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The presence of competing interactions arising from geometry leads to frustration in quantum spin models.
As a consequence, the ground state of such systems often displays a large degeneracy that can be lifted by
thermal or quantum effects. One such example is the antiferromagnetic Ising model on the kagome lattice. It
was shown that while the same model on the triangular lattice is ordered at zero temperature for small transverse
field as a result of an order by disorder mechanism, the kagome lattice resists any such effects and exhibits only
short range spin correlations and a trivial paramagnetic phase. We embed this model on the latest architecture
of D-Wave’s quantum annealer, the Advantage2 prototype, which uses the highly connected Zephyr graph.
Using advanced embedding and calibration techniques, we are able to embed a kagome lattice with mixed open
and periodic boundary conditions of 231 sites on the full graph of the currently available prototype. Through
forward annealing experiments, we show that under a finite longitudinal field the system exhibits a one-third
magnetization plateau, consistent with a classical spin liquid state of reduced entropy. An anneal-pause-quench
protocol is then used to extract an experimental ensemble of states resulting from the equilibration of the model
at finite transverse and longitudinal field. This allows us to construct a partial phase diagram and confirm that the
system exits the constrained Hilbert space of the classical spin liquid when subjected to a transverse field. We
connect our results to previous theoretical results and quantum Monte Carlo simulation, which helps us confirm
the validity of the quantum simulation realized here. With these results, we are able to provide an understanding
into the nature of the phase diagram of this model while extracting insight into the performance of the D-Wave
quantum annealer to simulate nontrivial quantum systems in equilibrium.
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I. INTRODUCTION

Frustration occurs in antiferromagnetic spin models where
the interactions, either by geometry or other paths, cannot
all be fully satisfied. An elementary exercise of frustration
consists of anti-aligning Ising spins on a single triangle.
After easily satisfying the first bond, the other two cannot
be mutually anti-aligned no matter the choice of the third
spin. Therefore, the ground state is comprised of the six de-
generate states that have two bonds fulfilled and one bond
unsatisfied. Examples of magnetic models exhibiting frustra-
tion are the antiferromagnetic Ising model on the triangular
lattice [1], the J1–J2 model on the square lattice [2], the
Shastry-Sutherland model [3], and the Kitaev model on the
honeycomb lattice [4]. At first sight, the frustration in these
spin systems leads to ground states with extensive degeneracy.
However, in many situations, external or internal perturbative
terms lift this degeneracy and lead to ordered states, as is
the case in the triangular lattice Ising antiferromagnet [1]. If
this degeneracy is not lifted in the presence of a perturbation,
the disordered state persists down to T = 0, resulting in a
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quantum paramagnet. The quantum paramagnet is a cousin
of the more famous quantum spin liquids (QSLs) [5,6]; both
remain disordered down to zero temperatures, but the QSLs
present nontrivial entanglement entropy features. Although
the absence or presence of an ordered ground state has been
settled for some specific models such as the Kitaev model
on the honeycomb lattice [4], in other cases, computational
analysis remains too complex to carry out to large enough
lattices so that the exact nature of the ground state remains
unknown. One such example is the antiferromagnetic Heisen-
berg model on the kagome lattice [7–9], where debate still
rages on whether the ground state is a Z2 gapped QSL or a
gapless U (1) liquid. These questions are important beyond
the academic interest; many proposed theoretical models for
QSLs lead to nontrivial topological properties [10–14], which,
if prepared and manipulated correctly, could lead to efficient
platforms for topological quantum computing by the error-
protected manipulation of nonlocal degrees of freedom. In an
era of accessible quantum computers and quantum simulators,
the question of efficiently and faithfully preparing QSLs on
quantum devices, or even determining whether such states of
matter are the ground state of the system studied, motivates
the study presented in this paper.

Chief among this group of models of magnetic frustration
is the antiferromagnetic Ising model on the kagome lattice
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FIG. 1. (a) Theoretically proposed phase diagram [1] of the transverse field Ising model on the kagome lattice with antiferromagnetic
coupling. The blue region corresponds to the extent of the stable “ice rules” manifold, with a one-third magnetization plateau. This region is
predicted to host a long-range dimer ordered phase through a quantum order-by-disorder mechanism. We also show in slight orange that the
quantum paramagnet continues for all �/J at h = 0. (b) Our experimentally realized embedding of a 231-site kagome lattice with periodic
boundary conditions in the y direction. The tube-like structure as well as a flattened version are shown. Sites in blue at the edges are represented
through ferromagnetic 2-chains, while red and orange sites are the two “layers” that can be simultaneously embedded in the Zephyr graph.
The full embedding on the Zephyr graph in shown in Fig. 8. (c) The bulk magnetization per site as a function of the longitudinal field h/J for
various coupling constants β̃J at zero transverse field (classical limit). Lowering β̃ acts like increasing the temperature, as can be seen by the
decreased sharpness of the transition to the magnetization plateau (red dashed line). (d) (Top) The prescribed annealing energy scales A(s) and
B(s) on D-Wave’s Advantage2_prototype1.1 device as a function of the annealing fraction s. (Bottom) The annealing-pause-quench schedule
s(t ) we use to simulate the model at a finite transverse field �/J ∼ A(sp)/B(sp).

(AFI-K). In this paper, we investigate the different quantum
phases of this model in the presence of local fields. Although
the model has been extensively studied in the past using
quantum Monte Carlo (QMC), recent theoretical study has
cast doubt on some previously settled aspects of the phase
diagram. Our goal is to explore this phase diagram through
the use of a quantum annealer as a quantum simulator, as well
as QMC studies. The Hamiltonian of the AFI-K model is

HKag = J
∑
〈i, j〉

σ z
i σ z

j + �
∑

i

σ x
i + h

∑
i

σ z
i , (1)

where the edges 〈i, j〉 are those of the two-dimensional
kagome lattice formed of corner-sharing triangles, as shown
in Fig. 1(b), and both a longitudinal field h and a transverse
field � can be applied. It is known that the AFI-K model
with h = � = 0 is a quantum paramagnet down to T = 0 [1],
owing to an extensive number of degenerate states because
of the interplay of the frustration and the nearly disconnected
geometry of the lattice [15]. For the triangular lattice version
of this model, a phenomena known as order by disorder [16]
happens in the presence of a transverse field [17–20]. This

occurs when the large degeneracy of a set of states is broken
as the system chooses the subset of states with the “softest”
fluctuations and thus maximizes the entropy. In the triangular
lattice, this means that the quantum paramagnet at h = � = 0
does not survive finite �. This was recently observed using a
quantum annealer in [21], which was able to track the succes-
sive Kosterlitz-Thouless phase transitions [22] as microscopic
defects within the sixfold degenerate manifold, formed bound
pairs leading to quasi-long-range order. The final onset of a
six-state clock long-range ordered phase was not observed
on the annealer because of the insufficiently low device tem-
perature, although it has been seen in quantum Monte Carlo
studies [23]. Nevertheless, that study remains an important
advancement in the benchmarking of quantum annealers as
quantum simulators of spin systems, and since then multiple
studies on these devices have been able to provide new in-
sights on spin models [24,25].

On the other hand, studies on the kagome lattice model
revealed an interesting setting of disorder by disorder [26],
where quantum effects are not able to lift the large degeneracy
of a classically disordered state. Indeed, Moessner, Sondhi,
and Chandra [1] proposed that the system would remain a
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quantum paramagnet, for all values of �. Furthermore, the
application of a longitudinal field h was found to partially
lift the degeneracy of the ground state to the kagome spin-ice
state with magnetization M/N = ± 1

3 and constrained dy-
namics of defects resulting from strong constraints on each
triangle. These magnetization plateaus and related dynamics
were previously observed for � = 0 (no transverse field, thus
a classical model called kagome spin ice) using D-Wave’s
Advantage quantum annealer [27]. A schematic of the theoret-
ically proposed phase diagram [1,17] is shown in Fig. 1(a). On
the � = 0, h/J �= 0 line, the system is in the kagome spin-ice
state, where each triangle consists of two spins aligning with
the field h and one spin anti-aligned. These unusual states have
a net nonzero moment but still have a high degeneracy such
that the entropy is lowered from the h = 0 point but remains
extensive. The authors of Ref. [1] suggested that applying
an infinitesimal � leads to a long-range dimer star ordered
phase, by virtue of a mapping to a hexagonal lattice dimer
model [18], while other authors discuss alternative scenarios
[28,29]. This ordered manifold is thought to correspond to
states with maximally flippable hexagons (hence the stars),
which can coherently flip their spins with an amplitude of
the order of (�/h)6. This proposed theoretical state would
then vanish for higher � into a trivial quantum paramagnet
connected to the � → ∞ limit. Finally, for h/J > 4.0 [30], it
is no longer energetically favorable for any of the individual
spins to be anti-aligned to the field h, and thus the system
is fully polarized. We note, however, that recent numerical
studies in Ref. [31] show that this maximally flippable state,
which can also be interpreted as a valence-bond solid, is not
gapped from the other dimer states by the transverse field. A
new scenario was thus advanced, where the increase in the
transverse field simply brings the system through a crossover
from the restrained manifold of states with lowered entropy
and dimer constraints to a trivial paramagnet.

Here, we use a programmable quantum annealer, namely
D-Wave’s latest prototype, the Advantage2_prototype1.1 de-
vice, to simulate the AFI-K model for a wide range of
longitudinal fields h/J and transverse fields �/J . In fact, the
highly connected lattice of the latest D-Wave prototype allows
for a rather straightforward embedding of the model onto the
lattice of connected flux qubits. We then use an annealing-
pause-quench (APQ) schedule, which has been proposed as
a tool to extract an ensemble of configurations for a given
transverse field, which itself is extracted from the exact pause
point sp that one chooses after the anneal. These details are
presented in Sec. II. In order to provide further context to
some of the puzzling features of our results, we use a quan-
tum Monte Carlo (QMC) algorithm to simulate the system
classically for comparable system sizes. This approach has
two benefits. Firstly, by connecting to the known features of
the phase diagram, we can benchmark the performance of the
quantum annealer as a quantum simulator. Secondly, our com-
bined APQ and QMC results bring light on the phase diagram
after the recent proposals of Ref. [31] and we comment on the
observed absence of a long-range dimer ordered state in our
results, in spite of previous predictions.

In Sec. III, we show our main results, which can be sum-
marized as follows. First, we confirm the disorder by disorder
mechanism at h = 0 and the quantum paramagnetic state,

which persists for all � �= 0. Then, we explore the order
by disorder mechanism at h/J < 4.0, and are able to see
a crossover between the kagome spin-ice regime, with an
extensive degeneracy and obeying the “ice rules”, and the
disordered regime. This investigation is helped by an analysis
of the spin structure factor, which is presented in Sec. III A,
and an in-depth analysis of the histogram of the phase angle
of the complex order parameter in Sec. III B. Both of these
sections help us conclude that our quantum simulation of
the AFI-K model does not lead to the observation of the
long-range dimer star ordered state, which is also consistent
with our QMC results. Instead, we present a reconciliation
of the order-by-disorder scenario of Moessner et al. with the
concept of magnetic moment fragmentation in kagome spin
ice [32]. This helps us construct a partial phase diagram,
which is presented in Sec. III C. We find that a conspiracy of
device and schedule specific effects hamper our ability to go
to low enough temperature, where a true valence bond solid
in the dimers may lie. Finally, we present our conclusions and
outlook for future work in Sec. IV. Details on the embedding
methods, device calibration, and the QMC simulations are
presented in the Appendixes.

II. ANNEALING METHODS

Quantum annealing (QA) is a heuristic generalization
of the more abstract quantum adiabatic algorithm (QAA)
[33], which was designed at first to tackle NP-hard opti-
mization problems, such as obtaining the ground state of
spin glass systems. In both of these protocols, one imple-
ments a time-dependent Hamiltonian H (t ) = (1 − t/Ta)Hm +
(t/Ta)Hc where the annealing takes a time Ta, Hm is a mixing
term (such as a transverse field term) for which a ground state
is easily obtained and is orthogonal to the Z basis, and Hc

is the cost function or classical term that is diagonal in the
Z basis. For more information on these techniques, see the
following reviews [34–36]. While QAA requires in the best
case a total annealing time Ta ∼ �−2

min scaling with the mini-
mum gap to obtain the ground state of Hc, that requirement is
void in QA, where the computation time T is kept fixed, at a
cost of many shots. This heuristic approach stems from early
studies [37,38] where the general ideas of thermal annealing
were ported to quantum magnets through the use of the trans-
verse field HM = �

∑
i σ

x
i . The promise that implementing

such QA algorithms could lead to a faster heuristic approach
to NP-hard optimization problems led to the development
of quantum annealing devices. Quantum processing units
(QPUs) implementing the QA algorithm and developed by
D-Wave can be accessed from the cloud. The programmable
quantum annealer is formed of a highly connected graph of
superconducting flux qubits with flux-tunable Josephson junc-
tions, with up to thousands of qubits available. Since then,
new platforms have emerged using tunable Rydberg atoms
manipulated using optical tweezers, as offered by companies
QuEra and Pasqal [39]. In all of these companies, qubits are
controlled globally and variants of QA are implemented to
solve optimization problems or perform quantum simulations.

The specific quantum annealer used in this study is
the Advantage2_prototype1.1 prototype device, which im-
plements the following tunable transverse field Ising model
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(TFIM):

HDWave(s) = −A(s)

2

[∑
i

σ x
i

]

+ B(s)

2

⎡
⎣∑

〈i, j〉
Ji j,physσ

z
i σ z

j +
∑

i

hi,physσ
z
i

⎤
⎦,

(2)

where s is the annealing fraction, which can be tuned con-
tinuously. A(s) controls the strength of the transverse field
whereas B(s) controls the strength of the classical energy in
the Z basis. The functions A and B as a function of s are fixed
for a given device, and shown in Fig. 1(d). Measurements are
only done at s = 1 where the transverse field is absent. The
user can specify the function s(t ), which can lead to fast or
slow anneals and to pauses and quenches. Three constraints
are put on s(t ): s(0) = 0 for forward annealings, s(t = T ) = 1
at time T such that 1 µs < T < 2000 µs, and ds/dt � 1 µs−1.
The last one constrains the speed of quenches, so that fast
anneals are unavailable to the cloud user. Finally, the pro-
grammability of this device comes fully to fruition with the
user-specified Ji j,phys and hi,phys. The “phys” label here applies
to the microscopic terms of HDWave, in order to differentiate
them from those of the AFI-K Hamiltonian of Eq. (1). There
are 563 individually addressable hi,phys ∈ [−4, 4] and 4790
couplers Ji j,phys ∈ [−2, 1] in the Advantage2_prototype1.1
prototype.

The availability of the D-Wave quantum annealer has led
to many studies on its use to study the properties of quantum
spin systems, in particular on variants of the TFIM model
because of its natural implementation in D-Wave’s devices.
Among such studies are the field-induced magnetic phases
in quasicrystals [24], the quantum critical dynamics in spin
chains [40,41], the out-of-equilibrium behavior of spin chains
[42], the frustrated J1 − J2 model [43], the frustrated Ising
model on bathroom tile lattice [44], the implementation of
a Z2 spin liquid [45,46], the study of the multiple magnetic
phases of classical kagome ice [27] and of classical spin
ice [47], the spin glassy behavior in a random 3D magnet
[48], the order-by-disorder phenomena in the triangular lattice
antiferromagnetic Ising [21,49], the study of Griffiths-McCoy
singularity on random graphs [50] and the magnetization
plateaus in the Shastry-Sutherland model [51]. Although
much of these studies are done by or in collaboration with D-
Wave itself, the cloud access to the QPUs has resulted in more
independent teams performing novel research in recent years,
which has showed that more and more quantum spin systems
can be simulated. This, in turn, helps benchmark the latest
devices, as many behaviors of these systems are either well
known through exact methods or can be efficiently simulated
on classical computers through Monte Carlo methods.

A. Embedding

The Advantage2_prototype1.1 device realizes the highly
connected Zephyr graph [52–54]. Each qubit can have up
to 20 active couplers Ji j,phys to other qubits. This increased
connectivity compared to the previous Chimera and Pegasus

graphs means that the frustrated unit of the kagome lattice,
an antiferromagnetically coupled triangle of Ising spins, as
displayed in Fig. 3(b) below, is natively implemented on the
device without having to resort to the formation of large
chains of ferromagnetically coupled qubits. After creating a
unit cell, which we can tile on the full Z4 Zephyr graph, we
realized that this embedding was sparse enough to allow us to
embed another sheet of the kagome lattice using an alternate
version of our unit-cell embedding. Finally, both lattices could
be connected at the edges (“stitched”), forming a periodic
cylinder, as shown in Fig. 1(b), with the red and orange sites
corresponding to the two lattices that we have connected. The
full embedding is shown in Fig. 8 in the Appendix.

Two issues remained after doing this. Firstly, some qubits
and couplers are absent in the actual machine, showing up
as defects from the ideal Z4 Zephyr graph. We then created
alternate local embeddings for the unit cells that used differ-
ent qubits/couplers in order to bypass missing ones. Further
details on this can be found in Appendix A. Secondly, the
lattice one can embed with such procedure is rather small, and
some sites are not part of an elementary triangle of the kagome
lattice (our unit cell relied on tiling of hexagons, whereas
triangles are the natural unit cell structure of the kagome
lattice). In order to create a uniform cylindrical lattice with
easy to tackle boundary conditions, we took advantage of the
large amount of unused qubits in the graph at the open edges
of the Zephyr graph and inserted manually boundary sites
that are represented by 2-chains, which are pairs of strongly
ferromagnetically coupled qubits representing a single site on
the lattice. These sites are shown in blue in Fig. 1(b).

We then have that our model is formed of sites that
have different effective transverse fields, with 2-chains hav-
ing �eff

2 ∼ A(s)2

B(s) , because of the use of ferromagnetic chains,
while sites represented by a single qubit have a transverse
field � = A(s)/2. We use anneal offsets, a tuning knob pro-
vided by D-Wave, where an individual qubit’s annealing can
be delayed/advanced compared to others, thus providing an
ability to individually tune �/J for individual qubits. This
tool has been previously proposed as a means to enhance
the fidelity of solving classical QUBO problems [55]. In our
case, we present for the first time the use of anneal offsets
to calibrate the APQ schedule; previous study focused on fast
anneals exclusively [56]. With the anneal offsets, we can make
it so that the effective transverse field on 2-chains is the same
as the bare transverse field: � = �eff

2 , which is essential for
faithful quantum simulation. The details of this procedure
are explained in Appendix B. Using this calibration has a
few consequences; we need to adjust hi,phys and Ji j,phys for
these blue sites. Furthermore, we implemented manually a
form of mean-field boundary condition, where we attempt to
minimize the effect of this open cylindrical boundary on the
bulk sites of the system (red and orange sites). Although a
full self-consistent loop where 〈mz〉bulk = 〈mz〉edge is satisfied
would have been preferable, we lacked QPU access time to
perform this fully. This led us to implement a more heuris-
tic approach where a local field hi = 0.5h is applied on the
boundary sites (blue), with h the longitudinal field applied to
all other bulk sites. In all data shown in this paper, observables
are only calculated on bulk sites, as there remains a substantial
bias at the edges, although one that is less than without this
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adjustment. Together, these embedding methods permit the
full embedding of our 231 site cylindrical kagome lattice.

Note that we also attempted to embed the kagome lattice on
the Chimera graph (2000Q device, now unavailable), which
led to some sites being represented by FM chains of three
qubits while others had FM chains of two qubits. This nonuni-
formity in chain length meant that some sites would have
drastically different dynamics since their effective transverse
field �eff would be different: �eff

2 �= �eff
3 . It is possible to

fix this, but this process became quickly more involved than
simply reformulating our problem for the Zephyr graph. In
Ref. [27], the authors are able to embed the kagome lattice
on the Pegasus graph. Due to triangles being unavailable as
minimal cycles in this graph, they had to minor-embed using
chains. Thus, the sites of their kagome lattice embedding
were represented uniformly, through chains of three ferro-
magnetically (Ji j = K = −1.8) coupled qubits. The effective

transverse field on each site was then �eff
3 ∼ �3/K2 ∼ A(s)3

B(s)2 .
The authors then exposed classical spin configurations to a
short 1 µs exposure of this effective transverse field, thus sim-
ulating quasiclassical dynamics between degenerate classical
ground states. In our study, the transverse field � ∼ A(s) is
kept to its bare value since all sites are represented by an
effective single qubit. This permits us to explore larger values
of transverse field than if we had used n-chains.

B. Anneal-pause-quench

Our focus being on the effects of finite transverse field �/J
on the magnetic properties of the AFI-K model, we opted for
an anneal schedule called the anneal-pause-quench (APQ) se-
quence, as previously implemented on the quantum annealer
[21,48–50]. This protocol consists of a slow anneal from the
starting state |ψ (s = 0)〉 = ∏

i |→〉i at s = 0 up to a specified
pause point s = sp. This anneal takes a time t1 = 1000sp µs,
which is then followed by a pause of time t2 = 100 µs at
that point. This is meant to help the system equilibrate to the
Hamiltonian H (sp). Finally, a readout quench to s = 1 is ex-
ecuted with the maximal slope available on the cloud access,
which thus takes a time t3 = (1 − sp) µs. This is displayed in
Fig. 1(d). The objective of this protocol is that the ensemble
of states generated after the anneal and pause is close to the
distribution one would get from sampling the equilibrated
thermal equilibrium for T 	 J and with a finite �, h. The
readout quench should also be fast enough to simply collapse
the state onto the Z axis for measurement, without deforming
it. Whereas values of h/J are easily set by the user, �/J comes
from the ratio of the A and B functions at the pause point sp.

There remains debate as to whether this procedure accu-
rately samples the canonical distribution of H (sp) [50,57], but
we show in this paper that it does seem to recover the main
signatures that are expected in the AFI-K model, with some
caveats. As others have pointed out, the readout quench is
not fast enough to produce qualitatively correct data at large
� (i.e., small sp). In Refs. [21,42,57], the canting in the σx

direction that should be observed at large transverse field is
mostly absent, and thus 〈σ z〉 is larger than otherwise expected.
This is because the readout quench is simply not fast enough,
such that the canting slowly relaxes through the “quench”.
Our results are consistent with this interpretation, although the

model seems to be resilient enough to this canting that we can
nevertheless infer some qualitative insight.

III. RESULTS

In order to test the kagome lattice embedding we present
in this paper, we first performed simple forward annealing
experiments, which are specific cases of the APQ schedule
where sp = 1, i.e., there is no pause until the classical point.
This replicates the results of Ref. [27]. These lead to an
ensemble of configurations for the classical kagome Ising
model with a longitudinal field h. We do this for different
values of J = β̃Jmax, where Jmax = 11.16 GHz—increasing
β̃ is equivalent to decreasing the effective temperature T/J
at which we simulate the classical model. We compute the
bulk magnetization per site 〈mz〉 = 〈 1

N

∑
i σ

z
i 〉, where we have

N sites in the bulk and 〈· · · 〉 refers to the average over
all obtained configurations, which is typically on the order
of 104 for results obtained with APQ while we only per-
formed 500 reads to forward annealing experiments shown
in Fig. 1(c).

As we can see in Fig. 1(c), which displays the bulk mag-
netization per site 〈mz〉, our results for β̃ = 1 show a sharp
transition from 〈mz〉 = 0 at h/J = 0.0 to a plateau of |〈mz〉| =
1
3 (dashed-red line is added as a guide). This plateau is con-
sistent with the results obtained in Ref. [27] as well as the
literature predictions [17]. As β̃ is decreased, the transition
and plateau become less sharp, consistent with the higher
temperatures. Finally, another transition at h/J = 4.0 occurs
to a fully aligned state along the magnetic field. The inter-
mediate phase with a magnetization plateau is the result of
a compromise between the longitudinal field and the anti-
ferromagnetic interactions between sites among a triangle,
where each triangle has a local configuration among the set
{|↑↑↓〉 , |↑↓↑〉 , |↓↑↑〉} (shown in Fig. 3 below), called the
“ice-rule” manifold. In this classical model, the 1

3 -plateau,
along with all triangles being in one of those three configura-
tions, is a signature of a classical spin liquid. As temperature
is reduced, the system goes through a crossover from a high
temperature paramagnet to this classical spin liquid phase
where the entropy is reduced but still extensive. This is related
to the question on dimer coverings on the hexagonal lattice,
as one can assign one of three dimers to each local triangle
arrangement [1]. The ground state is thus formed of an exten-
sive number of states satisfying the “ice-rule” constraints, i.e.,
that each local triangle has magnetization 1

3 . The study of the
stability of this ice-rule manifold to the effect of a transverse
field is exactly the subject of our paper.

The result of our experiments using the APQ protocol are
presented in Fig. 2, as well as results from quantum Monte-
Carlo (QMC). In both cases, the same measurements were
taken, such as the bulk magnetization 〈mz〉 as well as the
frustration average 〈 f 〉, given by

〈 f 〉 = 1

2NB

∑
i∈B

∑
j∈n.n.(i)

〈
σ z

i σ z
j

〉
, (3)

where n.n.(i) refers to all nearest neighbors of site i in
the bulk B of the lattice, and thus the sum is over all
nearest-neighbor bonds on the lattice. We find that it is a
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FIG. 2. (a) Bulk magnetization 〈mz〉 as a function of sp the pause point of the APQ schedule, for diverse values of h/J . (b) Closeup of the
magnetization of (a) around the 〈mz〉 = 1

3 plateau. (c) The bond frustration 〈 f 〉 [see Eq. (3)] for the bulk sites as a function of the pause point
sp for the same h/J values of the closeup in (b). In (d) and (e) we show quantum Monte Carlo results (QMC) for diverse values of �/J (notice
the inverted horizontal axis), in order to qualitatively compare with the experimental APQ results. Simulations are performed for βJ = 10 and
a periodic system of size L = 9. (d) 〈mz〉 magnetization as obtained from the QMC analysis. Considering that sp → 0.65 is � 	 J and that
sp → 0.15 is � � J , we see that the same trends are present in (a). (e) The bond frustration 〈 f 〉 obtained from QMC analysis, again showing
qualitative agreement with (c).

complementary notion to the magnetization, and 〈 f 〉 = −1/3
is a strong indication that all triangles are in the “ice-rule”
manifold, meaning that one out of three bonds is frustrated.
Error bars for the experimental APQ data is obtained by
binning the 20 000 measurements into 20 bins of 1000 mea-
surements each, and then we perform a jackknife estimate
of the mean and the 95% confidence interval. Error bars for
the QMC data are smaller than the data points. We note
that, in the presented data, large sp corresponds to small
transverse fields, while small sp corresponds to large trans-
verse fields, with A(s∗)/B(s∗) = 1 as s∗ � 0.231, such that
the x axis for QMC data is generally reversed to compare
with APQ.

Let us now examine Fig. 2 in detail. In (a), our APQ data
shows first that the h/J = 0 data has nearly zero magnetiza-
tion for all transverse fields (all pause points sp), thus showing
that disorder-by-disorder indeed occurs; quantum fluctuations
cannot lift the degeneracy of the classical spin liquid at h =
� = 0 [1,17,28]. The finite value of the magnetization is the
result of stray fields in the physical device, which confer
small but non-negligible δh to the flux qubits. This effect was
minimized through flux bias offset calibration but remained
in our final data, perhaps because of the extreme sensitivity
of the state to polarizing fields. In addition to this absence of
a bulk magnetization, we measured the spin structure factor
S (q) for various sp at h = � = 0 [see Fig. 4(a)], for which
we can see broad features indicative of the constrained dy-
namics of individual triangles being in the m� = ±1/3 local
configurations. These features do not evolve as the transverse
field � is increased. We then see that increasing h/J sharply
leads to the ice-rule state, where 〈mz〉 = − 1

3 . Note that the
classical limit is for large sp, i.e., on the right of the graph.
Further increase of h/J leads to the fully polarized phase as
shown in Fig. 1(c). What is striking from our data is that the
use of APQ for small values of sp (i.e., larger �/J) leads

to either a decrease or an increase of the magnetization, de-
pending on whether the longitudinal field is larger or smaller
than h/J = 2.0. For clarity, we have shown in Fig. 2(b) a
close-up around the magnetization plateau. We see that, for
sp > 0.3, the magnetization is fixed to the plateau, while it
starts to diverge from it as the transverse field is increased.
This is consistent with the QMC data presented in (d), with
the magnetization at h/J = 2.0 being especially resilient to
the effect of the transverse field. We note that while the trends
between the two methods are in agreement, there is significant
quantitative difference between the two, especially at high �

(low sp). This is a recurring theme, and is caused by the forced
canting of the spins during the readout quench, which is not
implemented fast enough to be a true quench [21,42,57], as
mentioned in Sec. II B.

In Fig. 2(c), we show the frustration parameter 〈 f 〉, which
also presents some striking features. We plot here the same set
of h/J data as in (b). We note that, in the classical limit (large
sp), the 〈mz〉 = −1/3 plateau is also associated with a plateau
in 〈 f 〉 = −1/3, demonstrating that the obtained magnetic
states are those of the kagome spin ice with its constrained
dynamics resulting from the uniform presence of frustrated
bonds. We see that for h/J < 2.0, the addition of transverse
field does not meaningfully alter the frustration parameter,
even though the magnetization changes. On the other hand, for
h/J > 2.0, the frustration quickly departs from 〈 f 〉 = −1/3
around sp � 0.3. These results are consistent with QMC (e),
although with the same caveat that the readout process is too
slow. In this particular case, the QMC data shows a continuous
evolution of 〈 f 〉 with respect to � for h/J < 2.0, although all
curves seem to fall on top of each other. The APQ process is
simply unable to reproduce the continuous background, which
seems to be erased as spins cant back into the favorable ice-
rule manifold during the readout process, thus fixing 〈 f 〉 =
−1/3. For h/J > 2.0, our agreement with QMC improves,
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FIG. 3. (a) Classical energy ε of different Ising configurations
{zi} on an antiferromagnetic triangle with longitudinal field, with ε =
2J

∑
i j ziz j + h

∑
i zi, where the nearest-neighbor interaction is set at

2J to reflect the local environment of the kagome lattice with its four
neighbors per site. We see that, for 0 < h/J < 4.0, the m = 1/3 state,
which aligns with the field is lower in energy, whereas for h/J >

4.0 the fully polarized state is lower. (b) The different local Ising
configurations corresponding to the different branches of (a). Note
that, for h/J = 2.0, the gap to the excited state is maximal, and that
the nature of the first excited state changes there between high and
low longitudinal fields.

which we attribute to the nature of the created excitations from
the ice-rule manifold [27], which seems to change between
low and high longitudinal fields. In Fig. 3, we show the classi-
cal energetics of different configurations of Ising spins on an
antiferromagnetic triangle with a longitudinal field h. We note
that while the gap between the lowest energy state is maximal
at h/J = 2.0, the nature of the first excited state is different
for low and high fields. We hypothesize that the application of
the transverse field leads to the proliferation of different types
of defects, which influences both the behavior of 〈mz〉 and
〈 f 〉. For h/J < 2.0, defects of m = +1/3 are created among
the configuration of 〈mz〉 ∼ −1/3, which lowers the absolute
magnetization [upward trend of orange points in Fig. 2(b)] and
since these defects maintain the ice rule, they do not alter the
frustration 〈 f 〉. For h/J > 2.0, defects of m = −1 are created,
which increases the absolute magnetization [green and blue
points in Fig. 2(b)] and alters the frustration 〈 f 〉 since these
states violate the ice rule.

A. Spin structure factor

In order to further our insight into the different magnetic
configurations generated by the APQ schedule at low/high sp,
we compute the spin structure factor of our Z basis measure-
ments, and compare it to QMC data. The spin structure factor
S (q) is given by the two-dimensional Fourier transform of the
spin configurations,

σ z
q = 1√

Nb

∑
i

eiq·riσ z
i , (4)

S (q) = 〈∣∣σ z
qσ z

−q

∣∣〉, (5)

where the 〈· · · 〉 refers to an average over all obtained con-
figurations. In most cases, we only look at the structure
factor S (q), although in some cases important insight will
be found in the complex-valued order parameter σ z

q = mqeiθq .
The present model of kagome spin ice is equivalent to py-
rochlore spin ice in a moderate magnetic field in [111]
direction [58,59]. The enforcement of the ice rules in the

kagome planes leads to dipolar correlation functions in real
space [58,60,61] and correspondingly to features in mo-
mentum space called pinch points and diffuse scattering
peaks in the structure factor. Specifically for kagome spin
ice, the structure factor at zero transverse field was pre-
viously obtained using a programmable quantum annealer
in Ref. [27].

In Fig. 4 we show the two-dimensional spin structure factor
for four important points in the phase diagram, namely h/J =
0.0 and 2.0 at both sp = 0.65 (small transverse field) and
sp = 0.15 (large transverse field). Limits of Brillouin zones
are outlined as dashed lines to indicate the sixfold rotational
symmetry, while in one of the 2D plots we show a path in
q space along the high symmetry points, q ∈ {Γ → K →
2K → 2M → M → Γ }, which is then used for the line cuts
in (b)–(e). Note that we use Γ to denote the q = (0, 0) high-
symmetry point so as to avoid confusion with the transverse
field �.

There are several conspicuous features in S(q) that are
borne out both in the APQ and the QMC data. There is a
sharp Bragg peak at Γ = (0, 0), a smaller Bragg peak at
2M = ( 2π

a , 2π√
3a

) and a rather broad diffuse scattering peak

at 2K = ( 8π
3a , 0), which is the main focus of the following

analysis. Only visible with a sufficient number of q points, for
small �/J and low temperatures there is a kink-like feature
at K = ( 4π

3a , 0). Here, reciprocal lattice vectors are written in
terms of the lattice constant a of the triangular Bravais lattice
underlying the kagome lattice.

The Bragg peak at the Γ point, which is related to the uni-
form magnetization per site of 〈mz〉 = − 1

3 (h/J > 0) is clearly
present for h/J = 2.0 in Fig. 4(a), as well as in Figs. 4(b)–
4(d). If the Bragg peak at q = 2M and equivalent reciprocal
lattice vectors, which correspond to nematic ordering of tri-
angles with average magnetization − 1

3 , is subtracted, a sharp
feature at the 2M points remains. These so-called pinch points
at q = 2M are the hallmark of the spin-ice states in the one-
third magnetization plateau. Pinch points are singular points
in momentum space, which are at the center of bow-tie like
features and characterized by a highly anisotropic angular
dependence of the structure factor: While S(q) is nonzero and
increases along the path 2M → 2K , it drops to zero sharply
in the transverse direction along 2M → Γ . This feature is
clearly seen for small �/J (large sp) in Fig. 4, for both APQ
(b) and QMC (c), and for the lowest temperature in Fig. 4(e).
The pinch points are absent in the disordered phase at h/J =
0, see Figs. 4(a) and 4(d). This shows that the data obtained
at h/J = 0.0 represents a quantum paramagnet as it does not
present these pinch points. Rather, the spin structure factor
in the quantum paramagnet only shows a broad continuum
that stems from the presence of triangles in the three |↑↑↓〉
configurations as well as in the three |↓↓↑〉. This continuum
is present for all obtained S (q), as seen in Fig. 4(d).

One of the core features that is seen in the spin structure
factor is the influence of the transverse field on the peak at
q = 2K . For QMC data in Fig. 4(c), there is a sharp reduction
of this peak as the transverse field in increased, signaling
the entrance into a quantum paramagnetic state and the loss
of correlations within the ice-rule manifold. This decrease
in S (2K ) is also seen for APQ in Fig. 4(b). We compared

054432-7



PRATYANKARA NARASIMHAN et al. PHYSICAL REVIEW B 110, 054432 (2024)

FIG. 4. (a) Color plots of the spin structure factor S(q) as a function of momenta q, for a few sp and h/J values. We note that, for h/J = 0.0
(left column), the spin structure factor remains featureless as a function of sp, signaling the absence of any transition into an ordered state as
the transverse field in increased. For h/J = 2.0 (right column), the features at the q = 2K point decrease slightly with the increase of the
transverse field (sp = 0.15). In (b) and (c), we compare a line cut through high-symmetry points of the structure factor S(|q|) [following the
dashed path shown in (a)], at h/J = 2.0 for results obtained through the APQ schedule (b) and obtained through QMC (c). The QMC data is
obtained for βJ = 10 and a periodic system with L = 24. As seen in both APQ and QMC results, the broad peak at q = 2K stays constant over
an extended range of �/J before it drops as the transverse field �/J is increased (sp is lowered) further. (d) Experimental APQ results of a line
cut of the structure factor S(|q|) for different values of h/J at the low transverse field limit of sp = 0.65, showing the continued presence of the
broad red continuum. (e) Classical Monte Carlo results (� = 0, finite T/J) of a line cut of the structure factor S(|q|) for different temperatures
T/J . Results are for a periodic system of size L = 12. By comparing with (b), we see that our APQ results broadly correspond to Teff/J � 0.4,
much higher that the bare Tdevice/J ratio of the device, which is roughly 0.05.

the data at this specific high-symmetry point in more detail
in Fig. 5. Both present qualitatively similar features for all
h/J values, where S (2K ) flattens at small �/J (large sp), and
crosses over into a smaller value at large �/J (small sp). The
quantitative discrepancy between the QMC and APQ values
is again attributed to the readout quench and the canting effect

FIG. 5. Comparison of the spin structure factor S(q) at the high-
symmetry point q = 2K for (a) the anneal-pause-quench (APQ) and
our quantum Monte Carlo (QMC) simulations, for various values
of h/J deep in the blue lobe of Fig. 1(a). The �/J horizontal axis
of (b) is inverted to further the comparison with the sp pause point
of APQ in (a). In both data, we see a sharp drop in S(2K ) at
moderate transverse field strengths, indicating the system exiting the
constrained manifold of the ice-rule states. The QMC simulations are
performed for L = 24 and βJ = 10.

that partially destroys the states created during the pause at
finite �/J .

Finally, we have also performed classical Monte Carlo
simulations at finite temperature to compare the effect of
temperature and transverse field on the spin structure factor.
This is presented in Fig. 4(e). One can see that increasing
the temperature leads to mostly the same effects as increasing
�/J [as seen in 4(c)], with the exception of the pinch points,
which are more resilient to transverse field than they are to the
effect of thermal broadening. Thus, the fact that the feature at
q = 2M in the APQ data does not change appreciably as sp is
tuned helps to confirm that the main tuning knob in the APQ
data is the transverse field, not the temperature of the system,
even though the temperature is clearly finite.

B. Possibility of dimer ordering

Figure 6 shows the histogram of the phase angle θq of the
complex order parameter σ z

q = mqeiθq at wavevector q = 2K ,

the ordering vector corresponding to a
√

3 × √
3 unit cell. The

results from the APQ simulations are shown in Fig. 6(a) while
the QMC results are shown in Fig. 6(b). In a longitudinal field
there are three symmetry-related states with

√
3 × √

3 unit
cell, which obey the ice rules and have average magnetiza-
tion m = − 1

3 . The other set of three states has magnetization
m = 1

3 . In the upper-left corner of Fig. 6(c) one of these
three states is depicted, which would be selected by quantum
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FIG. 6. Histogram of the phase angle θ2K of the complex order parameter σ z
q at momentum q = 2K for the APQ schedule (a) and the

QMC simulations (b) for increasing transverse field (decreasing pause point sp). (c) A spin-ice configuration of up and down spins is mapped
onto a planar vector field by associating an up (down) spin with an arrow of length 1 pointing into (out of) an upward-pointing triangle. The
vector field resulting from a given

√
3 × √

3 spin-ice configuration is decomposed into a divergence-free (transverse) fragment at q = 2K and a
divergence-full (longitudinal) fragment at q = 0 [32]. The upper part of (c) shows the decomposition into one of the six dimer star ordered states
(here, θ2K = 0) and a longitudinal component carrying the average magnetization 〈mz〉 = − 1

3 . Other transverse configurations will correspond
to symmetry related θ2K = 2πn/6. The lower part of (c) shows how the transverse fragment at q = 2K can be further decomposed into a
partially disordered state (θ2K = π

6 ) and another star dimer ordered state (θ2K = − π

3 ) of smaller amplitude. Equivalent decompositions lead
to the other states from the two sets θq=2K ∈ {± 5π

6 , ± 3π

6 ,± π

6 } and θq=2K ∈ {0,± π

3 , ± 2π

3 , π} in the transverse fragment. Thermal or quantum
fluctuations act within the transverse fragment and enhance the amplitudes of these sixfold degenerate (clock-ordered [22]) states: As the phase
angle histograms in panels (a) and (b) suggest, the different boundary conditions of the simulated kagome lattices in APQ (mixed open-closed)
and QMC (fully periodic) appear to lead to the selection of different sets of clock-ordered states, the partially disordered states in QMC and
the dimer star ordered states in APQ. The parameters of the QMC simulation are L = 9 and βJ = 10.

fluctuations from the manifold of the hexagonal lattice dimer
model [1] at �/J = 0 because the alternating spins on two
out of three hexagons allow resonance processes at order ( �

h )6

[1]. However, it was already pointed out in Ref. [58] that
in kagome spin ice the structure factor at q = 2K does not
exhibit a Bragg peak, but rather a diffuse scattering peak that
diverges only logarithmically with system size, i.e., there is no
long-range order at this wavevector. This is reminiscent to the
broad peak observed in both APQ and QMC data in Fig. 4.

It turns out that the observation of an extended spin-ice
phase at finite-transverse field without long-range order and
the mechanism of order-by-disorder can be elegantly recon-
ciled using the concept of magnetic moment fragmentation
[32,62,63]. First, spin configurations are expressed as a vector
field in the plane by associating an up-spin with an arrow
pointing into an upward-pointing triangle (each site of the
kagome lattice can be identified to one and only one such
up-triangle). According to the Helmholtz decomposition any
vector field can be written as a sum of a transverse fragment,
which is divergence-less, and a longitudinal fragment, which
is curlless [32]. All states at q = 2K = ( 8π

3a , 0) have vanish-
ing average magnetization as is verified from the expression∑3

i=1 σ z
i = m

∑3
i=1 cos( 8π

3a xi + θ2K ) = 0 with the coordinates
on a kagome triangle xi ∈ {0, a

4 , a
2 }. Thus any spin-ice config-

uration consists of a divergence-free fragment of spin loops
with zero average magnetization, which contribute to the spa-
tial dipolar correlations and the diffuse scattering [58], and
a q = 0 fragment carrying the average magnetization of − 1

3 .
The Helmholtz decomposition for a single spin-ice configura-
tion is shown schematically in Fig. 6(c) (upper row).

A remnant of the order-by-disorder effect from quantum
and thermal fluctuations is apparent in the transverse frag-
ment of the spin configuration [32] at q = 2K where two sets
of sixfold degenerate (clock-ordered) states with

√
3 × √

3

unit cell have relatively high amplitude compared to other√
3 × √

3 states. These are the partially disordered states with
phase angle of the Fourier transform of the spin configuration
θq=2K ∈ {± 5π

6 ,± 3π
6 ,±π

6 } and the dimer star ordered states
[32] with phase angle θq=2K ∈ {0,±π

3 ,± 2π
3 , π}. States from

each set are depicted in Fig. 6(c) (lower row) where the trans-
verse fragment is a dimer star ordered state with phase angle
θq=2K = 0, see Fig. 6(c) (top), which can be further decom-
posed into a partially disordered state plus smaller corrections,
see Fig. 6(c) (bottom).

The key observation is that the
√

3 × √
3 ordered state

from the spin-ice manifold in the upper-left corner of Fig. 6(c)
is threefold degenerate if the magnetization per triangle is
enforced to be − 1

3 . On the other hand, the
√

3 × √
3 spin

configurations from the transverse (i.e., divergence-less) frag-
ment are allowed to be sixfold degenerate as they have average
magnetization per triangle equal to zero. This shows that the
selection of clock-ordered

√
3 × √

3 states by quantum or
thermal fluctuations occurs in the transverse fragment of the
magnetization. As the height of the diffuse peak at q = 2K
increases only logarithmically with the system size [58], it
is evident that the slightly favored

√
3 × √

3 states do not
develop long-range order.

Whereas in the APQ results the dimer star ordered states
are enhanced [see the large peaks at θ2K = 0 ± 2πn/6 in
Fig. 6(a)], in the QMC simulations the preferred phase angles
are those of the partially disordered states [see the dominant
peaks at θ2K = −π/6 ± 2πn/6 in Fig. 6(b)]. A contribution
from the partially disordered states is also seen for large sp

in the APQ results. The deviation between the two is most
likely caused by the different boundary conditions of the re-
spective simulation cells, see Fig. 1. Furthermore, in the QMC
simulation results, the depletion of the �/J ∼ 0.8 histogram
towards θ2K = ±π is attributed to the very large transverse
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FIG. 7. (a) Tracking of the inflection point sc of the magnetiza-
tion 〈mz〉, as seen in Fig. 2—we see a rather compelling similarity
with the theoretical phase diagram of Fig. 1(a). The blue area are
line is meant to be a guide to the eye. The x axis represents extracted
values of the ratio �/J , which depends on the values of A, B for the
pause point sp = sc and the bare coupler J11,phys on the device. The
magnetization is not the order parameter of any dimer-ordered state.
However, similar trends are seen in the structure factor at the q = 2K
point, in both the QMC results (b) and the APQ results (c). We show
in both (b) and (c) the magnetization on the left-vertical axis and
the structure factor S(2K ) on the right-vertical axis. The gray region
shows the crossover region that takes the system out of the “ice-rule”
region because of the transverse field �/J and into the paramagnetic
state, and this is where we have tracked our inflection points sc of (a).
The parameters of the QMC simulation are L = 9 and βJ = 10.

field, which polarizes the spins to point in the direction of
(h, �). This data point is deep into the paramagnetic regime,
and when we measure the transverse component of the mag-
netization in the Z basis, it returns a broad feature with two
peaks around θ2K = ±π/3, corresponding to a finite mx mea-
surement. However, in the APQ simulations the six peaks in
the angular histogram do not disappear for large transverse
field (small pause point sp), which is likely caused by the slow
readout quench. Indeed, the disordered configurations that are
stable at large transverse field (small sp) appear to be carried
through by the slow quench to the dimer star ordered states,
for which the system seems to be particularly susceptible to.
Altogether the analysis of the histogram of the phase angle
at the high-symmetry q = 2K point reveals that, although no
long-range dimer star ordered state sets in, we indeed observe
consistent correlations in the transverse part of the ice man-
ifold. It remains unknown whether these correlations would
lead to long-range order at much lower temperature or simply
remain correlated features atop the spin-ice manifold.

C. Evidence of the crossover

We have tracked the inflection point of the magnetization
〈mz〉, which occurs for a given pause point sc. From this sc, we
have extracted values of the ratio �/J = A(sc)/(B(sc)J11,phys),
where A, B are the control functions and J11,phys is the bare
value of the magnetic exchange interaction in the coupled
Josephson junction device. In Fig. 7, we show the evolution of
this tracked inflection point as a function of h/J . Blue lines are
added as a guide to the eye; it clearly shows common trends
with the proposed phase diagram of Fig. 1(a). However, we
must be clear: 〈mz〉 = − 1

3 by itself is not an order parameter

for the possible
√

3 × √
3 dimer ordered state [1]. As shown

in Figs. 7(b) and 7(c), the inflection point of the magnetization
occurs in the same region as the inflection point of S (2K ), for
both the QMC and the APQ data. This is compelling data that
there indeed is a crossover from some lower degeneracy man-
ifold of states to a quantum paramagnet as the transverse field
is increased (or, experimentally, as the pause point is reduced).
Although we are not in position to confirm the existence of a
long-range ordered dimer state, the necessary ingredients for
its existence, namely the magnetization plateau, the ice rules
and the S (2K ) peak, all disappear rather abruptly as a function
of transverse field. It is then not inconceivable that, should a
low-temperature dimer order exist, it would also be brought to
disorder at the same � and sp values.

At this point we may venture an explanation as to the
fate of the order-by-disorder scenario proposed in Ref. [1],
in which a true long-range ordered, threefold degenerate state
with

√
3 × √

3 unit cell emerges, rather than merely an en-
hancement of sixfold degenerate clock-ordered states in the
transverse fragment of the kagome ice phase, which is what
we observed in both QMC simulations and APQ experiments.
Referring to studies of related quantum kagome ice models
where the transverse-field term is replaced by other quantum
tunneling terms [31,64,65], it is found that the degeneracy
of the kagome ice manifold could be either lifted [64] or
not lifted [31,65] by quantum fluctuations. As said earlier,
treating the transverse-field term as a perturbation acting on
the spin-ice manifold, the lowest order off-diagonal term that
could lift the degeneracy is a ring exchange term of order
(�/h)6, which would drive the system into the threefold
degenerate (dimer) ordered state with a

√
3 × √

3 unit cell
[1]. However, as pointed out in [31], to the same order of
perturbation theory there are also diagonal terms that give a
negative energy shift to other states in the spin-ice manifold.
Overall, this may lead to a restoration of the classical spin-ice
manifold as a quasidegeneracy [31]. We note that, in the ef-
fective dimer model proposed by Ref. [1], the dimer flip term
goes like Kdimer ∼ �6/J5. In the context of our simulations on
D-Wave’s annealer, the region or sp ∈ [0.172, 0.318] would
result in log10(Kdimer/J ) ∈ [−2, 2]. Considering that the APQ
temperature is on the order of Teff/J ∼ 0.4, this would in-
dicate that only a very narrow range of sp could result in
simulation points where Kdimer ∼ Teff , where the dimer term
is on the order of the temperature. As all accessible sp points
were scanned, no indication of the putative clock phase were
seen, but it is possible that such phase only reveals itself
at temperatures beyond our QMC or APQ protocols, thus
we cannot exclude the possibility of a threefold degenerate√

3 × √
3 ordered state at much lower temperature or larger

transverse field.
Our inability to come to a fully quantitative agreement with

QMC simulations comes from three current constraints on
the device. Firstly, as mentioned before, the readout quench
is not fast enough to faithfully collapse a complex entangled
state onto the Z basis. Fast readout quenches were recently
achieved by the D-Wave team [41], although such features
remain unavailable to cloud access users. Secondly, the pro-
totype allows for the embedding of only 231 sites of the
kagome lattice, leading to a cylindrical lattice with a few unit
cells width. Fortunately, this point will soon be tackled as the
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Advantage2 device becomes available within the year. This
device will have thousands of qubits in a Z15 Zephyr graph
(as opposed to Z4), meaning that kagome cylinders of up to
3000 sites would be realizable using our embedding. This
would additionally allow to carry out a full finite-size scal-
ing analysis. Third, improvements in calibration and device
manufacturing will make it so that higher bare Ji j,phys couplers
will be achieved on the D-Wave devices, thus permitting even
lower-temperature quantum simulations.

IV. CONCLUSIONS AND OUTLOOK

We presented the results of the quantum simulation of the
antiferromagnetic transverse field Ising model on the kagome
lattice on a programmable quantum annealer. After embed-
ding a cylinder of the kagome lattice onto the Zephyr graph
of the latest D-Wave prototype, we used a specific type of
annealing schedule called anneal-pause-quench (APQ) to gen-
erate a set of states representative of the ground states of
the Hamiltonian in the presence of both a longitudinal field
and a transverse field. We were then able to characterize
the magnetic properties, including the spin structure factor,
of the obtained states, and compare those to the results of
quantum Monte-Carlo simulations. We uncovered good qual-
itative agreement between the features of the magnetization,
frustration, and structure factor across the range of fields that
we simulated the model at. From this analysis, we were able to
construct a partial phase diagram, reconciling the pioneering
studies of Moessner, Sondhi, and Chandra [1] with the con-
cept of magnetic moment fragmentation in kagome spin ice
[32], thus shedding light on the properties of this fundamental
model of magnetic frustration.

Our key observation is that the kagome spin-ice regime,
with its characteristic features in the structure factor because
of the ice rules, namely pinch points and diffuse scatter-
ing peaks, is stable to quantum fluctuations in an extended
− 1

3 magnetization plateau before crossing over to the field-
polarized trivial state. At the ordering vector q = 2K of the
diffuse scattering peak, a histogram of the phase angle of
the complex order parameter reveals that a set of sixfold
degenerate states is favored over other spin configurations.
The underlying clock anisotropy [22] can be attributed to the
effect of thermal and quantum fluctuations in the transverse
fragment of the magnetization.

Finally, our study in the absence of a longitudinal field
showed conclusive evidence that indeed, as predicted theo-
retically [17], the classical spin liquid state that exists at h =
� = 0 is not brought to order under the presence of a finite
� �= 0, thus showcasing “disorder-by-disorder” on a quantum
computer. This was observed in the transverse field (resp.
sp)-independent features (magnetization, frustration, structure
factor) obtained using the APQ schedule at h = 0.

The quantum annealing device used in this study poses a
number of technical challenges for faithful quantum simula-
tion: (1) the effective temperature of our quantum simulation
is too high, as seen from the thermal broadening of the pinch
points in Figs. 4(b) and 4(e) (see also [44–46] for similar
conclusions); (2) the APQ schedule is not yet correctly imple-
mented, with the quench to the Z basis taking too long so as
to result in significant canting of the spins, thereby destroying

fragile states in the X basis [21,42,57]. These two conclusions
about the state of the hardware are consistent with the liter-
ature. Nevertheless, we were able to successfully reproduce
qualitative features of our model, as benchmarked with QMC,
even though quantitative agreement still eludes us. We note
that the runtime necessary for the gathering of the APQ and
QMC results differs significantly—all APQ calibration, data
points and error bars were obtained using less than two hours
of real-time device access, while the QMC simulations ran
for far longer time. It is thus interesting that, should the chal-
lenges presented in this paragraph be solved, one could obtain
faithful quantum simulation results for the kagome system in
a short time compared to QMC approaches.

We are hopeful that soon much larger AFI-K systems will
be able to be studied on the Advantage2 machine, once it is
released. By simply recycling our embedding on this device,
cylindrical lattices with up to 3000 sites will be embedded.
This, coupled with improved control on the rapidity of the
quench (and therefore better implementation of the APQ
method) and the next generation of chip fabrication with lower
effective temperature and higher coherence, will undoubt-
edly help sharpen the presented results and charter the path
ahead.

Looking even more into the distance, we are hopeful
that soon other types of coupling terms between qubits,
such as the XY coupling σ x

i σ x
j + σ

y
i σ

y
j , will be implemented

in future generations of superconducting quantum anneal-
ers. These terms can either be implemented in an effective
Hamiltonian evolution, using Floquet dynamics [66,67], or
directly within the hardware, as was recently demonstrated
in Ref. [68] for two flux qubits. Indeed, one could then
simulate XXZ or XY models on the kagome lattice, which
are thought to leads to exotic Z2 spin liquid ground states
[69,70]. In particular, the Heisenberg kagome antiferromagnet
H = J

∑
i j

�Si · �S j has been the subject of a quarter of a century
of exhaustive study of its ground state. Whether it remains
disordered down to T = 0, and if so, what type of nontrivial
spin liquid exists, are all open questions that a future effi-
cient quantum simulation could help untangle. Furthermore,
if indeed a nontrivial quantum spin liquid could be realized
on the annealer, this could provide a new route to quan-
tum error correction, as nonlocal qubits can be implemented
in the stable ground states of these entangled many-body
states. This was recently achieved in neutral atoms [11,71,72],
where the realization of an underlying network of qubits on
a kagome lattice was essential to the realization of toric-
code-like states. These are exciting directions, and the results
presented here, notably the insight into the low-temperature
phase diagram and the observed absence of long-range or-
der, should serve as another clear example of the near-term
usefulness of quantum annealers to study frustrated spin
systems.
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FIG. 8. Our embedding of a 231-site kagome lattice with periodic boundary conditions (in the y direction of the graph) into the D-Wave
Advantage2_prototype1.1 QPU with the Zephyr Z4 native graph. Strong ferromagnetic bonds to form large effective qubits are in blue, while
orange bonds are called J12 couplings (between sites represented by single qubits and chains). The rest of the couplings are named J11 and are
the bare coupling on the kagome lattice.
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APPENDIX A: EMBEDDING

In Fig. 8, we show our full embedding in the
prototype machine. The QPU used is the D-Wave
Advantage2_prototype1.1 quantum annealer housed in
Burnaby, BC, Canada, operating at 12mK , accessed
remotely through the Leap platform. The nature of alternate
embeddings (see qubits 412 versus 405 and 406) in the bulk
is explored in this section, while the role of ferromagnetic
chains (in blue) is explored in the following section.

The D-Wave quantum annealer has a few missing qubits
{i} and missing couplers {Ji j} that are absent of the working
graph (here, Zephyr) because of fabrication issues. These de-
fects are static and do not vary while we run our simulations
on the QPU through cloud access. Therefore, we can locate
the defects and alter our embedding in order to bypass there
defects.

We found that none of the qubits needed for our embedding
were missing, and that we only had to face missing couplers
in the bulk of our kagome lattice. Since our embedding on
the Zephyr graph is rather sparse (only 231 qubits are used
out of 576 available), we can simply replace the use of a
qubit i with missing coupler Ji j = 0 with an alternate qubit i′
such that Ji′ j = J . When doing so, we have to make sure that
qubit i′ is also connected to all other qubits { j} that the initial
qubit i was connected to. A schematic of this is presented
in Fig. 9

Therefore, all bulk sites of the kagome lattice are identi-
cally represented by a single qubit of the Advantage2 device.
Some sites at the edges of our lattice are, however, represented
using chains of strongly ferromagnetically coupled qubits
(called 2-chains). Since the graph connectivity is lessened at
the edge and we required that all sites be part of a complete
triangular unit cell of the kagome lattice (therefore not having
dangling sites), we use this gadget to embed more sites on the
device. To preserve uniformity on the lattice, we are required
to tune the couplers and local fields on the 2-chains, which we
present in the next Appendix.
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FIG. 9. Replacing a missing coupler by altering the local em-
bedding. In (a), the initial embedding requires the coupling between
qubits (14, 488), which is allowed on the Zephyr graph but absent
in the accessed machine. By moving qubit 488 to 496 (b), we can
obtain all the necessary finite couplers to be active.

APPENDIX B: CHAIN FIXING USING ANNEAL OFFSETS

Some sites on our lattice may be represented by a chain of
strongly ferromagnetically coupled qubits (called n chains).
This is because of the limited connectivity of the native
Zephyr graph as physically implemented. Indeed, in the re-
alistic devices available, some couplers Ji j or qubits σi are
absent because of manufacture defects, while the available
device only implements a finite-size Zephyr graph (namely,
the prototype we had access implements the Z4 Zephyr graph).
This means that the edges of the graph are sparse in couplers,
and that we may need to implement some qubits as 2-chains
to enhance their connectivity. As we saw in the previous
Appendix, we fix missing couplers in the bulk by shifting the
embedding locally, so that all bulk sites of our kagome lattice
are represented by single qubits in the annealer. We cannot do
the same for the two open edges of our cylindrical lattice, and
therefore must resort to 2-chains.

The ferromagnetic bond in 2-chains is implemented
through the D-Wave machine’s extended J range, which gives
us access to a strong FM coupling value of K = −2. We limit
the other exchange interactions to |J| � 1 so that the chain
interaction remains the strongest. Examinations of our results
shows that chain breaks (where measurement in the Z basis of
the chain gives a nonaligned result) occur extremely rarely—
such configurations are discarded. The local Hamiltonian of a
site i represented by a 2-chain arrangement of qubits (i, 1) and
(i, 2) is given by

H2ch = Kσ z
i,1σ

z
i,2 − h

[
σ z

i,1 + σ z
i,2

] − �
[
σ x

i,1 + σ x
i,2

]
. (B1)

We consider a situation where this ferromagnetic interac-
tion dominates K � �, and we project the two-qubit Hilbert
space onto the low-energy manifold of an effective qubit |σ z

i 〉
given by |↑〉 = |↑↑〉 and |↓〉 = |↓↓〉, where the second term is
the state of both qubits |σ z

i,1σ
z
i,2〉. Operators σ̃ μ apply on this

new effective spin at the site. After performing a Schrieffer-
Wolff transformation [73] and shifting the energy levels by a
constant, we get the effective Hamiltonian

H eff
2ch = −heff σ̃

z
i − �eff σ̃

x
i (B2)

with

heff = 2h, �eff = 2
�2

|K| . (B3)

We then find that the transverse field (and therefore, the
quantum dynamics) on the 2-chains will be different from the

sites of our lattice represented by a single qubit, in accordance
to previous study on cotunneling of strongly coupled qubits
[74]. In this Appendix, we present a way to circumvent this
using anneal offsets, that is parameters tunable via cloud ac-
cess of D-Wave’s devices, such that the lattice parameters J ,
�, and h are isotropic on the lattice, no matter if the site is
represented as a single qubit or through a 2-chain. Extension
to longer chains could be done in the future, depending on the
range of accessible anneal offsets, which we now introduce.
Parts of the protocol presented in this Appendix have been
presented in different references over the years [74,75]; for
clarity of future investigations, we present it fully here.

The full Hamiltonian implemented on the D-Wave device
is the following:

HDWave(s) = −A(s)

2

[∑
i

σ x
i

]

+ B(s)

2

⎡
⎣∑

〈i, j〉
Ji j,physσ

z
i σ z

j +
∑

i

hi,physσ
z
i

⎤
⎦
(B4)

The values of A(s), B(s) are predetermined for a given
QPU, as shown in the main text in Fig. 1(c). When we perform
an anneal-pause-quench (APQ) schedule, as illustrated in the
main text in Fig. 1(b), we anneal to a specific s = sp where we
pause for 100 µs before quenching as fast as possible (highest
slope available on the cloud access is 1/µs) to s = 1, where it
is possible to measure in the Z basis. The hope of this protocol
is that the system equilibrates under the full Hamiltonian
HDWave(sp). For our TFIM kagome lattice experiments, this
means that the chosen sp corresponds to a chosen A(sp)/B(sp)
ratio, which is related to �/J in the spin model we are
embedding.

The functions A(s) and B(s) are both controlled by a joint
function c(s), which is an external room-temperature current
source that sets �CCJJ (s), the external flux applied to all qubit
compound Josephson-junction structures to change the poten-
tial energy shape of the rf-SQUID qubit in D-Wave’s devices.
One has

c(s) = �CCJJ (s) − �initial
CCJJ

�final
CCJJ − �initial

CCJJ

. (B5)

This single c(s) curve, shown in Fig. 10(a), is a priori
identical for all qubits, prescribing a single annealing path.
This is ideal if (i) one is only interested in anneals to s = 1
and not in quantum dynamics at a given sp or if (ii) all sites
of the system simulated are represented by chains of equal
length. In the second situation, the effective transverse field
on the sites of the lattice is less than that of the bare transverse
field on the qubits, but it is uniform so it poses less of a worry.
In our case, the mixing of single qubits and 2-chains means we
may need to alter this curve per qubit. Fortunately, the anneal
offset parameter δi provides that effect. A delayed (δ > 0) and
advanced (δ < 0) control curve is shown in Fig. 10(c), while
the range of δi is shown in Fig. 10(b). Absent qubits from
the Zephyr graph because of manufacturing issues also have
absent offset, but largely all qubits have a range that hovers
around |δi| < 0.8.
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FIG. 10. (a) The control bias c [which itself controls both A(s) and B(s)] as a function of the anneal fraction s. We plot the bare schedule
(δ = 0) as well as an advance schedule δ = 0.1 and a retarded schedule δ = −0.1. (b) The full range of anneal offsets δ that are accessible via
cloud access on the D-Wave Advantage2_prototype1.1 device.

When using the anneal offset, one is individually delaying
or advancing the dynamics of certain qubits, so that ci(sp) may
vary for given qubits i—we can now use this in our advantage
to make it so that the effective transverse field on 2-chains
is identical to the bare transverse field parameter A(sp). This
entire process then permits us to rewrite A(s) → Ai(s) and
B(s) → Bi(s) as they become site dependent using the anneal
offsets δi. This impacts the effective coupling J̃i j , which be-
comes

J̃i j = Ji j,phys

√
Bi(s)Bj (s)

≡ Ji j,phys

√
B(s + δs,i )B(s + δs, j ). (B6)

We consider our kagome embedding at a given pause point
sp, and attempt to fix the couplings and single site fields to be
uniform through the system for a defect-free quantum simula-
tion. At this point, we have the following bare parameters for
the bulk of the lattice:

h = B(sp)h1,phys/2,

� = A(sp)/2,

J = B(sp)J11,phys/2, (B7)

where h1,phys is the user specified longitudinal field on single-
qubit sites, while J11,phys is the nearest-neighbor-coupling
constant between two “normal” sites, i.e., represented by sin-
gle qubits in the embedding. In addition, we have the effective
longitudinal and transverse fields for the 2-chains, as obtained
by the Schrieffer-Wolff transformation of Eq. (B3),

h2,eff = B(sp + δs)h2,phys,

�2,eff = A(sp + δs)2

2B(sp + δs)
, (B8)

where h2,phys is the user specified longitudinal field on qubits
part of a 2-chain, while B(sp + δs) and A(sp + δs) are the
modified A and B functions after the use of anneal offsets δ.
For qubits belonging to a 2-chain, we shift the control function
c(sp) → c2(sp) = c(sp) + δ ≡ c(sp + δs) where we associate
a new shift δs �= δ for simpler notation. In effect, these qubits
are either advanced or retarded such that they evolve at a
different s̃p = sp + δs with different A and B values. Our

conditions for uniformity on the lattice then becomes that

h ≡ h2,eff , � ≡ �2,eff . (B9)

The most constraining equation here is the one on the trans-
verse field. We can see that solving it leads to the condition

A(sp) = A(sp + δs)2

B(sp + δs)
. (B10)

Having access to the values of A, B, and c as a function of s,
accessible online [76], we can find a shift δs,i for given 2-chain
at site i that leads to the effective evolution at a distinct s̃p,i =
sp + δs,i. For the Advantage2_prototype1.1 QPU, we obtain
the curve shown at Fig. 11(a).

We note, however, that, unfortunately for us, the available
data at [76] for the A(s) and B(s) values is not perfect. The
company itself specifies that these values can vary by up to
30%, which is not ideal for the purpose of our method. We
opted to proceed along, although we encourage D-Wave to
provide an updated real-time table of these values for cloud
access, so that processes like ours may be completed more
reliably.

Having now satisfied the condition on the transverse field,
we must deal with the consequences of altered B(sp + δ)
values for the longitudinal field and the coupling values Ji j .
The equation on the longitudinal fields is solved readily, and

FIG. 11. (a) Anneal offset δ needed on the 2-chains to satisfy
Eq. (B10) as a function of the pause point sp. Note that it always
stays within the range available [see Fig. 9(d)]. (b) The values of
J12,phys, h2,phys, and J22,phys that must be set with respect to the bare
ones to preserve uniformity once the anneal offsets are applied.
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we find

h2,phys = h1,phys
B(sp)

2B(sp + δ)
. (B11)

Therefore, setting h2,phys to this value for any given sp leads to
uniform heff .

The final difficulty resides in the AF J coupling between
the single-qubit sites and the 2-chain sites. The J value has
to be corrected because of the delay/advance on B(sp + δ) on
the 2-chain, as shown in Eq. (B6). The J value between two
single-qubit sites is J = B(sp)J11,phys/2, where J11,phys is set
by the user. We have two other types of spin couplings: J12 and
J22, which respectively couple a single qubit to a 2-chain, and
a 2-chain with a 2-chain. We need to set J22,phys and J12,phys

so that J ≡ J12 ≡ J22. Let us first consider J22, the simplest to
write down; we have

J22 = J22,physB(sp + δs)/2

≡ J = B(sp)J11,phys/2 (B12)

⇒ J22,phys = J11,phys
B(sp)

B(sp + δs)
. (B13)

The situation is a bit more murky for the J12 couplings,
where, per Eq. (B6), we have

J12 = J12,phys

√
B(sp)B(sp + δs)/2

≡ J = J11,physB(sp)/2 (B14)

⇒ J12,phys = J11,phys

√
B(sp)

B(sp + δs)
. (B15)

We find that all of these physical input parameters are
within the range of realizable ones on the cloud access. The
values of J12,phys, J22,phys, and h2,phys are shown in Fig. 11(b).
One sees that, in order to maintain |K| > |Ji j | for the strong
ferromagnetic couplings, we need to set J11,phys � 1 so that it-
self max{J12,phys, J22,phys} � 1 and we preserve the separation
of scales. We find in general that this procedure leads to an
extremely rare event of chain breaks, and we immediately re-
ject a configuration containing chain breaks. Otherwise, when
qubits in a 2-chain remain align at the measurement, we use a
majority rule for the output on the kagome lattice.

Note that this technique, which uniformizes the interac-
tions J and single site terms h and � across the lattice, can
also be used to replace missing couplers Ji j when an alternate
embedding is unavailable. Should one have Ji j = 0 because of
manufacturing issues, one can then implement the following
two 2-chains, via this Hamiltonian:

Hstitch = Kσ z
i,1σ

z
i,2 + Jσ z

i,2σ
z
j,1 + Kσ z

j,1σ
z
j,2. (B16)

Both 2-chains then need to have rescaled h and J values
following the equations above. We have tested this stitching
procedure, and it leads to similar results than the alternate
embedding presented in Sec. I.

APPENDIX C: SHIMMING THE FLUX BIAS VALUES
FOR IMPROVED STATISTICS

In this Appendix, we briefly review the process outlined
in the Tutorial paper on shimming [56], and also presented

in Refs. [21,50,51]. In real devices like the one accessed
for this study, many sources can leads to less than ideal
performance. Nonuniform fabrication can lead to small stray
fluctuations in the magnetic environment, leading to some
qubits being more biased towards one state—in effect, a ran-
dom h̃iσ

z
i field on each qubit. Furthermore, a finite nearby

coupler Ji j �= 0 can lead to crosstalk and, again, a bias
field h̃i. For this reason, careful calibration of the device is
achieved through the use of “shimming”, where features of
the Hamiltonian are tuned so as to reproduce as faithfully
as possible the statistical behavior of an ideal and uniform
system.

In the case of our quantum simulation of the kagome lattice
at finite transverse field using the APQ schedule, we have to
adapt the shimming process slightly. The first part is standard:
we use an iterative gradient descent method to update the
flux-bias offsets (FBO) �i for each used qubit such that the
local magnetization converges to the global magnetization.
All code needed to operate the shimming process and gather
the measurements is available online [77]. Any given iteration
n has Nreads shots of APQ schedule, with a readout thermal-
ization time of 100 µs. Then, the observed magnetization per
qubit mi = 〈σ z

i 〉 is obtained, as well as the average global
magnetization m̄ = 1

NB

∑
i∈B〈σ z

i 〉. Note that not all qubits are
part of the sum here—we only use qubits in the bulk of our
lattice (the set B with NB sites), i.e., sites part of an elementary
triangle that does not touch the boundaries of the system. This
helps in two ways: sites at the edge already have a preliminary
condition on them of a halved longitudinal field because of
their reduced number of connections, and the adjustment of
flux bias offset on the edges will then further help in assur-
ing that the local magnetization on those sites is as close as
possible to that in the bulk.

Mathematically, this process then becomes, for the FBOs
at iteration n,

�
(n)
i = �

(n+1)
i − α(mi − m̄). (C1)

The shimming constant α is taken to be α = 3 × 10−6,
after larger and smaller values were tested; larger values lead
to chaotic �i values while smaller values take too many
iterations to converge [56]. As opposed to other shimming
process where all Ji j and hi are set to zero during the cali-
bration, in this routine the model parameters are as is—we are
merely calibrating the device to simulate the input model as
ideally as possible. In practice, we perform this shimming in
two steps:

(1) The shimming steps: There are Nreps = 70 iterations
of the shimming where we perform Nreads = 100 using the
APQ schedule; at then end of these steps the FBOs are mostly
stable.

(2) The measure steps: There are Nreps = 20 iterations of
the shimming where we perform Nreads = 1000 using the APQ
schedule; while the FBOs can still fluctuate in these steps, we
collect the result of all shots and use those to obtain the value
of the observables presented in the text.

The result of one such iterative process for the FBOs
leads to a “spaghetti” plot as shown in Fig. 12(a). Each line
corresponds to an individual qubit. While many qubits that
are unused are not updated (see horizontal line at �i = 0),
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FIG. 12. (a) Individual flux bias per qubit vs iteration. In the region of measurement, which is shaded in grey, each iteration consists of
Nreads = 1000 measurement shots, while in the shimming iterations that precede it, each interaction is comprised of Nreads = 100 shots. In
(b)–(e), we show the difference in the distribution of individual magnetization per site 〈σ z

i 〉 for the first 10 iterations (in blue) and the final 10
iterations in the measurement section (in orange). In (b) and (c) sp = 0.65 results for different h/J . In (b), we are in the paramagnetic phase
where 〈m〉 = 0, while in (c) we are in the dimer phase where 〈m〉 � 1

3 . Note the sharpening of the distribution after shimming. (d) and (e)
sp = 0.2 results for different h/J , which are both in the paramagnetic phase but with different structure: whereas in (d) we have 〈m〉 = 0, in (e)
we have 〈m〉 = 1

3 + η with η �= 0 departing from the dimer state. Again, shimming sharpens those distributions and more accurately simulates
a uniform lattice.

all used qubits seem to settle around a fixed value after few
iterations. The gray area on the right then corresponds to the
measure steps.

This process helps tremendously to settle the statistics and
improve our results. In Figs. 12(b)–12(e) we show a histogram
of the average magnetization mi for each qubit, as averages
over the first 10 iterations of the shimming versus the last 10
iterations. As can be seen, for both h/J = 0.0 and h/J = 2.0
and extreme cases of sp, the shimming process helps center the
distribution of qubits closer to m̄, signifying a more uniform
behavior of the simulated model.

Note that, in its most general setting, one also does
shimming iterations on the couplings Ji j , updating those
couplings by calculating a frustration probability fi j =
(1 + sign(Ji j )〈σ z

i σ z
j 〉)/2 such that, for each iteration, J (n)

i, j =
J (n−1)

i, j (1 + αJ ( fi j − f̄ )). The frustration becomes then uni-
form and this compensates for the case where couplings are
not ideally realized. We opted to not do this routine, as it
was too costly in term of QPU access time, and because we
generally found that the shimming of the flux bias already
largely helped the results.
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FIG. 13. Effects of finite temperature in the crossover region are
visible in the longitudinal (a) and transverse magnetization (b), which
can be used to define a crossover region between �min and �max (d).
The kink-like feature in the magnetization coincides with the drop
in the structure factor S(2K ), see (c). The Zeeman field in (a)–(c) is
h/J = −2.

APPENDIX D: DETAILS ON THE QUANTUM MONTE
CARLO SIMULATIONS

In this Appendix, we present additional data stemming
from quantum Monte Carlo simulations of the antiferromag-
netic kagome TFIM, as well as details with the algorithm
implementation.

1. Additional data

The largest inverse temperature of the QMC data presented
in the main text is βJ = 10. Curves of 〈mz〉(�), transverse
magnetization 〈mx〉(�), and energy (not shown) taken at larger
inverse temperatures βJ = 20, 30 for L = 9 indicate that in
the crossover region an inverse temperature of βJ = 10 is
not below the finite size gap and temperature effects are still
present [Figs. 13(a) and 13(b)]. As illustrated in Fig. 13(a),
one could use the points where magnetization curves for
βJ = 20 and βJ = 30 start to deviate �min, and merge again
�max, as a criterion to delineate a crossover region where
the gap of the system is significantly reduced. The location
of the sudden drop of S(q = 2K ) falls within this region.
The resulting crossover phase diagram for L = 9 shown in

FIG. 15. Acceptance rate of different cluster updates employed
in the path integral QMC simulations: The “line update” of Wolff
clusters in imaginary time and the “membrane update” with short
loops (SL) and long loops (LL) grown in imaginary time. Parameters:
L = 24, βJ = 10.

Fig. 13(d) is in agreement with the experimentally deter-
mined phase diagram in Fig. 7 of the main text, where the
crossover is located based on the inflection point of the mag-
netization. It should be pointed out that there is only an
indirect connection between the structure factor S(q = 2K )
and the uniform magnetization 〈mz〉 in that a drop in the
former happens to be accompanied by a kink-like feature
in the latter. In the crossover region the transverse mag-
netization 〈mx〉 increases superlinearly with transverse field
while the longitudinal magnetization 〈mz〉 stays almost con-
stant. In order for the 〈mx〉 to rise rapidly while 〈mz〉 stays
at 1

3 , magnetic fluctuations may involve strings of flipped
spins. This observation points towards some form of topolog-
ical metamagnetic transition [78,79], which requires further
investigation.

2. QMC method

We performed standard path integral quantum Monte Carlo
simulations with a finite Trotter discretization of imaginary
time δτ given by �δτ = 0.02 with Nτ = β

δτ
imaginary time

slices. To avoid dynamical freezing caused by strong ferro-
magnetic couplings in imaginary time the “line update” [80]
has been used, which consists in building Wolff clusters in
imaginary time. A reason for formulating the algorithm in dis-
crete imaginary time is that efficient loop updates for classical

FIG. 14. [(a), (b)] Snapshot at a randomly chosen imaginary time slice of configurations in the spin-ice regime (h/J = 2, �/J =
0.2, T/J = 0.1) with kagome loops, which, when reversed, do (b) or do not (a) change the winding number sector of the configuration.
(c) Configuration in the paramagnetic regime (h/J = 2, �/J = 1). Open circles denote spin down.
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ice models [81] can be extended to the quantum model in the
form of a “membrane update” [82]. This approach has been
implemented for the case of quantum kagome ice in Ref. [83].
The kagome loop update is also straightforwardly applicable
to the spin-ice regime in the m = − 1

3 magnetization plateau
(h > 0). Since closed loops always contain an even number
of alternating spins (see Fig. 14), the Zeeman energy cancels
out and flipping a loop is an isoenergetic move that does not
leave the m = − 1

3 plateau. Long loops, where the loop head
is required to close on its starting position (rather than any
loop segment as for “short loops“), are necessary [81] for
ergodic sampling of all winding number sectors (see Fig. 14).
Figure 15 shows the acceptance rate for the different cluster
updates used. The small acceptance rate of the line update

for small �/J illustrates the necessity of flipping spatially
extended clusters in order to sample states from the spin-ice
manifold. As to be expected, the parameter regime where
the acceptance rate of the membrane update is nonvanishing
coincides with the spin-ice regime.

Each Monte Carlo step (MCS) consists of 10 lattice sweeps
of line updates followed by four membrane updates each
consisting of the attempted construction of L long kagome
loops and 3L2/6 short kagome loops. 104 thermalization MCS
and 5 × 104 measurement MCS have been used. When the
acceptance rate as determined during the thermalization phase
becomes too small, the membrane update is switched off.
Error bars are determined using the binning analysis or the
jackknife method.
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