
[dk]

∑
m �=n

Eα1α2βγ

A δ(h̄� − εmn)�(ω + �)�α
mn�

βγ
mngmn

= − πνch̄

2

∫
[dk]

∑
m �=n

Eα1α2βγ

A

�2

(h̄� − εmn)2 + ς2
�α

mn�
βγ
mngmn

= − πνch̄
∫

[dk]
∑
m �=n

�2

(h̄� − εmn)2 + ς2
�α

mn�
α1α2
mn gmn. (E38)

The second term in Eq. (E37) is

κ
αα1α2
ee,d,2 = − lim

ω→0

iνch̄

ω

∫
[dk]

∑
m �=n

Eα1α2βγ
A P

1

h̄� − εmn
�2�α

mpGβγ
mngmn. (E39)

Noting that in the CP responses β �= γ , Eα1α2βγ

A = −Eα1α2γ β

A , and making use of the fact that Gβγ
mn = Gγ β

mn , we have κ
αα1α2
ee,d,2 = 0.

The third term in Eq. (E37) is written as

κ
αα1α2
Rec,1 = iνch̄

2ω

∫
[dk]

∑
m �=n

ω

(h̄� − εmn)2
�2�α

mp

(
Aα1

mnAα2
nm − Aα2

mnAα1
nm

)
gmn

= νch̄

2

∫
[dk]

∑
m �=n

�2

(h̄� − εmn)2
�α

mp�
α1α2
mn gmn

= − νch̄

2

∫
[dk]

∑
m �=n

∂α

(
1

h̄� − εmn

)
�2�α1α2

mn gmn. (E40)

We will show in the following that κ
αα1α2
Rec,1 is a part of the CP rectification current.
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4. Shift spin current

Now we consider the remaining terms χie and the nondiagonal component of χee, which is denoted as χee,od. We show that
the summation of these two terms comprises the shift current. With use of used partial integration, χie can be rewritten as

χ
αα1α2
ie = lim

ω→0

νc

2

∫
[dk]

∑
m �=n

εα1zβεα2zγ ω1ω2
[−∂βAα

mn + i
(
Aβ

nn − Aβ
mm

)
Aα

mn

]
dnm(ω2)Aγ

nmgnm + [(α1, ω1) ↔ (α2, ω2)]

= lim
ω→0

νc

2

∫
[dk]

∑
m �=n

(
εα1zβεα2zγ 1

−h̄� − εnm
+ εα2zβεα1zγ 1

h̄ω + h̄� − εnm

)
× ω1ω2

[−∂βAα
mn + i

(
Aβ

nn − Aβ
mm

)
Aα

mn

]
Aγ

nmgnm. (E41)

Note that

∂βAα
mn − i

(
Aβ

nn − Aβ
mm

)
Aα

mn = [DβAα]mn. (E42)

Making use of Eqs. (E26) and (E27), the LP-photocurrent tensor is obtained as

η
αα1α2
ie = − lim

ω→0

νc

2

∫
[dk]

∑
m �=n

Eα1α2βγ

S

(
1

−h̄� − εnm
[DβAα]mnAγ

nm − 1

h̄ω + h̄� + εnm
[DβAα]nmAγ

mn

)
�(ω + �)gnm

= νc

2

∫
[dk]

∑
m �=n

Eα1α2βγ
S P

1

h̄� − εmn
�2

(
[DβAα]mnAγ

nm + [DβAα]nmAγ
mn

)
gnm

+ i
πνc

2

∫
[dk]

∑
m �=n

Eα1α2βγ
S δ(h̄� − εmn)�2([DβAα]mnAγ

nm − [DβAα]nmAγ
mn

)
gnm. (E43)

The CP-photocurrent tensor is

κ
αα1α2
ie = lim

ω→0

iνc

2

∫
[dk]

∑
m �=n

Eα1α2βγ
A

(
1

−h̄� − εnm
[DβAα]mnAγ

nm + 1

h̄ω + h̄� + εnm
[DβAα]nmAγ

mn

)
�(ω + �)gnm

=πνc

2

∫
[dk]

∑
m �=n

Eα1α2βγ

A δ(h̄� − εmn)�2
(
[DβAα]mnAγ

nm + [DβAα]nmAγ
mn

)
gnm

− iνc

2

∫
[dk]

∑
m �=n

Eα1α2βγ

A P
1

h̄� − εmn
�2

(
[DβAα]mnAγ

nm − [DβAα]nmAγ
mn

)
gnm. (E44)

Now we consider the remaining component of χee, which is denoted as χee,od,

χ
αα1α2
ee,od = lim

ω→0
i
νc

2

∫
[dk]

∑
m �=n �=p

εα1zβεα2zγ ω1ω2Aα
mn

[
dpm(ω2)Aβ

npAγ
pmgmp − dnp(ω2)Aβ

pmAγ
npgpn

] + [(α1, ω1) ↔ (α2, ω2)]

= lim
ω→0

i
νc

2

∫
[dk]

∑
m �=n �=p

εα1zβεα2zγ ω1ω2
(
Aα

mnAβ
np − Aβ

mnAα
np

)
dpm(ω2)Aγ

pmgmp + [(α1, ω1) ↔ (α2, ω2)]

= lim
ω→0

i
νc

2

∫
[dk]

∑
m �=n �=p

(
εα1zβεα2zγ 1

−h̄� − εpm
+ εα2zβεα1zγ 1

h̄ω + h̄� − εpm

)
�(ω + �)

(
Aα

mnAβ
np − Aβ

mnAα
np

)
Aγ

pmgmp

= lim
ω→0

νc

2

∫
[dk]

∑
m �=p

(
εα1zβεα2zγ 1

−h̄� − εpm
+ εα2zβεα1zγ 1

h̄ω + h̄�−εpm

)
�(ω + �)([DαAβ]mp−[DβAα]mp)Aγ

pmgmp,

(E45)

where in the last equality the relation
∑

n �=m,p(Aα
mnAβ

np − Aβ
mnAα

np) = −i([DαAβ]mp − [DβAα]mp) is used. For notational

simplicity, we denote Kαβγ
mp = ([DαAβ]mp − [DβAα]mp)Aγ

pm, and the LP response of χ
αα1α2
ee,od is written as

η
αα1α2
ee,od = lim

ω→0

νc

2

∫
[dk]

∑
m �=p

Eα1α2βγ
S

(
1

−h̄� − εpm
+ 1

h̄ω + h̄� − εpm

)
�(ω + �)Kαβγ

mp gmp

= lim
ω→0

νc

2

∫
[dk]

∑
m �=p

Eα1α2βγ
S

(
1

−h̄� − εpm
Kαβγ

mp − 1

h̄ω + h̄� + εpm
Kαβγ

pm

)
�2gmp
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= − νc

2

∫
[dk]

∑
m �=p

Eα1α2βγ
S P

1

h̄� − εmp

(
Kαβγ

mp + Kαβγ
pm

)
�2gmp

− i
πνc

2

∫
[dk]

∑
m �=p

Eα1α2βγ

S δ(h̄� − εmp)
(
Kαβγ

mp − Kαβγ
pm

)
�2gmp. (E46)

Adding Eqs. (E43) and (E46) yields

η
αα1α2
ie + η

αα1α2
ee,od = − i

πνc

2

∫
[dk]

∑
m �=n

Eα1α2βγ
S �2δ(h̄� − εmn)

(
[DαAβ]mnAγ

nm − [DαAβ]nmAγ
mn

)
gmn

− νc

2

∫
[dk]

∑
m �=n

Eα1α2βγ
S �2P

1

h̄� − εmn

(
[DαAβ]mnAγ

nm + [DαAβ]nmAγ
mn

)
gmn

= − iς
πνc

2

∫
[dk]

∑
m �=n

�2δ(h̄� − εmn)
(
[DαAα1 ]mnAα2

nm − [DαAα1 ]nmAα2
mn

+ [DαAα2 ]mnAα1
nm − [DαAα2 ]nmAα1

mn

)
gmn

− ς
νc

2

∫
[dk]

∑
m �=n

�2P
1

h̄� − εmn

(
[DαAα1 ]mnAα2

nm + [DαAα1 ]nmAα2
mn + [DαAα2 ]mnAα1

nm+[DαAα2 ]nmAα1
mn

)
gmn.

(E47)

Making use of the relation

[DαAα1 ]mnAα2
nm = (

[DαAα1 ]nmAα2
mn

)∗
, (E48)

we have

η
αα1α2
ie + η

αα1α2
ee,od = ςπνc

∫
[dk]

∑
m �=n

�2δ(h̄� − εmn)Im
(
[DαAα1 ]mnAα2

nm + [DαAα2 ]mnAα1
nm

)
gmn

− ςνc

∫
[dk]

∑
m �=n

�2P
1

h̄� − εmn
Re

(
[DαAα1 ]mnAα2

nm + [DαAα2 ]mnAα1
nm

)
gmn. (E49)

The first term in Eq. (E49) is the shift current. Following Refs. [65,67], we define the shift vector:

Rα1α2
mn = Aα1

mm − Aα1
nn − ∂α1 argAα2

mn. (E50)

We can write the LP-shift current in terms of the magnon shift vector as

η
αα1α2
Sh = πνc

2

∫
[dk]

∑
m �=n

�2δ(h̄� − εmn)
(
Rαα1

mn + Rαα2
mn

)
Gα1α2

mn gmn

− πνc

2

∫
[dk]

∑
m �=n

�2δ(h̄� − εmn)
(∣∣Aα2

nm

∣∣∂α
∣∣Aα1

mn

∣∣ − ∣∣Aα1
mn

∣∣∂α
∣∣Aα2

nm

∣∣) sin
(
φα1

mn + φα2
nm

)
gmn. (E51)

It describes the current generated by the shift of the magnon position in the interband transition from band m to n. One can verify
that the shift current is invariant to the gauge transformation with use of the relation

Re
(
[DαAα1 ]mnAα2

nm + [DαAα2 ]mnAα1
nm

) = ∂αGα1α2
mn . (E52)

The second term in Eq. (E49) is part of the rectification current, which is written as

η
αα1α2
Rec,2 = − ς2νc

∫
[dk]

∑
m �=n

�2P
1

h̄� − εmn
∂αGα1α2

mn gmn. (E53)

Combining Eqs. (E35) and (E53), we have

η
αα1α2
Rec = η

αα1α2
Rec,1 + η

αα1α2
Rec,2 =2νc

∫
[dk]

∑
m �=n

�2 1

h̄� − εmn
Gα1α2

mn ∂αgmn. (E54)
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The CP-photocurrent tensor is

κ
αα1α2
ee,od = lim

ω→0
i
νc

2

∫
[dk]

∑
m �=p

Eα1α2βγ

A

(
1

−h̄� − εpm
− 1

h̄ω + h̄� − εpm

)
�(ω + �)([DαAβ]mp − [DβAα]mp)Aγ

pmgmp

= lim
ω→0

i
νc

2

∫
[dk]

∑
m �=p

Eα1α2βγ

S

(
1

−h̄� − εpm
Kαβγ

mp + 1

h̄ω + h̄� + εpm
Kαβγ

pm

)
�2gmp

= − i
νc

2

∫
[dk]

∑
m �=p

Eα1α2βγ

S P
1

h̄� − εmn

(
Kαβγ

mp − Kαβγ
pm

)
�2gmp

+ πνc

2

∫
[dk]

∑
m �=p

Eα1α2βγ
A δ(h̄� − εmn)

[
Kαβγ

mp + Kαβγ
pm

]
�2gmp. (E55)

Adding Eqs. (E44) and (E55), we have

κ
αα1α2
ee,od + κ

αα1α2
ie = − i

νc

2

∫
[dk]

∑
m �=p

Eα1α2βγ
S P

1

h̄� − εmn

(
[DαAβ]mpAγ

pm − [DαAβ]pmAγ
mp

)
�2gmp

+ πνc

2

∫
[dk]

∑
m �=p

Eα1α2βγ

A δ(h̄� − εmn)
(
[DαAβ]mpAγ

pm + [DαAβ]pmAγ
mp

)
�2gmp

= − πνc

2

∫
[dk]

∑
m �=p

δ(h̄� − εmn)
(
[DαAα1 ]mpAα2

pm + [DαAα1 ]pmAα2
mp

− [DαAα2 ]mpAα1
pm − [DαAα2 ]pmAα1

mp

)
�2gmp + i

νc

2

∫
[dk]

∑
m �=p

P
1

h̄� − εmn

(
[DαAα1 ]mpAα2

pm

− [DαAα1 ]pmAα2
mp − [DαAα2 ]mpAα1

pm + [DαAα2 ]pmAα1
mp

)
�2gmp. (E56)

Using Eqs. (E48) and (E52), we have

κ
αα1α2
ee,od + κ

αα1α2
ie = − πνc

2

∫
[dk]

∑
m �=p

δ(h̄� − εmn)Re
(
[DαAα1 ]mpAα2

pm − [DαAα2 ]mpAα1
pm

)
�2gmp

− νc

2

∫
[dk]

∑
m �=p

P
1

h̄� − εmn
Im

(
[DαAα1 ]mpAα2

pm − [DαAα2 ]mpAα1
pm

)
�2gmp. (E57)

Inheriting the concept from the electron photocurrent responses, the first term in Eq. (E57) is the CP shift current:

κ
αα1α2
Sh = −πνc

2

∫
[dk]

∑
m �=p

δ(h̄� − εmn)Re
(
[DαAα1 ]mpAα2

pm − [DαAα2 ]mpAα1
pm

)
�2gmp. (E58)

Introducing the chiral shift vector,

Rα,±
mn = Aα

mm − Aα
nn − ∂α argA±

mn, (E59)

with use of the circular representation of the Berry connection A±
mn = 1√

2
(Ax

mn ± iAy
mn), Eq. (E58) can be rewritten as

κ
αα1α2
Sh = −πνc

2

∫
[dk]

∑
m �=n

�2δ(h̄� − εmn)
(
Rα,+

mn |A+
nm|2 − Rα,−

mn |A−
nm|2)gmn (E60)

with use of the relation

Im
(
[DαAα1 ]mpAα2

pm − [DαAα2 ]mpAα1
pm

) = − 1
2∂α�α1α2

mn . (E61)

The second term in Eq. (E57) is a part of the CP rectification current, which is written as

κ
αα1α2
Rec,2 = νc

2

∫
[dk]

∑
m �=n

P
1

h̄� − εmn
�2∂α�α1α2

mn gmn. (E62)

Combining Eqs. (E40) and (E62), we have

κ
αα1α2
Rec = κ

αα1α2
Rec,1 + κ

αα1α2
Rec,2 = νc

2

∫
[dk]

∑
m �=n

�2

h̄� − εmn
�α1α2

mn ∂αgmn. (E63)
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In conclusion, the magnon spin photocurrent is expressed in terms of the following gauge invariant quantities:

vα
m = 1

h̄
∂αεm, �α

mn = vα
m − vα

n , (E64)

�τ
m = i

2
εαγ τ

∑
n �=m

(
Aα

mnAγ
nm − Aγ

mnAα
nm

)
, (E65)

�βγ
mn = i

(
Aβ

mnAγ
nm − Aγ

mnAβ
nm

)
, (E66)

Gβγ
mn = 1

2

(
Aβ

mnAγ
nm + Aγ

mnAβ
nm

)
, (E67)

Rαα1
mn = Aα

mm − Aα
nn − ∂α argAα1

mn, (E68)

Rα,±
mn = Aα

mm − Aα
nn − ∂α argA±

mn, (E69)

where vα
m is the group velocity, �τ

m is the Berry curvature for the mth band, �
βγ
mn is the band-resolved Berry curvature, Gβγ

mn is the
band-resolved quantum metric, and Rα1α2

mn is the shift vector, Rα,±
mn is the chiral shift vector with the Berry connection in circular

representation A±
mn = 1√

2
(Ax

mn ± iAy
mn). The magnon spin photocurrent is composed of five distinct parts: Drude current, Berry

curvature dipole (BCD) current, injection current, shift current, and the rectification current:

η
αα1α2
D =ς

νc

h̄

∫
[dk]

∑
m

vα
m∂α1∂α2 gm, (E70)

κ
αα1α2
BCD =νc�

2h̄

∫
[dk]

∑
m

(εαα2τ ∂α1 − εαα1τ ∂α2 )�τ
mgm, (E71)

η
αα1α2
Inj = − ς2h̄νc

∫
[dk]

∑
m �=n

�2

(h̄� − εmn)2 + ς2
�α

mnGα1α2
mn gmn, (E72)

κ
αα1α2
Inj = − πνch̄

∫
[dk]

∑
m �=n

�2

(h̄� − εmn)2 + ς2
�α

mn�
α1α2
mn gmn, (E73)

η
αα1α1
Sh =ςπνc

∫
[dk]

∑
m �=n

�2δ(h̄� − εmn)Rαα1
mn Gα1α1

mn gmn, (E74)

κ
αα1α2
Sh = −πνc

2

∫
[dk]

∑
m �=n

�2δ(h̄� − εmn)
(
Rα,+

mn |A+
nm|2 − Rα,−

mn |A−
nm|2)gmn, (E75)

η
αα1α1
Rec =ς2νc

∫
[dk]

∑
m �=n

�2

h̄� − εmn
Gα1α2

mn ∂αgmn, (E76)

κ
αα1α1
Rec = − νc

2

∫
[dk]

∑
m �=n

�2

h̄� − εmn
�α1α2

mn ∂αgmn, (E77)

in which ς = 1 for α1 = α2 and ς = −1 for α1 �= α2.

5. Some derivations for the symmetry analysis

According to Eq. (D9), the element of the Berry connection matrix is

Aα
kmn = i

∑
p

(U †
k )mp

∂ (Uk)pn

∂kα

= i
∑

p

U ∗
kpm

∂Ukpn

∂kα

. (E78)

The T ′ symmetry gives a constraint on the Berry connection

Aα
kmn = i

∑
p

(U ∗
−k)mp

∂
(
U T

−k

)
pn

∂kα

= i
∑

p

U ∗
−kpm

∂U−knp

∂kα

= Aα
−knm. (E79)

With use of Eq. (E79), the Berry curvature satisfies the relation [see Eq. (E65)]

�τ
km = i

2
εαγ τ

∑
n �=m

(
Aα

kmnA
γ

knm − Aγ

kmnA
α
knm

) = i

2
εαγ τ

∑
n �=m

(
Aα

−knmA
γ

−kmn − Aγ

−knmA
α
−kmn

) = −�τ
−km. (E80)
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For the point-group symmetry transformations M, with eigenvalues εnk = εnM−1k, the Berry connection transforms as

Aα
kmn = i

∑
p

[(MU )†
M−1k]mp

∂ (MUM−1k)pn

∂kα

= i
∑

p

(∂M−1k)β

∂kα [(MU )†
M−1k]mp

∂ (MUM−1k)pn

∂ (M−1k)β
= MαβAβ

M−1kmn. (E81)

The derivative operation transforms as

∂gkm

∂kα

= (∂M−1k)β
∂kα

∂gM−1km

∂kα

= Mαβ

∂gM−1km

∂kα

. (E82)
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