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The S = 1/2 hyperkagome-lattice Heisenberg antiferromagnet allows us to study the interplay of geometrical
frustration and quantum as well as thermal fluctuations in three dimensions. We use 16 terms of a high-
temperature series expansion complemented by the entropy-method interpolation to examine the specific heat
and the uniform susceptibility of this model. We obtain thermodynamic quantities for several possible scenarios
determined by the behavior of the specific heat as T → 0: A power-law decay with the exponent α = 1, 2,
and also 3 (gapless energy spectrum) or an exponential decay (gapped energy spectrum). All scenarios give
rise to a low-temperature peak in c(T ) (almost a shoulder for α = 1) at T < 0.05, i.e., well below the main
high-temperature peak. The functional form of the uniform susceptibility χ (T ) below about T = 0.5 depends
strongly not only on the chosen scenario but also on an input parameter χ0 ≡ χ (T = 0). An estimate for
the ground-state energy e0 depends on the adopted specific scenario but is expected to lie between −0.441
and −0.435. In addition to the entropy-method interpolation we use the finite-temperature Lanczos method to
calculate c(T ) and χ (T ) for finite lattices of N = 24 and 36 sites. A combined view on both methods leads us to
favor the gapless scenario with α = 2 (but α = 1 cannot be excluded) and finite χ0 around 0.1.

DOI: 10.1103/PhysRevB.110.054428

I. INTRODUCTION

Frustrated quantum spin systems are a subject of intense
ongoing research in the field of magnetism [1–4]. Geometric
frustration and quantum fluctuations may prevent any ground-
state ordering even in three dimensions. Among several
famous examples, the S = 1/2 pyrochlore-lattice Heisenberg
antiferromagnet has attracted much attention, being for
decades a candidate for the realization of a spin-liquid state
in three dimensions [5]. After intense numerical studies,
a lattice symmetry breaking in the ground state has been
revealed [6–9].

A closely related example is the S = 1/2 hyperkagome-
lattice Heisenberg antiferromagnet. Inspired by experiments
on the spinel oxide Na4Ir3O8 [10], in which low spin d5 Ir4+

ions reside on the vertices of a hyperkagome lattice, several
theoretical studies for the classical (S → ∞) and quantum
(S = 1/2) Heisenberg antiferromagnet on such a lattice have
been performed [11–19]. The main focus of these studies
is at ground-state properties of the S = 1/2 hyperkagome-
lattice Heisenberg antiferromagnet. For the ground state of
this model a gapped quantum spin liquid with topological
order [12] and a gapless quantum spin liquid with spinon
Fermi surfaces [15] were proposed by Lawler et al.. While
the former proposal implies a nonzero spin gap, the latter one
points to gapless spin excitations. In contrast, Bergholtz et al.

*Contact author: derzhko@icmp.lviv.ua

[16] proposed a valence bond crystal with a 72-site unit cell
as the ground state of this model (thus, breaking translational
symmetry but not spin-rotational one). This proposal implies
a spin gap with a huge number of singlet excitations below the
lowest triplet state and thus a power law for the specific heat
and a vanishing susceptibility for vanishing temperature.

The finite-temperature properties of the S = 1/2
hyperkagome-lattice Heisenberg antiferromagnet have also
been considered [15–17,19]. For the gapless quantum spin
liquid of Ref. [15], it was argued that c(T ) ∝ T 2 at low
T (similarly to what is observed for Na4Ir3O8 [10]) and
that χ (T ) is constant at low T (again in agreement with
experimental data for Na4Ir3O8 [10]). Application of the
pseudofermion functional renormalization group [19] also
shows that χ (T ) exhibits no divergence down to zero
temperature but only a very weak increase. In addition, high-
temperature series expansions for c and χ were developed
and compared with the experimental data for Na4Ir3O8 [17].

On the experimental side, apart from the mentioned iridate
compound Na4Ir3O8 [10], there are other candidates for a
solid-state realization of the hyperkagome-lattice Heisenberg
anitiferromagnet; see, e.g., Refs. [20–22]. Note, however, that
the 5d-based transition-metal oxides, such as Na4Ir3O8, are
known for having a large spin-orbit coupling so that the pure
nearest-neighbor Heisenberg Hamiltonian apparently should
be augmented by other terms relevant for such materials [23].
Detailed comparisons of c(T ) and χ (T ) between theory of
Refs. [15,17,19] and experimental data for Na4Ir3O8 [10] ex-
hibit noticeable discreapancies roughly below J/2 (J is about
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300 K for Na4Ir3O8) and even at higher temperatures for the
specific heat. The authors attributed this disagreement to an
incomplete subtraction of nonmagnetic contributions to the
experimentally measured c(T ) [17] and an insufficiency of
the spin-isotropic Heisenberg model for description of the S =
1/2 hyperkagome antiferromagnet Na4Ir3O8 [16,23]. Among
various spin-anisotropic perturbations one may single out the
Dzyaloshinskii-Moriya term, Kitaev term, and symmetric ex-
change anisotropic term [23].

The aim of the present paper is to examine the finite-
temperature properties of the S = 1/2 hyperkagome-lattice
Heisenberg antiferromagnet—a benchmark model of frus-
trated quantum magnets. At the moment, we do not intend to
compare theoretical findings with experiments since there are
no good solid-state examples of such a model yet. There are
not so many methods applicable to tackle the thermodynamics
of three-dimensional frustrated quantum spin systems. Quan-
tum Monte Carlo suffers from the sign problem [24], exact
diagonalization or finite-temperature Lanczos methods are re-
stricted to too small lattices [25–27], the density-matrix renor-
malization group technique requires a mapping via a “snake”
path to a one-dimensional system [28]. Besides, the pseudo-
fermion functional renormalization group approach focuses
on the wave-vector-dependent susceptibility [19], whereas
one more universal method, the rotation-invariant Green’s
function method [29–35], has not been applied to the S = 1/2
hyperkagome-lattice Heisenberg antiferromagnet so far.

In our study, we utilize the high-temperature series ex-
pansions to the order of β16 (β = 1/T ) provided by Singh
and Oitmaa in Ref. [17]. Singh and Oitmaa used the
high-temperature series to compute various thermodynamic
properties down to a temperature [36] of about T ≈ 0.25 [17].
However, this range can be extended down to zero temperature
if one combines the series expansion with possible assump-
tions about the low-energy spectrum of the spin model within
the framework of the “entropy method.” The entropy-method
interpolation of high-temperature series expansions was sug-
gested by Bernu and Misguish [37] and later used in several
studies [38–45]. In the present paper, we unite the series
expansion [17] and the entropy method [37–39,41,42,44] to
get the temperature dependence for the specific heat c(T ) and
the uniform susceptibility χ (T ) of the S = 1/2 hyperkagome-
lattice Heisenberg antiferromagnet over the full temperature
range. We also obtain a prediction for the ground-state en-
ergy of the model e0, which provides self-consistency of the
entropy-method calculations. Our entropy-method results are
accompanied by finite-temperature Lanczos method data for
finite lattices up to 36 sites.

The remainder of this paper is organized as follows. In
Sec. II we introduce the model and briefly explain the methods
to be used for obtaining the thermodynamic quantities. Then,
in Sec. III, we report our results for the ground-state energy
e0, the specific heat c(T ), and the uniform susceptibility χ (T ).
Finally, we summarize our findings in Sec. IV.

II. MODEL AND METHODS

The hyperkagome lattice has been described in several
papers. It can be viewed as a three-dimensional network of
corner-sharing triangles with 12 sites in a cubic unit cell.

FIG. 1. The hyperkagome lattice. The unit cell contains 12
equivalent sites r1, . . . , r12 (1) denoted as 1, . . . , 12. Each site is
connected to its four closest neighbors by bonds (black lines). For
more details of the lattice see the main text. We also display the
underlying pyrochlore lattice.

It also can be viewed as a 1/4 depleted pyrochlore lattice,
meaning that three out of the four sites in every tetrahedron
are occupied by spins. As a result, each spin of the three-
dimensional hyperkagome lattice has only four nearest neigh-
bors just as for the two-dimensional kagome lattice. There are
several different conventions regarding the coordinates of lat-
tice sites (see, e.g., Refs. [23,46–48]). According to Fig. 1, we
define the sites on the hyperkagome lattice by Rnα = Rn + rα .
Here Rn = nxex + nyey + nzez, where nx, ny, nz are integers
and ex = (1, 0, 0), ey = (0, 1, 0), ez = (0, 0, 1), generates a
simple cubic lattice. Moreover, the origins of the 12 equivalent
sites in the unit cell may be defined by rα , α = 1, . . . , 12 with

r1 = 1
4 (−2, 0, 2), r2 = 1

4 (−1, 3, 2), r3 = 1
4 (−2, 3, 1),

r4 = 1
4 (−1, 1, 0), r5 = 1

4 (−2, 1, 3), r6 = 1
4 (−1, 2, 3),

r7 = 1
4 (−3, 2, 1), r8 = 1

4 (0, 2, 2), r9 = 1
4 (0, 1, 1),

r10 = 1
4 (−3, 3, 0), r11 = (0, 0, 0), r12 = 1

4 (−3, 0, 3).

(1)

In Fig. 1, we denote r1, . . . , r12 by 1, . . . , 12. In addition, we
display 13 sites of the nearby unit cells by 11 − x + y + z,
11 − x + z, 8 − x, and so on, where, e.g., 11 − x + y + z
means r11 − ex + ey + ez, and so on.

In the present paper we consider the isotropic Heisenberg
Hamiltonian on the hyperkagome lattice, which is given by

H =
∑

〈mα;nβ〉
Smα · Snβ. (2)

No extra interactions which may be relevant for solid-state
compounds like Na4Ir3O8 are included here, i.e., we treat a
kind of idealized minimal model without complicated details
but which already provides an interplay between geometrical
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frustration and quantum and thermal fluctuations. In Eq. (2),
the sum runs over the nearest-neighbor bonds of the hyper-
kagome lattice and Smα represents the S = 1/2 spin-vector
operator at the lattice site Rmα . Expanding the sum in Eq. (2)
for fixed m, one gets 24 bonds, that is, 15 bonds connecting
the sites within the unit cell with the same cell index m
and 9 bonds connecting the sites of the unit cell m with the
sites of the neighboring unit cells m − ex, m − ey, m − ez,
m − ex + ey, m + ex − ez, and m + ey − ez; see Fig. 1. The
remaining 4 bonds in Fig. 1, i.e., the ones which connect the
sites 1 + y and 12 + y, 8 − x and 9 − x, 9 − x and 11 − x, and
11 − x + y + z and 12 + y (cf. the bonds connecting the sites
1 and 12, 8 and 9, 9 and 11, and 11 − x + z and 12), are shown
here for the sake of clarity.

It is worth noting that the hyperkagome lattice has similar-
ities with the two-dimensional kagome lattice (corner-sharing
triangles in two dimensions), as well as with the three-
dimensional pyrochlore lattice (corner-sharing tetrahedrons in
three dimensions), which could be considered the “mother”
crystal structure; see Fig. 1. An important property is that
all three lattices support dispersionless (flat) one-magnon
bands. The shortest closed loop on the hyperkagome lattice
beyond the triangles is a decagon; it involves 10 bonds. The
shortest cycle on the kagome and pyrochlore lattices be-
yond the triangles is a hexagon; it involves six bonds. Since
the even-numbered regular polygon (decagon or hexagon) is
surrounded by isosceles triangles, the single-spin-flip state∑

j∈polygon(−1) jS−
j |↑ . . . ↑〉 cannot escape the polygon due to

destructive quantum interference and one faces a localized-
magnon state, which lives on the respective decagon or
hexagon, and belongs to a flat band, for more details see
Refs. [49,50].

In the remaining part of this section, we briefly explain the
exploited methods: Numerics for finite-size lattices and high-
temperature series complemented with the entropy-method
interpolation. Here we only report the key elements necessary
to state our results in Sec. III.

First, we determine numerically temperature dependencies
for periodic lattices of N = 12 sites (exact diagonalization)
and N = 24, 36 sites (finite-temperature Lanczos method);
for a similar study of the S = 1/2 pyrochlore-lattice Heisen-
berg antiferromagnet see Refs. [42,51]. Since the unit cell
for the hyperkagome lattice contains 12 sites, finite-lattice
numerics is restricted to one unit cell [15] and two or three
unit cells arranged as a chain. Within the finite-temperature
Lanczos method, the sum over an orthonormal basis in the
partition function is replaced in a Monte Carlo fashion by a
much smaller sum over R random vectors where each random
vector is employed for a trace estimation [25]. In the present
study we take R = 200 for N = 24 and R = 20 for N = 36.
More details about finite-lattice calculations can be found
in Refs. [25–27,52,53]. Our numerical results for finite-size
lattices are reported and discussed in Sec. III.

Second, we utilize the high-temperature series expansion
up to 16th order, which was reported in Ref. [17] (the Magde-
burg HTE code [54,55] yields the same series of the specific
heat and the static uniform susceptibility, however, only up to
13th order), and employ the entropy method [37–39] to ob-
tain temperature dependencies at all temperatures for infinite
lattice.

FIG. 2. Padé approximants of the high-temperature series [17]
for (top) the specific heat and (bottom) the uniform susceptibility.
They start to deviate from each other in both panels below T ≈ 0.5.

As is well known, the raw high-temperature series ex-
pansion may be improved by simple Padé approximants
[u, d](T ) = Pu(β )/Qd (β ). Here Pu(β ) and Qd (β ) are polyno-
mials of order u and d , u + d � 16, and the series expansion
of [u, d](T ) coincides with the high-temperature series of c
or χ up to 16th order with respect to β = 1/T . Comparing
close to diagonal Padé approximants in Fig. 2, we conclude
that they start to deviate notably one from another below
T ≈ 0.5 and thus can reproduce the high-temperature peak
of c(T ) at T ≈ 0.67, but not any of the specific features
of χ (T ) since χ (T ) increases monotonously to tempera-
tures well below T = 0.5 and also has got its maximum
below T = 0.5.

Within the entropy method [37–39] one interpolates the
entropy (per site) s as a function of the mean (internal) energy
(per site) e, s(e). As e approaches its maximal value e∞ =
E (T → ∞)/N = tr(H )/N = 0, the entropy is known from
high-temperature series expansion, s(e) = ln 2 + ∑

i>1 aiei

(i.e., the coefficients a2, . . . , a16 are known; see Ref. [37]).
As e approaches its minimal (ground-state) value e0, the
entropy behaves as s(e) ∝ (e − e0)α/(1+α) if c(T ) = AT α for
T → 0 (gapless low-energy excitations) or as s(e) ∝ −[(e −
e0)/�](ln[�(e − e0)] − 1) if c(T ) ∝ e−�/T /T 2 for T → 0
(gapped low-energy excitations). Next, we interpolate, instead
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of s(e), an auxiliary function G(e), different for the two types
of low-energy excitations (the choice of G(e) was discussed in
detail in Refs. [37,38]), which immediately gives s(e). Such
approximate quantities acquire the subscript “app.” For the
gapless case we have

G(e) = [s(e)]
1+α
α

e − e0
→ Gapp(e) = (ln 2)

α
1+α

−e0

Pu(e)

Qd (e)
;

sapp(e) = [(e − e0)Gapp(e)]
α

1+α . (3)

And for the gapped case we have

G(e) = (e − e0)

[
s(e)

e − e0

]′
→ Gapp(e) = ln 2

e0

Pu(e)

Qd (e)
;

sapp(e)

e − e0
= ln 2

−e0
−

∫ 0

e
dξ

Gapp(ξ )

ξ − e0
. (4)

Here Pu(e) and Qd (e) are the polynomials of order u and
d , u + d � 16, and the series expansion of the quotient
[u, d](e) = Pu(e)/Qd (e) coincides with the Maclaurin series
of G(e) known up to 16th order. Besides, the prime denotes
the derivative with respect to e. Knowing the dependence
s(e), we obtain the desired temperature dependence of the
specific heat c(T ) in parametric form: T = 1/s′(e) and c =
−[s′(e)]2/s′′(e). Finally, we can calculate either the prefactor
A, Aapp = [α1+α/(1 + α)α][Gapp(e0)]α , for the gapless case or
the energy gap �, �app = −1/Gapp(e0), for the gapped case.
In the presence of a (small) external magnetic field h one gets
the entropy sapp(e, h) which yields the uniform susceptibil-
ity χ via the relations: m = [1/s′(e, h)]∂s(e, h)/∂h, χ = m/h
(h → 0). For further details see Refs. [37–39,41,42,44].

Thus, to obtain the thermodynamic quantities within the
framework of the entropy method one needs, besides the high-
temperature series for c and χ , to know (i) the ground-state
energy e0, (ii) how c(T ) vanishes as T → 0, and (iii) the value
of χ0 ≡ χ (T = 0) in the case of gapless low-energy excita-
tions. Even if the precise value of e0 is not available and both
gapless and gapped excitations are acceptable, one can pro-
ceed as in Ref. [41]. First, one has to assume some reasonable
value e0 in order to explore a certain region of e0 systemati-
cally. Second, one has to assume the exponent α in the case of
a gapless spectrum or one has to assume that the spectrum is
gapped. Then, for the assumed e0 and gapless/gapped energy
spectrum one has to calculate within the entropy method the
specific heat c(T ) using all nP available Padé approximants
[u, d](e). There are n + 1 Padé approximants based on the
series up to nth order. We discard from the very beginning
four Padé approximants [n, 0], [n − 1, 1], [1, n − 1], [0, n]
so that nP = n − 3. Next, one has to examine the “closeness”
of all nP profiles c(T ). To this end, we inspect them thor-
oughly from some high temperature Ti down to Tf < Ti with
temperature steps �T . If the absolute value of the difference
of a certain c from the arithmetic mean value for this bundle,
c, at a running temperature T (Tf � T � Ti) is less than,
e.g., 0.001, then this c belongs to the set of “coinciding”
Padé approximants. Otherwise, this Padé approximant is dis-
carded and not considered for lower temperatures. According
to Refs. [41,44], a large number of coinciding curves ncP, or
more precisely a large value of p = ncP/nP, provides evidence

FIG. 3. The ratio of the number of “coinciding” entropy-method
Padé approximants ncP to the number of all considered entropy-
method Padé approximants nP, p = ncP/nP, based on the series of
16th order as a function of the chosen value of e0. Here Ti = 0.5,
�T = 0.025, Tf = 0.1; see the main text. We consider several as-
sumptions, gapless and α = 1 (blue), α = 2 (red), α = 3 (orange),
or gapped (green) low-energy excitations.

that the assumptions made about e0 and the low-energy exci-
tations are self-consistent.

In Fig. 3 we illustrate such an analysis based on nP =
13 Padé approximants (obtained from the 16th order high-
temperature series expansion) in Eqs. (3) or (4) for the
specific heat c(T ) under the assumption of a gapless spec-
trum (blue, red, and orange) or a gapped spectrum (green).
Here we set Ti = 0.5, �T = 0.025, Tf = 0.1. If e0 is taken
in the range [−0.438 5,−0.435 9] assuming a gapless spec-
trum and α = 1, i.e., c(T ) = AT as T → 0, then we find
that ncP = 8 and p ≈ 0.62. In addition, for the prefactor A
we obtain the interval [5.62,7.74]. Similarly, if e0 is taken
in the range [−0.440 2,−0.437 9] assuming c(T ) = AT 2 as
T → 0, then we find that ncP = 6, p ≈ 0.46, whereas A be-
longs to the interval [493,727]. And for e0 taken in the
range [−0.440 7,−0.438 4] under the assumption c(T ) =
AT 3 as T → 0, we find ncP = 6 and p ≈ 0.46. Finally,
assuming a gapped spectrum and taking e0 in the range
[−0.438 1,−0.435 3], we find p = 4/13 ≈ 0.31. In addition,
the energy gap � for the lower e0 = −0.438 1 is 0.025,
whereas for the higher e0 = −0.435 3 it is 0.018. In Fig. 3 we
show the explicit dependence of p on e0 under the mentioned
assumptions on the behavior of c(T ) as T → 0 to illustrate
our reasonings.

Acting in accordance with the strategy of Refs. [41,44],
we may estimate the entropy-method prediction for the
ground-state energy e0 as follows: Under the assumption of
gapless excitations, e0 depends on α but remains within the
range [−0.440 7,−0.435 9], whereas under the assumption of
gapped excitations, e0 ∈ [−0.438 1,−0.435 3]. In what fol-
lows, we use this missing input parameter e0 for the entropy
method, considering all assumptions about c(T ) as T → 0,
as well as the minimal and maximal values of e0 to obtain
the shaded areas for c(T ) and χ (T ); see Sec. III B. We note in
passing that the uniform susceptibility χ (T ) is less convenient
for seeking a large value of p = ncP/nP, since it requires

054428-4



THERMODYNAMICS OF THE S = 1
2 … PHYSICAL REVIEW B 110, 054428 (2024)

the additional parameter χ0 if the spectrum is gapless; see
also Ref. [41].

More details about the entropy-method calculations can be
found in Refs. [37–39,41,42,44]. Our entropy-method results
are reported and discussed in Sec. III.

III. RESULTS

A. Ground-state energy e0

We begin with the discussion of the ground-state energy of
the S = 1/2 hyperkagome-lattice Heisenberg antiferromag-
net. Various proposals about the nature of the ground state,
i.e., spin liquids or valence-bond crystals, yield e0 = −0.424
[15] or e0 = −0.430 115 [16]. Exact diagonalizations for N =
12, 24, 36 yield −0.453 74, −0.446 33, −0.445 10, that, ap-
parently, are underestimated values of the thermodynamically
large systems. As explained above, to provide consistency of
the entropy-method calculations, we have to assume for e0 the
values in the range [−0.441,−0.435]: This is a combination
of several possible scenarios of either a gapless (with α =
1, 2, 3) or a gapped energy spectrum. Yet another plausible
simple approach to determine e0 from the high-temperature
series expansion, which uses monotonous decrease of e(T )
as T decreases to zero; see Ref. [6], Supplemental Material,
Appendix D, yields e0 about −0.448. The determination of
e0 based on the high-temperature series expansion seems to
be rather formal, since it does not use any specific picture for
the ground state of the model at hand. However, the experi-
ence from other models, including exactly solvable ones and
precisely examined numerically ones, gives hints that it may
yield quite reasonable predictions [41,44].

It is worth noting that the ground-state energy per site
e0 for the hyperkagome lattice is quite close to the one for
the kagome lattice: −0.438 6(5) [56,57], −0.438 7 [58], but
is rather different from the one for the pyrochlore lattice:
−0.490(6) [6], −0.483 1(1) [7], −0.489 [9]. (Note that the
interrelation is maintained for the energies per bond for the
hyperkagome and kagome lattices, e0/2, and the pyrochlore
lattice, e0/3.) This observation indicates that the hyperkagome
and kagome systems share similar physics as T → 0, which
is different from the pyrochlore system.

B. Thermodynamic properties

We pass to the finite-temperature properties of the S =
1/2 hyperkagome-lattice Heisenberg antiferromagnet. First,
in Fig. 4 we report the temperature dependence of the specific
heat c(T ) and the uniform susceptibility χ (T ) obtained for
finite lattices of N = 12, 24, 36. Second, in Fig. 5 we report
c(T ) and χ (T ) obtained by the entropy method. Here several
possibilities, i.e., the gapless spectrum with α = 1, 2, 3 or the
gapped spectrum, were considered; see blue, red, orange, or
green curves, respectively. The ground-state energy e0 was
determined from the analysis of c(T ) as was explained in
Sec. II. We used [8, 8](e) in Eqs. (3) or (4) as well as the
region of e0 where p has a maximum; see Fig. 3, in order to
estimate the spread of the derived functions. For the gapless
excitations we set χ0 = 0, 0.08, 0.12, 0.16.

Let us now discuss the thermodynamic quantities of the
S = 1/2 hyperkagome-lattice Heisenberg antiferromagnet in

FIG. 4. Finite-lattice results for (top) the specific heat and
(bottom) the uniform susceptibility of the S = 1/2 hyperkagome-
lattice Heisenberg antiferromagnet (the insets present results in the
linear temperature scale). Exact-diagonalization (N = 12) and finite-
temperature Lanczos method (N = 24 and N = 36) data. The results
for N = 24 and N = 36 differ from each other below about T ≈ 0.2.

some detail. As it follows from the upper panel of Fig. 4,
the high-temperature peak of the specific heat does not show
any finite-size scaling; it is already provided by the calcula-
tions for one unit cell (N = 12). On these grounds, we thus
conclude that the curve of the specific heat at temperatures
of the high-temperature peak and above represents the ther-
modynamic limit [59]; see also N = 36 data in Fig. 5. The
position of the low-temperature peak, on the other hand, does
depend on the size. Moreover, the height decreases notably
with growing N . The results of the entropy method in Fig. 5
refer to the infinite lattice. As it follows from the upper panel
of Fig. 5, the specific heat c(T ) besides the high-temperature
peak at T ≈ 0.67 has an additional low-temperature maxi-
mum, which is about two times smaller and occurs below
T = 0.05 under both assumptions of gapless and gapped ex-
citations. For the case of the gapless excitations with α = 1,
the low-temperature peak is so small that it is perceived as a
shoulder; see the blue curve in the upper panel of Fig. 5.

As can be seen in the lower panel of Fig. 4, the maximum
of χ (T ) has a mild dependence on system size: The peak
position is about 0.204, 0.168, and 0.158 for N = 12, 24,
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FIG. 5. Entropy-method results for (top) the specific heat and
(bottom) the uniform susceptibility of the S = 1/2 hyperkagome-
lattice Heisenberg antiferromagnet. Blue, red, and orange curves
correspond to the gapless spectrum (c = AT α as T → 0) with α =
1, 2, 3, respectively, and green ones to the gapped spectrum (c∝
e−�/T /T 2 as T → 0). The shaded area (light blue, light red, light
orange, and light green) represents the region of e0 where p has
a maximum (see Fig. 3). Note that the shaded areas around blue
and green χ (T ) curves are narrow and almost invisible. We also
show N = 36 data (black, T � 0.1) and two simple Padé approx-
imants [7,7] and [8,8] for c(T ) and χ (T ) and color in gray the
region between them (T � 0.2); the shaded region for χ (T ) is rather
narrow and can be seen only just above T = 0.2. In the case of
gapless excitations, we examine the four values of χ0: 0, 0.08, 0.12,
and 0.16.

and 36, respectively. Moreover, the height remains practi-
cally unchanged being around 0.147 for all N . This behavior
can be traced back to the size of the singlet-triplet gap for
these systems. Its value is �s-t ≈ 0.383, 0.216, 0.136 for N =
12, 24, 36, respectively. According to the entropy-method
analysis reported in the lower panel of Fig. 5, the uniform
susceptibility χ (T ) behaves identically at T above about 0.5
for gapless and gapped excitations. For lower temperatures,
the behavior of χ (T ) depends on the adopted scenario and the
χ0 value for gapless excitations. In the case of gapless spin
excitations, the uniform susceptibility approaches χ0 > 0 as
T → 0 and displays or does not display a maximum roughly

below T = 0.3 depending on the specific value χ0, cf. blue,
red, orange curves in the lower panel of Fig. 5.

An important general message that can be taken from
Fig. 5 is that the entropy-method and finite-system numerical
data (and even simple Padé approximants for χ ) favor the
assumption of a gapless spectrum and a quadratically van-
ishing specific heat at low temperature with finite χ0 around
0.1. However, a linear decay of the specific heat cannot be
excluded.

It is worthy to put our results for the hyperkagome lattice
in the context of prior work for the kagome and pyrochlore
lattices. Concerning c(T ) (the upper panels of Figs. 4 and 5),
its features at least at intermediate temperatures and above, are
quite similar to what is known for the kagome-lattice and also
the square-kagome-lattice case (a peak at T = 0.67, a shoul-
der of two times smaller height for 0.1 < T < 0.25 [60,61]),
but differ from those for the pyrochlore-lattice case, where
only one peak in c(T ), but no additional low-temperature
feature such as peak or shoulder was found [42,62]. Concern-
ing χ (T ) (the lower panels of Figs. 4 and 5), it resembles
the maximum of χ (T ) for the finite-size kagome lattices
[60] and for the infinite kagome lattice analyzed by the en-
tropy method [39]. In contrast, for the pyrochlore lattice
we have several scenarios, none of which can be excluded
to date [42,62,63]. Thus, we may conclude that the three-
dimensional hyperkagome lattice is closer to highly frustrated
two-dimensional lattices (kagome, square-kagome) than to the
three-dimensional pyrochlore lattice. However, it is worth not-
ing the difference: For the kagome lattice, the low-temperature
specific heat c(T ) below the major peak moves collectively
to higher temperatures with increasing N [60] resulting in a
low-temperature shoulder of the main peak in the thermo-
dynamic limit [64]. This is opposite to what is observed for
the hyperkagome lattice (recall the top panel of Fig. 4). Here
the specific heat assumes rather large values for temperatures
below the major peak—larger than for the kagome system—
which with increasing system size shrink and move towards
lower temperatures.

IV. SUMMARY AND OUTLOOK

In the present paper, we used finite-lattice calculations and
high-temperature series expansions up to 16th order [17] com-
plemented by plausible assumptions about low-temperature
properties according to the entropy method to obtain the spe-
cific heat c(T ) and the uniform susceptibility χ (T ) of the S =
1/2 hyperkagome-lattice Heisenberg antiferromagnet at all
temperatures. Finite-lattice calculations are suitable to discuss
the thermodynamics above T = 0.2, cf. N = 24 and N = 36
data in Fig. 4. The entropy method requires the knowledge
of ground state and low-energy excitations which is currently
not available. Therefore, we tested several scenarios (gapless
excitations with various exponents for a power-law decay of
c(T → 0) and values of χ0 or gapped excitations) and exam-
ined the coherence of the obtained results. Our main findings
are as follows. We observe a low-temperature peak in c(T )
(almost a shoulder for α = 1) at T < 0.05, i.e., well below
the main high-temperature peak. χ (T ) below T = 0.5 relies
heavily on the adopted scenario. Combining finite-lattice and
entropy-method results gives evidence in favor of gapless
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spin excitations with a quadratic low-temperature specific
heat decay (although a linear one cannot be ruled out) and
finite χ at T = 0 around 0.1. Such results agree with the
proposal of a gapless quantum spin liquid in Ref. [15] and
the pseudofermion functional renormalization group study of
Ref. [19]. As a by-product, we have extracted the ground-state
energy e0 with a procedure explained in Sec. II. Although
the value of e0 depends on the adopted scenario, it was
always restricted to [−0.441,−0.435]. We have found that
the thermodynamics of the three-dimensional hyperkagome-
lattice Heisenberg antiferromagnet is quite similar to the
two-dimensional kagome-lattice one, but differs from that on
the pyrochlore lattice.

Future work on the thermodynamics of the S = 1/2
hyperkagome-lattice Heisenberg antiferromagnet may be re-
lated to application of specific tools to tackle the problem. For
instance, this model represents a so-called flat-band system:
The one-magnon energy spectrum has a fourfold degenerate
dispersionless band, which is the lowest-energy band. The
flat-band states will be relevant at high fields and low tem-
peratures and their dominant contribution to thermodynamics
can be elaborated by special methods of flat-band systems;

see Refs. [49,50]. Such a program has been realized for the
S = 1/2 kagome-lattice and pyrochlore-lattice Heisenberg an-
tiferromagnets in Refs. [65,66], and it might be applicable
here, too.
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