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Frustrated magnetic systems can host highly interesting phases known as classical spin liquids (CSLs), which
feature extensive ground state degeneracy and lack long-range magnetic order. Recently, H. Yan et al. proposed
a classification scheme of CSLs in the large-N (soft spin) limit [Phys. Rev. B 110, L020402 (2024); Phys.
Rev. B 109, 174421 (2024)]. This scheme classifies CSLs into two categories: the algebraic CSLs and the
fragile topological CSLs, each with their own correlation properties, low energy effective description, and finer
classification frameworks. In this work, we further develop the classification scheme by considering the role
of crystalline symmetry. We present a mathematical framework for computing the band representation of the
flat bands in the spectrum of these CSLs, which extends beyond the conventional representation analysis. It
allows one to determine whether the algebraic CSLs, which feature gapless points on their bottom flat bands,
are protected by symmetry or not. It also provides more information on the finer classifications of algebraic
and fragile topological CSLs. We demonstrate this framework via concrete examples and showcase its power by
constructing a pinch-line algebraic CSL protected by symmetry.
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I. INTRODUCTION

The investigation of magnetic systems lacking long-range
order has a rich history, spanning several decades starting
from the exploration of disorder effects in spin glasses [1,2]
and the proposal of resonating valence bond states [3,4],
which have become fundamental to contemporary research in
strongly frustrated magnets. A particular concept of interest
is that of classical spin liquids (CSLs), which emerge when
spin models exhibit an extensively degenerate ground state
manifold as a consequence of frustration, and fluctuations
among ground states preclude any form of ordering [5–19].

Despite their general instability to perturbations at absolute
zero temperature (T = 0), the substantial entropy that CSLs
possess at low energies allows them to dominate the finite-
temperature physics in a finite region of model parameters.
Moreover, CSLs often serve as “parent states” or an interme-
diate temperature regime for quantum spin liquids (QSLs),
which arise when quantum fluctuations introduce dynamics
among the classical ground states [20–29].

Therefore, understanding and classifying spin liquids is of
great importance. Successful classification schemes for quan-
tum spin liquids have been developed based on the projective
symmetry group [30] and the modern perspective of gapped
QSLs [31,32]. In contrast, the classification of CSLs has
made much slower progress. Previous works have attempted
to classify frustrated classical spin systems using constraint
counting [7], linearization around given spin configurations
[33], supersymmetry-inspired constructions [34], or identi-
fication of topological invariants tailored to specific lattices
[17].

Recently, a more general scheme has been proposed for
classifying CSLs based on their energy spectrum [35,36].
More concretely, the scheme utilizes the connection between
CSLs and physics of flat bands at the bottom of the Hamil-
tonian’s spectrum, responsible for the extensive degeneracy
of the classical ground states [Fig. 1(a)]. In this classification
scheme, CSLs are divided into two categories. The first is
characterized by a topological invariant that persists as long as
the lowest flat bands in its energy spectrum remain separated
by a gap from the higher dispersive bands. This category is
called “fragile topological” classical spin liquids [FT-CSLs;
Fig. 1(b)] since the topological characteristics can be made
to disappear by adding spins to the unit cell without clos-
ing the spectral gap. The second category, called algebraic
CSLs [Fig. 1(c)], occupies the boundaries between FT-CSLs
where the spectral gap closes, as illustrated schematically
in Fig. 1(d). The eigenvector configurations around the gap-
closing points determine the emergent Gauss’s law describing
the algebraic spin correlations in this category of CSLs.

In this work, we advance the above classification scheme
by investigating the consequences of crystalline symmetry
on the classification of classical spin liquids, in analogy to
how crystalline symmetries enrich the classification of topo-
logical phases. Specifically, motivated by the classification of
band representations in topological quantum chemistry (TQC)
[37], we develop a mathematical framework for determining
how the flat bands transform under symmetry, and elucidate
whether symmetry protects the gap closing between the bot-
tom flat bands and the higher dispersive bands. If the gap
closing is protected, then the symmetry forbids a FT-CSL,
which is a significant constraint for model building or material
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FIG. 1. (a) The CSL Hamiltonian generally features one or more degenerate flat bands at the bottom of its spectrum. (b) Algebraic CSLs
feature gap closing points between the bottom flat bands and the dispersive bands. The band touching point determines the emergent Gauss’s
law. BFB is the flat band representation, and will be discussed in detail in the main text. (c) Fragile topological CSLs (FT-CSLs) have no such
gap-closing points, and are classified by their eigenvector homotopy. (d) The landscape of the CSL phase diagram consists of FT-CSLs whose
boundaries are algebraic CSLs.

analysis. Further details of the symmetry representations yield
information on the topological classification of FT-CSLs and
the degeneracy structure of the algebraic CSLs.

Importantly, the present mathematical framework goes be-
yond how TQC is used to classify electron band structures.
Specifically, the symmetry data of the lattice spins is generally
not sufficient to classify the CSL. An additional piece of
information—the emergent, virtual lattice of the constrainer
terms in the Hamiltonian and their crystalline symmetry
properties—is crucial and must be incorporated into the sym-
metry analysis.

In the following, we briefly review the constrainer Hamil-
tonian formalism of CSLs and its classification in Sec. II.
We then give the recipe of the abstract crystalline symmetry
analysis in Sec. III. This recipe is then applied to two known
models on the kagome model in Sec. IV as a demonstration.
We then introduce a new pinch-line model with symmetry-
protected nodal line degeneracies guided by our insight from
the symmetry classification in Sec. V. Finally we summarize
our results in Sec. VI.

II. BRIEF REVIEW OF THE CONSTRAINER
HAMILTONIAN AND CSL CLASSIFICATION

We study spin models in the limit of a large number of spin
components N . This is equivalent to adopting a “soft spin”
approximation, where the constraint on the spin length S2 =
1 is enforced only on average as 〈S2〉 = 1, by introducing a
Lagrange multiplier or “chemical potential” to the spins in the
self-consistent Gaussian approximation, a method generalized
from the Luttinger-Tisza method [38,39].

As a consequence, the large-N approximation allows fluc-
tuations and states that are unphysical for the original O(3)
spins. Hence it does not estimate the heat capacity and phase
transition or crossover temperatures accurately. It may also
fail to capture order-by-disorder at low temperatures, if that
were to happen. One of such examples is the large-N approx-
imation for the O(3) kagome Heisenberg model [40]. More
quantitative evaluation can be done case by case, by compar-
ing Monte Carlo simulations and large-N results. However, if
the O(3) spin model is a classical spin liquid, then the large-N
approximation almost always captures the correct physics (see

[35,36] for more discussions). This has been demonstrated
to be valid for many Heisenberg candidate CSLs [8,11,41–
43]. In this sense, taking the large-N limit does not invalidate
any of the topological quantum chemistry considerations for
classical spin liquids, which is the principal objective of the
present work.

The Hamiltonians of these CSLs can be written in the
constrainer form,

H =
∑

R∈u.c.

M∑
I=1

[CI (R)]2, (1)

where for a given constraint index I , the constrainer CI (R) is
a scalar that defines a linear combination of a local cluster
of spins inside and around the unit cell located at R [see
Eqs. (10) and (16) for concrete examples]. The Hamiltonians
we consider are translationally invariant and consist of sums
of squared constrainers.

A more explicit way to express CI (R) without referring to
pictures of the lattice is to write

H =
∑

R∈u.c.

M∑
I=1

[CI (R)]2

=
∑

R∈u.c.

M∑
I=1

[∑
r

S(r) · CI (R, r)

]2

.

(2)

Here, S(r) = (S1, . . . , SN )(r) is the vector whose N compo-
nents are the spins on the N sublattice sites, respectively. For
example, Sb(r) is the bth sublattice site in the unit cell labeled
by r. The term

∑
r S(r) · CI (R, r) is the constrainer CI (R)

written in a more explicit form; that is,

CI (0, r) =

⎛
⎜⎜⎜⎜⎝

∑
j∈1st sublat. sites c1, jδr,a1, j∑
j∈2nd sublat. sites c2, jδr,a2, j

...∑
j∈N th sublat. sites cN, jδr,aN, j

⎞
⎟⎟⎟⎟⎠, (3)

CI (R, r) = CI (0, r − R), (4)

encodes exactly the information of how spins are summed
together in CI (R). The ca, j are numerical coefficients, and
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δr,aa, j encodes the spin in the unit cell aa, j on sublattice a,
which is summed with coefficient ca, j .

Consider a system with N sublattice sites and M linearly
independent constrainers per unit cell, where M < N . There
is an extensive degeneracy for the ground states in this system
since the condition of all constrainers being zero does not
fix all the spins. Consequently, the Hamiltonian spectrum
in momentum space has N − M degenerate flat bands, each
corresponding to one set of these degenerate ground states.
Above these flat bands, there are M higher dispersive bands
that encode the finite-energy states.

References [35,36] have discussed in great detail how the
structure of the bottom flat bands and the higher dispersive
bands can be used to classify the CSLs. For simplicity, let
us use the case of M = 1 (one constrainer per unit cell) to
illustrate this scheme. The scenario yields N − 1 flat bands
at zero energy, which corresponds to spin states obeying
the constraint C(R) = 0; we have dropped the index I since
there is only one constrainer per unit cell. Additionally, there
is a higher dispersive band describing spin states violat-
ing the constraint. The eigenvector of this dispersive band,
denoted as T(q), can be expressed analytically and is pre-
cisely the Fourier transform of the constrainer CI (0, r). The
dispersion of the higher band is ωT (q) = |T(q)|2 (see exam-
ple in Sec. IV B in addition to the detailed formulation in
Refs. [35,36]).

The spectrum of the Hamiltonian encodes the classification
of the CSL into one of two categories, determined by whether
the dispersive band has a singular band touching point with
the flat band or not. Within each category, a finer classification
can be made by examining the configuration of eigenvectors
around the gapless point (first category) or its global topol-
ogy (second category). In more detail, the classification is as
follows.

(1) Algebraic CSL: If a gap closure point exists between
the bottom flat bands and the higher dispersive band, the
system is an algebraic CSL with algebraically decaying spin
correlations. Here, the ground states conform to a charge-free
Gauss’s law, which is derived from the Taylor expansion of
T(q) around the band touching point. Specifically, if for the
ath spin in the unit cell the lowest order term in the expansion
is of order ma � 1,

Ta(q) =
ma∑
j=0

ca j (−iqx ) j (−iqy)ma− j, a = 1, . . . , N, (5)

then the ground states described by the spin configurations
orthogonal to T(q), i.e.,

T(q) · S̃(q) = 0, (6)

in momentum space. Reverse-Fourier-transforming this back
to real space, we obtain the Gauss’s law

N∑
a=1

⎛
⎝ ma∑

j=0

c∗
a j (∂x ) j (∂y)ma− jSa

⎞
⎠ ≡

N∑
a=1

D(ma )
a Sa = 0, (7)

where D(ma )
a denotes the differential operator of order ma � 1

from Fourier-transforming the (−iqx ) j (−iqy)ma− j terms. This
principle also applies to models with multiple constraints per
unit cell (see Refs. [35,36] for detailed discussions).

(2) Fragile topological CSL: When the bottom flat band
is entirely gapped from the higher dispersive band, T(q) be-
comes a nonzero, smoothly defined vector field in the target
manifold CPN−1 (if complex) or RPN−1 (if real) across the
entire BZ. It can be classified by how it winds around the BZ,
which is a d torus, T d . The winding is encoded by the relative
homotopy group [T d ,CPN−1] (or [T d ,RPN−1]) of the map

T̂(q) : T d → CPN−1 (or RPN−1). (8)

The homotopy class is invariant under smooth changes to the
Hamiltonian as long as it maintains the constrainer form and
the gap between the bottom flat and upper dispersive bands.
If the map T̂(q) belongs to a nontrivial homotopy class, the
corresponding gapped phase is (fragile) topological. Other-
wise, the CSL is topologically trivial. The fragility of the
classification stems from the fact that adding (say, P) spins
to the unit cell without closing the spectral gap changes the
target manifold to CPN+P−1 (or RPN+P−1), whose relative
homotopy group may be trivial. The homotopy class may also
change by closing the spectral gap, at which point a band
touching characterizes an algebraic CSL. Thus, the bound-
aries of fragile topological CSLs are algebraic CSLs. The
homotopy classification generalizes to systems with multi-
ple degenerate flat bands or multiple higher bands (also see
Refs. [35,36] for detailed discussions).

III. CRYSTALLINE SYMMETRY ANALYSIS

In previous studies [35,36], several models utilizing the
constrainer formalism have been reviewed and proposed (see
Tables II and III in Ref. [36]). To classify a Hamiltonian
written in the constrainer form, it is typically necessary to
Fourier-transform it into momentum space, diagonalizing the
Hamiltonian.

An essential inquiry at this juncture concerns the ability to
determine the class of the CSL solely based on the crystalline
symmetry information of the model, without knowing the
exact form of the constrainer. The question is motivated by
analogy to TQC [37], which uses symmetry to constrain the
topology and connectivity of band structures without knowl-
edge of the exact Hamiltonian. The answer to this question
provides significant insights into the physics of any lattice
model, such as discerning whether an algebraic CSL is pro-
tected by crystalline symmetry, or merely accidental.

In this section, we outline the symmetry analysis employed
to identify band touchings and determine the topology of
the flat bands within the constrainer Hamiltonian. As one
may anticipate, this analysis has a close relation to the band
irreducible representations (irreps) of the crystalline symme-
try group used in TQC. However, this approach by itself is
insufficient to produce the CSL classification, as we will now
explain.

One notable example that will be extensively examined
later in Sec. IV is the comparison between the kagome anti-
ferromagnetic (AFM) model and the kagome hexagon model.
Although both models feature spins arranged on the kagome
lattice, the former exhibits symmetry-protected gapless points
on the bottom flat band, whereas the latter does not. While the
band symmetry analysis does predict gap closures at specific
high symmetry points within the Brillouin zone (BZ), it fails
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TABLE I. Common lattices and their band representations (BR) [37,44–46]; notation defined below Eq. (9).

Lattice Space group G BR of scalar/spin Representation at high symmetry points

Lieb P4/mmm (Ag)1a ↑ G � (Ag)2f ↑ G (2�+
1 ⊕ �+

2 ) + (2X +
1 ⊕ X −

4 ) + (M+
1 ⊕ M−

5 )
square P4/mmm (Ag)1c ↑ G (�+

1 ) + (X −
4 ) + (M−

4 )
kagome P6/mmm (Ag)3f ↑ G (�+

1 ⊕ �+
5 ) + (K1 ⊕ K5) + (M+

1 ⊕ M−
3 ⊕ M−

4 )
hexagonal P6/mmm (A1g)1a ↑ G (�+

1 ) + (K1) + (M+
1 )

honeycomb P6/mmm (A′
1)2c ↑ G (�+

1 ⊕ �−
4 ) + (K5) + (M+

1 ⊕ M−
4 )

pyrochlore Fd 3̄m (A2g)16c ↑ G (�+
2 ⊕ �+

4 ) + (X2 ⊕ X4) + (W1 ⊕ W2)

to discern whether these closures occur on the bottom flat
band(s) (which is crucial for the CSL classification) or among
the higher dispersive bands (which is irrelevant for the CSL
classification).

From this shortcoming, we discover that, apart from the
irrep analysis of the microscopic spins and their lattice sym-
metries, the constrainers, whose centers define an “auxiliary
lattice” that is generically distinct from the lattice of spins,
play a critical role in determining the physics of the CSL. This
second aspect of physics goes beyond the irrep analysis of the
local spins and encapsulates crucial information regarding the
properties of the flat bands.

We now describe the symmetry classification scheme.
Consider a CSL consisting of spins on a lattice S, which
is invariant under a space group G. Every local spin at a
particular lattice site transforms as a representation of the site-
symmetry group at that site. The local representation induces
a band representation BRS , which describes the symmetry of
the entire spectrum, i.e., of both the dispersive bands and the
flat bands [37,44–47]. While BRS contains information about
band touching points in the spectrum, it does not distinguish
band touching points between the dispersive bands themselves
from band touchings between the dispersive and flat bands.
Thus, to derive symmetry constraints specific to the latter, we
need more information.

The extra information lies in the constrainers. Specifically,
the dispersive bands live in the Hilbert subspace spanned by
the constrainers. Thus, to distinguish properties of the flat
and dispersive bands, we must apply TQC to the constrain-
ers. Let C denote the lattice comprised by the centers R of
each constrainer CI (R) in Eq. (1). Note that this lattice is
virtual, in the sense that it is generically distinct from the
lattice C inhabited by physical spins. Since the constrainers
must also satisfy the space group symmetry, each constrainer
transforms as a representation of the site-symmetry group of
the corresponding site in the lattice C, which induces a band
representation BRC describing the symmetry of the dispersive
bands.

Since the flat bands and dispersive bands together comprise
the entire spectrum, the band representation of the flat bands
is determined by

BFB = BRS � BRC, (9)

where � denotes the “difference” of two band representations,
i.e., for each point in the BZ, the set of representations in
BRS not contained in BRC . Examples of band representations
are listed in Table I, where + indicates appending irreps at
different momenta, ⊕ indicates the addition of irreps at the

same momentum, and � indicates the union of two band
representations, defined analogously to �.

The symmetry data determines the symmetry-enforced
band touching points and the topology of the gapped flat
bands, as follows:

(i) If BRC � BRS , then the spectrum has symmetry-
protected band touching points on the bottom flat band and
the model is an algebraic CSL.

The degeneracy of symmetry-protected band touching
points between the flat bands and the dispersive bands is
determined by the subduced representations of BRC and BRS

at each momentum q. Specifically, the number of dispersive
bands is dim(BRC ↓ q ∩ BRS ↓ q) and, similarly, the num-
ber of zero-energy states n0 can be deduced from the band
representations (see Appendix B).

(ii) If BRC ⊆ BRS , then the spectrum has either no band
touching points on the bottom flat band, or the band touching
points are not protected by symmetry. The system belongs to
the FT-CSL class.

In this case, at each q the irrep of the constrainer band is
contained in BRS , and the flat bands are fully gapped from
the dispersive bands. The topology of the flat bands is de-
termined by its symmetry data vector BFB and can be either
atomic (trivial) or nontrivial but fragile, classified using the
symmetry indicators developed for electron band structures
[48–51].

The classification of flat bands in our constrainer Hamilto-
nians is mathematically the same as the classification of flat
bands in the bipartite single-particle band structures studied
in Ref. [52]. In Appendix C we prove their equivalence by
constructing a map between the two systems, which relies
on the introduction of the auxiliary lattice defined by the
constrainers.

IV. APPLICATION: TWO KAGOME MODELS

We now demonstrate the symmetry analysis with a con-
crete example of the kagome AFM model versus the kagome
hexagon model [cf. Fig. 2(a) for the kagome lattice]. The
two models have the same band representation BRS because
they both feature spins on the kagome lattice. However, their
CSL properties are different. The former is an algebraic CSL
whose spectrum has a gapless point on the bottom flat bands,
and the ground state fluctuations obey the emergent Maxwell
Gauss’s law ∇ · E = 0. The latter is a fragile topological CSL,
with two degenerate bottom flat bands that are fully gapped
away from the higher dispersive band. Its higher dispersive
band eigenvector T(q) is a three-component real vector on S2,
which has homotopy classes known as skyrmion number. The
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FIG. 2. (a) Kagome lattice for the kagome AFM model [Eq. (10)]. (b) The two constrainers of the kagome model involve sites in the shaded
regions. The ground states are defined by the constraint that the sum of spins on each triangle must vanish [Eq. (10)]. (c) Spectrum ω(q) that
arises from diagonalizing the Hamiltonian Eq. (10). There is one flat band at the bottom of the spectrum and two higher dispersive bands with
gap-closing points on the flat band. (d) Spin structure factor showing pinch points at the position of gap-closing points.

distinction between the two models can only be discerned by
considering the symmetry of the constrainers.

A. Kagome AFM model

The Hamiltonian of the kagome AFM model is

HKAFM =
∑
〈i, j〉

SiS j + 2
∑

i

S2
i

=
∑
�

⎛
⎝∑

i∈�
Si

⎞
⎠

2

+
∑
�

⎛
⎝∑

i∈�
Si

⎞
⎠

2

≡
∑

R for
�

[CKAFM1(R)]2 +
∑

R for
�

[CKAFM2(R)]2. (10)

The Hamiltonian consists of two constrainers CKAFM1,2(R),
defined by sums over the spins on an up- or down-pointing
triangle centered at R, respectively [see Fig. 2(b)]; the sums
in Eq. (10) are over the constrainer centers. Ground states are
hence defined by the two constraints,

CKAFM1,KAFM2(R) = 0 ∀ R, (11)

on every triangular plaquette.
Diagonalizing the Hamiltonian in momentum space, we

obtain the spectrum shown in Fig. 2(c). There is one bottom
flat band with gapless points where the dispersive bands touch.
Using the techniques developed in Refs. [35,36], expanding
the dispersive band eigenvector at the gapless point yields the
Gauss’s law, which turns out to be that of Maxwell’s theory:

3∂x(−S2 + S3) +
√

3∂y(2S1 − S2 − S3) ≡ ∂xEx + ∂yEy = 0.

(12)

This is manifested in the pinch points in the equal-time spin
correlation function shown in Fig. 2(d).

We now apply the symmetry analysis introduced in the
previous section to prove that the band touching between the
flat and dispersive bands is symmetry required. This model
is in space group G = P6/mmm. The spins are located at
the 3f Wyckoff position, which forms a kagome lattice. Each
classical spin transforms as the scalar irrep Ag of the site

symmetry group. Thus,

BRS = (Ag)3f ↑ G. (13)

Its irreps at high symmetry points are listed in Table I.
The constrainers are centered around the 2c Wyckoff posi-

tion, forming a honeycomb lattice where the honeycomb sites
are located at the center of each triangle in the kagome lattice.
Each constrainer transforms as the scalar irrep A′

1 of the site
symmetry group. Thus,

BRC,KAFM = (A′
1)2c ↑ G. (14)

Applying Eq. (9), we get the irreps of the flat band (see
Table I),

BFB,KAFM = BRS � BRC,KAFM

= (Ag)3f ↑ G � (A′
1)2c ↑ G

= (�+
5 � �−

4 ) + (K1) + (M−
3 ). (15)

At the � point, there is an irrep difference �+
5 � �−

4 . The fact
that an irrep difference appears rather than a sum indicates a
band touching point at � enforced by symmetry.

B. Kagome hexagon model

We now discuss the kagome hexagon model [13] as an
example of a fragile topological CSL with short-ranged corre-
lations. Its Hamiltonian is defined as

HKH =
∑

R∈all hexagons

[CKH(R)]2, (16)

where the sum of R runs over hexagon centers on the kagome
lattice [indicated in Figs. 3(a) and 3(b)], or equivalently the
centers of all unit cells. The constrainer CKH(R) is the sum of
the six spins around each hexagon as labeled in Figs. 3(a) and
3(b):

CKH(R) =
∑

i∈hex. at R

Si. (17)

The ground states are hence defined by the constraint
CKH(R) = 0 on every hexagonal plaquette.

Diagonalizing HKH in momentum space yields a spec-
trum with three bands, of which the lowest two are flat and
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FIG. 3. (a) Kagome lattice for the kagome hexagon model [Eq. (16)]. (b) Constrainer of the kagome hexagon model. Classical spins are
arranged on a kagome lattice, with ground states defined by the constraint that the sum of spins on each hexagonal plaquette must vanish
[Eq. (17)]. (c) Spectrum ω(q) that arises from diagonalizing the Hamiltonian [Eq. (16)] in momentum space. There are two degenerate flat
bands at the bottom of the spectrum and a dispersive upper band with no band touchings between the upper and lower bands. (d) Spin structure
factor showing an absence of singularities.

degenerate [Fig. 3(c)]. This is the case of one constrainer per
unit cell discussed in Sec. II, and the eigenvector of the top
band can be found by Fourier-transforming the constrainer (as
done in Refs. [35,36]),

T(q) =

⎛
⎜⎜⎜⎝

cos(
√

3qx )

cos
(
−

√
3

2 qx + 3
2 qy

)
cos

(
−

√
3

2 qx − 3
2 qy

)
⎞
⎟⎟⎟⎠, (18)

and its dispersion is ω(q) = |T(q)|2. One can then explicitly
see that there are no band touchings between the upper band
and the two flat bands at any point in the BZ, and conse-
quently no pinch points in the correlation function [Fig. 3(d)].
Accordingly, the real-space correlations remain short ranged
with a correlation length on the order of the nearest-neighbor
distance at T = 0. The ground state fluctuations are not de-
scribed by any effective Gauss’s law due to the absence of
gapless points.

We now use symmetry to explain why the flat band is
gapped. As in the previous example, this model is in space
group G = P6/mmm, and with spins located at the 3f Wyckoff
position, forming a kagome lattice. The band representation is
thus the same as in Eq. (13):

BRS = (Ag)3f ↑ G. (19)

The symmetry of the constrainers is different, however.
They are located at the 1a Wyckoff positions, which form a
triangular lattice with each site at the center of a hexagon in
the kagome lattice. Each constrainer transforms as an irrep
A1g of the site symmetry group. Thus, their lattice irreps are

BRC,KH = (A1g)1a ↑ G, (20)

which is distinct from the previous example of the kagome
AFM [contrast with Eq. (14)].

Applying Eq. (9), we obtain (see Table I)

BFB,KH = BRS � BRC,KH

= (Ag)3f ↑ G � (A1g )1a ↑ G
= (�+

5 ) + (K5) + (M−
3 ⊕ M−

4 ). (21)

In contrast to Eq. (15), no � signs appear in the last line of
Eq. (21). Thus, all irreps of BRC,KH are included in BRS , which
indicates that the flat band is fully gapped.

However, the irreps that appear in BFB,KH do not cor-
respond to any sum of elementary band representations
[48,50,51]. Thus, the flat bands have fragile topology; i.e.,
there is no way to understand them as coming from localized
degrees of freedom.

Comparing these two examples on the kagome lattice
proves that the irreps of the spins on the lattice, which
determine BRS , do not provide enough information to de-
termine the class of the CSL. Specifically, BRS requires a
gap closing at the � point because of the two-dimensional
irrep �+

5 , but it does not specify whether the band touch-
ing is between the flat band and a dispersive band (kagome
AFM), between the two degenerate flat bands (kagome-
hexagonal), or even between the two dispersive bands. To
distinguish between these possibilities from symmetry re-
quires the irreps of the constrainers, which are contained
in BRC .

We note that the two constrainer models of spins on the
kagome lattice discussed above can be mapped onto the two
bipartite models of electrons discussed in the main text and
Fig. 1 in Ref. [52], with the distinction that the physical
spins are situated on only one sublattice; the other, vir-
tual sublattice corresponds to the centers of the constrainers.
The band representation analysis is however identical to that
in Ref. [52], as follows from the equivalence we prove in
Appendix C.

V. CONSTRUCTION OF NEW CLASSICAL
SPIN LIQUID MODELS

A. General principle

We now introduce an algorithm that utilizes topological
quantum chemistry to reverse-engineer CSLs with desired
properties.

Given a target Gauss’s law, one can use the theory of
topological quantum chemistry to design the corresponding
lattice model by relating the number of components of the
generalized electric field in the Gauss’s law to the number of
gapless modes at a given wave vector in the lattice model.
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FIG. 4. (a) The cubic lattice. It has three sites per unit cell sitting on the face centers, forming three sublattices indicated in red, blue, and
green. (b) Constrainers of the cubic model. (c) Spectrum ω(q) from diagonalizing the Hamiltonian [Eq. (26)] in momentum space at qy = 0.
There is one flat band at the bottom of the spectrum and two higher dispersive bands, with band touchings between the flat and dispersive
bands along the lines qx,z = 0. (d) Spin structure factor at qy = 0. (e) and (f): Spectrum and spin structure factor at qy = π/4.

Since the degeneracy of the gapless modes is determined by
the symmetry of the lattice model, one can use topological
quantum chemistry to determine a compatible space group
and Wyckoff position, and guarantee, for example, the emer-
gent generalized electric field is a vector or tensor of certain
rank.

In more technical terms, the Gauss’s laws are determined
by the constrainers T(I )(q), I = 1, . . . , n0, via a set of vector
equations T(I )(q)S̃(q) = 0, where n0 is the number of con-
strainers that vanish at momentum q. The symmetry of the
constrainers T(I )(q) determines the minimal little group Gq.
Therefore, the compatible space groups G are those for which
there exists a q with little group Gq.

Given the number of constrainers n0, the wave vector q,
and the space group G, one can search the elementary band
representations of G (listed in the Bilbao Crystallographic
Server [37,44,45]) to find BRS and BRC such that dim[BRS ↓
q � (BRS ↓ q ∩ BRC ↓ q)] = n0 at momentum q.

One can then construct a CSL based on BRS and BRC

as follows: First, place the spins on the lattice according
to the Wyckoff position and irrep of site symmetry group
corresponding to BRS . Then, construct the constrainers C(R),
centered at, in general, a different Wyckoff position, according
to the irrep of the site symmetry group corresponding to BRC .
The Hamiltonian constructed in this way is given by Eq. (1).
This construction automatically leads to the desired Gauss’s
laws at momentum q.

B. Building a pinch-line CSL

Let us now showcase the usefulness of the crystalline
symmetry analysis by designing a new CSL model. It has
symmetry-protected nodal lines on the bottom flat band; i.e.,
the gapless points form a line. In spin structure factor, the
nodal lines host pinch points around each point on the line,
hence called pinch lines in spin-liquid literature [14]. Al-
though also in the algebraic CSL category, the pinch-line spin
liquids exhibit very different physics from the more common
algebraic CSLs with a gapless point. It is thus interesting
to construct robust pinch-line models protected by symmetry
for future study. More specifically, we require the degeneracy
nodal lines to be guaranteed to exist when both the number
of constrainers and their symmetry property is fixed, but not
the exact form of constrainers. Similar examples can also be
found in Refs. [14,36].

We consider a model with a cubic unit cell and spins
located at the face centers [see Fig. 4(a)]. In the large-N
limit, these spins are effectively treated as scalars or soft spins.
The orientation of each spin is pointing out of the face, in
the positive x̂, ŷ, ẑ directions, respectively. For example, the
spin on the x-normal face in points along the x direction. The
model is symmetric under the symmetries of the magnetic
space group G = P4′32′ [53,54] (No. 207.42 in the standard
notation of Ref. [55]), which is generated by C4,[001]T , C3,[111],
and C2,[110], where the first subscript denotes the rotation
order and the second three the rotation axis; T denotes time-
reversal. Let us denote the spin on x/y/z-normal face as Sx/y/z

(note that they are not spin components but labels of spins on
different sites). The symmetries act on the spins by

C3,[111] : (Sx, Sy, Sz ) �→ (Sz, Sx, Sy), (22)

C2,[110] :(Sx, Sy, Sz ) �→ (Sy, Sx, Sz ), (23)

C4,[001]T :(Sx, Sy, Sz ) �→ (Sy(−ax ),−Sx, Sz ), (24)

where Sy(−ax ) indicates that the transformed spin on the x-
normal face center of the current unit cell comes from the Sy

spin of the −ax unit cell.
We use the constrainers centered at the center of each cube

[see Fig. 4(b)]:

C1(R) = Sx(R) − Sy(R) − Sx(R − ax ) + Sy(R − ay),

C2(R) = Sy(R) − Sz(R) − Sy(R − ay) + Sz(R − az ),

C3(R) = Sz(R) − Sx(R) − Sz(R − az ) + Sx(R − ax ), (25)

which obey the crystalline symmetries described in the
preceding paragraph; the minus signs come from the trans-
formation under C4T . The Hamiltonian is then

HPL =
∑

R

[
C2

1 (R) + C2
2 (R) + C2

3 (R)
]
. (26)

The Fourier transformations of the constrainers are

T1(q) = 2i
(

sin
qx

2
, − sin

qy

2
, 0

)T
,

T2(q) = 2i
(

0, sin
qy

2
, − sin

qz

2

)T
,

T3(q) = 2i
(
− sin

qx

2
, 0, sin

qz

2

)T
. (27)
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TABLE II. The band representations (BR) of the three-dimensional pinch line model [37,44–46].

Spin on face center (S) Constrainer (C) Flat bands
BR BRS = (B1)3d ↑ G BRC = (1Eg)1a ↑ G � (2E)1a ↑ G BRS � BRC

�(0, 0, 0) �4(3) �2(1) ⊕ �3(1) �4(3) � �2(1) � �3(1)
M(π, π, 0) 2M1(1) ⊕ M2(1) 2M1(1) M2(1)
R(π, π, π ) R1(1) ⊕ R2(1) ⊕ R3(1) R2(1) ⊕ R3(1) R1(1)
X (π, 0, 0) X1(1) ⊕ X2X3(2) 2X1(1) X2X3(2) � X1(1)
�(u, 0, 0) �1(1) ⊕ 2�2(1) 2�1(1) 2�2(1) � �1(1)
Z (u, π, 0) 2Z1(1) ⊕ Z2(1) 2Z1(1) Z2(1)
T (u, π, π ) 3T1(1) 2T1(1) T1(1)
�(u, u, 0) 3�1(1) 2�1(1) �1(1)
	(u, u, u) 	1(1) ⊕ 	2(1) ⊕ 	3(1) 	2(1) ⊕ 	3(1) 	1(1)

The three vectors span the subspace of the higher dispersive
bands. Note that there are two dispersive bands and one flat
band [see Figs. 4(c) and 4(d)] since the identity T1(q) +
T2(q) + T3(q) = 0 implies that the rank of the three vectors
at a generic q is 2. The line nodes are along the high sym-
metry line � = (u, 0, 0) and its symmetry-related partners in
momentum space.

The Gauss’s law can be obtained by examining the eigen-
vector configuration around a gapless point. At the � point
(q = 0), the charge-free Gauss’s law is

∂xEx − ∂yEy = 0,

∂yEy − ∂zEz = 0,

∂zEz − ∂xEx = 0. (28)

The two linearly independent constraints reflect the fact that
both dispersive bands touch the bottom flat band at �. Along
the line � = (0, u, 0), the Gauss’s law is

∂xEx − ∂zEz = 0, (29)

while the degree of freedom Ey becomes “gapped” and is not
involved in the Gauss’s law. This is reflected in the spectrum
in Fig. 4(c) where there is one higher dispersive band closing
that touches the bottom flat band, and another stays gapped
away from the origin.

We now apply the symmetry analysis to determine the
symmetry-protected touchings between the dispersive bands
and the flat bands. The spins are located at the 3d Wyckoff
position of the aforementioned group P4′32′, corresponding
to the face centers of the cubic unit cell. Each spin transforms
as the irrep B1 of the site symmetry group 4′22′ [53,54]. Thus,

BRS = (B1)3d ↑ G. (30)

Its irreps at high symmetry points are listed in Table II.
The constrainers are centered at the 1a Wyckoff position

which is at the center of a cube. The constrainers transform as
the representation 1E ⊕ 2E of the site symmetry group 4′32′.
Thus,

BRC = (1E) ↑ G � (2E) ↑ G. (31)

Applying Eq. (9) and using the relevant band representations
listed in Table II yields the representations in the flat band

BFB = BRS � BRC

= (B1)3d ↑ G � (1E)1a ↑ G � (2E)1a ↑ G. (32)

The representations at high symmetry points and along perti-
nent high symmetry lines are listed in Table II. Importantly,
Table II shows that along the � line, there are irreps in BRC

which do not appear in BRS , guaranteeing that the dispersive
band touches the flat band along the � line.

VI. SUMMARY

In summary, we have developed the mathematical formal-
ism for analyzing the effects of crystalline symmetries on
band touchings and topology of CSLs. In short, comparing
the band representations generated by the constrainers to those
generated by the spins determines whether the CSL is gapless
(algebraic) or gapped. In the former case, the band represen-
tations also determine the degeneracy and location of gapless
points in the BZ, while in the latter case, the symmetry data
encode the topology of the gapped band.

Our symmetry analysis goes beyond applying TQC to the
spins on the lattice: on the contrary, as we have shown with
explicit examples, understanding the symmetry of the con-
strainer terms in the Hamiltonian is imperative to deduce the
band crossings. This is different from the TQC classification
of electron band structures, which holds independently of the
form of the one-body Hamiltonian. We note that while the
mathematical formalism of the “difference” of band represen-
tations in Eq. (9) is identical to that developed for electron
band structures on bipartite lattices in Ref. [52], there are
important distinctions. First, the physical spins only inhabit
one sublattice (S, which need not be bipartite), and there are
no intersublattice “hopping” terms, which are central to the
construction in Ref. [52]. Second, the dual, virtual lattice (C)
is determined solely by the centers of the constrainer clusters
in Eq. (1) and depends crucially on the form of the spin
interactions. In fact, the constrainer spin Hamiltonian can be
thought of, in a sense, as a square of a one-particle hopping
Hamiltonian (see Appendix C).

The formalism we have derived is a powerful tool for both
understanding the robustness of spectral features in known
models as well as for reverse-engineering CSLs with desired
properties. We have demonstrated the latter by introducing a
new CSL with symmetry-protected nodal line degeneracies.
The symmetry formalism will be an essential part of the
comprehensive classification of the CLSs in the large-N limit
going forward. Our study paves the way to a thorough exami-
nation of all possible lattice models that have specific spectral
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features of interest, and also to answering the open question
of physical consequences of topology in fragile topological
CSLs.
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APPENDIX A: CONCEPTS IN TOPOLOGICAL
QUANTUM CHEMISTRY

For a comprehensive review of topological quantum chem-
istry, we refer the readers to Ref. [56]. Here, we provide a
glossary of the TQC terms used throughout this article.

(i) G: Space group.
(ii) Gr: Site symmetry group of r, i.e., the subset of G that

leaves r invariant.
(iii) Gq: Little group of q, i.e., the subset of G that leaves

q invariant up to a reciprocal lattice vector.
(iv) (Ag)s: Irrep Ag of the site symmetry group at a given

Wyckoff position s. For instance, s = 1a, 2c, 3f appear as
examples listed in Table I. The notation of the irreps follows
Ref. [57] and describes the representation of molecules under
point groups. The subscript g/u indicates the inversion eigen-
value ±1.

(v) K5: Irrep �5 of the little group at momentum K .
The notation of the irreps follows Ref. [58]. Note that these
momentum-space representations are mathematically distinct
from the representations of molecules under point groups due
to the interplay between translations and rotations.

(vi) BR: Band representation. A band representation la-
beled by a Wyckoff position s and a representation ρ of the site
symmetry group of s is a representation of G describing how
the set of orbitals corresponding to ρ located at the Wyckoff
position s transforms under G. Such a band representation
is also denoted by ρs ↑ G, where ↑ indicates that BR is the
representation of G induced from the representation ρ of the
site symmetry group of s. Similarly, ρq = BR ↓ Gq indicates
the subduced representation of BR onto Gq.

We also use the following notation to indicate addition and
“subtraction” of representations:

(a) K1 ⊕ K2: The addition of two representations at
momentum K .

(b) K1 � K2: The “subtraction” of two representations at
momentum K ; i.e., if K1 is a sum of irreps, then K1 � K2 is a
sum of the same irreps with those in K2 removed.

(c) BR1 � BR2: The addition of two band representations.
(d) BR1 � BR2: The “subtraction” of two band represen-

tations, using the definition of subtraction defined by �.
(e) BR = (�+

5 ) + (K5) + (M−
3 ⊕ M−

4 ): The + symbol in-
dicates the union of representations at �, K , and M, reflecting

that, in practice, a band representation is labeled by the set of
ρq = BR ↓ Gq for all high symmetry momenta q.

APPENDIX B: THE DIMENSION OF
SYMMETRY-PROTECTED BAND TOUCHING

From topological quantum chemistry, given the orbitals on
the lattice, the representation of bands in momentum space
can be determined by the induced representation. In our case,
the spin degrees on the lattice site form a representation ρS of
the site symmetry group, which is defined by the symmetries
that leave the site S invariant. Then the band representation
of the full spectrum (flat bands and the dispersive bands)
is given by BRS = ρS ↑ G. The corresponding representation
of the little group at momentum q is BRS ↓ q. The explicit
construction of these induced representations can be found in
Refs. [37,47,56].

The representation of the constrainers can be determined in
the same way. The constrainer C(R) is a sum over a local clus-
ter of spins as we have defined in Eq. (1). Denote its Fourier
transform by T(q). If C(R) transforms as the representation
ρC of its site symmetry group, then T(q) transforms as a rep-
resentation of the little group at q given by ρ

q
C = ρC ↑ G ↓ q.

The band representation of T(q) is BRC = ρC ↑ G. Notice
this is identical to the way to determine BRC as constructed
in the topological quantum chemistry [37,47,56]. However,
the new feature that appears in this work is that the basis of
the representation, T(q), can vanish at a particular q. When
this happens, the transformation of T(q) under the little group
symmetries is ill defined, despite the fact that ρ

q
C is perfectly

well defined, since it is obtained from a Fourier transform of
ρC ↑ G. Since T(q) vanishes precisely where the dispersive
bands and flat bands touch, the symmetry data at this point
give information about the band touching, as we now describe.

Since the Hilbert space of the dispersive bands is spanned
by T(q), the dispersive bands transform as the induced rep-
resentation BRC ↓ q. On the other hand, the representation
of the dispersive bands must be part of the complete repre-
sentation induced from all spins in the model, BRS ↓ q. Let
us now compare BRS ↓ q to BRC ↓ q. There are two cases:
(i) BRC ↓ q ⊆ BRS ↓ q. In this case there is no symmetry-
protected band touching between the dispersive bands and the
flat bands since they transform as two representations BRC ↓
q and BRS ↓ q � BRC ↓ q. Note there may be accidental
band touchings which are not protected by symmetry and
hence not detected by this analysis. (ii) BRC ↓ q � BRS ↓ q.
Such cases exist when T(q) = 0, where the induced repre-
sentation BRC = ρC ↑ G fails to describe the representation
of the dispersive bands. Therefore, when an irrep in BRC ↓ q
does not appear in BRS ↓ q, it indicates a band touching.

Specifically, the dimension of the dispersive bands above
zero energy is

ndispersive = dim(BRC ↓ q ∩ BRS ↓ q) (B1)

and the number of zero-energy states n0 is

n0 = dim[BRS ↓ q � (BRC ↓ q ∩ BRS ↓ q)] (B2)

= dim[(BRC ↓ q ∪ BRS ↓ q) � BRC ↓ q], (B3)
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where � denotes taking the difference of irreps at each mo-
mentum. Away from the band touching point, n0 gives the
number of flat bands, while at the band touching point, n0

gives the dimension of the band touching.

APPENDIX C: MAPPING BETWEEN THE BIPARTITE
HAMILTONIAN AND THE CONSTRAINER HAMILTONIAN

Reference [52] classifies flat electronic bands on bipartite
lattices. In this Appendix, we show there is a bijective map-
ping between the constrainer Hamiltonians and the bipartite
electronic Hamiltonians.

The constrainer Hamiltonian of CSLs in Eq. (1) can be
rewritten in terms of the N × 1 constrainer vector TI (q), I =
1, . . . , M, which is the Fourier transform of the constrainer
CI (R) defined as the sum over a local cluster of spins, as
follows,

H =
∑
q∈BZ

N∑
i, j=1

s†
q,i[Hconstrainer(q)]i j sq, j, (C1)

where the constrainer Hamiltonian matrix Hconstrainer is

Hconstrainer(q) =
M∑

i=1

Ti(q)T†
i (q) = (S†S)N×N (C2)

by taking S† = [T1(q), . . . , TM (q)], and s†
q,i and sq,i are the

creation/annihilation operators of our spin degrees at site i
and momentum q.

Now we construct an abstract block-off-diagonal matrix
based on the matrix S by

Q =
(

S†
N×M

SM×N

)
. (C3)

Our constrainer Hamiltonian matrix appears in the first diag-
onal block of Q2,

Q2 =
(

Hconstrainer(q)
(SS†)M×M

)
. (C4)

We now define a set of auxiliary orbitals on the lat-
tice sites formed by the constrainers, on which the
creation/annihilation operators c†

q,I and cq,I are defined,
where I = 1, . . . , M. Then the matrix Q2 represents a Hamil-
tonian over the Hilbert space spanned by the basis (s†

q,i, c†
q,I ),

where i = 1, . . . , N and I = 1, . . . , M.
To connect with the bipartite Hamiltonian [52], we inter-

pret Q as a Hamiltonian on a bipartite lattice where S and
S† represent hopping between the two sublattices, which are
denoted L and L̄ in Ref. [52]. However, in our CSL Hamil-
tonian, the bipartite lattice is virtual; i.e., it is a mathematical

construction but does not correspond to a physical hopping
between spins and constrainers. This construction shows that
every constrainer Hamiltonian can be mapped to an electronic
Hamiltonian on a bipartite lattice, and vice versa.

We now explain how to use the matrices Q and Q2 to
re-derive the symmetry analysis we obtained in Appendix B.
First, the matrix Q defined in Eq. (C3) has an anticommuting
chiral symmetry C, satisfying {Q, C} = 0, given by

C =
(

1N×N

−1M×M

)
. (C5)

Thus, an eigenstate ψ of the matrix Q at energy E has a
chiral-symmetry-related partner Cψ , which is an eigenstate of
Q at energy −E . Both ψ and Cψ are eigenstates of Q2 with
eigenvalue E2. Since [C, Q2] = 0, one can construct linear
combinations of these eigenstates that only live on the Hilbert
subspace described by either the upper or lower block of Q2,
i.e., ψ+ = ψ + Cψ and ψ− = ψ − Cψ . These wave functions
are defined in the basis of (s†

q,i, c†
q,I ); projecting ψ± onto

the upper/lower block yields an eigenstate of either S†S or
SS†. Thus, we have shown that the eigenvalue spectra of S†S
and SS† are identical, with one exception, which is where
ψ± is ill defined. Assuming N > M and rank(S) = M, this
happens precisely when ψ = Cψ , which implies E = 0 and
ψ− = 0. In other words, the constrainer Hamiltonian S†S has
zero-energy eigenstates that are not eigenstates of SS†.

Now consider the symmetry properties of the bands. In the
constrainer models we consider, every symmetry g commutes
with C, since symmetries do not mix spins with constrainers.
Thus, if ψ is simultaneously an eigenstate of Q with energy
E and an eigenstate of a symmetry g with eigenvalue ξ , then
Cψ , ψ+, and ψ− are also eigenstates of g with eigenvalue ξ

because [C, g] = 0. It follows that the representation of the
dispersive bands in S†S and the bands of SS† are also identical.
However, the flat bands in S†S do not have partners in SS†.
Therefore the representation of the flat bands is given by the
difference between the band representations of S and C, i.e.,
BRS � BRC . If the flat bands are gapped from the dispersive
bands, then every irrep that appears in BRC must also appear
in BRS since the dispersive bands of each have the same irreps.
Thus, if an irrep appears in BRC that is not in BRS , it must be
that the flat bands are not gapped from the dispersive bands.
In this case, the representation of the dispersive bands at the
band touching point is not given by BRC since the symmetry
analysis only works for nonzero-energy states. The results
here are identical to what we have shown in Appendix B.
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