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The thermal transport of magnons has attracted substantial attention as an energy-efficient alternative to the
transport of electrons. Most theoretical studies so far have been carried out within the frame of the linear
spin-wave theory, which dramatically fails upon increasing the temperature and in the presence of competing
interactions. In this work, we consider the impact of three- and four-magnon interactions in a honeycomb
antiferromagnet, where such interactions are remarkably strong even at zero temperature. Using a combination
of quantum field theory and mean-field theory, we compute the band structure of the interacting magnons and
investigate the spin Nernst effect. We find that in the presence of in-plane Dzyaloshinskii-Moriya Interaction,
the three-magnon interaction induces a nonreciprocal band splitting, even at zero temperature, leading to an
enhancement of the spin Nernst conductivity. In contrast, the four-magnon interaction renormalizes the magnon
spectrum at high temperatures, leading to a reduction of the overall magnon spin Nernst effect. These results
suggest that interactions can massively influence the transport properties of magnons in antiferromagnets, even
at zero temperature, and should be taken into account for predictive modeling.
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I. INTRODUCTION

In the field of spintronics, spin waves, and their quanta,
magnons, have been considered as a viable alternative to
electrons for transporting information. They present several
advantages compared to electrons, including their wide range
of frequencies, the existence of nonreciprocal effects, as well
as, their intrinsically low energy dissipation when consider-
ing magnetic insulators [1–3]. Magnon transport phenomena
underscore longitudinal transport in the form of the spin See-
beck effect [4–8], the thermal Hall effect [9–13], and the
spin Nernst effect [14–16], among other proposals [17–20].
In addition, the magnonic counterparts of electronic topo-
logical materials, known as topological magnonic materials,
have been proposed in a wide variety of flavors, such as
Chern insulators [21–24], Z2 topological insulators [25,26],
nodal lines [27,28], Weyl [29,30], and Dirac magnon [31–33],
among others. Extensive reviews on this topic can be found in
the recent bibliography [34–36]. Despite these numerous pre-
dictions, the experimental detection of the magnon topology
remains elusive since the two most instrumental methods for.
detecting magnons, bulk-sensitive neutron scattering [33,37–
41], and surface-sensitive spin pumping [42–45] cannot un-
ambiguously probe the Berry curvature information. This is
particularly true in the case of anomalous thermal magnon
transport, where the full magnonic band structure contributes
to the transport so that topological magnon states are of-
ten blurred by trivial states (see discussion in Ref. [46]).
Furthermore, at finite temperature magnon-phonon as well
as magnon-magnon interactions can dramatically modify the
band structure, leading to topological phase transitions on
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increasing the temperature, as recently proposed in honey-
comb ferromagnets [31,47–51].

Whereas most theoretical and experimental investigations
have focused on ferromagnetic magnons, antiferromagnetic
materials present a remarkably rich platform for the in-
vestigation of magnonic transport. As a matter of fact,
antiferromagnets are currently under intense scrutiny for
spintronic applications due to their notable properties, such
as the absence of stray fields, high frequencies of opera-
tion, and a wide material variety [35,52–54]. Anomalous
magnon transport has been investigated theoretically in both
collinear [14,15] and noncollinear antiferromagnets [55–58],
and anisotropic magnon dispersion has been proposed re-
cently in spin-split antiferromagnets [59–61].

Although theoretical research on topological thermal
magnon transport has been intense over the past decade, most
studies have been performed within the framework of the
linear spin wave theory (LSWT), which is generally only
accurate for collinear spin textures at low temperatures. Spin
excitations are generally not bosonic and as soon as the
temperature deviates from zero, magnon-magnon interactions
emerge that massively impact the nature of the quasiparticle
itself, as noted in earlier studies [62,63].

At the lowest order, two classes of interactions dominate,
the four-magnon interaction and the three-magnon interaction.
The four-magnon interactions, associated with the magnetic
exchange, have been investigated by both diagrammatic and
mean field techniques and they are considered the main cause
of magnetic damping both in ferromagnets and antiferro-
magnets [64]. The three-magnon interactions are caused by
the coupling of orthogonal spin components SzS±, induced
by the Dzyaloshinskii-Moriya interaction (DMI) or the non-
collinear magnetic configuration itself [64,65]. As such, it can
both dramatically reduce the magnon lifetime and alter its
Berry curvature, leading to temperature-induced topological
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phase transitions [51,66–69]. However, treating the three-
magnon interactions is often mathematically complex and
requires sophisticated techniques such as quantum field theory
[64]. More recently, a similar coupling has been proposed
to capture the effect of these interactions in antiferromagnets
without the troublesome calculation of self-energies [70,71].
While this effect gives a good qualitative picture of the im-
pact of in-plane DMI, it does not capture the temperature
dependence and more complex physics associated with the
three-magnon interactions.

In the present work, we investigate the impact of magnon-
magnon interaction on the temperature dependence of the
magnonic band structure and anomalous transport in a hon-
eycomb antiferromagnet. Honeycomb antiferromagnets are
known to display spin Nernst effect (SNE) [14,15], topolog-
ical phase transition [69,72] and other interesting properties
[73,74]. Most importantly for the present work, magnon in-
teractions are non-negligible even at zero temperature, which
makes this system remarkable.

The article is organized as follows: In Sec. II, we high-
light the main features of the magnon spectrum, symmetries,
and magnon transport in the LSWT limit. Section III cov-
ers the main results of this work, the impact of three- and
four-magnon interactions in the honeycomb antiferromagnet.
In Sec. III A, we study the four-magnon interactions that
naturally rise due to the expanded Holstein-Primakoff (HP)
transformation. In Sec. III B, we investigate the more complex
three-magnon interactions, their spectroscopic properties, and
their impact on magnon transport. In Sec. III C, we investigate
the combined effects of the three- and four-magnon interac-
tions on magnon transport. The details of the calculations,
which can be sometimes rather cumbersome, are left in the
Appendix. Then, in Sec. IV, we discuss the relevance of these
effects to the experimentally available materials. Finally, in
Sec. V, we conclude by discussing challenges in modeling
interacting magnonic transport at finite temperatures.

II. LINEAR SPIN WAVE THEORY

A. Magnon spectrum

We consider the spin Hamiltonian, illustrated in Fig. 1(a),
for the honeycomb antiferromagnet,

H = J
∑
〈i j〉

SA,i · SB, j + K
∑

i

(
Sz

i

)2

+Dz

∑
〈〈i j〉〉

z · (Si × S j ) + D||
∑
〈i j〉

ηi j · (SA,i × SB, j ), (1)

where J is the nearest-neighbor Heisenberg exchange, K is the
easy-axis anisotropy in the z direction respectively, Dz is the
next-nearest-neighbor out-of-plane DMI, A/B is the sublat-
tice index and ηi j is the nearest-neighbor vector orthogonal to
the bonds [see Fig. 1(a)]. The nearest-neighbor in-plane DMI,
D||, does not enter the LSWT Hamiltonian but, instead, it
introduces the three-magnon interaction that will be discussed
in Sec. III. Throughout this article, the magnetic anisotropy
K and DMI coefficients Dz and D|| are normalized to the
exchange energy J = 1 meV.

FIG. 1. (a) Sketch of the honeycomb antiferromagnet with the
DM vectors illustrated. The dashed red and blue arrows indicate the
next-nearest bonds and the normal arrows represent the out-of-plane
DMI. The solid black arrows indicate the direction of the in-plane
DMI. (b) Map of the Berry curvature of the noninteracting magnons
in momentum space. The magnitude of the curvature is given in color
scale as indicated on the right-hand side.

We use the HP transformation for antiferromagnetic
magnons [75,76]

S+
A,i =

√
2Sai − a†

i aiai

2
√

2S
+ . . . ,

S−
A,i =

√
2Sa†

i − a†
i a†

i ai

2
√

2S
+ . . . , Sz

A,i = S − a†
i ai, (2)

S+
B,i =

√
2Sb†

i − b†
i b†

i bi

2
√

2S
+ . . . ,

S−
B,i =

√
2Sbi − b†

i bibi

2
√

2S
+ . . . , Sz

B,i = −S + b†
i bi, (3)

where the operators ai, bi obey the usual boson commutation
rules. Since the present section focuses on LSWT, only the
lowest-order terms in the expansion are considered. Then, we
apply the Fourier transform to the magnon operators ak, bk =

1√
N

∑
j eik·Ri ai, bi to get the Hamiltonian of our system

H (2) = S
∑

k

�
†
k

(
A+(k) B∗(k)
B(k) A−(k)

)
�k, (4)

where A±(k) = 3J + K (2S − 1)/S ± Dzg(k), B(k) =
J f (k) in which f (k) = ∑

〈i j〉 exp (ik · δ
(1)
i j ) and g(k) =

2
∑

〈〈i j〉〉 sin(k · δ
(2)
i j ), where δ

(l )
i j are the lth nearest-neighbors

vectors, the magnon spinors are �̂k = [bk, a†
−k]T . Here we

have used the reduced basis, as described in Appendix A, and
we note K ′ = K (2S − 1)/S.

To diagonalize the above Hamiltonian one can use either
an analytical or a numerical method [76,77]. The basic equa-
tion of diagonalization is described by

T̂ †
k ĤkT̂k = ε̂k, (5)

where T̂k is the paraunitary matrix that satisfies the identity
T̂ †

k ĜT̂k = Ĝ and the magnon spectrum is ε̂k = (ω−,k, ω+,−k ),
as described in Appendix A. Equation (5) describes a Bogoli-
ubov transformation of the magnon basis and, for the reduced
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matrix, it has the form �̂k = T̂kX̂k or

(
bk

a†
−k

)
=

(
Tb− Tb+
T ∗

a− T ∗
a+

)(
c−,k

c†
+,−k

)
, (6)

where X̂k = [c−,k, c†
+,−k] is the reduced spinor in the diago-

nalized basis.

B. Berry curvature and symmetries

Using the analytical gauge-fixed expression of the eigen-
vectors [78], we compute the Berry curvature [14]

�
xy
n,k = i 〈∇kx Tn,k| G |∇ky Tn,k〉 − (x ↔ y). (7)

The Heisenberg and easy axis anisotropy terms in Hamil-
tonian (1) are invariant under the T C2 symmetry, whereby
Cn is the rotation symmetry by a 2π/n angle, but break the
inversion symmetry I due to the existence of the two sub-
lattices, A and B, giving rise to a Berry curvature even in
the absence of DMI. Both of these symmetry properties are
illustrated in the Berry curvature in Fig. 1(b). Dz breaks the
T C2 symmetry but does not enter the paraunitary matrix T̂k
due to its commutation with the Ĝ matrix and, as such, it does
not directly influence the Berry curvature [14,15].

The in-plane DMI, ∝ D||, also breaks the T C2 symmetry
but to account for its effects, one needs to consider nonlinear
magnon terms. Interestingly, because its direction depends
on the vectors ηi j , the in-plane DMI mediated by three-
magnon interaction induces a phase eiφi j , where φi j = − 2nπ

3
(n = 1,2,0) that promotes a valley-dependent band splitting,
as discussed in Sec. III B. Additionally, due to the geometry of
the honeycomb lattice, the in-plane DMI favors the transverse
motion of magnons, resulting in enhanced spin Nernst angles
as discussed further below.

C. Magnon transport

Computing the conductivity tensor of interacting magnons
presents a technical challenge. As a matter of fact, interactions
do not only renormalize the energy dispersion (real part of
the self-energy) but also shorten the magnon lifetime (imag-
inary part of the self-energy) and renormalize the velocity
operator (the so-called vertex corrections, see Refs. [79,80]).
Once the interacting magnon Green’s function is known, a
natural way to treat magnon transport is to compute the linear
response derived within the Keldysh formalism, as recently
achieved in Ref. [81] (see also Ref. [82]). Nonetheless, this is
a numerically demanding task and, to date, most theoretical
works addressing the transport of interacting magnons have
simply disregarded the impact of magnon lifetime and vertex
corrections on the conductivity tensor and used a simplified
version of the linear response theory [51,68,69,74]. In the
present work, we follow this approach, keeping in mind that
it is only valid as long as the band structure remains well
defined, i.e., the broadening due to interactions remains much
smaller than the bandwidth.

We investigate the magnon transport induced by a thermal
gradient by addressing the magnon Seebeck effect (i.e., the

FIG. 2. [(a) and (c)] The magnon spectrum along the high sym-
metry path in the noninteracting LSWT (L) approximation (black
lines) and in the presence of the four-magnon interactions (4M - col-
ored lines), for (a) Dz = 0 and (c) Dz = 0.1J . (b) The Berry curvature
along the high symmetry path for the case of noninteracting LSWT
(black) and four-magnon interactions at T = 0 (red) and at T = 1J
(blue). (d) The magnon Seebeck, spin Nernst conductivity and spin
Nernst angle (arbitrary units) without interactions (dashed lines) and
with four-magnon interactions (solid lines). The magnon Seebeck
conductivity is proportional to the phenomenological magnon damp-
ing parameter (∝ α0).

longitudinal magnon transport) and the magnon SNE (i.e.,
transverse pure spin transport), expressed as [14–16,76]

σxx = 1

2α0kBT 2

N∑
n

∫
dkv2

x,n

eh̄εn,k/kBT

(eh̄εn,k/kBT − 1)2
, (8)

σxy = kBT
N∑
n

∫
dk�

xy
n,k(c1(nb(εn,k )) − c1(nb(εn,−k ))), (9)

where α0 is the phenomenological damping constant, the
magnon velocity is vx,n = ∂εn,k/∂kx, c1(x) = x ln (x) − (x +
1) ln (x + 1) and nb(ε) is the Bose-Einstein distribution. The
longitudinal magnon current is given in units of kB/h̄, the
transverse spin current is given in units of kB, and we define
the magnon SNE angle as θSNE = σxy/(h̄σxx ), proportional to
α0.

The easy-axis anisotropy is set to K ′ = 0.2(2S − 1)/S,
which stabilizes the magnon spectrum even in the presence
of interactions, see Appendix D. In the calculations discussed
below, we set kB = h̄ = 1 and vary the temperature T and the
values of the DMIs as a way to tune the interactions and the
transport properties of the system. In Fig. 2, we present the
magnon spectrum in the noninteracting LSWT limit (black
lines) in the absence (a) and presence (b) of an out-of-plane
DMI, Dz. This DMI splits the degenerate bands at K and K′
points, which causes an imbalance of magnon populations,
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thereby promoting a net magnon SNE [14–16]. Before ad-
dressing the impact of magnon interactions on the spectrum
and transport properties, we stress that the perturbation theory
discussed in the next section necessitates a stable magnetic
order to start with. In our model, the mechanism that stabilizes
the Neel antiferromagnetic order is the easy-axis anisotropy,
while both the temperature and DMI destabilize it and can
cause a phase transition either outside the antiferromagnetic
phase or towards a noncollinear spin configuration. Without
discussing the full phase diagram of the present honeycomb
antiferromagnet, this stability condition constrains the tem-
perature to remain well below the Neel temperature, i.e.,
typically T < JS. Similarly, DMI values of less than Dz,|| <

0.2J should not cause a phase transition as long as a high easy-
axis anisotropy is maintained, as discussed in Appendix D.

III. MAGNON INTERACTIONS

So far, all calculations have been performed in the LSWT
approximation, where the energy of the magnons is in the
order of O(S1). Turning on magnon interactions, we consider
the three-magnon interactions that are in the order of O(S1/2)
and the four-magnon interactions in the order O(S0), where
the appropriate diagrams are illustrated in Fig. 3. To illustrate
the impact of magnon interactions on the band structure and
transport properties, we focus on the case of S = 3/2. A dis-
cussion about this parameter and relevant materials realization
is given in Sec. IV.

A. Four-magnon interactions

The four-magnon interaction plays a similar role in the
magnon gas as the Hartree-Fock correction in the electron
gas. This interaction can be treated within a mean-field theory
applied to the original H (2) Hamiltonian [76,83]. Considering
the second term in HP transformation of Eqs. (2) and (3), we
get the expanded four-magnon Hamiltonian is given by

H (4)
HP = − 1

4N

∑
k1,2,3,4

[
J
(

f (k4)a†
k1

ak2 ak3 bk4

+ f (k−4)a†
k1

a†
k2

ak3 b†
k4

+ f (k−2+3+4)ak1 b†
k2

bk3 bk4

+ f (k−2−3+4)a†
k1

b†
k2

b†
k3

bk4 + 4 f (k4−3)a†
k1

ak2 b†
k3

bk4

)
+ K ′(a†

k1
ak2 a†

k3
ak4 + (a ↔ b))

+ Dz
(
g(k−4)a†

k1
ak2 ak3 a†

k4

+ g(k−2+3+4)a†
k1

a†
k2

ak3 ak4 − (a ↔ b)
)]

, (10)

where k1−2−3 = k1 − k2 − k3. In Appendix B, we describe
how to derive the mean-field theory correction, which we add
to the original LSWT. The final Hamiltonian reads

H ′ = H (2) + H (4)(T ), (11)

H (4)(T ) =
∑

k

�
†
k

(
E+(k) F ∗(k)
F (k) E−(k)

)
�k, (12)

which is quadratic in boson operators. The H (4)(T ) term is
the mean-field temperature correction to the energy and can
be diagonalized in the same way as the LSWT Hamiltonian,

FIG. 3. (a) Sketch of the Hartree diagram that describes the four-
magnon interactions. (b) The three Feynman diagrams that describe
the different terms of self-energy in Eqs. (17)–(19). The solid arrows
represent the quasiparticle propagators for state α and momentum k,
the vertices are the interactions and the dashed line represents the
Hartree mean field theory.

H (2). This way, we obtain the renormalized energies and pa-
raunitary matrix T̂k for the four-magnon interactions, which
we can use to compute the spectrum, Berry curvature, and
transport coefficients.

As presented in Appendix B, the term H (4) has two com-
ponents, a thermal one, proportional to the magnon number
that vanishes at T = 0, and a quantum one, that is finite at
T = 0 [76,83]. In ferromagnets, only the thermal component
is present. The quantum contribution is a feature unique to
antiferromagnets. Figures 2(a) and 2(c) display the magnon
spectrum at zero temperature (solid blue and red lines), in the
absence and presence of out-of-plane DMI, respectively. One
sees that the zero-point quantum fluctuations push the magnon
spectrum upwards compared to the noninteracting case (solid
black lines). In other words, at T = 0, the four-magnon in-
teractions increase the bandwidth and enhance the magnon
velocity. As soon as T > 0, the thermal contribution quicks in,
reducing the effective magnetic exchange, thereby narrowing
the magnon bandwidth, as exemplified for T = 0.5J (dashed
lines) and T = 1J (dotted dashed lines).

By comparing the Berry curvature along the high symme-
try path in Fig. 2(b), one sees that at its maximum the Berry
curvature is enhanced by the quantum correction at T = 0 (red
line) in comparison with the noninteracting one (black line).
Additionally, a small enhancement is obtained on increasing
the temperature up to T = 1J (blue line). However, these
small increases in the Berry curvature cannot compensate for
the much larger softening of the band splitting, as illustrated
in Fig. 2(c). Consequently, the transverse spin transport is
heavily damped by the four-magnon interactions, as shown in
Fig. 2(d). Additionally, the four-magnon interactions enhance
the total longitudinal magnon conductivity (green lines). This
is because the softening of the energy dispersion favors the
contribution of low-energy magnons. As a result, the interact-
ing SNE conductivity (solid red line) and angle (solid blue
line) are substantially reduced compared to the noninteracting
ones (dashed lines). We conclude that not accounting for the
four-magnon interactions, as usually achieved in the literature
[14–16], leads to an overestimate of the magnon conductivity
tensor at higher temperatures.
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B. Three-magnon interactions

We now turn our attention towards the three-magnon in-
teractions that arise naturally as the coupling of out-of-plane
and in-plane spin components SzS± that the in-plane DMI
introduces. These couplings are described by three-magnon
operators and thus cannot be captured by LSWT. To prop-
erly account for these particle-non-conserving effects, we use
quantum field theory techniques to compute the temperature-
dependent self-energy of interacting magnons [64,65], and
devise an effective Hamiltonian to describe the interacting
magnon transport.

By applying the HP transformation to the in-plane DMI,
we get the three-magnon term,

H (3)
i j =

∑
〈i j〉

(Vi jaib
†
jb j + Vi ja

†
i aib

†
j + H.c.), (13)

where the real space term is given as Vi j = D||
√

S
2 eiφi j , where

φi j = − 2nπ
3 (n=1,2,0). We then perform the Fourier transform

to study the magnon interaction in momentum-space,

H (3)
k = 1

N1/2

∑
k,q

(Vkakb†
k+qbq + Vka†

qak+qb†
k + H.c.), (14)

where Vk = D||
√

S
2

∑
〈i j〉 ei(φi j−k·δ(1)

i j ). We point out that these
terms have the same geometrical form as the coupling pro-
posed in Ref. [70] and are expected to cause a similar splitting
in the magnon spectrum.

By using the Bogoliubov transformation described in
Eq. (6), the three-magnon Hamiltonian can be recast in the
form [64,65]

H (3)
k = 1

N1/2

∑
k,q

∑
λ,μ,ν=±

(
�

λμ←ν

k,q←k+qc†
λ,kc†

μ,qcν,k+q

+ �
0←λ,μ,ν

0←k,q,−(k+q)cλ,kcμ,qcν,−(k+q) + H.c.
)
, (15)

where the � matrices are the vertex terms and are given in
detail in Appendix C. This is the general three-magnon term,
where the first regular contribution can be found as well in
ferromagnets, while the second contribution is unique to anti-
ferromagnets due to the nature of the Bogoliubov transform.
To determine the impact of this term, we need to find the
interacting one-magnon Green’s function. This is given by
Matsubara Green’s function,

Gk,αβ (τ ) ≈ G(0)
k,αβ (τ ) − 1

2!

∫ β

0
dτ1dτ2

×〈T Ĥ (3)(τ1)Ĥ (3)(τ2)ck,α (τ )c†
k,β (0)〉, (16)

where the noninteracting Green’s function is G(0)
k,αβ (τ ) =

−〈T ck,α (τ )c†
k,β (0)〉, T is the time ordering and β = 1/kBT .

Higher orders in S and in H (3)
k are not considered for

simplicity.
We follow Refs. [64,65,68,84] to compute the temperature-

dependent self-energies for the three-magnon Hamiltonian.
The details are given in Appendix C. The expression for the
self-energy of the interacting magnons has three contributions,
corresponding to the regular (first two terms) and anomalous
part (last term) of the Hamiltonian in Eq. (15),

�
i,αβ

k (ε, T ) = 1

N

∑
q

∑
γ ,γ ′=±

�
α←γ ,γ ′
k←q,k−q�

γ,γ ′←β

q,k−q←k

ε + iη − εq,γ − εk−q,γ ′
(nb(εq,γ ) + nb(εk−q,γ ′ ) + 1), (17)

�
ii,αβ

k (ε, T ) = 1

N

∑
q

∑
γ ,γ ′=±

�
γ ′←β,γ

k+q←k,q�
α,γ←γ ′
k,q←k+q

ε + iη + εq,γ − εk+q,γ ′
(nb(εq,γ ) − nb(εk+q,γ ′ )), (18)

�
iii,αβ

k (ε, T ) = − 1

N

∑
q

∑
γ ,γ ′=±

�
0←α,γ ,γ ′
0←k,q,−k−q�

β,γ ,γ ′←0
k,q,−k−q←0

ε + εq,γ + ε−k−q,γ ′
(nb(εq,γ ) + nb(ε−k−q,γ ′ ) + 1). (19)

The terms �i
k and �ii

k are the same as the ones for ferro-
magnets, while the term �iii

k is unique to antiferromagnets.
The total self-energy is the sum �̂k(ε, T ) = �i

k(ε, T ) +
�ii

k (ε, T ) + �iii
k (ε, T ). By calculating the density of states

of the processes, see Appendix D, we find that �i
k dom-

inates at high energies and low temperatures (in other
words, it does not vanish at T = 0), while �ii

k dominates
at low energies and high temperatures (it vanishes at T =
0). The term �iii

k plays a smaller role, especially at high
temperatures.

The one-magnon spectral function is given by

Ak(ε) = − 1

π
Im(Tr[Ĝk(ε)]), (20)

where the interacting Green’s function and the self-energy
matrix have the form

Ĝk(ε) = [(ε + i0+)Î − ε̂k − �̂k]−1, (21)

�̂k(ε, T ) =
(

�++ �+−
�−+ �−−

)
, (22)

defined on the extended magnon basis. The spectral function
at K-point, where the interactions are maximum, is reported
in Fig. 4 for different values of the in-plane and out-of-plane
DMI. A well-defined quasiparticle is characterized by a sharp
Lorenztian peak, as we see for all subfigures in the absence of
interactions (D|| = 0). As the interactions increase, the quasi-
particle peak broadens and the magnonic excitations become
ill defined. This is due to the increased imaginary part of
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FIG. 4. The spectral function at K-point as a function of D||.
In (a) and (b) Dz = 0, while for the lower panels [(c) and (d)]
Dz = 0.1J . The left panels, (a) and (c), are at T = 0 while the right
panels [(b) and (d)] are at T = 1J . The white dashed line indicates
D|| = 0.2J and the limit of well-defined magnonic excitations at any
temperature. The numerical broadening is set to η = 0.1. The color
gradient scales with the quasiparticle weight: brighter colors mean
sharper quasiparticle peaks and darker colors indicate broadened
quasiparticle peaks.

the self-energy that reduces the quasiparticle lifetime, while
the real part causes the shift of the quasiparticle peak in the
energy.

We can see the splitting of the degenerate bands, due to
the real part of the self-energy, as the value of the in-plane
DMI increases. This splitting is caused mainly by the off-
diagonal terms of the self-energy �±∓ in the absence of
Dz, as seen in Figs. 4(a) and 4(b). We see that when the
bands are already split, for Dz �= 0, a second splitting occurs
leading to four bands, as shown in Figs. 4(c) and 4(d), for
T = 0 and T = 1J , respectively. The white lines indicate the
value of D|| = 0.2J , which we consider the highest value of
the three-magnon interaction parameter for which magnons
remain well-defined quasiparticles at K-point (see also
Appendix D).

To calculate the magnon conductivities, we use an effec-
tive model that reproduces satisfactorily the spectral function.
To do so, we follow the same procedure as in Sec. II [see
Eq. (5)], and perform a second diagonalization of the inter-
acting magnon Hamiltonian,

F̂ †
k (ε̂k + �̃k(εk, T ))F̂k = ε̂′

k, (23)

whereby �̃k(εk, T ), here we assume only the Hermitian part
of the self-energy, �̃k = (�̂k + �̂

†
k )/2. In addition, we make

the on-shell approximation, ε = εk. To sum the energy matrix
(diagonal) and self-energy matrix [block diagonal, where each
block has the form of Eq. (22)], we need to use the extended
basis. By following the diagonalization procedure described

FIG. 5. Comparison between the spectral function Ak and the ef-
fective model [(a) and (b)] for Dz = 0 and [(c) and (d)] for Dz = 0.1.
The spectral function is shown at T = 0K, where the magnons are
well defined. In the effective model, the spectrum is shown for both
T = 0 (solid lines) and T = 1J (dashed-dotted lines). The opaque
white overlay presents the two-magnon continuum of the models,
see Appendix D.

in Appendix A, we obtain both a numerical and an analytical
solution to the problem. The comparison of the interacting
spectral function (at T = 0) is plotted against the interacting
magnon spectrum at T = 0 and T = 1J in Fig. 5. In the
absence of out-of-plane DMI, we find an excellent agreement
between the spectral function and the effective model. In the
presence of out-of-plane DMI, there are slight disagreements
because the on-shell approximation does not hold as well as
for the degenerate bands.

By considering the total basis transformation Q̂k = F̂kT̂k,
we can calculate the total Berry curvature for the original
and effective models from Eq. (7). We numerically confirm
that the Berry curvature is not affected by the three-magnon
interactions and the Berry curvature of Q̂k states is the same
as T̂k states. This is related to the fact that the three-magnon in-
teractions lift the degeneracy of the magnon chirality ± but do
not couple the k and −k sectors. Then, we calculate the longi-
tudinal and transverse magnon spin transport in Fig. 6(c) and
we compare it with the noninteracting one. We numerically
confirm that in the absence of out-of-plane DMI, the SNE is
zero even in the presence of in-plane DMI, as the ±k sectors
are equal and σxy = 0. However, in the presence of both in-
plane and out-of-plane DMI, both the SNE conductivity and
angle are enhanced. The reason is that due to the symmetry of
the in-plane DMI, more magnons are transported towards the
transverse direction in comparison to the longitudinal one. We
can see in Fig. 6(c) that interactions enhance the SNE angle
due to an increase of σxy and a decrease of σxx.
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FIG. 6. [(a) and (b)] The magnon spectrum in the presence of
both three- and four-magnon interactions as described by Eq. (24)
(a) for Dz = 0 and (b) Dz = 0.1J . The black lines show the spectrum
under only the four-magnon interactions, at T = 0 (solid lines) and
T = 1J (dashed lines). The colored lines show the spectrum for the
full interactions, at T = 0 (solid lines) and T = 1J (dashed lines).
(c) The magnon Seebeck, SNE conductivity (red lines) and angle
(blue lines) without interactions (dashed-dotted lines) and with three-
magnon interactions (solid lines). (d) The magnon Seebeck, SNE
conductivity (red lines), and angle (blue lines) for the four-magnon
interactions (dashed-dotted lines) and full-magnon interactions (solid
lines).

C. Full magnon interactions

In Sec. III B, we have seen that the temperature has a lim-
ited impact on the three-magnon interactions [see Figs. 5(b)
and 5(d)]. Now, let us consider the combined effect of three-
and four-magnon interactions. This is achieved in two steps:
(i) calculating the self-energy for the mean-field theory-
corrected Hamiltonian, and then (ii) adding it to the corrected
energies to find the effective model for the full interactions,

F̂ †′
k (ε̂′

k + �̃′
k(ε′

k, T ))F̂ ′
k = ε̂′′

k . (24)

Here, the primed values are calculated for the Hamiltonian
in Eq. (11). In Figs. 6(a) and 6(b), we present the magnon
spectrum for the combination of three- and four-magnon
interactions in the cases of T = 0 and T = 1J (solid and
dotted-dashed lines) in the (a) absence and (b) presence of
Dz. The combination of the effects results in the combination
of the nonreciprocal band splitting and large temperature-
dependent renormalization, as discussed in details in the
previous sections.

The next step is to calculate the magnon transport in
the presence of both three- and four-magnon interactions. In
Fig. 6(d), we compute the transport for four-magnon (dot-
ted dashed lines) and full-magnon interactions (solid lines).
In Fig. 2(d), we already observed that the four-magnon

interactions tend to strongly suppress the SNE, whereas, on
the contrary, Fig. 6(c) indicates that the three-magnon inter-
actions tend to enhance it. Nonetheless, the enhancement of
the SNE induced by the three-magnon interaction does not
overcome the dampening due to the four-magnon interactions,
resulting in an overall reduction of the SNE signal by a factor
of ∼3. In other words, although the prediction of the LSWT
strongly overestimates the SNE, accounting for interactions
does not suppress it. As a matter of fact, the combination of
three- and four-magnon interactions leads to a substantial de-
crease in the longitudinal magnon conductivity [green curves
in Fig. 6(d)]. This results in an overall increase of the SNE
angle in comparison with the four-magnon calculation [blue
curves in Fig. 6(d)].

IV. MATERIAL CONSIDERATION

The numerical calculations throughout this work have been
performed for the case of S = 3/2. Since the three- and four-
magnon interactions discussed here are of the order of O(S1/2)
and O(S0), respectively, they only dominate for small values
of S; for S > 3/2, the magnon interactions are suppressed and
the LSWT becomes a reasonable approximation. That being
said, the enhancement of the anomalous transport induced by
the three-magnon interactions suggests that systems with both
low spin and strong in-plane DMI could constitute promis-
ing platforms for the realization of interaction-enhanced
SNE.

A first principle study [85] on honeycomb antiferromag-
nets has identified the materials MnPS3, MnPSe3, and VPS3

as potential Neel ordered antiferromagnets. While the Mn-
based materials, with S = 5/2, are already under investigation
for their nonreciprocal band splitting [86] and magnon trans-
port [87,88], the recently synthesized VPS3 [89] can present
a viable alternative due to its smaller spin, S = 3/2. Ad-
ditionally, both the in-plane DMI and easy-axis anisotropy,
which are crucial parameters for the onset of magnon in-
teractions, can be manipulated via interfacial engineering
[90,91], a research direction that remained to be further
developed.

V. DISCUSSION AND CONCLUSION

Computing the magnon transport within the LSWT has led
to the prediction of a wealth of intriguing transport effects
and nontrivial topology in both ferromagnetic and antifer-
romagnetic systems [34–36]. Nevertheless, although rather
straightforward and well-established, this approach fails to
account for several effects that are rooted in the nonlinear
magnon interactions. This is particularly spectacular when
considering the anomalous transport in ferromagnetic and
antiferromagnetic lattices where, in the presence of inver-
sion symmetry breaking, such interactions lead to substantial
modification of the band structure and transport properties, in-
cluding topological transitions [51,68,69]. By focusing on the
honeycomb antiferromagnet with in-plane DMI, we show that
the three-magnon interactions can cause a nonreciprocal band
splitting, even at T = 0, and a small temperature renormal-
ization at higher temperatures. Additionally, the four-magnon
interactions cause a large renormalization of the magnon

054429-7



SOUROUNIS AND MANCHON PHYSICAL REVIEW B 110, 054429 (2024)

spectrum at higher temperatures. The combination of these
two effects can cause an enhancement of transverse trans-
port with expected advantages at low temperatures, while
transport at higher temperatures may be rooted in magnon-
phonon interactions, which we do not account for in this
work.

The present work is limited to small values of the in-plane
DMI, as it can be a source of a magnetic phase transition away
from the collinear antiferromagnetic Neel state. Nonetheless,
the nonreciprocity it induces is rather large, even at zero
temperature, which is remarkable as it paves the way to
nonreciprocal interacting transport in antiferromagnets. Ad-
ditionally, since the in-plane DMI makes Sz a nonconserved
quantity, it breaks the hermicity of the magnon Hamiltonian,
thereby shortening the lifetime of the magnonic quasiparti-
cles, as indicated by the spectral function displayed in Fig. 4.
The non-Hermitian contributions to the self-energy do not
only limit the magnon lifetime though but can also influence
the topology of the non-Hermitian quantum states [67,92].
Modeling the transport properties resulting from such a “non-
Hermitian topology” requires the development of a quantum
transport formalism that does not compute the response ten-
sor from the effective quantum states, as performed in most
magnonic studies including this one [see Eqs. (8) and (9)],
but rather from the full interacting Green’s functions of the
system, as recently proposed [81].

While the in-plane DMI studied in the present work is
one possible mechanism that introduces three-magnon inter-
actions, noncollinear antiferromagnets are a natural platform
for the onset of interactions. Such antiferromagnets have
recently garnered attention in the context of antiferromag-
netic spintronics [35,52–54]. Predictions of unconventional
magnon anomalous and spin Nernst effects [55–57] and
electron-magnon drag effects [93] have been recently made
in a 120◦ antiferromagnetic kagome lattice in the context of
LSWT. Because magnon interactions strongly influence the
band structure and quasiparticle lifetime in this system [65],
one cannot avoid accounting for these interactions to properly
model these phenomena.

Finally, the present perturbation theory is based on the
assumption that the magnons remain bosons up to relatively
high temperatures and that HP expansion up to the fourth
order in the magnon operators is sufficient. This question is
central to the vast field of frustrated magnetism and we do
not intend to provide an in-depth discussion of alternative
theoretical approaches that could be used to address the prob-
lem of magnon interactions. Nonetheless, comparing such
alternative formalisms with the perturbation theory considered
in the present work, as proposed for instance in Ref. [68],
would undoubtedly help better understanding the condition
of the emergence of these interactions and define upper and
lower quantitative boundaries on their influence on magnon
transport.
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APPENDIX A: DIAGONALIZATION OF THE
HAMILTONIAN

The diagonalization of an antiferromagnetic magnon
Hamiltonian is a lot less straightforward than the case of fer-
romagnetic magnons due to its Bogoliubov-de-Gennes (BdG)
bosonic nature. Throughout the main text, we use both a
numerical (based on Refs. [77,94]) and an analytical diago-
nalization (based on Ref. [76]). For the sake of completeness,
we briefly discuss how the Hamiltonian (1) is solved in the
LSWT by using both methods.

The BdG Bosonic Hamiltonian has the general form

H (k) =
(

Âk B̂k

B̂†
k ÂT

−k

)
, (A1)

and to diagonalize it numerically we can use the following
scheme. We first Cholensky decompose the Hamiltonian as
H (k) = K̂†

k K̂k. To perform the Cholensky decomposition, the
Hamiltonian must be positive definite, which physically corre-
sponds to the bosons having positive energies at all times. The
energy matrix Êk is obtained by finding the matrices Ûk that
diagonalize K̂kĜkK̂†

k and satisfy the identity Û †
k K̂kĜkK̂†

kÛk =
L̂k, where Êk = ĜkL̂k. We can now calculate the matrices that
diagonalize the original Hamiltonian as T̂ †

k ĤkT̂k = Êk and
can be used to calculate the Berry curvature and other useful
quantities from T̂k = K̂−1

k Ûk

√
Êk.

This method can in theory numerically solve any antifer-
romagnetic magnonic problem, but an analytical solution is
useful as discussed in the main text, especially for computing
transport properties. We alternatively write the Hamiltonian of
Eq. (4) with an extra element C and express the diagonaliza-
tion matrix in the extended basis �k = [ak, bk, a†

−k, b†
−k],

Hk =

⎛
⎜⎜⎝

A+
k C∗

k 0 B∗
k

Ck A+
k B∗

k 0
0 Bk A−

k Ck
Bk 0 C∗

k A−
k

⎞
⎟⎟⎠, (A2)

T̂k =

⎛
⎜⎜⎝

T11 T12 T13 T14

−T11 T12 −T13 T14

T ∗
13 T ∗

14 T ∗
11 T ∗

12−T ∗
13 T ∗

14 −T ∗
11 T ∗

12

⎞
⎟⎟⎠, (A3)

where A±
k = Ak + Dzg±k. The Dz term commutes with T̂k so

it only affects the energies and not the T̂k itself, so we can
suppress the ± index for calculating the analytical expression
of T̂k. The k subscripts of the elements of T̂k have been
dropped for better readability.

We first present the solution for the simpler A-B model
(Ck = 0, Ak, Bk �= 0). The energies are given as ε±k = ωk +
Dzg±k where ωk =

√
A2

k − |Bk|2 and g±k = ±gk. The diago-
nalization matrix has the analytical solution

T11 =
√

Ak + ωk

4ωk
, T12 = −

√
Ak + ωk

4ωk
,

T13 =
√

Ak − ωk

4ωk
eiφB , T14 =

√
Ak − ωk

4ωk
eiφB ,
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where Bk = |Bk|eiφB . This theory is given for the extended
4×4 magnon basis. The same result can be given for the A-B
model for the reduced 2×2 basis as described in Sec. II of the
main text and was used to derive the magnon SNE [14,15].

We then give the solution for the A-C model (Bk =
0, Ak,Ck �= 0) which is relevant to the effective model of
our three-magnon interactions. The energies now read ω±

k =
Ak ± |Ck|, and the elements of the diagonalization matrix F̂k
read

F11 =
√

Ak − |Ck|χ−
k + ω−

k

4ω−
k

, F13 = 0,

F12 =
√

Ak + |Ck|χ+
k + ω+

k

4ω+
k

, F14 = 0, (A4)

where χ±
k = −1 + 2( ±Ak (2−cos φC )+|Ck|

±Ak+|Ck| cos φC
), and Ck = |Ck|eiφC .

For the analytical solution, we use the expression of the Berry
curvature given in Eq. (7). For the numerical solution, the
alternative expression of Ref. [55] should be used.

APPENDIX B: FOUR-MAGNON MEAN-FIELD THEORY

We consider the expanded Fourier transformed Hamil-
tonian of Eq. (10) and perform a mean-field theory ap-
proximation. After performing a Bogoliubov transform, the
expectation values of the pair correlators read [76,83]

〈a†
qaq〉 = |T11|2n(ε+,q) + |T14|2(n(ε−,q) + 1), (B1)

〈b†
qbq〉 = |T12|2n(ε−,q) + |T13|2(n(ε+,q) + 1), (B2)

〈aqbq〉 = T11T13(n(ε+,q) + 1) + T12T14n(ε−,q), (B3)

〈a†
qb†

q〉 = T ∗
11T ∗

13n(ε+,q) + T ∗
12T ∗

14(n(ε−,q) + 1). (B4)

We see that the mean-field terms have two parts, one that is
proportional to the boson distribution and vanishes at T = 0,
and one that is finite even at T = 0. The former is referred
to as the thermal contribution, and the latter is the quantum
fluctuation contribution. The quantum fluctuation term comes

from the commutation relations of the bosons, which are of
different order due to the Bogoliubov transformation. Using
this mean-field expansion, the first term in Eq. (10) is written
as a combination of two-magnon pair correlators,

f (k4)a†
k1

ak2 ak3 bk4 = 2 f (k)〈a†
qaq〉akbk + 2 f (q)〈aqbq〉a†

kak.

(B5)

This way, the Hamiltonian H (4)
HP can be written in the form

given by Eq. (12), with

EJ (q, T ) = − J

2N

∑
q

( f (q)〈aqbq〉 + f ∗(q)〈a†
qb†

q〉

+2 f (0)〈b†
qbq〉), (B6)

Ea
K (q, T ) = −K

N

∑
q

〈a†
qaq〉, (B7)

FJ (k, q, T ) = − J

2N

∑
q

( f (k)[〈a†
qaq〉 + 〈b†

qbq〉]

+ 2 f (k − q)〈a†
qb†

q〉), (B8)

Ha
Dz

(k, q, T ) = − Dz

2N

∑
q

(g(k) + g(q))〈a†
qaq〉 (B9)

and E±
k = Ek ± Hk. These terms are given for the a-

sublattice, and we get the terms for b-sublattice by exchanging
a with b operators.

APPENDIX C: THREE-MAGNON SELF-ENERGIES

1. Vertex terms

By starting with Eq. (14), where the magnons are written
in the Fourier-transformed physical magnon basis, we per-
form the Bogoliubov transform that diagonalizes the magnons
and transforms them in the eigenmagnon basis. We get two
types of combinations of operators (and their Hermitian con-
jugates): two magnons decaying into one, and three magnons
decaying into the vacuum, which are proportional to vertex
terms �. The different vertex terms � are given here in detail:

�+←++ = �+←++
−q←k,−(k+q) + �+←++

q←−k,k+q = VkTk,a+T ∗
k+q,b+Tq,b+ + VkT ∗

q,a+Tk+q,a+T ∗
k,b+ (C1)

�−←−− = �−←−−
q←−k,k+q + �−←−−

−q←k,−(k+q) = V ∗
k T ∗

k,a−Tk+q,b−T ∗
q,b− + V ∗

k Tq,a−T ∗
k+q,a−Tk,b− (C2)

�+←+− = �+←+−
k←−q,k+q + �+←+−

−(k+q)←−q,−k + �+←+−
k+q←k,q + �+←+−

−k←q,−(k+q)

= V ∗
k T ∗

k,a+Tk+q,b−T ∗
q,b+ + V ∗

k T ∗
k,a−Tk+q,b+T ∗

q,b+ + V ∗
k Tq,a+T ∗

k+q,a+Tk,b− + V ∗
k Tq,a+T ∗

k+q,a−Tk,b+ (C3)

�−←+− = �−←+−
k+q←k,q + �−←+−

−k←−(k+q),q + �−←+−
k←k+q,−q + �−←+−

−(k+q)←−q,−k

= VkTk,a+T ∗
k+q,b−Tq,b− + VkTk,a−T ∗

k+q,b+Tq,b− + VkT ∗
q,a−Tk+q,a+T ∗

q,a− + VkT ∗
q,a−Tk+q,a−T ∗

k,b+ (C4)

�0←++− = �0←++−
k,−(k+q),q + �0←++−

−k,(k+q),−q = VkTk,a+T ∗
k+q,b+Tq,b− + VkT ∗

q,a−Tk+q,a+T ∗
k,b+ (C5)

�0←+−− = �0←+−−
−q,k+q,−k + �0←+−−

q,−(k+q),k = V ∗
k T ∗

a−Tk+q,b−T ∗
q,b+ + V ∗

k Tq,a+T ∗
k+q,a−Tk,b−. (C6)

The summation over ± in the main text is taken only over the combination given in � as some combinations are not permitted
by the nature of the Bogoliubov transform.
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2. Self-energies

We now calculate the self-energies for the general Hamiltonian Eq. (15). In the limit of T = 0, they were given in
Refs. [64,65]. To obtain the self-energies in Eqs. (17)–(19), we inject Eq. (15) in Eq. (16), i.e.,

〈T Ĥ (3)(τ1)Ĥ (3)(τ2)ck,α (τ )c†
k,β (0)〉, (C7)

which can be separated into two different terms,

�
λ1μ1←ν1
p1←k1,q1

�
ν2←λ2μ2
p2←k2,q2

〈
T c†

k1,λ1
(τ1)c†

q1,μ1
(τ1)cp1,ν1 (τ1)ck2,λ2 (τ2)cq2,μ2 (τ2)c†

p2,ν2
(τ2)ck,α (τ )c†

k,β (0)
〉
, (C8)

�
0←λ1μ1ν1
0←k1,q1,−p1

�
λ2μ2ν2←0
k2,q2,−p2←0

〈
T ck1,λ1 (τ1)cq1,μ1 (τ1)c−p1,ν1 (τ1)c†

k2,λ2
(τ2)c†

q2,μ2
(τ2)c†

−p2,ν2
(τ2)ck,α (τ )c†

k,β (0)
〉
. (C9)

Using Wick’s theorem, we get three forms of diagrams:
the disconnected ones which are eliminated, the tadpole dia-
grams that integrate to zero, and the bubble diagrams which
contribute to our three-magnon interactions, as illustrated in
Fig. 1(c). We express these terms as a function of the nonin-
teracting Green’s functions,

�
αμ←ν

k,q←k+q�
ν←βμ

k+q←k,qGα (k, τ − τ1)

× Gλ(k, τ2 − τ1)Gν (k + q, τ1 − τ2)Gβ (k, τ2), (C10)

�λα←ν
k,q←k+q�

ν←λβ

k+q←k,qGα (k, τ − τ1)

× Gμ(q, τ2 − τ1)Gν (k + q, τ1 − τ2)Gβ (k, τ2), (C11)

�
λμ←α

k,q←k+q�
β←λμ

k+q←k,qGα (k + q, τ − τ2)

× Gμ(q, τ2 − τ1)Gλ(k, τ2 − τ1)Gβ (k + q, τ1), (C12)

and for Eq. (C9),

�
αμν←0
k,q,−(k+q)←0�

0←βμν

0←k,q,−(k+q)Gα (k, τ − τ2)

× Gλ(q, τ1 − τ2)Gν (−(k + q), τ1 − τ2)Gβ (k, τ2),
(C13)

�λαν←0
k,q,−(k+q)←0�

0←λβν

0←k,q,−(k+q)Gα (k, τ − τ2)

× Gμ(q, τ1 − τ2)Gν (−(k + q), τ1 − τ2)Gβ (k, τ2),
(C14)

�
λμα←0
k,q,−(k+q)←0�

0←λμβ

0←k,q,−(k+q)Gα (−(k + q), τ − τ2)

× Gλ(q, τ1 − τ2)Gμ(k, τ1 − τ2)Gβ (−(k + q), τ2).
(C15)

Then, using the Fourier transform of the Green’s func-
tion G(0)

k,αβ (τ1 − τ2) = 1
β

∑
ωn

e−iωn (τ1−τ2 )G(0)
k,αβ (ωn), we ob-

tains terms of the following forms for Eq. (C8):

�
αμ←ν

k,q←k+q�
ν←βμ

k+q←k,qGα (k, kn)Gλ(q, qn)

× Gν (k + q, kn + qn)Gβ (k, kn), (C16)

�λα←ν
k,q←k+q�

ν←λβ

k+q←k,qGα (k, kn)Gμ(q, qn)

× Gν (k + q, kn + qn)Gβ (k, kn), (C17)

�
λμ←α

k,q←k+q�
β←λμ

k+q←k,qGα (k + q, kn)Gμ(q, qn)

× Gλ(k, kn − qn)Gβ (k + q, kn), (C18)

�
αμν←0
k,q,−(k+q)←0�

0←βμν

0←k,q,−(k+q)Gα (k, kn)Gλ(q, qn)

× Gν (−(k + q),−(kn + qn))Gβ (k, kn), (C19)

�λαν←0
k,q,−(k+q)←0�

0←λβν

0←k,q,−(k+q)Gα (k, kn)Gμ(q, qn)

× Gν (−(k + q),−(kn + qn))Gβ (k, kn), (C20)

�
λμα←0
k,q,−(k+q)←0�

0←λμβ

0←k,q,−(k+q)Gα (−(k + q), kn)

× Gλ(q, qn)Gμ(k,−(kn + qn))Gβ (−(k + q), kn).
(C21)

Then we perform a Matsubara zero-frequency summation to
get the self-energies of Eqs. (17)–(19) [84]. The first two
equations sum up to the �ii

k term, and the third to the �i
k

term. The last three equations give the same self-energy con-
tribution �iii

k . �i
k and �ii

k are also present in the case of the

FIG. 7. Spectral function at K-point as a function of K ′, for
[(a) and (b)] Dz = 0 and [(c) and (d)] Dz = 0.1J , and for [(a) and
(c)] T = 0 and [(b) and (d)] T = 1J . The white dashed line indicates
K ′ = 0.2 which corresponds to the limit of well-defined magnon
excitations at any temperature.
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FIG. 8. Spectral function along the high-symmetry path of the
Brillouin zone for K ′ = 0.02(2S − 1)/S, for [(a) and (b)] Dz = 0 and
[(c) and (d)] Dz = 0.1J , and for [(a) and (c)] T = 0 and [(b) and (d)]
T = 1J . The opaque white overlay presents the continuum of the
models.

ferromagnetic magnons while �ii
k is unique to antiferromag-

netic magnons.

APPENDIX D: EASY AXIS STABILIZATION

It is well known that in magnon-magnon interactions the
continuum plays an important role in the “good” definition
of magnons. In other words, if the magnon continuum is too
close to the (interaction-renormalized) one-magnon bands,
then these magnons are ill defined. In ferromagnets, field-
polarization by a magnetic field was considered to push
the continuum far from the single-particle spectrum [68]. In

antiferromagnets, the magnetic field can cause a phase tran-
sition to spin-flop phases and ferromagnetism and thus
destabilize the antiferromagnetic order. Instead, we consider
the easy-axis anisotropy as the stabilization mechanism that
can be tuned along with the in-plane DMI by interfacial engi-
neering, as mentioned in Sec. IV.

In Fig. 7, we compute the spectral function at the K-point
as a function of the easy-axis anisotropy. We see that for small
anisotropy, the magnons are not well defined, resulting in a
blurry signature. The white dashed line indicates the value
K ′ = 0.2J , which we adopt throughout most of the work, as
the lower limit of the easy-axis anisotropy where the magnons
are well defined.

The magnon interactions are kinematically allowed only in
certain energies and momenta combinations [64,65]. A good
way to estimate whether such interactions are allowed is the
two-magnon density of states (DOS) [68],

Di(ε)k =
∑
γ γ ′

∑
q

δ(ε − εq,γ − εk−q,γ ′ ), (D1)

Dii(ε)k =
∑
γ γ ′

∑
q

δ(ε + εq,γ − εk+q,γ ′ ), (D2)

Diii(ε)k =
∑
γ γ ′

∑
q

δ(ε + εq,γ + ε−k−q,γ ′ ). (D3)

where δ(x) is the Dirac delta function, the indices i–iii cor-
respond to the denominators in Eqs. (17)–(19) and the total
DOS is Dk(ε) = Di

k(ε) + Dii
k (ε) + Diii

k (ε).
The opaque white overlay in Figs. 5 and 8 represents the

two-magnon DOS. When the spectral functions cross with
the DOS, magnon decay occurs and the magnon quasiparticle
lines are blurred. This is better illustrated in Fig. 8 where a
smaller easy-axis anisotropy is chosen for the same values of
DMI as Fig. 6. It is obvious that in this case, the three-magnon
interactions make the magnon quasiparticles ill defined. For
this reason, a high easy-axis anisotropy is necessary to stabi-
lize the antiferromagnetic magnons under strong interactions.
We comment that if the magnons are kinematically protected
against three-magnon interactions, then they should also be
protected against four- and higher-order magnon interactions
[63,64].
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