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Crystal facet orientation and temperature dependence of charge and spin Hall effects
in noncollinear antiferromagnets: A first-principles investigation
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Noncollinear antiferromagnets (nc-AFMs) have attracted increasing research attention in spintronics due
to their unique spin structures and fascinating charge and spin transport properties. By using first-principles
calculations, we comprehensively investigate the charge and spin Hall effects in representative noncollinear
antiferromagnet Mn3Pt. Our study reveals that the Hall effects in nc-AFMs are critically dependent on the
crystal facet orientation and temperature. For (001)-oriented Mn3Pt, each charge and spin Hall conductivity
element comprises time-reversal odd (T-odd) and even (T-even) contribution, associated with longitudinal
conductivity, which leads to sizable and highly anisotropic Hall conductivity. The temperature dependence of
charge and spin Hall conductivity has been elucidated by considering both phonon and spin disorder scattering.
The scaling relations between Hall conductivity and longitudinal conductivity have also been investigated. The
existence of prominent spin Hall effect in nc-AFMs may generate spin current with Sz spin polarization, which
is advantageous for field-free switching of perpendicular magnetization. Our work may provide unambiguous
understanding of the charge and spin transport in noncollinear antiferromagnets and pave the way for applications
in antiferromagnetic spintronics.
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I. INTRODUCTION

Noncollinear antiferromagnets (nc-AMFs), such as Mn3X
(X = Ga, Ge, Sn, Pt, Sb, etc.) [1–4] and antiperovskite
Mn3XN (X = Ni, Ga, Sn, etc.) [5–8], etc., have attracted
intensive research attention in the field of spintronics. The fas-
cinating transport properties, including anomalous Hall effect
(AHE) [9–12], spin-polarized transport [13–15], and tunnel-
ing magnetoresistance effect [16–18], make them promising
for next-generation spintronic devices, such as magnetic ran-
dom access memory [19–21].

In recent years, significant advancements have been made
in the study of charge and spin Hall effects in nc-AFMs.
Notably, the AHE has been theoretically predicted and ex-
perimentally observed [9,22–24] in nc-AFMs with vanishing
small magnetization, challenging the conventional view that
AHE is directly proportional to magnetization in traditional
ferromagnets. Furthermore, spin Hall effects have also been
theoretically predicted [13,25] even in the absence of spin-
orbit coupling and recently observed in Mn3Sn [14]. Up to
now, most of the existing theoretical works on nc-AFMs in-
vestigated the individual charge and spin Hall conductivity
components [23,25]. In addition, despite the temperature ef-
fect having been thoroughly studied in ferromagnets [26,27]
and collinear antiferromagnets [28,29], it still remains unclear
how temperature may impact the charge and spin transport
properties of nc-AFMs, which makes the comparison between
experimental and theoretical results unfeasible.

In this work, we leverage linear-response symmetry anal-
ysis and tensor transformation relations to gain insights into
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the fundamental connections between magnetic symmetry,
charge, and spin transport in the typical nc-AFM Mn3Pt.
Using first-principles calculations, the specific value of each
tensor element for charge and spin Hall conductivity is com-
prehensively investigated in two representative crystal facet
orientations. Furthermore, to more directly compare with ex-
periments, we incorporate lattice vibration and spin disorder
scatterings to demonstrate the realistic finite-temperature ef-
fect on the charge and spin transport properties in Mn3Pt.

II. COMPUTATIONAL METHOD

The electronic structure of cubic Mn3Pt with experimental
lattice constant of a = 3.833 Å [30] has been calculated self-
consistently on the basis of local spin-density approximation
(LSDA) as parametrized by Vosko et al. [31]. A wave-
function expansion with angular momentum cutoff lmax = 3
is used. To investigate the transport properties, we consider
two main temperature-dependent scattering mechanisms, i.e.,
lattice vibrations (phonon) and spin disorder (spin fluctuation)
scattering by employing the coherent phase approximation
alloy analogy method implemented in SPR-KKR code [27,32–
34], assuming a frozen potential for the atoms [35]. Here, the
lattice vibrations are treated by using 14 displacement vectors
with the length set to reproduce the temperature-dependent
root-mean-square displacement given by Debye’s theory [36],
where the Debye temperature �D = 357 K estimated from
the weighted average of the consisted elements is used. For
the spin disorder scattering, we adopt temperature-dependent
magnetization M(T) taken from experimental data [37], where
the spins are allowed to fluctuate with equal probability on
a regular grid of 60 polar angles θ and 5 azimuthal angles
ϕ. The charge and spin Hall conductivity tensors of Mn3Pt
are calculated within the linear-response theory based on
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FIG. 1. (a) Crystal structure and spin configuration of cubic nc-
AFM Mn3Pt. (b) and (c) are the top views of Mn3Pt from (111)
and (001) planes. The red, green, and blue arrows along different
crystallographic axes indicate the x, y, and z axes in the Cartesian
coordinate. (b) and (c) are denoted as config1 and config2, which
can be used to study the charge and spin Hall effect for (111) and
(001)-oriented Mn3Pt, respectively.

the Kubo-Středa formula implemented in the Korringa-Kohn-
Rostoker Green function method [38–40].

III. RESULTS AND DISCUSSION

A. Symmetry-imposed charge and spin Hall conductivity tensor

The crystal and spin configurations of the typical nc-AFM
Mn3Pt with space group Pm3̄m (No. 221) and magnetic space
group R3̄m (No. 166.101) are depicted in Fig. 1(a). We first

analyze the symmetry-imposed charge and spin Hall conduc-
tivity tensors [41,42]. In linear-response theory, the charge
and spin current density propagates along the i direction by
applying an electric field E, which can be written as

Ji =
∑

j

σi jE j (i, j ∈ {x, y, z}), (1a)

Jk
i =

∑
j

σ k
i jE j (i, j, k ∈ {x, y, z}), (1b)

where the charge Hall conductivity σi j is a tensor of rank 2,
and the spin Hall conductivity σ k

i j is a third-rank tensor with k
index indicating the spin polarization of the spin current.

The most compact linear-response charge and spin Hall
tensors of Mn3Pt can be obtained in Cartesian coordinate by
setting the z axis along [111], x, y along [112̄], and [1̄10]
crystallographic axes denoted as config1 in Fig. 1(b). This
configuration can be adopted for investigating the charge and
spin response for (111)-oriented Mn3Pt film by applying in-
plane electric field. The symmetry-imposed charge and spin
Hall conductivity tensors for Mn3Pt (111) in config1 are listed
in Table I. Hereafter we use σ̃ and σ̄ to denote the T-odd
(time-reversal odd) and T-even (time-reversal even) conduc-
tivity tensors. Specifically, the T-odd indicates a sign change
of conductivity upon time reversal, while T-even denotes an
invariant conductivity by time-reversal operation.

TABLE I. The symmetry-imposed charge and spin conductivity tensors for Mn3Pt. σ̃ and σ̄ are used to denote the T-odd and T-even
conductivity tensors. The charge and spin conductivity in the last column are our calculation results at 0 K with an imaginary energy 10−4 Ry.
The units for charge Hall conductivity and spin Hall conductivity are in (� cm)−1 and (h̄/2e)(� cm)−1, respectively.

T-Odd T-Even Calculation result

Charge conductivity σ

⎛
⎝ 0 σ̃xy 0

−σ̃xy 0 0
0 0 0

⎞
⎠

⎛
⎝σ̄xx 0 0

0 σ̄xx 0
0 0 σ̄zz

⎞
⎠

⎛
⎝481 061 94 0

−94 481 061 0
0 0 482 919

⎞
⎠

Spin conductivity σ x

⎛
⎝σ̃ x

xx 0 σ̃ x
xz

0 −σ̃ x
xx 0

σ̃ x
zx 0 0

⎞
⎠

⎛
⎝ 0 σ̄ x

xy 0
σ̄ x

xy 0 σ̄ x
yz

0 σ̄ x
zy 0

⎞
⎠

⎛
⎝−43 096 100 72 062

100 43 096 −132
63 390 −176 0

⎞
⎠

Config1/Mn3Pt (111)

σ y

⎛
⎝ 0 −σ̃ x

xx 0
−σ̃ x

xx 0 σ̃ x
xz

0 σ̃ x
zx 0

⎞
⎠

⎛
⎝ σ̄ x

xy 0 −σ̄ x
yz

0 −σ̄ x
xy 0

−σ̄ x
zy 0 0

⎞
⎠

⎛
⎝ 100 43 096 132

43 096 −100 72 062
176 63 390 0

⎞
⎠

σ z

⎛
⎝σ̃ z

xx 0 0
0 σ̃ z

xx 0
0 0 σ̃ z

zz

⎞
⎠

⎛
⎝ 0 σ̄ z

xy 0
−σ̄ z

xy 0 0
0 0 0

⎞
⎠

⎛
⎝4 602 7 0

−7 4 602 0
0 0 4 497

⎞
⎠

Charge conductivity σ

⎛
⎝ 0 σ̃xy −σ̃xy

−σ̃xy 0 σ̃xy

σ̃xy −σ̃xy 0

⎞
⎠

⎛
⎝σ̄xx σ̄xy σ̄xy

σ̄xy σ̄xx σ̄xy

σ̄xy σ̄xy σ̄xx

⎞
⎠

⎛
⎝481 681 674 565

565 481 681 674
674 565 481 681

⎞
⎠

Spin conductivity σ x

⎛
⎜⎝

σ̃ x
xx σ̃ x

xy σ̃ x
xy

σ̃ x
yx σ̃ x

yy σ̃ x
yz

σ̃ x
yx σ̃ x

yz σ̃ x
yy

⎞
⎟⎠

⎛
⎜⎝

0 σ̄ x
xy −σ̄ x

xy

σ̄ x
yx σ̄ x

yy σ̄ x
yz

−σ̄ x
yx −σ̄ x

yz −σ̄ x
yy

⎞
⎟⎠

⎛
⎜⎝

78 231 3 684 3 891

−1 312 −35 216 −2 613

−1 125 −2 647 −35 105

⎞
⎟⎠

Config2/Mn3Pt (001)

σ y

⎛
⎜⎝

σ̃ x
yy σ̃ x

yx σ̃ x
yz

σ̃ x
xy σ̃ x

xx σ̃ x
xy

σ̃ x
yz σ̃ x

yx σ̃ x
yy

⎞
⎟⎠

⎛
⎜⎝

−σ̄ x
yy −σ̄ x

yx −σ̄ x
yz

σ̄ x
xy 0 −σ̄ x

xy

σ̄ x
yz σ̄ x

yx σ̄ x
yy

⎞
⎟⎠

⎛
⎜⎝

−35 105 −1 125 −2 647

3 891 78 231 3 684

−2 613 −1 312 −35 216

⎞
⎟⎠

σ z

⎛
⎜⎝

σ̃ x
yy σ̃ x

yz σ̃ x
yx

σ̃ x
yz σ̃ x

yy σ̃ x
yx

σ̃ x
xy σ̃ x

xy σ̃ x
xx

⎞
⎟⎠

⎛
⎜⎝

σ̄ x
yy σ̄ x

yz σ̄ x
yx

−σ̄ x
yz −σ̄ x

yy −σ̄ x
yx

−σ̄ x
xy σ̄ x

xy 0

⎞
⎟⎠

⎛
⎜⎝

−35 216 −2 613 −1 312

−2 647 −35 105 −1 125

3 684 3 891 78 231

⎞
⎟⎠
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As shown in Table I, for Mn3Pt (111) in config1, the charge
Hall conductivity contains only nonzero T-odd term σ̃xy. This
charge Hall conductivity in nc-AFMs shares the same origin
as intrinsic anomalous Hall conductivity in conventional fer-
romagnetic metals. The T-odd charge Hall conductivity we
calculate for Mn3Pt (111) in config1 at 0 K with a constant
band-energy broadening of 10−4 Ry is 94 (� cm)−1 , which
is comparable to previous theoretical value based on Berry
phase method (98 �−1 cm−1) [23]. For spin Hall effect, each
spin conductivity element for Mn3Pt in config1 contains either
a T-odd or T-even term. The T-odd spin Hall conductivity, also
known as “magnetic spin Hall,” is only present in magnetic
materials, while the T-even spin Hall conductivity shares the
same origin as nonmagnetic heavy metal like Pt, Ta, etc.
[43]. Using the same band-energy broadening, the calculated
T-even spin Hall conductivity σ̄ x

xy for Mn3Pt (111) in config1
at 0 K is 50 h̄

e �
−1 cm−1, in good agreement with the previous

result obtained by Berry phase method [66(h̄/e) �−1 cm−1]
[23]. It is worth noting that for Mn3Pt (111) in config1, the
symmetry-imposed spin Hall conductivity elements σ

x,y
zx and

σ
x,y
zy are nonzero but σ z

zx and σ z
zy are zero, which suggests

that the spin current propagates perpendicular to the Mn3Pt
(111) plane by applying in-plane electric field could contain
Sx and Sy spin-polarization components, but no out-of-plane
Sz component.

The charge and spin Hall conductivity tensors for other
crystal facet orientation can be obtained by performing matrix
transforming. For instance, by converting from the conduc-
tivity tensors for Mn3Pt (111) in config1 to Mn3Pt (001) in
coordinate system config2 by setting [001] as z axis, [100]
as x axis, and [010] as y axis as depicted in Fig. 1(c), the
transformation matrix M between those two configurations is
as follows:

M =

⎛
⎜⎜⎜⎝

√
6

6 −
√

2
2

√
3

3√
6

6

√
2

2

√
3

3

−
√

6
3 0

√
3

3

⎞
⎟⎟⎟⎠. (2)

The charge conductivity tensors σ2 for config2 can then be
calculated based on σ1 for config1 by performing the follow-
ing matrix transformation [24]:

σ2 = Mσ1M−1. (3)

The symmetry-imposed T-odd and T-even charge conduc-
tivity tensors for config2 can be expressed in terms of charge
conductivity for config1 as

σ
(odd)
2 =

⎛
⎜⎜⎜⎝

0 −
√

3
3 σ̃xy

√
3

3 σ̃xy
√

3
3 σ̃xy 0 −

√
3

3 σ̃xy

−
√

3
3 σ̃xy

√
3

3 σ̃xy 0

⎞
⎟⎟⎟⎠

σ
(even)
2 =

⎛
⎜⎜⎝

2σ̄xx+σ̄zz

3
σ̄zz−σ̄xx

3
σ̄zz−σ̄xx

3
σ̄zz−σ̄xx

3
2σ̄xx+σ̄zz

3
σ̄zz−σ̄xx

3
σ̄zz−σ̄xx

3
σ̄zz−σ̄xx

3
2σ̄xx+σ̄zz

3

⎞
⎟⎟⎠, (4)

where on the right-hand side of the above Eq.(4), σ̃xy is
the T-odd charge Hall conductivity, and σ̄xx and σ̄zz are the
anisotropic longitudinal conductivity for Mn3Pt (111) in con-

fig1. It can be seen that in contrast to the sole T-odd Hall
conductivity for Mn3Pt (111), each charge Hall conductivity
element for Mn3Pt (001) comprises both T-odd and T-even
contributions. More importantly, the T-even charge Hall con-
ductivity for Mn3Pt (001) is associated with the anisotropic
longitudinal conductivity. Therefore, it will result in a rela-
tively large and highly anisotropic charge Hall conductivity at
finite temperature for Mn3Pt (001), as we will discuss later.

Similarly, the spin Hall conductivity elements for Mn3Pt
(001) in config2 σ2,

k
i j can be obtained from the spin Hall con-

ductivities for Mn3Pt (111) in config1 σ1,
n
lm by the following

tensor transformation [24]:

σ2,
k
i j =

∑
l,m,n

Mil MjmMknσ1,
n
lm. (5)

For instance, the T-odd and T-even spin Hall conductivity
elements σ

x,y,z
zx for config2 can be expressed in terms of the

spin Hall conductivity for config1 as follows:

σ2,
x(odd)
zx = 1

9

(√
6σ̃ x

xx −
√

3σ̃ z
xx −

√
3σ̃ x

xz + 2
√

3σ̃ x
zx +

√
3σ̃ z

zz

)
σ2,

y(odd)
zx = 1

9

(−2
√

6σ̃ x
xx −

√
3σ̃ z

xx −
√

3σ̃ x
xz

−
√

3σ̃ x
zx +

√
3σ̃ z

zz

)
σ2,

z(odd)
zx = 1

9

(√
6σ̃ x

xx −
√

3σ̃ z
xx + 2

√
3σ̃ x

xz −
√

3σ̃ x
zx +

√
3σ̃ z

zz

)
,

(6a)

σ2,
x(even)
zx = 1

3

(√
2σ̄ y

xx + σ̄ y
xz − σ̄ z

yx

)
σ2,

y(even)
zx = 1

3

(−σ̄ y
xz − σ̄ z

yx + σ̄ y
zx

)
σ2,

z(even)
zx = 1

3

(−√
2σ̄ y

xx − σ̄ z
yx − σ̄ y

zx

)
, (6b)

where the quantities on the right-hand side of the above
Eqs. (6a) and (6b) are the corresponding T-odd and T-even
spin conductivity elements for config 1. It can be observed
from the above equations as well as the symmetry-imposed
spin conductivity tensors listed in Table I that all the spin Hall
conductivity elements for Mn3Pt (001) comprise both T-odd
and T-even terms. What is more important, σ

x,y,z
zx and σ

x,y,z
zy

are all nonzero, which indicates that Mn3Pt (001) may serve
as an efficient spin current source with three spin polarizations
(Sx, Sy, and Sz) useful for field-free switching of perpendicular
magnetization through spin-orbit torque mechanism. Since
Mn3Pt (111) is relatively trivial (it does not contain T-even
charge Hall contribution and there is no spin Hall conductivity
for generating Sz spin current), in the following section we
will concentrate on the charge and spin transport in Mn3Pt
(001).

B. Charge Hall conductivity of Mn3Pt:
Temperature effects and anisotropy

In order to evaluate the full charge or spin conductivity
tensors for nc-AFMs, previous calculations usually adopted
constant band-energy broadening (i.e., constant relaxation
time) approximation [13]. However, to make a direct com-
parison between experimental and theoretical results, the
finite-temperature effect including phonon and spin disorder
scattering should be explicitly taken into account. To better
understand the transport property of nc-AFMs at finite tem-
perature, we first calculate and plot the Bloch spectra function
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(a)
0 K 100 K
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FIG. 2. The Bloch spectra function (BSF) of cubic Mn3Pt calculated at 0 K (a), 100 K (b), 200 K (c), and 350 K (d). The horizontal white
dashed lines indicate the Fermi energy.

(BSF) for cubic Mn3Pt along the high-symmetry k paths in the
Brillouin zone. The calculated BSFs at various temperatures
by considering both phonon and spin fluctuation are shown in
Fig. 2. At 0 K, the BSF of Mn3Pt has zero energy broadening
(i.e., infinite electron lifetime), which is identical to its band
structure shown in Fig. S1 in Supplemental Material [44]. As
depicted in Fig. 2(b) to Fig. 2(d), when the temperature is
rising, the BSF becomes increasingly blurred. The enhance-
ment of electron scattering with phonon and spin disorder
leads to a larger band-energy broadening, and a shorter elec-
tron lifetime at higher temperature can also be visible from
temperature-dependent density of states shown in Fig. S2 of
the Supplemental Material [44].

To have qualitative understanding of general features and
temperature dependence of Hall conductivity, we also provide
the linear-response formula for conductivity based on Bloch
states within the constant band-energy broadening approxi-
mation. Under this condition, the T-odd and T-even charge
conductivity tensors can be expressed as follows [13,45]:

σ
(odd)
i j = eh̄

∑
n �=m

[ f (εm) − f (εn)]
Im(〈n|Ĵi|m〉〈m|v̂ j |n〉)

(εn − εm)2 + (h̄�)2 , (7a)

σ
(even)
i j = −eh̄2�

∑
n,m

f (εm) − f (εn)

εn − εm

Re(〈n|Ĵi|m〉〈m|v̂ j |n〉)

(εn − εm)2 + (h̄�)2 ,

(7b)

where m and n are the band indices; f (ε) is the Fermi-Dirac
distribution; Ĵ and v̂ represent the electric current density and

velocity operators, respectively; e is elementary charge; h̄ is
the reduced Planck constant; and h̄� is the constant band-
energy broadening by taking into account the finite electron
lifetime due to scattering.

It is clear that generally the T-odd charge Hall conductivity
will decrease with the increase of temperature and band-
energy broadening h̄�. In the clean limit �→0, the T-odd
charge Hall conductivity σ

(odd)
i j approaches a finite value and

restores to Berry phase expression for intrinsic anomalous
Hall conductivity [46]. The T-even charge Hall conductivity
can be decomposed into intraband (m = n) and interband
(m �= n) contributions:

σ
(even,intra)
i j = e

�

∑
n

〈n|Ĵi|n〉〈n|v̂ j |n〉
(

−∂ f (εn)

∂εn

)
, (8a)

σ
(even,inter)
i j = −eh̄2�

∑
n �=m

f (εm) − f (εn)

εn − εm

× Re(〈n|Ĵi|m〉〈m|v̂ j |n〉)

(εn − εm)2 + (h̄�)2 . (8b)

The T-even charge conductivity including longitudinal
conductivity (σii ) also decreases with the increase of tem-
perature. In the clean limit �→0, the interband term
σ

(even,inter)
i j gradually vanishes, while the intraband contribu-

tion σ
(even,intra)
i j becomes dominating and diverges as a function

of 1/�.
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(a) (b)

(c) (d)

FIG. 3. (a) The calculated temperature dependence of longitudinal resistivity ρxx . The experimental longitudinal resistivity for single-
crystal bulk Mn3Pt is shown in green open diamond for comparison [47]. The inset is the experimental M(T ) curve of Mn3Pt we use for
considering spin-fluctuation scattering. (b) The calculated temperature-dependent T-odd (blue triangles, refer to left axis) and T-even (red
diamonds, refer to right axis) charge Hall conductivity of Mn3Pt (001) in config2. T-odd experimental data are shown in blue open diamonds
for comparison [47]. (c) The total T-odd and T-even charge Hall conductivity as a function of θ for Mn3Pt (001) at room temperature 300 K.
The inset shows the definition of angle θ . (d) The calculated T-odd (blue triangles, refer to left axis) and T-even (red diamonds, refer to right
axis) charge Hall conductivity as a function of longitudinal conductivity σxx . The dashed lines are the fitting curves based on scaling relation
σ̃xy ∼ a′σ 2

xx + b′σxx + c′ and σ̄xy ∼ aσxx + b, respectively.

We then calculate the temperature-dependent charge con-
ductivity by including phonon and spin disorder scatter-
ings by using an alloy analogy model as implemented in
Green’s function-based spin-polarized relativistic Korringa-
Kohn-Rostoker (SPR-KKR) method [33]. We first compare
the longitudinal resistivity ρxx with the available experimen-
tal results for bulk single-crystal Mn3Pt [47]. As shown in
Fig. 3(a), the calculated electrical resistivity by considering
both lattice vibration and spin fluctuation agrees well with
the experimental result. When only the lattice vibration effect
is included, the phonon resistivity ρvib

xx scales almost linearly
with temperature T. In the low-temperature regime (T <

200 K), the spin-fluctuation resistivity ρflu
xx is comparable to

ρvib
xx , and ρfiu

xx is dominant over ρvib
xx in the high-temperature

regime (T > 220 K), which indicates that the spin disorder
scattering in nc-AFMs is vital for charge and spin transport at
finite temperatures.

Experimentally, the anomalous Hall resistivity of nc-AFMs
has usually been measured and evaluated by 1

2 [ρ+
xy(H = 0) −

ρ−
xy(H = 0)], which only contains the T-odd term, where

ρ±
xy(H = 0) refer to Hall resistivity measured at zero mag-

netic field after applying opposite magnetic field [10,47].
It is worth noting that when thermal scatterings including
phonon and spin disorder have been considered, the shape
of Hall conductivity tensors may deviate from the zero-
temperature case as outlined in Table I. However, in our

first-principles calculation, all the conductivity tensors have
been explicitly calculated, instead of deduced from symme-
try restrictions. The T-even and T-odd contributions have
been distinguished and obtained by performing two sepa-
rate calculations for Mn3Pt with opposite spin configurations
by σ odd

H = 1
2 [σH (M) − σH (−M)] and σ even

H = 1
2 [σH (M) +

σH (−M)], where M and −M denote the opposite spin con-
figurations in Mn3Pt. As shown in Fig. 3(b), the calculated
T-odd charge Hall conductivity for Mn3Pt (001) agrees well
with the experimental result in a wide temperature window.
At room temperature (T = 300 K), the calculated T-odd Hall
conductivity is 33 (� cm)−1, which is close to the experimen-
tal value of 25 (� cm)−1 [47].

As shown in Fig. 3(b), both calculated T-odd and T-even
charge Hall conductivity decrease with increasing temper-
ature. At the same temperature, the T-even charge Hall
conductivity σ̄xy, which is associated with the anisotropic
longitudinal transport, is dozens of times larger than the T-
odd charge Hall conductivity σ̃xy. We further investigate the
scaling relation between charge Hall conductivity and longi-
tudinal conductivity σxx. As shown in Fig. 3(d), the T-even
charge Hall conductivity σ̄xy can be well described by lin-
early scaling with σxx as σ̄xy ∼ aσxx + b, since the T-even
conductivity shows the similar dependence on band-energy
broadening as indicated in Eq. (7). However, the T-odd charge
Hall conductivity σ̃xy, which exhibits different dependence on
band-energy broadening, should be described by including
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FIG. 4. Comparison of spin Hall effect for SOT applications: (a)
Conventional nonmagnetic heavy metals like Pt and Ta may generate
spin current along z direction with only Sy spin polarization by
applying charge current Jc along x direction. (b) Representative nc-
AFM such as Mn3Pt (001) could produce spin current with all three
spin polarizations Sx , Sy, and Sz, which is beneficial for field-free
switching of perpendicular magnetization.

both linear and quadratic scaling with σxx as σ̃xy ∼ a′σ 2
xx +

b′σxx + c′. Such scaling relation between σ̃xy and σxx for
Mn3Pt film has been reported by recent experiment [48].

The in-plane anisotropy of charge Hall conductivity for
Mn3Pt (001) at room temperature is further studied. As shown
in Fig. 3(c), θ has been set to be the angle between elec-
tric field and the [100] crystal axis. By employing similar
matrix transformation as shown in Eq. (3), the charge Hall
conductivity for Mn3Pt (001) with arbitrary in-plane angle
θ with respect to config2 can be obtained by the following
transformation matrix:

M =
⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠. (9)

The calculated total charge Hall conductivity σxy, the T-odd
(σ̃xy), and T-even (σ̄xy) Hall conductivity as a function of θ are
shown in Fig 3(c). The anisotropic charge Hall conductivity
generally follows a sinusoidal function with a π periodicity.
The highly anisotropic total Hall conductivity σxy can be at-
tributed to the dominant T-even Hall conductivity σ̄xy. The
T-even charge Hall conductivity reaches its maximum value
350 �−1 cm−1 at θ = 0, an order of magnitude larger than
the T-odd Hall conductivity (34 �−1cm−1).

C. Spin Hall conductivity of Mn3Pt: Temperature effects
and anisotropy

The spin current generated by spin Hall effect with out-of-
plane Sz component (spin-polarization perpendicular to film
plane) is essential for field-free switching of perpendicular
magnetization. However, as shown in Fig. 4(a), in conven-
tional nonmagnetic heavy metal like Pt and Ta, the spin
current propagating perpendicular to the film plane only has
in-plane spin polarization when in-plane charge current is
applied. Recently, several experiments demonstrated that nc-
AFMs can generate spin current with three spin polarizations
(Sx, Sy, Sz), which makes nc-AFMs an appealing spin current
source for spin-orbit torque (SOT) applications [20,21]. The
full spin conductivity tensor for Mn3Pt (001) in config2 can
be found in Table I. It can be seen that all spin Hall conduc-
tivity elements, especially σ

x,y,z
zx and σ

x,y,z
zy are nonzero and

contributed by major T-odd and minor T-even terms. This
indicates that as shown in Fig. 4(b) for Mn3Pt (001) film, there
will be spin current with three spin-polarization components
(Sx, Sy, Sz) propagating along the z direction by applying an
in-plane electric field, which makes Mn3Pt (001) and similar
nc-AFMs promising spin current sources for SOT application.

Similar to charge conductivity, the linear-response T-odd
and T-even spin conductivity based on constant band-energy
broadening approximation can be obtained by replacing
charge current-density operator with spin current operator
Ĵk

i = 1
2 {ŝk, v̂i} and interchange T-odd and T-even terms in

Eq. (7) as [13,45]

σ
k(even)
i j = eh̄

∑
n �=m

[ f (εm) − f (εn)]
Im

(〈n|Ĵk
i |m〉〈m|v̂ j |n〉)

(εn − εm)2 + (h̄�)2 ,

(10a)

σ
k(odd)
i j = −eh̄2�

∑
n,m

f (εm) − f (εn)

εn − εm

Re
(〈n|Ĵk

i |m〉〈m|v̂ j |n〉)
(εn − εm)2 + (h̄�)2 ,

(10b)

It is clear that generally the T-even spin Hall conductiv-
ity σ

k(even)
i j decreases with the increase of temperature. In

the clean limit �→0, the T-even spin Hall conductivity ap-
proaches a finite value and can be evaluated based on Berry
phase expression for intrinsic spin Hall conductivity [49]. The
T-odd spin Hall conductivity (i.e., magnetic spin Hall conduc-
tivity) σ

k(odd)
i j can be decomposed into intraband (m = n) and

interband (m �= n) contributions:

σ
k(odd,intra)
i j = e

�

∑
n

〈n|Ĵk
i |n〉〈n|v̂ j |n〉

(
−∂ f (εn)

∂εn

)
, (11a)

σ
k(odd,inter)
i j = −eh̄2�

∑
n �=m

f (εm) − f (εn)

εn − εm

× Re(〈n|Ĵk
i |m〉〈m|v̂ j |n〉)

(εn − εm)2 + (h̄�)2 . (11b)

The T-odd spin Hall conductivity also decreases when the
temperature increases. In the clean limit �→0, the interband
term σ

k(odd,inter)
i j gradually reduces to zero, while the intraband

contribution σ
k(odd,intra)
i j becomes dominating and diverges as

a function of 1/�.
We then calculate the temperature-dependent spin Hall

conductivity (SHC) by including both phonon and spin dis-
order scatterings. It can be seen from Table I that the spin
Hall conductivity elements for Mn3Pt (001) in config2 are
mostly contributed by the T-odd term, with a small portion of
T-even term. Figures 5(a) to Fig. 5(c) present the temperature
dependency of three typical spin Hall conductivity elements
σ x

zx, σ
y
zx, and σ z

zx for Mn3Pt (001). At low temperature, the
SHCs are all at the order of 103

ћ/2e(� cm)−1. With the
increase of temperature, the absolute values of all three SHCs
drastically decrease and drop to around 102

ћ/2e(� cm)−1 at
room temperature, 300 K.

The scaling relation between spin Hall conductivity with
longitudinal conductivity σxx has also been investigated. As it
is shown in Figs. 5(d)–5(g), all three spin Hall conductivity
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. The calculated spin Hall conductivity σ x
zx (a), σ y

zx (b), and σ z
zx (c) of Mn3Pt (001) in config2 as a function of temperature. (d)–(f) are

the scaling relation between σ x
zx , σ y

zx , and σ z
zx and the longitudinal conductivity σxx , where the dashed lines are linear fittings by σ x,y,z

zx ∼ aσxx + b.
(g)–(i) are the in-plane anisotropic spin Hall conductivity (refer to left axis) and the corresponding spin Hall angle (refer to right axis) for Mn3Pt
(001) at room temperature (300 K).

elements σ
x,y,z
zx follow linear scaling with σxx and can be well

described as σ k
zx ∼ aσxx + b. Such linear scaling behavior of

spin Hall conductivity can be understood based on the fact that
both the dominating T-odd spin Hall conductivity and the T-
even longitudinal conductivity σxx exhibit similar dependence
on band-energy broadening h̄� as indicated in Eq. (10b) and
Eq. (7b).

The arbitrary in-plane angle θ dependence of σ
x,y,z
zx (θ ) for

Mn3Pt (001) can be obtained from spin Hall tensor of Mn3Pt
(001) in config2 by performing tensor transformation by fol-
lowing Eq. (6):

σ x
zx(θ ) = σ x

zxcos2θ − σ
y
zx sin 2θ

2
− σ x

zy sin 2θ

2
+ σ y

zysin2θ,

σ y
zx(θ ) = σ x

zx sin 2θ

2
+ σ y

zxcos2θ − σ x
zysin2θ − σ

y
zy sin 2θ

2
,

σ z
zx(θ ) = σ z

zx cos θ − σ z
zy sin θ, (12)

where on the right-hand side are the corresponding spin Hall
conductivities for Mn3Pt (001). The calculated spin Hall con-
ductivities and corresponding spin Hall angles αx,y,z [the spin
Hall angles are defined as αx,y,z = 2e

h̄ ( σ
x,y,z
zx

σxx
)] as functions of

in-plane angle θ at room temperature are shown in Fig. 5(g)
to Fig. 5(i). It can be seen that αx,y,z are all of the order of

several percent. αx,y(θ ) follow a π periodicity, while αz(θ )
has a 2π periodicity as manifested in Eq. (12).

We then focus on αz and σ z
zx, which are essential for

field-free switching of perpendicular magnetization. The
peak spin Hall angle αz for (001)-oriented Mn3Pt is calcu-
lated to be 0.024, corresponding to spin Hall conductivity
σ z

zx= 275h̄/2e�−1 cm−1. As illustrated in Fig. 6, the calcu-
lated spin Hall conductivity σ z

zx of Mn3Pt (001) for Sz spin
polarization is the largest among the available materials and
of the same order as Mn3Ir (143h̄/2e�−1 cm−1) [50] and
2D WTe2/PtTe2 heterostructure (250h̄/2e�−1 cm−1) [51].
Therefore, spin current with large Sz spin polarization can be
generated by spin Hall effect in Mn3Pt (001), which is partic-
ularly advantageous for spin-orbit torque (SOT) applications.

IV. SUMMARY

In summary, we have presented first-principles calculations
for the charge and spin Hall effects in nc-AFM Mn3Pt at finite
temperature by including phonon and spin disorder scatter-
ings. The charge and spin transports are found to be critically
dependent on crystal facet orientation. For Mn3Pt (001) it con-
tains both T-odd and T-even charge Hall contribution, while
the T-even part is associated with anisotropic longitudinal
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FIG. 6. Comparison of the calculated spin Hall conductivity σ z
zx

relevant for spin current with out-of-plane Sz spin polarization for
Mn3Pt (001) at 300 K and the reported experimental results for
PtTe2/WTe2/ [51], Mn3Ir [50], Mn3GaN [52], RuO2 [53], and WTe2

[54].

transport, leading to relatively large and highly anisotropic
total Hall conductivity. The T-even charge Hall conductivity

shows linear scaling with longitudinal conductivity σxx, while
the T-odd term should be scaled by also including a quadratic
term. The spin Hall conductivity tensors for Mn3Pt (001) are
full and each element comprises major T-odd contribution
and minor T-even contribution, making spin Hall conductivity
linearly scaling with σxx. The large spin Hall conductivity
element for producing out-of-plane spin-polarization Sz at
room temperature makes it useful for field-free switching of
perpendicular magnetization in SOT applications. Notably,
our findings on Mn3Pt can be naturally extended to a broad
family of other nc-AFMs with similar magnetic structures,
such as Mn3Ir, Mn3Rh, Mn3Sb, and their alloys. Our work
may provide comprehensive understanding of the charge and
spin Hall effect in nc-AFMs and pave the way for potential
applications in spintronic devices.
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