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Topological charge and spin Hall effects due to skyrmions in canted antiferromagnets
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The topological charge Hall effect (TCHE) and the topological spin Hall effect (TSHE), arising from ferro-
magnetic (FM) and antiferromagnetic (AFM) skyrmions, respectively, can be elucidated through the emergence
of spin-dependent Berry gauge fields that affect the adiabatic flow of electrons within the skyrmion texture.
TCHE is absent in systems with parity-time (PT) symmetry, such as collinear AFM systems. In this paper,
we theoretically study TCHE and TSHE in a canted antiferromagnet within the diffusive transport regime.
Spin canting or weak ferromagnetism in canted AFMs, which break the PT symmetry, may arise, e.g., from
strong homogeneous Dzyaloshinskii-Moriya interactions. Using a semiclassical Boltzmann approach, we obtain
diffusion equations for the spin and charge accumulations in the presence of finite spin flip and spin-dependent
momentum relaxation times. We show that the weak ferromagnetic moment stemming from spin canting and the
subsequent breaking of PT symmetry, results in the emergence of both finite TCHE and TSHE in AFM systems.
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I. INTRODUCTION

Recently, there has been great interest in various topo-
logically nontrivial magnetic textures, such as skyrmions.
Skyrmions are stable topological solitons arising from certain
classes of nonlinear sigma models, as was formulated long
time ago in field theory; see Refs. [1,2] and references therein.
The existence of skyrmions in magnetic systems was later
introduced as a metastable state in isotropic ferromagnetic
(FM) systems [3] and later as either metastable state (single
skyrmions) or stable state (skyrmion crystals) in the presence
of chiral spin interactions, such as the Dzyaloshinskii-Moriya
interaction (DMI) [4–9]. Skyrmions were first experimentally
discovered in a chiral magnet in 2009 [10].

Many aspects of magnetic skyrmions, including their sta-
bility, dynamics, excitations, etc., were addressed in recent
studies [11–16]. This not only concerns single skyrmions but
also skyrmion lattices, called skyrmion crystals [17–21]. Of
particular interest from the fundamental point of view were
the topological properties of skyrmions, which are now well
understood and well described by appropriate topological pa-
rameters.

An important practical issue is the control of skyrmion
positions, including the control of their motion. A single
skyrmion can be pinned to a certain pinning center. For in-
stance, magnetic nanodots in an overlayer covering a magnetic
film with skyrmions may serve as pinning centers, and the
skyrmions then become confined in the regions below the nan-
odots. They may perform spiral clockwise or anticlockwise
motion in these regions, and the winding direction depends
on the confining field. By reversing this field one may reverse
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the skyrmion winding trajectories, and this may lead to the
skyrmion echo [22], similar to the well-known spin echo
[23,24].

An interesting way of dynamical pinning (and thus also
of skyrmion motion) can be realized when the magnetic ma-
terial hosting skyrmions displays magnetoelectric coupling
in a noncollinear phase (within skyrmions). Then, owing to
the magnetoelectric coupling, a laser beam becomes a pin-
ning center for skyrmions. Moving the laser beam effectively
moves the pinned skyrmion in a fully controlled way [25].
Instead of a laser beam, one can use the electric field of surface
plasmon polaritons in an attached metallic layer to create
plasmonic lattice. The nodes of this lattice are pinning centers
for skyrmions, attracting them to form a plasmonic-skyrmion
lattice [26].

The most important way of controlling the skyrmion mo-
tion is by an external electric field (or effectively by current).
It is well known that spin-polarized current flowing along the
nanoribbon with skyrmions drags the skyrmions along the
electric field and also deflects their trajectories towards one
of the nanoribbon edges (the skyrmion Hall effect) [27–33].
This phenomenon was studied both theoretically and exper-
imentally, see Refs. [31,32,34–38] for an overview. In turn,
FM skyrmions deflect electron trajectories in the direction
perpendicular to the external electric field [39–45]. This phe-
nomenon is qualitatively similar to the anomalous Hall effect
in FM metallic layers with uniform magnetization [46–48].
The origin of this skyrmion-induced topological charge Hall
effect (TCHE) is the emergence of a real-space Berry cur-
vature induced by the skyrmion textures [39,49], while in
the anomalous Hall effect, the Berry curvature emerges in
momentum space because of the spin-orbit couplings [50–52].

The situation is different in the case of antiferromagnetic
(AFM) skyrmions, where there is no skyrmion Hall effect
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[53–60]. This happens as the net perpendicular driving force
exerted on a skyrmion vanishes in the case of parity-time (PT)
symmetric AFM system. A similar situation also occurs in the
case of skyrmions in two FM layers coupled antiferromag-
netically by the interlayer exchange interaction, the so-called
synthetic AFM systems [61,62]. The lack of deflection of the
AFM skyrmions is one of the advantages of AFM systems
over the FM ones in the context of practical applications
in spintronic devices. It was theoretically shown that AFM
skyrmions may also create a real-space Berry curvature [63],
leading to topological spin Hall effect (TSHE) in AFM sys-
tems [61,64–66]. These papers also confirmed the absence of
TCHE in these systems. The considerations were based on
simple square and hexagonal AFM lattices with PT symmetry.

In our recent paper [67], we have revisited both TCHE
and TSHE in a collinear square-lattice AFM system. We
considered finite asymmetric spin-dependent scattering. Such
an asymmetry may appear when the system is intentionally
doped with magnetic scattering centers. Our description was
based on the Boltzmann kinetic equation with an emerging
magnetic field because of skyrmions included in a diffusive
regime. As a result, we found not only a finite TSHE, but also
a finite TCHE. However, the latter effect disappears when the
asymmetry in the spin-dependent relaxation times vanishes, in
agreement with earlier studies.

Recent studies have shown that chiral anomalous Hall
effects may appear in canted AFM systems [68,69]. Further-
more, experimental results obtained on Ca1−xCexMnO3 have
confirmed the existence of the Hall effect in the canted AFM
systems [70]. The number of studies that examine this issue is
very limited. One such study is Ref. [71], where the authors
considered a square lattice and treated the uniform magnetic
moment induced by a canting of local spins as a perturbation.
Using Kubo formalism, they derived an analytical expression
for the topological charge Hall conductivity.

In this paper, we investigate skyrmion-induced TSHE and
TCHE in a canted hexagonal AFM system, with the weak
ferromagnetic moment arising from the canting of the AFM
sublattice magnetic moments. We assume that the magneti-
zation inside the skyrmion is nonuniform and perpendicular
to the Néel vector, following the same profile as the Néel
vector. This extends recent studies on skyrmions in compen-
sated AFM systems to weak ferromagnets [72–75]. Unlike
Ref. [71], we include the ferromagnetic moment nonperturba-
tively, and use semiclassical Boltzmann kinetic approach with
both spin-dependent relaxation times and spin-flip scatterings.
From the Boltzmann equation, we find analytical expressions
for both spin and charge currents along the orientation normal
to the driving current as well as spin accumulation at the edges
in the presence of a single AFM skyrmion. We show that
owing to a net FM moment in the system, the TCHE appears
even in the absence of spin-asymmetric scattering processes.

The rest of the paper is structured as follows: In Sec. II, we
introduce our model Hamiltonian for a canted AFM system
on a hexagonal lattice. In Sec. III, we compute the emergent
magnetic fields, induced by skyrmions in the canted AFM
system. In the Sec. IV, we develop Boltzmann formalism in
the presence of emergent magnetic fields to compute TSHE,
TCHE, and spin accumulations. We summarize and conclude
our results in Sec. V.

FIG. 1. (a) Schematic representation of a hexagonal lattice con-
sisting of two sublattices, A and B, with two lattice unit vectors
δ1 and δ2, and the three nearest-neighbor vectors ξi. (b) Schematic
configuration of the local magnetic moments, ma and mb, in a canted
AFM hexagonal lattice with a uniform canting angle θ , that induces a
net magnetization m = sin θ . The inset shows the net magnetization
and staggered sublattice moments.

II. MODEL HAMILTONIAN

We consider a metallic canted AFM system consisting of
two sublattices A and B, with the corresponding magnetic
moment unit vectors ma and mb, respectively, on a hexagonal
lattice, see Fig. 1(a). The total Hamiltonian of the system,
H = H0 + Hsd, consists of the electronic Hamiltonian H0

and an interacting term Hsd. The latter describes interaction
between itinerant electrons and localized magnetic moments.
These two Hamiltonians can be modelled by the following
tight-binding ones:

H0 = −t
∑
r∈A

z∑
i=1

∑
σ

[a†
σ (r)bσ (r + ξi ) + b†

σ (r + ξi )aσ (r)],

(1)

Hsd = − J
∑
σσ ′

[ ∑
r∈A

ma(r) · σσσ ′a†
σ (r)aσ ′ (r)

+
∑
r∈B

mb(r) · σσσ ′b†
σ (r)bσ ′ (r)

]
, (2)
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where a and b (a† and b†) are the fermionic annihilation
(creation) operators of electrons belonging to two AFM sub-
lattices A and B, respectively; t and J are the hopping
parameter and sd exchange integral, respectively; ξi denotes
the nearest-neighbor vector, and z is the coordination number.
The three nearest-neighbor vectors in a hexagonal lattice,
defined in Fig. 1(a), are given by ξ1 = (0,−1)a0, ξ2 =
(
√

3/2, 1/2)a0, and ξ3 = (−√
3/2, 1/2)a0, with a0 being the

lattice constant.
In a general case, the sublattice magnetizations in Eq. (2)

are nonuniform, e.g., because of skyrmion textures. Therefore,
we find first the electronic spectrum for uniform sublat-
tice magnetizations (in the absence of skyrmions), while the
general case will be considered in the subsequent section.
Accordingly, we write the corresponding Hamiltonian in the
momentum space as

H0 =
∑
kσ

[γka†
σ (k)bσ (k) + c.c.], (3)

Hsd = − J
∑
kσσ ′

{ma · σσσ ′a†
σ (k)aσ ′ (k)

+ mb · σσσ ′b†
σ (k)bσ ′ (k)}, (4)

where γk = −t
∑z

i=1 eik·ξi . For a hexagonal lattice we find

|γk|2 = t2

[
3 + 4 cos

(√
3

2
a0kx

)
cos

(
3

2
a0ky

)

+ 2 cos(
√

3a0kx )

]
. (5)

In AFM systems, it is more convenient to introduce mag-
netization m = (ma + mb)/2 and Néel n = (ma − mb)/2
vectors, where m · n = 0 and m2 + n2 = 1. They can be ex-
pressed in terms of the canting angle θ ,

n = (0, 0, cos θ ), m = (0, sin θ, 0),

for the geometry defined in Fig. 1(b).
In the collinear limit, ma = −mb and the net magneti-

zation and canting angle are zero, |m| = 0 and θ = 0. The
corresponding electronic spectrum consists of spin-degenerate
conduction, η = +1, and valence, η = −1, bands,

εη(k) = η
√

J2 + |γk|2. (6)

The electronic dispersion in the absence of J is similar to
graphene, with gapless Dirac-like spectra around K± points,
see Fig. 2(a) for J = 0. The sd exchange energy J opens an
electronic band gap of 2J at these Dirac points, see Fig. 2(a)
for J > 0.

However, in the canted AFM case, ma ∦ mb, there is a net
equilibrium magnetization in the system, that lifts the spin
degeneracy of both conduction and valence bands,

εη,ν (k) = η
√

J2 + |γk|2 + 2νJm|γk|, (7)

where m = |m|, and ν = ±1 denotes the two spin states cor-
responding to the quantization axis along the vector m. The
above dispersion equation shows that the net magnetization in
the canted AFM system lifts the spin degeneracy of conduc-
tion and valence bands by shifting spin subbands in opposite

FIG. 2. (a) Electronic band structure of a collinear AFM system
(θ = 0) with J/t = 0.1, J/t = 0.3, and J/t = 0.5, and the nonmag-
netic graphene limit J = 0. In these cases, the conduction (η = 1)
and valence (η = −1) bands are spin degenerate. (b) Electronic band
structure of a canted AFM system for J/t = 0.3. Now, the conduction
and valence bands are split into two spin subbands as a result of
a small magnetic moment m = sin θ . (c) Electronic spectrum of
the two spin subbands in the conduction band of a canted AFM
system around the K+ point. The solid and dashed lines correspond
to the tight binding, Eq. (7), and linearized, Eq. (12), eigenenergies,
respectively.

directions along the momentum axis, see Figs. 2(b) and 2(c),
resembling a Rashba-type splitting of spin subbands.

In the following, we are interested in the low-energy
dynamics of electrons around Dirac points at K± =
±(4π/(3

√
3a0), 0) symmetric points of the Brillouin zone.

Expanding the total Hamiltonian around these two points,
k = K± + q, we find a block-diagonal Hamiltonian [76–78]

H =
[

H+ 0
0 H−

]
, (8)
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where H± describe the effective Hamiltonians around the K±
points,

H± = ±h̄v0(qx τ̂x ∓ qyτ̂y) ⊗ 1̂ − J (τ̂z ⊗ n + 1̂ ⊗ m) · σ.

(9)

Here, v0 = 3ta0/2h̄ is the Fermi velocity of gapless Dirac
fermions, and τ(σ) is the vector of Pauli matrices for the
sublattice (spin) degree of freedom.

The linearized eigenvalues in case of collinear AFM and
the corresponding eigenvectors can be written as

εη(q) = η

√
h̄2v2

0q2 + J2, (10)

∣∣ψσ
η

〉 = 1√
2

(
√

1 + σηPq|A〉 + ηe−iφ
√

1 − σηPq|B〉) ⊗ |σ 〉,
(11)

where φ = arctan(qy/qx ), σ = +1(↑), and σ = −1(↓) cor-
respond to the spin-up and spin-down states along the Néel
vector n as the quantization axis, respectively, whereas Pq =
J/

√
h̄2v2

0q2 + J2 parameterizes the overlap of electron wave-
functions of the two sublattices [63,65,79].

In turn, the linearized eigenvalues and the corresponding
eigenvectors in the case of canted AFM are given by

εη,ν (q) = η

√
J2 + h̄2v2

0q2 + 2νJmh̄v0q, (12)∣∣�ν
η

〉 = cν
η(|ψ↑

η 〉 + iνη|ψ↓
η 〉), (13)

where

cν
η =

√
1 + η cos θPq,ν

2

×
{√

1 + ηPq + ην
εη,ν − Jm

Jm + ν h̄v0q

√
1 − ηPq

}
, (14)

with Pq,ν = J/
√

J2 + h̄2v2
0q2 + 2νJh̄v0qm. Equation (13)

shows that the eigenvectors in canted AFM case can be written
as a linear combination of the eigenvectors in the collinear
AFM limit, Eq. (11).

In collinear AFM case, the conduction and valence bands
are spin degenerate, Fig. 2(a). The net magnetization in canted
AFM system leads to the splitting of conduction and valence
bands into two subbands with opposite spin helicity, with the
corresponding dispersion curves crossing each other at the
Dirac points. This is illustrated in Fig. 2(b). Note that the net
magnetization plays here a role similar to the spin-orbit cou-
pling [80,81]. The band dispersion around the Dirac point for
nonzero magnetization are shown in Fig. 2(c). When focusing
on low-energy states (near the Dirac points) one can distin-
guish two different regimes, depending on the ratio of the
Fermi energy εF and the strength of the exchange interaction
J . In the two-band regime, εF � J , Fermi level intersect two
subbands with opposite spin helicity, while in the single-band
regime, J

√
1 − m2 < εF < J , the Fermi level intersect only

one of the subbands.

III. EMERGENT MAGNETIC FIELD OF SKYRMIONS
IN A CANTED AFM SYSTEM

In noncentrosymmetric magnetic systems, strong DMIs
may lead to a helical spin configuration, with the order param-
eter slowly varying in space, e.g., to formation of skyrmion
textures [82–86]. Accordingly, we assume the Néel vector is
uniform, n = n0, outside the skyrmion and is spatially de-
pendent, n = nr, within the skyrmion region, where it varies
according to the skyrmion profile. Without loss of generality,
we choose the following profile for describing the correspond-
ing AFM skyrmion in spherical coordinates [65,87,88]:

nr = (cos  sin �, sin  sin �, cos �), (15)

where the corresponding polar and azimuthal angles are de-
fined by the following equations [44]:

�(r) = 2π − 4 arctan

(
exp

(
4r

rsk

))
, (16a)

 = pArg(x + iy) + c
π

2
. (16b)

Here, rsk is the skyrmion radius, r is distance from
the skyrmion center, while p = ±1 and c = ±1 describe
skyrmion vorticity and chirality, respectively.

Because of the spatial variation of the Néel vector (and
thus also the magnetic moment m) inside the skyrmion region,
the sd exchange term in Hamiltonian, Eq. (2), is not diagonal
anymore. However, the sd exchange term can be diagonalized
by performing an appropriate unitary transformation U (r)
[89,90],

U †(r) · (J[τ̂z ⊗ n + 1 ⊗ m] · σ ) · U (r) = Jτz ⊗ σz.

The spin rotation operator U , that diagonalizes the sd ex-
change term, is a 4 × 4 matrix, which in our case takes the
following form:

U (r) =
[

m̃a(r) · σ 0
0 m̃b(r) · σ,

]
, (17)

where we introduced

m̃a =
(

sin

(
� + θ

2

)
cos , sin

(
� + θ

2

)
sin ,

cos

(
� + θ

2

))
,

m̃b =
(

sin

(
� − θ

2

)
cos , sin

(
� − θ

2

)
sin ,

cos

(
� − θ

2

))
.

With this gauge transformation, the itinerant electrons inter-
acting with the localized spins (nonuniformly polarized) of
skyrmions become transformed into electrons that are uni-
formly spin polarized. They then interact with an SU(2) gauge
field, A = i h̄

eU †∇U , which is localized around the skyrmion.
This gauge field serves as an emerging vector potential, giving
rise to the following spin- and sublattice-dependent emergent
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magnetic field [49,90–94],

Bem = ∇ × A = − h̄

e
(∇� × ∇)

×
[

sin
(

�+θ
2

)
σ · m̃a 0

0 sin
(

�−θ
2

)
σ · m̃b

]
. (18)

For our purpose, it is more convenient to define the effec-
tive emergent magnetic field acting on electrons in the spin
subband ν of the band η,

Bν
em,η = ν

(
Bν,↑

em,η − Bν,↓
em,η

)
, (19)

where

Bν,↑
em,η = ∣∣cν

η

∣∣2〈ψ↑
η |Bem|ψ↑

η 〉,
Bν,↓

em,η = ∣∣cν
η

∣∣2〈ψ↓
η |Bem|ψ↓

η 〉. (20)

After some straightforward calculations, we find

Bν
em,η = ν

∣∣cν
η

∣∣2
cos θ Bem, (21)

with

Bem = − h̄

e
(∇� × ∇) sin �. (22)

Without loss of generality, we assume that the Fermi level is
in the conduction band. Thus, throughout the remainder of
this article, we set η = +1 and omit the subscript. Note, the
emergent field is normal to the 2D layer, Bem = (0, 0,Bz

em ).

IV. SEMICLASSICAL BOLTZMANN APPROACH

To compute spin accumulation, TCHE, and TSHE caused
by skyrmions in canted AFM metals, we utilize the semiclas-
sical Boltzmann formalism in the steady-state regime, where
the corresponding Boltzmann equation can be written in the
form [95]

vν · ∂ fν
∂r

− e
(
E + vν × Bν

em

) · ∂ fν
h̄∂q

= − fν − 〈 fν〉
τν

− 〈 fν〉 − 〈 f−ν〉
τsf

. (23)

Here, fν = fν (r, q) is the nonequilibrium Fermi-Dirac dis-
tribution function for electrons with velocity vν in the spin
subband ν, while E = Exx̂ is the applied electric field. Further-
more, 〈...〉 denotes the angular average over the momentum
space, i.e., 〈 fν〉 = ∫

d2�q fν/
∫

d2�q, where �q is the solid
angle in the momentum space. The first term on the right-hand
side describes the spin-conserving scattering processes, with
τν being the corresponding spin-dependent relaxation time. In
turn, the second term takes into account spin-flip scattering
processes, with τsf denoting the corresponding spin-flip relax-
ation time.

Within the linear response theory, the nonequilibrium dis-
tribution function can be decomposed into an equilibrium
part f 0

ν , and a perturbation induced by the electric field and
effective emergent magnetic field,

fν = f 0
ν − ∂ f 0

ν

∂ε
(−eμν (r) + gν (r, q)), (24)

where −eμν (r) and gν (r, q) are the isotropic and anisotropic
parts of the distribution function, respectively, and

∫
d2q gν (r, q) = 0. Inserting Eq. (24) into the Boltzmann

equation (23), we find the following equations for the odd and
even velocity moments of the distribution function [45]:

− e(E − ∇rμν (r)) · vν + e

h̄

(
vν × Bν

em

) · ∂gν (r, q)

∂q

= gν (r, q)

τν

, (25)

vν · ∂gν (r, q)

∂r
= e

τsf
(μν − μ−ν ). (26)

From Eq. (25), we find

gν (r, q) = − eτν (E − ∇rμν (r)) · vν

− (eτν )2

h̄

(
vν × Bν

em

) · ∂

∂q
(E · vν ). (27)

Upon inserting Eq. (27) into Eq. (26) we get∑
i, j

∂2μν

∂xi∂x j
vν,ivν, j − (eτνv

2
ν )

h̄q2
q · ∇[(

vν × Bν
em

) · E
]

= μν − μ−ν

τντsf
, (28)

where vν,i represents the ith component of the electron veloc-
ity. At this point we note that including Berry curvature and
the related anomalous velocity leads to nonlinear terms. These
terms, however, are not included here. For more details on the
influence of the Berry curvature and anomalous velocity, as
well as on the nonlinear terms see the Appendix.

Having derived Eqs. (27) and (28), we can now compute
spin accumulation, TSHE, and TCHE in different regimes of
the canted AFM system. We begin with the case when the two
spin subbands are occupied and contribute to current.

A. Two-subbband regime: εF � J

First, we consider the case when the Fermi energy is larger
than the sd exchange interaction, εF > J , and thus electrons
from both spin subbands ν contribute to transport. To de-
rive the equation, from which the spin accumulation can be
calculated, we first carry out the angular integration in the
momentum space on both sides of Eq. (28). From this we find

∇2μν − μν − μ−ν

l2
ν

= ev0τν

εν

(
v0 + νJm

h̄qν,F

)(∇ × Bν
em

) · E,

(29)

where l2
ν = v2

Fτντsf/2 (lν is the spin diffusion length in the
subband ν) and vF = v0

√
1 − (J/εF)2(1 − m2) is the Fermi

velocity. From the above formula, one can derive equation for
the spin accumulation δμ = (μ− − μ+)/2 [45,67],

∇2δμ − δμ

λ2
sd

= −ev0 cos θ

2h̄
E · [∇ × Bem]

∑
+,−

τ±|c±|2
q±,F

,

(30)

where λsd is the spin-averaged diffusion length,
2/λ2

sd = (1/l2
+,F + 1/l2

−,F), and qν,F = ( − νmJ +
εF

√
1 − (J/εF)2(1 − m2))/(h̄v0) is the Fermi wavevector

for the spin subband ν. Introducing the parameters
τ = (τ+ + τ−)/2 and pτ = (τ− − τ+)/(τ+ + τ−) for
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the spin-averaged momentum relaxation time and spin
asymmetry of the relaxation time, respectively, Eq. (30) can
be rewritten as

∇2δμ − δμ

λ2
sd

= −eτEx

2h̄

v0 cos θ

M(q+,F, q−,F)

dBz
em

dy
, (31)

where we defined the parameter M(q+,F, q−,F) ≡ M as fol-
lows:

1

M
= (1 − pτ )

|c+(q+,F)|2
q+,F

+ (1 + pτ )
|c−(q−,F)|2

q−,F
.

1. Spin and charge current densities

Having nonequilibrium Fermi distribution, Eq. (24), one
can compute the spin (ν)-dependent current density,

jν = − e

(2π )2

∫
d2q fν (r, q)vν,

= σν

(
E − ∇rμν − eτν

h̄

v0

qν,F
E × Bν

em

)
, (32)

where σν = (e2/2h)(τνv0qν,F) is the charge conductivity of
the subband ν. Then, the total charge jch and spin jsp current
densities can be calculated as jch = j+ + j− and jsp = j− −
j+, respectively. Finally, the total transverse (Hall) charge and
spin current densities are given by the formulas,

j
ch
y (y) = −σ

(
dμ

dy
+ pσ

dδμ

dy

)
+ ev0τσ cos θ

2h̄

[
(1 − pτ )(1 − pσ )

|c+|2
q+

− (1 + pτ )(1 + pσ )
|c−|2
q−

]
Bz

emEx, (33a)

j
sp
y (y) = −σ

(
pσ

dμ

dy
+ dδμ

dy

)
+ ev0τσ cos θ

2h̄

[
(1 − pτ )(1 − pσ )

|c+|2
q+

+ (1 + pτ )(1 + pσ )
|c−|2
q−

]
Bz

emEx, (33b)

where σ = σ+ + σ− and μ = (μ+ + μ−)/2 are the total charge conductivity and spin-averaged chemical potential, respectively,
and pσ ≡ (σ− − σ+)/(σ+ + σ−) is the spin asymmetry of the conductivity. For any function F (x, y), we have defined F (y) =
(2L)−1

∫ L
−L dxF (x, y), where 2L is the length of the system.

Total spin accumulation at the boundaries can be determined by integrating Eq. (31) along the x direction, which gives

d2δμ

dy2
− δμ

λ2
sd

= −eτExv0 cos θ

2h̄M

dBz
em

dy
. (34)

To solve the differential equations (33) and (34), we need to employ the appropriate boundary conditions. Assuming that the
AFM nanoribbon has a finite width with open boundary conditions, the transverse component of the charge current density must
be zero everywhere, i.e., j

ch
y (y) = 0. Imposing this condition on Eq. (33a), we find skyrmion-induced transverse electric field as

follows:

Ey = −dμ

dy
= pσ

dδμ

dy
− eτ

2h̄

v0 cos θ

�(q+,F, q−,F)
Bz

emEx, (35)

where we defined �(q+,F, q−,F) ≡ � as

1

�
= (1 − pτ )(1 − pσ )

|c+(q+,F)|2
q+,F

− (1 + pτ )(1 + pσ )
|c−(q−,F)|2

q−,F
.

On the other hand, the spin current density must be zero only at edges of the AFM nanoribbon, i.e., j
sp
y (±w) = 0, where 2w

is the nanoribbon width. Using this condition, we find the general solution of Eq. (34) in the form

δμ(y) = −eτv0 cos θ

4h̄M

(
sinh

( y
λsd

)
exp

(−w
λsd

)
cosh

(
w
λsd

) ∫ +w

−w

Bz
em exp

(
ỹ

λsd

)
dỹ +

∫ +w

−w

Bz
em

y − ỹ

|y − ỹ| exp

(−|y − ỹ|
λsd

)
dỹ

)
Ex. (36)

The first integral on the right-hand side of this equation corresponds to the homogeneous solution of the differential equation (34),
while the second integral denotes its particular solution. Inserting the expression for spin accumulation, Eq. (36), into Eq. (33b),
we find the TSH current density,

j
sp
y (y) = σ

(
1 + p2

σ

)eτv0 cos θ

2h̄M

[
1

2λsd

(
cosh

( y
λsd

)
exp

(−w
λsd

)
cosh

(
w
λsd

) ∫ +w

−w

Bz
em exp

(
ỹ

λsd

)
dỹ −

∫ +w

−w

Bz
em exp

(
−|y − ỹ|

λsd

)
dỹ

)
−Bz

em

]
Ex,

(37)

Note that for θ = 0 (m = 0) in Eqs. (35)–(37), the results
reduce to those for the collinear AFM case [67].

For numerical calculations one needs to take appropri-
ate values of the asymmetry parameters pσ , pτ , and spin

diffusion length λsd—all being generally dependent on the
Fermi energy. According to the definition of σν given below
Eq. (31), one can write pσ = (τ−q−,F − τ+q+,F)/(τ−q−,F +
τ+q+,F), where the Fermi wavevectors are qν,F = ( − νmJ +
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εF

√
1 − (J/εF)2(1 − m2))/(h̄v0). As τ+ = τ (1 − pτ ) and

τ− = τ (1 + pτ ), the formula for pσ can be written explicitly
as

pσ =
mJ + pτ

√
J2(m2 − 1) + ε2

F√
J2(m2 − 1) + ε2

F + pτ Jm
. (38)

In turn, for the parameter pτ we take pτ = (q−,F −
q+,F)/(q+,F + q−,F), which on taking into account the forms
of Fermi wavevectors can be written as

pτ = mJ√
ε2

F − J2(1 − m2)
. (39)

Finally, the spin diffusion length can be then written in the
form

λsd = λ0

√
1 − J2/ε2

F(1 − m2)
√

1 − p2
τ , (40)

where λ0 = v0
√

τsfτ/2. We note that the description based
on the Boltzmann equation and relaxation time approximation
(including spin diffusion length) is not accurate in the vicinity
of the Fermi energy EF = J , where Fermi contour of the band
marked as ν = + shrinks to a Dirac point (q=0) in the 2D
Brillouin zone.

In Fig. 3 we illustrate the spatial variation of the
normalized spin accumulation, Eq. (36), for indicated param-
eters, where we have defined B0 = (πr2

sk )−1B with B =∫ rsk

−rsk
d2rBz

em(r). The asymmetry parameter pτ is determined
according to the formula (39). The normalized spin accumu-
lation is plotted for indicated values of the canting angle θ

in Fig. 3(a), and for indicated values of the Fermi energy
and fixed θ in Fig. 3(b). The spin accumulation is zero in
the center of the skyrmion and reaches its minimum (maxi-
mum) value around y = 0.35rsk (y = −0.35rsk), and then its
absolute value decreases and saturates at the edges of the
AFM stripe. As follows from Fig. 3(a), the spin accumulation
shown there is practically independent of the canting angle
for θ � 10

◦
(or equivalently independent of the net magneti-

zation, m = sin θ ). In turn, the absolute magnitude of the spin
accumulation increases with the increasing Fermi energy, see
Fig. 3(b). This behavior is associated with the variation of pτ

with the Fermi energy.
Figure 4(a) illustrates the spatial variation of the trans-

verse spin current density, Eq. (35), for different values of
the canting angle. The absolute value of the spin current
density reaches a maximum in the skyrmion center, and then
decreases with increasing distance from the skyrmion center
and monotonically vanishes at the AFM nanoribbon edges.
The net magnetization in the system reduces the absolute
magnitude of the spin current density (especially around the
skyrmion center), as follows from Fig. 4(a).

Figure 4(b) shows the spin current density in the skyrmion
center as a function of the Fermi energy εF for the same three
canting angles as in Fig. 4(a). From this figure it follows that
the spin current in the skyrmion center vanishes for εF = J ,
regardless of the tilting angle. With increasing εF, the magni-
tude of spin current increases monotonously with increasing
εF. As in Fig. 4(a), the spin current depends on the canting
angle and is the largest (negative) one for zero canting angle,

FIG. 3. Spatial variation of the spin accumulation induced by a
single AFM skyrmion for different values of the canting angle θ (a),
and of the Fermi energy εF (b). Here, μ0 = (rskeτv2

0B0Ex )/(16t ),
w = 3rsk, λ0 = 5rsk, and J = 0.3t . The inset in (a) shows schemat-
ically the stripe of width of w, with a single AFM skyrmion of a
radius rsk. In turn, the inset in (b) shows schematic of the device
for transport measurements. By applying an external electric field,
electrons move through a nontrivial magnetic texture and experience
a spin-dependent emergent magnetic field, which creates an effective
Lorentz force that changes sign for opposite spins and results in
transverse spin accumulation.

i.e., in the strictly collinear antiferromagnet. We recall that
the asymmetry parameters pσ and pτ , as well as the spin
diffusion length, depend on the Fermi energy in Fig. 4(b) and
are calculated following Eqs. (38)–(40).

2. Topological charge Hall resistivity

The topological charge Hall resistivity, generated by
skyrmions, is given by [67]

ρyx = Ey

jx
= −eτv0 cos θ

8Lwh̄σ

B

�(q+,F, q−,F)

×
[

1 + pσ

�(q+,F, q−,F)

M(q+,F, q−,F)

∫
d2r

Bem(r) cosh
( y

λsd

)
B cosh

(
w
λsd

)
]
.

(41)

In the untilted limit, θ = 0, this expression reduces to the
expression for a collinear AFM system [67].

Figure 5 illustrates the TCH resistivity as a function of
the spin diffusion length λ0 for indicated values of the Fermi
energy εF and for the canting angle θ = 5◦. This figure shows
that the TCH resistivity decreases with increasing spin dif-
fusion length. Moreover, this figure shows that the TCH
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FIG. 4. Spatial variation of the transverse spin current density
generated by a single skyrmion for different values of the canting
angle θ (a). The transverse spin current density in the skyrmion cen-
ter, y = 0, as a function of εF (b). Here j0 = e3τ 2v2

0ExB0/(32π h̄2),
w = 3rsk, λ0 = 5rsk, and J = .3t

resistivity decreases with increasing Fermi energy, which is
associated with decreasing spin asymmetry of the relaxation
times with increasing εF. This behavior is similar to that in the
collinear AFM case [67].

In Fig. 6(a) we explicitly plot the TCH resistivity as a
function of the Fermi energy. This figure shows that increasing
the Fermi energy leads to a smooth decrease in the absolute

 0

 100

 200

 300

 400

 0  20  40  60  80  100

ρ y
x/

ρ 0

λ
0
/r

sk

ε
F
=0.302t

ε
F
=0.305t

ε
F
=0.31t

FIG. 5. The TCH resistivity in the two-subband regime as a
function of λ0 and for different values of the Fermi energy. Here
ρ0 = π/(2Lw)(v2

0 h̄2/t2)B/e, J = 0.3t , θ = 5◦, and w = 6rsk.

FIG. 6. TCH resistivity in the two-subband regime for different
values of λ0 and θ = 5◦, presented as a function of the Fermi energy
(a). TCH resistivity as a function of the tilting angle θ for indicated
values of the Fermi energy εF and λ0 = rsk (b). Here, J = 0.3t , and
w = 6rsk.

magnitude of the TCH resistivity. This decrease follows from
the reduced asymmetry of the two subbands with increasing
Fermi energy, which is rather obvious from the correspond-
ing dispersion curves, see Fig. 2. This behavior is generally
similar to that in the collinear AFM case [67]. In turn, from
Fig. 6(b) it follows that the TCH resistivity vanishes for zero
tilting angle, θ = 0, and then grows with increasing θ , reaches
a maximum for εF slightly above J , and then decreases with a
further increase in θ . We note that the absence of TCH effect
for θ = 0 is caused by PT symmetry and absence of additional
scattering processes that violate this symmetry. However, we
also note that even in the collinear AFM case, an asymmetry
in relaxation times may lead to a nonzero TCH resistivity, as
shown in our earlier paper [67].

B. Single-subband regime: εF < J

When the Fermi energy is smaller than the sd exchange
interaction J , εF < J , only electrons in one spin subband,
ν = −1, contribute to the transport, see Fig. 7(a). Therefore
we limit our further consideration to the charge transport.
To calculate charge current we artificially divide the part
of dispersion curve in Fig. 7(a) corresponding to the en-
ergy smaller than J into two branches. In the branch for
q < qmin = Jm/h̄v0, denoted as α = 1, the energy decreases
with increasing q, while in the branch for q > qmin, marked
as α = 2, the energy increases with increasing q. Here,
qmin is the wavenumber corresponding to the band mini-
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FIG. 7. (a) Two conduction subbands around the K+
point. In the two-subbband regime, εF > J , the Fermi
energy intersects the dispersion curve of subband ν at
qν,F = (−νmJ + εF

√
1 − (J/εF )2(1 − m2))/(h̄v0 ). However, when

the Fermi level is smaller than the sd exchange interaction,
the Fermi level intersect only one conduction subband at

q(α)
−,F = (Jm + (−1)αεF

√
1 − (J/εF )2(1 − m2))/(h̄v0) for α = 1, 2.

(b) Minimum energy as a function of magnetization for different
values of exchange interactions.

mum, εmin = J
√

1 − m2. The energy of band minimum is
plotted in Fig. 7(b) as a function of the magnetization m.
Note, the band gap in the spectrum is closed for m = 1.
The two Fermi contours correspond to the Fermi wavevec-
tors q(1)

−,F and q(2)
−,F , as shown in Fig. 7(a), with q(1)

−,F < q(2)
−,F

and q(α)
−,F = (Jm + (−1)αεF

√
1 − (J/εF)2(1 − m2))/(h̄v0) for

α = 1, 2. The Fermi velocity in the contour α for the Fermi
level J

√
1 − m2 < εF < J , is given by

vα,F(ε) = (−1)αv0

√
1 −

(
J

εF

)2

(1 − m2)q̂, (42)

where q̂ is a unit vector along q. Thus, according to the
above relation (42), the electron group velocities for these two
contours are opposite for the same q̂.

To study TCH resistivity in the single-band regime, we
need to formulate the set of relevant transport equations and
solve the corresponding Boltzmann equation. To do this, we
treat the two Fermi contours separately, like two states of a
pseudospin. Moreover, we distinguish between scattering pro-
cesses that leave electrons upon scattering in the same Fermi
contour α (intracontour scattering), and scattering processes
associated with a change of the Fermi contours, i.e., the inter-

FIG. 8. The TCH resistivity in the single-subband regime shown
as a function of the Fermi energy for different values of the parameter
λ0, and for m = 0.163, J = 0.3t , w = 6rsk.

contour scattering. Treating the branch index as a pseudospin
index, we can map the model on the real-spin model used
above for the two-subband case. Accordingly, the relaxation
time for intracontour (intercontour) scattering corresponds to
the spin-conserving (spin-mixing) relaxation times in the two
spin-subbands model. The chemical potentials in the two con-
tours satisfy an equation similar to that in the model discussed
above. Following this similarity, one can write the diffusion
equation for the contour accumulation δμ = (μ2 − μ1)/2 as

∇2δμ − δμ

λ2
mix

= − eτv0 cos θ

2h̄M
(
q(1)

F , q(2)
F

) dBz
em

dy
Ex, (43)

where λmix is the diffusion length between two intercontour
scatterings, and plays the same role as the spin diffusion
length in the two spin-subband model. For simplicity, we
skipped here (and in the following) the lower index ν = −
and replaced q(1,2)

−,F by q(1,2)
F .

Similarly as in the two-band case, we define the energy-
dependent asymmetry coefficients pσ and pτ , pτ = (τ2 −
τ1)/(τ1 + τ2) and pσ = (σ2 − σ1)/(σ1 + σ2), as well as the
diffusion length λmix (and also the relevant λ0). Finally, we
find the total charge current density jch

y = j1,y + j2,y, in the
form

j
ch
y = − σ

[
dμ

dy
+ pσ

dδμ

dy

]
+ ev0στ cos θ

2h̄

[
(1 − pτ )(1 − pσ)

×
∣∣c−(

q(1)
F

)∣∣2

q(1)
F

− (1 + pτ )(1 + pσ )

∣∣c−(
q(2)

F

)∣∣2

q(2)
F

]
ExB

z
em,

(44)

where σ = σ1 + σ2, and σα = (e2/2h)ταvαkα,F is the charge
conductivity in the channel α.

Similarly to the two-subband regime, by imposing the open
boundary condition, we can solve the diffusion equation (43)
and derive the expression for the TCH resistivity. The calcu-
lated TCH resistivity is shown in Fig. 8 as a function of the
Fermi energy for indicated values of the diffusion length λ0.
This figure shows that the TCH resistivity increases when the
Fermi energy grows from the band minimum, reaches a max-
imum and then decreases when the Fermi energy approaches
the limit εF = J .
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FIG. 9. The TCH resistivity as a function of the Fermi energy in
canted AFM for different values of the λ0 (assumed the same in both
regions). Here, J = 0.3t , w = 6rsk, and m = 0.163.

C. Transition from the two-subband to one-subband regime

When considering transition from the two-subband to one-
subband regimes with reducing the Fermi energy, one needs to
pay special attention to the parameters of the model. This fol-
lows from the fact that for EF = J , the Fermi energy reaches
the bottom of the upper band, and therefore the number of
electrons in this band, that participate in transport, goes to
zero with q+,F → 0. In this limit some parameters of the
Boltzmann approach are now well defined. To get reliable
results, one needs to take energy-dependent transport param-
eters, as described above [see Eqs. (38)–(40)] for εF � J .

Similar conditions have to be obeyed when approaching
the limit εF = J from the lower-energy side εF � J . However,
instead of the two subbands, we have now two wings of the
lower-energy band, marked as α = 1 and α = 2 in Fig. 7.
Behavior of the topological Hall resistivity as a function of
the Fermi energy is shown in Fig. 9. This figure indicates
that there is a continuous transition between the two regions.
Some weak irregularities can be seen around εF = J , which
follow from the fact that the Boltzmann approach does not
properly describes this limit. On the other hand, spin current
was studied in the two-band model and it was shown that it
vanished for the Fermi energy approaching the value εF = J ,
see Fig. 4(b). Since in the one-band limit, only one spin
orientation is available for transport, the pure spin current is
absent.

V. SUMMARY

In this paper, we have analyzed the TSHE and TCHE
induced by skyrmion in canted AFMs. Such materials are
also referred to as weak ferromagnets, because of a small
net magnetic moment arising from the canting of the AFM
sublattice moments. This canting breaks the PT symmetry, not
only enhancing the TSHE but also generating a TCHE, which
is typically absent in collinear AFM systems with PT sym-
metry. The canting of AFM magnetic moments remarkably
changes the corresponding electronic structure, and breaks the
spin degeneracy of the conduction and valence bands, resem-
bling a Rashba-type spin-orbit splitting of spin subbands in
a two-dimensional electron gas. Employing the semiclassical

Boltzmann formalism, we investigated TCHE and TSHE in
different energy scales of the system. Note that we have con-
sidered only one Dirac point (K) as the contributions from
both (K and K′) Dirac points are equal.

The obtained results are consistent with other studies on
topological spin and charge Hall effects in AFM systems.
We mention here the paper by Akosa et al. [65], who an-
alyzed the topological spin and charge Hall effects within
the tight-binding model of an AFM square lattice. Using the
Landauer–Büttiker formalism, they found a zero topological
charge Hall effect and a nonzero topological spin Hall effect
in such a system. In turn, Nakazawa et al. [66] used a similar
formalism and showed that the vector chirality formed by the
AFM Néel vector leads to a finite topological spin Hall effect
in bulk AFM systems with half-skyrmions or merons.

In our study, we considered a weak ferromagnetic system
and took into account intrinsic spin asymmetry of the electric
conductivity and relaxation times. We have shown that this
asymmetry leads to the topological spin and charge Hall ef-
fects in the canted systems, while only spin Hall effect appears
then in the collinear AFM. This is consistent with Ref. [71],
where the topological charge Hall effect was also found in
AFM square lattice with canted sublattice magnetic moments.
The authors of Ref. [71], however, included the ferromagnetic
moment perturbatively and used a different approach based on
the Kubo formalism.
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APPENDIX: CONTRIBUTION OF ANOMALOUS
VELOCITY

In this Appendix, we show that contribution of the anoma-
lous velocity to the topological charge Hall effect is beyond
the linear response theory, considered in this paper. Taking
into account Berry curvature and anomalous velocity, dynam-
ics of electrons is described by the following semiclassical
equations [96]:

h̄q̇ν = −e
(
E + ṙν × Bν

em

)
, (A1)

h̄ṙν = ∂εν

∂q
− h̄q̇ν × �ν, (A2)

where �ν = (0, 0,�z
ν ) is the Berry curvature, defined as the

curl of the Berry connection [97]

�z
ν = ∂qxAn,y − ∂qyAn,x = −2�〈

∂qx �
ν
∣∣∂qy�

ν
〉
, (A3)

with Aν = 〈�ν |i∇q�
ν〉 being the Berry connection and �ν

denoting the eigenvector in the canted AFM [see Eq. (12) in
main text]. In our case, �z

ν is given as

�z
ν = 1

2q

∂

∂q

[((
εν − J cos θ

J sin θ − ν|γq|
)2

− 1

)
(1 + cos θPq,ν )

]
(A4)
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where |γq| = h̄ν0q and Pq,ν =J /
√
J 2 + |γq|2 + 2νJ |γq| sin θ .

Equations (A1) and (A2) give

ṙν = ων

(
1

h̄

∂εν

∂q
+ e

h̄
E × �ν

)
, (A5)

with ων = 1
1+(e/h̄)�ν ·Bν

em
. Using the velocity modified with ge-

ometric phase, Eq. (A5), in the Boltzmann equation [Eq. (22)
in the main text], we obtain the following relation for the
nonequilibrium distribution function:

gν = eτνων

(
1

h̄

∂εν

∂q
− e

h̄
(E × �ν )

)
· ∇rμν − eτν

1

h̄
E

∂εν

∂qx

− e2τ 2
ν ων

h̄

(
1

h̄

∂εν

∂q
× Bν

em

)
·
(

∂

∂q

(
1

h̄
E · ∂εν

∂q

))
.

(A6)

In the presence of the anomalous velocity, the first and third
terms in the distribution function are modified by ων . Since
the gradient of chemical potential in the first term of the distri-
bution function is induced by the magnetic field, and because
of the emergent magnetic field in the third term, by expand-
ing ων ≈ 1 + (e/h̄)�ν · Bν

em + (e/h̄)2(�ν · Bν
em )2 + · · · , only

the first term of the expansion contributes to the distribu-
tion function, while the higher-order terms in the expansion
of ων create nonlinear terms that are negligible. Thus, by
considering the first term of the expansion, the distribution
function reduces to the one in the absence of the anomalous
velocity. Furthermore, the presence of anomalous velocity
does not affect the structure of the diffusive equation for
spin accumulation. The only effect of the emerging Berry

phase on the diffusion equation is the modification of the
diffusion length scale, changing from (1/l2

+,F + 1/l2
−,F) to

(1/(ω3
+l2

+,F) + 1/(ω3
−l2

−,F)).
For the transverse current density because of the anoma-

lous velocity, we use following relation:

jan
ν = − e

(2π )2

∫
dq2

(
e

h̄
ωνE × �ν

)(
− ∂ f 0

ν

∂ε

)
gν (A7)

where f 0
ν is the equilibrium distribution function. Using

Eq. (A6), we find

jan
yx = e2

h

e2E2

h̄2vF

∑
ν

τνqν,Fω
2
ν�

2
ν,xy

∂μν

∂y
, (A8)

where a0 is the lattice constant. As observed from Eq. (A8),
the anomalous velocity contributes nonlinearly to the trans-
verse charge current. Since we are investigating only the linear
response in this paper, we discard the impact of the anomalous
velocity.

Equation (A8) demonstrates that the topological charge
Hall current resulting from the anomalous velocity is nonlin-
ear in electric field and is proportional to the square of the
Berry curvature �2

ν . Consequently, despite the Berry curva-
tures at the K and K’ symmetry points having opposite signs,
the total nonlinear charge Hall current, which is the sum of
contributions from the two Dirac cones, remains finite. This
contribution has been omitted here; however, in some specific
situation, where the linear term is negligible, the nonlinear
contribution may play an essential role.
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