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Role of magnetic anisotropy in the antiskyrmion-host schreibersite magnets
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Magnetic anisotropy is a fundamental property of magnetic materials that plays an essential role in the stability
of magnetic domains and skyrmions. In this ferromagnetic resonance study, we report the evolution of magnetic
anisotropy by substituting various 4d metals in the antiskyrmion host (Fe, Ni)3P with S4 tetragonal symmetry.
In the undoped compound (Fe0.63Ni0.37)3P and in the Ru-doped (Fe0.59Ni0.32Ru0.09)3P, the uniaxial magnetic
anisotropy has an easy-plane character, while Pd doping turns the material to an easy-axis-type magnet, as
observed in (Fe0.62Ni0.29Pd0.09)3P. In addition to the dominant uniaxial anisotropy, we also quantify the fourfold
anisotropy of the plane perpendicular to the tetragonal axis in (Fe0.63Ni0.30Pd0.07)3P. Using analytical calcu-
lations and micromagnetic simulations, we discuss how this planar anisotropy competes with the anisotropic
Dzyaloshinskii-Moriya interaction in determining the orientation of the magnetic stripes and the antiskyrmions.

DOI: 10.1103/PhysRevB.110.054416

I. INTRODUCTION

During the last decade, extensive experimental and theo-
retical studies of several skyrmion-host materials revealed the
important role of magnetocrystalline anisotropy in the forma-
tion and stability of the skyrmion lattice (SkL). In general,
SkL phases are observed in noncentrosymmetric magnetic
crystals, where due to the lack of inversion symmetry the
Dzyaloshinskii-Moriya interaction (DMI) [1,2] gives rise to
spin canting, resulting in spiral spin structures. Upon appli-
cation of an external magnetic field, these spiral structures
transform into a SkL, which exists in a certain field and
temperature range, before it undergoes further metamagnetic
transitions to the ferromagnetically (FM) polarized state at
higher fields.

Recently, the role of magnetic anisotropy has been stud-
ied in various skyrmion hosts. In cubic chiral magnets such
as MnSi, a Bloch-type hexagonal SkL arises from the zero-
field helical spin structure within a small temperature range
just below the ordering temperature. The SkL aligns with
the skyrmion axes parallel to the external field and further
transforms into a conical structure with increasing field [3].
Systematic investigations of the magnetic anisotropy were
performed in Mn1−xFexSi, Mn1−xCoxSi [4], FeGe [5], and
Cu2OSeO3 [6,7]. Especially in the latter one, the most inter-
esting observation concerned the formation of an additional
low-temperature SkL state, when the tilted conical state gets
destabilized above certain magnetic fields applied along one
of the cubic [100] axes, which is the easy axis of magnetic
anisotropy. In the β-Mn-type series (Co0.5Zn0.5)20−xMnx, the
increase of the magnetic anisotropy to low temperatures was
shown to result in a strong deformation of the skyrmion shape

[8]. In addition to the plethora of DMI-induced SkL states,
skyrmions have been reported to emerge via the competition
of easy-axis anisotropy and dipolar interactions [9–12], as
well as via exchange frustration [13–17]. In these latter cases,
anisotropy was also playing a vital role in the formation of
twisted spin textures.

Even stronger is the influence of magnetic anisotropy in
skyrmion hosts with Cnv symmetry, where the existence of a
Néel-type SkL was already predicted more than 30 years ago
[18] and recently observed in the polar magnetic semicon-
ductors GaV4S8, GaV4Se8, and GaMo4S8 [19–25]. In these
systems, the cubic high-temperature phase undergoes a Jahn-
Teller transition between 40 and 50 K, resulting in a polar
rhombohedral state with Cnv symmetry. The DMI vector pat-
tern characteristic of the polar rhombohedral state stabilizes
spin cycloids, in contrast to the spin helices observed in chiral
magnets. Above a certain magnetic field, the Néel-type SkL is
formed with the skyrmions axes parallel to the rhombohedral
axis, followed by the FM polarized phase at higher fields. The
extension of the SkL phase in the magnetic phase diagram
strongly depends on the strength and the character (easy axis
or easy plane) of the magnetic anisotropy and the direction of
the magnetic field.

Very recently, the discovery of antiskyrmions in tetragonal
Heusler systems Mn-Pt(Pd)-Sn [26,27] and Mn-Ni(Pd)-Ga
[28–31] with D2d symmetry has attracted great attention. An
antiskyrmion, in contrast to vortexlike skyrmions, has an-
tivortexlike character. Unlike a skyrmion, it does not have
a unique chirality, but its chirality is direction dependent,
dictated by the chirality of the DMI [26]. Similar to skyrmion
host materials [32–34], antiskyrmion hosts show interesting
physical properties such as the topological Hall effect [35,36].
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Bulk Mn1.4PtSn exhibits a highly anisotropic topological Hall
effect, which survives in the whole temperature range where
the spin structure is noncoplanar (T < 170 K) [37]. Above the
spin-reorientation temperature TSR = 170 K, an anisotropic
fractal magnetic domain pattern of closure domains is trans-
formed into a set of bubble domains, whereas thin plates of
the same compound exhibit an antiskyrmion lattice or helix
structures [38]. In thin films of MnxPtSn (1.48 � x � 2.04),
the fundamental exchange parameters are tunable by chemical
substitution and thickness [39], reflected in the chiral-type
Hall effect and the magnetic transitions [40,41]. In the prox-
imity of TSR, the evolution of the in-plane uniaxial anisotropy
of MnxPtSn (x = 1.0–1.6) reflects the coexistence of the
collinear and noncoplanar magnetic phases [42].

From the above, it is clear that the bubbles are stabi-
lized by dipolar interactions and the role of the DMI term is
limited to the determination if the bubbles are topologically
trivial, Bloch-type skyrmionic bubbles, or antiskyrmionic
ones. Like for the formation of skyrmions [7,8,43–45], mag-
netic anisotropy is decisive by controlling the formation of
antiskyrmions [46–52]. Recently, the impact of the mag-
netic anisotropy on the formation of antiskyrmions has been
demonstrated with the doping of some 4d elements into
schreibersite (Fe,Ni)3P [53–58]. Schreibersite (Fe,Ni)3P ex-
hibits a noncentrosymmetric tetragonal crystal structure with
the space group I 4̄ of S4 symmetry class. It possesses three
inequivalent crystallographic (Fe,Ni) sites. A twofold rotation
symmetry around the [100] and [010] axes and a mirror sym-
metry with respect to the (110) and (1̄10) planes are absent
in the S4 symmetry, which results in a symmetry lower than
D2d [53]. Fe3P exhibits strong easy-plane anisotropy, which
is weakened by partial substitution of Fe by Ni. At close
to 40% Ni, the easy-plane anisotropy reaches a minimum.
Additional substitution of Fe by a few percent of Pd switches
the anisotropy into easy axis, allowing for the formation of
antiskyrmions. Accompanied by micromagnetic simulations,
the formation of antiskyrmions or skyrmions in schreibersite
was studied dependent on the character of the anisotropy
induced by controlled substitution of 4d elements [54].

In the present work, we applied the ferromagnetic res-
onance (FMR) technique at 9.4 GHz in order to refine
the analysis of the temperature dependence of uniaxial
anisotropy in (Fe0.63Ni0.37)3P, (Fe0.59Ni0.32Ru0.09)3P, and
(Fe0.62Ni0.29Pd0.09)3P, as well as the basal-plane anisotropy
in (Fe0.63Ni0.30Pd0.07)3P. In addition to our previous analysis
based mainly on magnetization measurements, our present
study allows one to resolve higher-order uniaxial anisotropy
contributions K2 and K3 beyond the leading contribution of
K1. In addition, we performed micromagnetic simulations to
understand the impact of the fourfold planar anisotropy Kb on
the orientation of the stripe phase and domain walls.

II. THE IMPACT OF MAGNETOCRYSTALLINE
ANISOTROPIES ON FMR EXPERIMENTS:

A BRIEF OVERVIEW

A. Theory

The effect of the magnetic domainlike structures on
the FMR experiments in materials with magnetocrystalline

FIG. 1. Spherical coordinate system used for modeling of FMR
in the case of an ellipsoid of revolution, which is well approximated
by a cylindrical thin disk. The orientations of the DC magnetic
field H and magnetization M are described by angles (θH , ϕH )
and (θM , ϕM ), respectively. The choice of crystallographic axes
(x1, x2, n) depends on the individual experimental setup (see Fig. 2).

anisotropies was studied by Smit and Beljers [59] and Suhl
[60]. They considered the case where the single-crystalline
sample has the form of an ellipsoid of revolution, as shown
in the schematic picture in Fig. 1. The anisotropy of the reso-
nance fields Hres can be simulated using the Smit-Beljers-Suhl
formula [59,60],[

ω

γ

]2

= 1

M2
s sin2 θM

[
∂2F

∂θ2
M

∂2F

∂ϕ2
M

−
(

∂2F

∂θM∂ϕM

)2
]
, (1)

where F is the total magnetic free-energy density. The quanti-
ties ω, γ , and Ms are the angular frequency, the gyromagnetic
ratio, and the saturation magnetization, respectively. The mag-
netization vector M is parametrized by polar angle θM and
the azimuthal angle ϕM within a spherical coordinate system.
Note that due to the presence of magnetic anisotropies, the
equilibrium orientation of the magnetization can deviate from
the direction of the external field H given by (θH , ϕH ) (Fig. 1).
The actual orientation of M is found by minimizing the free
energy as ∂F/∂θM = 0 and ∂F/∂ϕM = 0.

Now we consider F = FZee + Fdem + Fani, where the first
two terms include the contribution of the Zeeman en-
ergy, FZee = −M · H, and the demagnetization factor, Fdem =
1
2 Neff M2 cos2 θM . The effective demagnetization factor is
given as Neff = Nz − Nx for the FMR experiments, if a
cylindrical thin disk is used, where the demagnetization
factor remains unchanged upon the field rotation around
its symmetry axis (z axis), as depicted in Fig. 1, and is
computed according to Ref. [61], in which the ratio of
diameter/thickness (d/h) is taken into account.

Based on the S4 symmetry of the considered materials, the
magnetocrystalline anisotropy reads up to six order as

Fani = −(
K1m2

z + K2m4
z + K3m6

z

) − Kb(b̂1 · m)2(b̂2 · m)2,

(2)
where m = M/Ms is the reduced magnetization, mz denotes
the magnetization component parallel to the roto-inversion
axis of the S4 symmetry, i.e., the [001] axis, Ki are the uniaxial
anisotropy constants of increasing order (i = 1, 2, 3), and Kb

denotes the basal anisotropy. The defining axes b̂1 and b2

together with 〈001〉 form an orthonormal basis. Due to the low
symmetry of S4, the directions of b̂1 and b̂2 in the basal plane
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FIG. 2. Experimental setups: (a) a disk with x1 = [001] and
x2 = [110] was used for uniaxial anisotropy measurements, and (b) a
disk with x1 = [110] and x2 = [1̄10] was used for basal anisotropy
measurements.

are not constrained by symmetry and are determined by details
of the unit cell, similar to the orientation of the antisymmetric
DMI in this system [53]. This is in contrast to more symmetric
systems such as D2d , where extra mirror planes fix the ori-
entation of the DMI and basal anisotropy. In the following,
we define the basal axes with respect to the crystallographic
〈100〉 and 〈010〉 directions via b̂1 = cos ϕbê100 + sin ϕbê010

and b̂2 = ê001 × b̂1.

1. Uniaxial anisotropy

For measurements of the uniaxial anisotropy, we consider
a disk-shaped sample with the x1 = [001] and x2 = [110]
axes; see Fig. 2(a). Note that here the polar angles θM and θH

are not defined with respect to the rotational axis, but to the
crystallographic axis of highest symmetry, x1 = [001]. With
the rotational axis n = [1̄10], the azimuthal angles ϕM and ϕH

are fixed to zero.
In the case of a tetragonal crystal structure with uniaxial

symmetry, the first three terms of the anisotropy energy Fani in
Eq. (2) can be rewritten as follows [62,63]:

Fani = K1 sin2 θM + K2 sin4 θM + K3 sin6 θM, (3)

where the magnetic anisotropy energy depends only on the
polar angle (θM) between the magnetic moment and the crys-
tallographic axis of highest symmetry. Usually, the anisotropy
constants K2 (fourth order) and K3 (sixth order) are at least one
order of magnitude smaller than K1 (second order) [62]. In the
case of Ku > 0, the anisotropy is of easy-axis type, whereas
Ku < 0 for the easy-plane-type anisotropy. Here, Ku is the
total uniaxial anisotropy. Due to their small contributions, the
higher-order anisotropy terms in Eq. (3) are usually neglected,

i.e., Ku ≈ K1. We can calculate the anisotropy field, which is
a measure of energy difference between the hard and easy
directions, as Hani = (1/Ms)(∂2Fani/∂θ2

M ). Following Eq. (3),
for θM = 0, one obtains [63]

Hani = 2K1

Ms
. (4)

2. Basal anisotropy

For measurements of the basal anisotropy, we consider a
disk-shaped sample with the x1 = [110] and x2 = [1̄10] axes;
see Fig. 2(b). Here the rotational axis n = [001] corresponds
to the crystallographic axis of highest symmetry.

The total energy density F = Fdem + FZee + Fani for an
external field H in the plane of the disk comprises the
demagnetization energy Fdem, the Zeeman energy FZee =
−HMs cos(ϕH − ϕM ) sin θM , and the anisotropy energy,

Fani = −K1 cos2 θM − K2 cos4 θM

− Kb

4
cos2[2(ϕb − ϕM )] sin4 θM, (5)

where we neglected terms with K3 as they are small.
From Eq. (1) follows, in the limit of large field MsHres �
|μ0M2

s Neff − 2K1| � |Kb|, |K2|, the resonance field

μ0Hres = ω

γ
− μ0Ms

2
Neff + K1

Ms

− Kb

4Ms
{1 + 5 cos[4(ϕH ) − ϕb]}, (6)

which is independent of K2. The basal anisotropy Kb causes
a fourfold periodic pattern in the resonance spectrum with a
phase shift that allows one to determine the basal axis orienta-
tion ϕb. By taking the difference of the maximal and minimal
resonance fields, we can determine the magnitude of the basal
anisotropy,

�Hres = Hmax
res − Hmin

res = 5|Kb|
2μ0Ms

. (7)

Due to small but finite unavoidable misalignments of the
sample, the rotation plane of the magnetic field does not
perfectly coincide with the basal plane. This can lead to the
intermixing of the uniaxial anisotropy with the basal-plane
anisotropy. As a consequence, the angular dependence of the
resonance field would not show a π/2 periodicity, but would
acquire a π periodic term due to the uniaxial anisotropy. In
particular, if the crystallographic axes are tilted with respect
to the disk axis by the polar angle θt for the azimuth angle ϕt ,
the resonance field becomes

μ0Hres ≈ ω

γ
− μ0Ms

2
Neff +

(
1 − 3

2
θ2

t

)
K1

Ms

− Kb

4Ms
+ 3K1θ

2
t

2Ms
cos[2(ϕH − ϕt )]

− 5Kb

4Ms
cos[4(ϕH − ϕb)], (8)

where contributions other than K1 and Kb have been neglected.
Thus, we can determine Kb by fitting a sum of trigonomet-
ric functions with individual phase shifts to the resonance
spectrum.
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FIG. 3. Selected FMR spectra of (Fe0.63Ni0.37)3P,
(Fe0.59Ni0.32Ru0.09)3P, and (Fe0.62Ni0.29Pd0.09)3P at 300 K and
various orientations of the magnetic field. The spectra represent the
absorbed microwave power (Pabs) as a function of magnetic field
strength (μ0H ) at a constant microwave frequency of 9.4 GHz. The
vertical bars on the peaks of the spectra mark the resonance field
positions.

B. Experimental details

The bulk single-crystalline samples of (Fe:Ni:M )3P (M =
Ru, Pd) were synthesized by a self-flux method as reported
in Refs. [53,54]. Magnetization was measured on single crys-
tals using a superconducting quantum interference device
(SQUID) magnetometer. The ferromagnetic transition tem-
perature TC decreases from 412 K to 337 and 392 K by
substituting (Fe0.63Ni0.37)3P with Ru or Pd, respectively. The
saturation magnetization Ms decreases as well (see Ref. [54]).

In order to perform FMR measurements, the bulk sin-
gle crystals were prepared in the form of cylindrical thin
disks, where the values of the diameter/thickness ratio are
8.57, 3.14, and 5.6 for, respectively, the (Fe0.63Ni0.37)3P,
(Fe0.59Ni0.32Ru0.09)3P, and (Fe0.62Ni0.29Pd0.09)3P samples.
Both [110] and [001] axes are parallel to the large cylindrical
surfaces of the samples, i.e., they are perpendicular to the
mantle. On the other hand, to study the basal-plane anisotropy,
a single-crystalline sample of (Fe0.63Ni0.30Pd0.07)3P was
shaped in a cylindrical disk, whose large circular surfaces
contains [110] and [11̄0] axes.

Angular-dependent FMR measurements were performed
using a continuous-wave spectrometer (Bruker ELEXSYS
E500A) at X-band frequency (ν = 9.4 GHz), for selected tem-
peratures 5, 50, 100, 150, 200, 250, 300, 350, and 380 K using
a continuous helium gas-flow cryostat (Oxford Instruments)
for T � 300 K and a nitrogen gas-flow cryostat (Bruker) for
T � 300 K, respectively. The electromagnet covers a sweep
field regime up to 1.6 T. The orientation of samples was
controlled by a programmable goniometer in 5◦ steps during a
full rotation of the magnetic field in the plane of the cylindrical
disk.

FMR detects the power Pabs absorbed by the sample from
the transverse magnetic microwave field as a function of the
static magnetic field H . In the Bruker spectrometer, this is
realized in reflection geometry and the signal-to-noise ratio of
the spectra is improved by recording the derivative dPabs/dH

FIG. 4. Angular dependence of the resonance field of
(Fe0.63Ni0.37)3P, (Fe0.59Ni0.32Ru0.09)3P, and (Fe0.62Ni0.29Pd0.09)3P
as measured at 300 K for ν = 9.4 GHz. The first two compounds
show an easy-plane type of magnetocrystalline anisotropy, while the
third compound reveals an easy-axis anisotropy. The solid red lines
depict the fits that are modeled by the uniaxial magnetocrystalline
anisotropy, as described in the text. Maxima and minima correspond
to hard and easy axes, respectively.

using a lock-in technique with field modulation. The inte-
grated signals of dPabs/dH dependent on the orientation of
the magnetic field μ0H (θ ) exhibit maxima corresponding to
the FMR resonance fields μ0Hres, as depicted in Fig. 3 for
T = 300 K.

The resonance field in both (Fe0.63Ni0.37)3P and
(Fe0.59Ni0.32Ru0.09)3P shifts to lower fields by a small amount
of 46 and 22 mT, respectively, upon the rotation of the applied
magnetic field within the disk from the [001] to [110] axes.
On the contrary, the resonance field shifts to a significantly
larger value (by about 217 mT) in (Fe0.62Ni0.29Pd0.09)3P. This
different behavior proofs the easy-plane anisotropy of the
former two compounds in contrast to the easy-axis anisotropy
of the latter compound (Fig. 4). To evaluate the uniaxial
magnetic anisotropy, the angular dependence of the resonance
field data was fitted using Eq. (1).

III. RESULTS AND DISCUSSIONS

A. Temperature dependence of Ku

Starting with (Fe0.63Ni0.37)3P with easy-plane anisotropy,
the magnitude of K1 decreases with increasing temperature
with the values K1 = −33 and −2 kJ/m3 at 5 and 380 K,
respectively [Fig. 5(a)]. This implies that the anisotropy
remains easy plane by temperatures approaching the
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FIG. 5. Temperature dependence of the uniaxial anisotropy
constants K1, K2, and K3 kJ/m3 for (Fe0.63Ni0.37)3P,
(Fe0.59Ni0.32Ru0.09)3P, and (Fe0.62Ni0.29Pd0.09)3P obtained by
FMR at ν = 9.4 GHz. The other plotted values of Ku kJ/m3 are
obtained by using magnetization measurements as given in Ref. [54].

ferromagnetic transition at TC = 412 K. As shown in Fig. 5(a),
the values of K2 are positive and decreasing faster than those
of K1, as the temperature increases. Moreover, the values of
K3 remain negative, but are generally close to zero within the
experimental and analysis uncertainty. Following Eq. (4), the
anisotropy field can be estimated as μ0Hani = |2K1/μ0Ms| ≈
0.1 T at 5 K, and decreases to 9 mT at 380 K. The isotropic g
factor changes from 1.55 at 5 K to around 1.90 on the border
of the paramagnetic phase. Note that this should be taken as
an effective g factor because the observed shift probably re-
sults from the simplified assumption concerning the effective
demagnetization factor of the metallic disk.

Similar to (Fe0.63Ni0.37)3P, the second-order anisotropy
constant of (Fe0.59Ni0.32Ru0.09)3P reveals an easy-plane
anisotropy character with K1 = −39.5 kJ/m3, which
monotonously increases to −3 kJ/m3 on increasing
temperature from 5 K up to the room temperature, respectively
[Fig. 5(b)]. Like in the previous sample, K2 attains positive
values and already decreases to approximately zero below
TC. The anisotropy field becomes one order of magnitude
smaller, from approximately 114 to 17 mT, as the temperature
increases from 5 to 300 K. The isotropic g factor was found
to increase from 1.47 to 1.97 as the temperature rises from 5
to 300 K.

However, in (Fe0.62Ni0.29Pd0.09)3P, the situation looks dif-
ferent. It was mentioned in Ref. [54] that the compound
(Fe0.63Ni0.33)3P has reached the optimal doping where the
easy-plane anisotropy Ku reaches its minimum such that

FIG. 6. (a) Angular dependence of the resonance field in the ac
plane of (Fe0.63Ni0.30Pd0.07)3P at 300 K. (b) Temperature dependence
of K1, K2, and K3 kJ/m3 values obtained by FMR at ν = 9.4 GHz.
The other plotted values of Ku kJ/m3 are obtained by using magne-
tization measurements as given in Ref. [54].

the small amount of Pd (up to 4%) is enough to switch
Ku from easy-plane to easy-axis anisotropy. Indeed, in
(Fe0.62Ni0.29Pd0.09)3P, all anisotropy constants K1, K2, and K3

show positive values (easy-axis character), with very small
deviations of K2, and K3 toward negative values at 380 K
[Fig. 5(c)]. The value of K1 = 48 kJ/m3 at 150 K drastically
falls to about 2.5 kJ/m3 at 380 K. The values of K2 and K3

are one to two orders of magnitude smaller than those of K1

with respect to 150 and 380 K. The calculation of Hani results
in 154 mT at 150 K and 19 mT at 380 K. The corresponding
isotropic g values are 1.50 and 1.71. The lack of X-band FMR
data at temperatures lower than 150 K is due to the fact that
at ν = 9.4 GHz, we are below the full saturation range of
the magnetization (around 0.6 T), as one can see in Ref. [54]
where the spectra cannot be unambiguously evaluated.

The absolute values of K1 as determined from the
anisotropy of FMR in this work are slightly different from
those of Ku obtained by magnetization measurements in Ref.
[54]. These deviations cannot be recovered even by consid-
eration of the values of higher orders K2 and K3. This is
mainly due to the fact that Ku was calculated from the differ-
ence of Helmholtz magnetic free energy along the [110] and
[001] axes in which Ku is equal to the area enclosed by the
magnetization curves along the above-mentioned directions.
Although, in this case, the magnetization process along the
easy axis is dominated by the displacement of domain walls,
the contribution of this process was excluded in this formu-
lation. In contrast, FMR experiments probe the dynamical
modes of the magnetization in the saturated state. This means
that domain walls do not play any role in this case. Therefore,
a slight discrepancy between Ku and K1 is expected.

The error bars have been estimated in a semiquantitative
way: the fit parameters K1 and K2 were each varied as far to
increase χ2 by 10 percent away from its minimal value. Such
deviations in χ2 typically indicate a worse fit visible to the
eye, but, on the other hand, they respect the failures of the eye
to find the true minimum in χ2. In Figs. 5 and 6, all the error
bars are large as the symbols.
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FIG. 7. Angular dependence of the resonance field in the ab
plane of (Fe0.63Ni0.30Pd0.07)3P at 4 and 300 K. Besides the twofold
symmetry due to slight tilting of the sample, it reveals the fourfold
fourth-order anisotropy due to S4 symmetry. The solid red lines
describe the fit by Eq. (8). The black points at the bottom of each
frame represent the difference between the data and fit.

B. Fourfold symmetry of planar anisotropy

1. FMR results

Recall the FMR data of (Fe0.63Ni0.30Pd0.07)3P, where the
angular dependence of the resonance field at different temper-
atures reveals an easy-axis type of anisotropy [Fig. 6(a)]. The
evolution of Ku with temperature was discussed in Ref. [54].
The values of Ku, which are obtained by the Helmholtz
method, were found to be in good agreement with our values
of K1 for higher temperatures (T > 250 K). Here we would
like to point out that both K2 and K3 contributions would not
make a large difference of the total Ku values [Fig. 6(b)]. At
300 K, K1 ≈ 21 kJ/m3. The corresponding anisotropy field
μ0Hani ≈ 90 mT.

On the other hand, Fig. 7 shows the angular depen-
dence of the ferromagnetic resonance field (μ0Hres) of
(Fe0.63Ni0.30Pd0.07)3P for the magnetic field applied within the
ab plane at 4 and 300 K. One can recognize the superposition
of a twofold and a fourfold periodicity, which can be described
with Eq. (8). Using the empirical value of K1/Ms ≈ 59 mT
at 300 K, one obtains θt ≈ 17◦, ϕt ≈ 23◦, ϕb ≈ 5◦, and Kb ≈
−3 kJ/m3. At 4 K with K1/Ms ≈ 118 mT, one obtains θt ≈
18◦, ϕt ≈ 35◦, ϕb ≈ 23◦, and Kb ≈ 5 kJ/m3. The difference
plots at the bottom of each frame in Fig. 7 indicate deviations
probably due to imperfections of the disk shape. Such imper-
fections lead to nonuniform demagnetization contributions,
which are not important as compared to the strong anisotropy
in the ac plane, but become obvious in the case of the weak
basal anisotropy. The polar tilt angle θt is consistent for both

angular dependencies at 300 and 4 K within 1◦, respectively.
The uncertainty of the azimuthal tilt ϕt and basal angles ϕb is
larger (±10◦) because of the above-mentioned imperfections
of the sample shape.

Nevertheless, a reasonable approximation of the basal
anisotropy is obtained from fitting with Eq. (8). Regarding
the error bars of the data points estimated by (±5%) of the
resonance linewidth, the values of Kb exhibit an uncertainty of
(±20%). Note that the Kb values are only about one order of
magnitude smaller than those of Ku, as obtained in Ref. [54].
This result reveals that Kb in this compound is significantly
larger than, for example, in GdRh2Si2, which has a tetragonal
structure and uniaxial symmetry as well [64].

2. Effect on magnetic textures

We examine the effect of the fourfold basal anisotropy
on magnetic textures theoretically within a micromagnetic
model. Apart from the anisotropies in Eq. (2), the energy
functional comprises the magnetic stiffness A, Zeeman inter-
action with the external field B, demagnetization energy, and
S4-symmetric DMI D:

E =
∫

dV
[
A(∇m)2 − Msm·B − Msm·Bdem

+ D m · (d̂1 × ∂1m − d̂2 × ∂2m)

+ K1m2
z + Kb(b̂1 · m)2(b̂2 · m)2

]
. (9)

The orientation of the DMI is defined via the orthogonal vec-
tors d̂1 = cos ϕDMê100 + sin ϕDMê010 and d̂2 = ê001 × d̂1. The
operator ∂i denotes a derivative along d̂i. For D > 0, this DMI
favors a right-handed helix in d̂1 and a left-handed helix in the
d̂2 direction. It is important to notice that the defining vectors
of the basal anisotropy b̂i and the DMI d̂i are independent
and their only symmetry-imposed constraint is the orientation
perpendicular to [001]. This is different in magnets with D2d

symmetry, where both sets of vectors are by symmetry pinned
to the [100] and [010] axes.

Let us now consider a domain wall separating regions
with m = (0, 0,±1)T as the most simple noncollinear tex-
ture. Demagnetization energy forces the domain wall to have
Bloch-type helicity deep in the bulk, with left and right
handedness being energetically degenerate. As discussed in
Ref. [53], for the DMI these handednesses are energetically
favorable only in two orthogonal directions, here given by d̂1

or d̂2, respectively. However, the effect of basal anisotropy
was neglected, which favors Bloch-type domain walls in the
b̂1 or b̂2 direction, irrespective of handedness.

An analytical solution for the domain-wall orientation
anisotropy can be obtained in the limit of negligible D and
Kb, far away from the surfaces where the effect of dipolar
interactions is pinning of the helicity to Bloch type. In this
limit, the domain-wall profile mz = cos θ is given by θ (r) =
2 arctan{exp[−(r · n̂dw)/λ]}, where λ = √

A/|K1| is the char-
acteristic length scale and n̂dw is the vector normal to the
domain wall. The perturbative energies of basal anisotropy
and DMI, assuming no deformation of the domain-wall pro-
file, read

EKb = 1
3λKb sin2[2(ϕb − ϕdw)],

EDM = −πD| cos[2(ϕDM − ϕdw)]| . (10)
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FIG. 8. Angle between the lowest-energy domain-wall orienta-
tion ϕdw and the DMI axis orientation ϕDM as a function of the
basal anisotropy orientation ϕb (relative to ϕDM). Colored lines show
the perturbative result of a simple model, given by Eq. (10), for
different values of the ratio between DMI D and basal anisotropy
Kb, i.e.,

√
A

|K1|
Kb
D = 0, 1, 2, 4, 8, 16, from red to blue. The black line

indicates the limit ϕdw = ϕb. The dots show numerically obtained
results explained in the main text.

The absolute value in EDM stems from jumps between left
and right handedness. The domain-wall orientation with the
smallest energy according to this simple perturbative model is
shown in Fig. 8, obtained by numerically minimizing the total
EKb + EDM of Eq. (10). The color encodes different values
of the only dimensionless parameter λKb

D . The domain-wall
orientation follows (i) the DMI orientation if the DMI is dom-
inant (red limit) or (ii) the orientation of the basal anisotropy
if Kb is dominant (blue/black limit). If both interactions are
of comparable scale, the resulting domain-wall angle can take
any intermediate value.

Additionally, we computed the energy of a domain-wall
pair using a modified version of MUMAX3 [65], which fea-
tures an improved numerical discretization scheme to avoid
anisotropy effects of the numerical lattice, DMI of S4 type
with an arbitrary orientation in the xy plane, and basal
anisotropy, as defined in Eq. (9). The results shown in
Fig. 8 are calculated for different thicknesses as indicated
and the standard parameters for (Fe0.63Ni0.30Pd0.07)3P, i.e.,
A = 8.1 pJ/m, D = 0.2 mJ/m2, Ms = 417 kA/m, and Ku =
−31 kJ/m3 (note the different sign convention), as used in
Ref. [53] for samples at T = 300 K. The pair of domain
walls was discretized on 128 × 128 × 64 lattice sites with
periodic boundary conditions in the x and y directions (with 16
repeats using standard MUMAX3 procedures for the demagne-
tization). For every thickness, we first determined the system
size at D = 0 and Kb = 0 with the lowest-energy density.
Next, we added the DMI as well as a basal anisotropy of Kb =
25 kJ/m3 which corresponds to λKb

D ≈ 2. We also considered
the more realistic case Kb = 2.5 kJ/m3, but modulations of
the domain-wall orientation were only of the order of one
degree. Similarly, the experimentally determined value Kb =
3.66 kJ/m3 (λKb

D ≈ 0.3) at room temperature suggests that the
effect on the domain-wall orientation can be expected to be

small. It turns out that in the case of real three-dimensional
(3D) samples, where the domain walls become Néel type at
the surfaces, the simple perturbative result breaks down. The
energetically optimal orientation angle of the domain walls
does not only depend on the orientation angles of the DMI
and basal anisotropy as well as their relative strength, but it
also strongly depends on the film thickness, including a sign
change for most relative angles between the DMI and basal
anisotropy. More sophisticated models or simulations are re-
quired to fully understand the interplay of basal anisotropy
and anisotropic DMI and their combined effect on the orien-
tation of domain walls.

The effect on more complex magnetic textures can be es-
timated based on these results for domain walls. In the limit
Kb = 0, the antiskyrmions are square shaped, while skyrmions
are elliptical [53]. In the opposite limit, D = 0, one can expect
that both antiskyrmions and skyrmions are square shaped as
their helical domain-wall regions are pinned in orthogonal
directions. In the competing scenario, where both interac-
tions are at work on similar scales, one may expect a trivial
crossover or the emergence of more complicated shapes,
depending on the relative strength of the interactions, their
relative angle, and the thickness of the sample. The detailed
numerical investigation of this rich phase diagram is, however,
beyond the scope of the present work.

It is interesting to compare the situation for D2d symmetry:
In that case, the DMI axes d̂1 and d̂2 are oriented along the
[100] and [010] directions, respectively, i.e., the same direc-
tions like the basal anisotropy axes b̂1 and b̂2. Thus, the ori-
entation effects are limited to the trivial case ϕb − ϕDM = 0.
In turn, the present S4-symmetric compound is astonishingly
close to the opposite limit, ϕb − ϕDM ≈ 45◦, which is the max-
imum mutual twist angle promoting the competition between
both contributions to anisotropy.

We conclude that there is a rich zoo of effects emerging
from the interplay of DMI and basal anisotropy, which can
potentially be accessed experimentally by tuning the thickness
of samples, the orientation of DMI and anisotropy axes by
varying dopants, or the relative strength between interactions
by varying doping concentrations or temperature, as different
scaling relations may be expected for the different interac-
tions. This rich variety of tuning knobs offers great potential
for future investigations.

IV. CONCLUSIONS

We have successfully performed systematic FMR measure-
ments on high-quality samples of several novel schreiber-
site compounds (Fe0.63Ni0.37)3P, (Fe0.59Ni0.32Ru0.09)3P, and
(Fe0.62Ni0.29Pd0.09)3P in order to study the behavior of the
uniaxial anisotropy Ku as a function of temperature. In the
two former compounds, the leading uniaxial parameter K1

exhibits an easy-plane character, while in the latter, it shows
an easy-axis character. These results are in fair agreement
with previously obtained results for Ku using a magnetization
measurement technique. Moreover, our FMR measurements
allowed us to determine the higher-order anisotropy parame-
ters K2 and K3. K2 turned out to be positive for all three com-
pounds, with absolute values one order of magnitude smaller
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than the corresponding K1. K3 is again one order of magnitude
smaller than K2, but its sign basically follows that of K1.

In addition, we studied the planar anisotropy Kb in
(Fe0.63Ni0.30Pd0.07)3P by means of FMR. The results proof
a fourfold symmetry as expected for the tetragonal crystal
structure. The value of the corresponding anisotropy param-
eter Kb is an order of magnitude smaller than that of Ku. Our
micromagnetic simulations reveal that a basal anisotropy can
indeed influence the orientation of domain walls and the stripe
phase, and is likely to also affect the shape of skyrmions and
antiskyrmions, if the basal anisotropy competes with the DMI.
However, the actual strength of Kb is at least one order of
magnitude too small to provoke sizable effects.

Please refer to Ref. [66] for the simulation code used in
this paper.

ACKNOWLEDGMENTS

This work was partially supported by the Deutsche
Forschungsgemeinschaft (DFG) within the Transregional
Collaborative Research Center TRR 360 “Constrained Quan-
tum Matter”, Project No. 492547816 (Augsburg, Munich,
Stuttgart, Leipzig) and via the DFG Priority Program
SPP2137, Skyrmionics, under Grant No. KE 2370/1-1. M.H.
and H.-A.K.v.N. acknowledge funding within the joint RFBR-
DFG research project, Contracts No. 19-51-45001 and No.
KR2254/3-1. J.M. acknowledges financial support by the
Alexander von Humboldt foundation as a Feodor Lynen Re-
turn Fellow. K.K. and Y.T. acknowledge funding by JSPS
Grants-in-Aid for Scientific Research (Grants No. 23H01841
and No. 20K15164) and JST CREST (Grants No. JP-
MJCR20T1 and No. JPMJCR1874).

[1] I. Dzyaloshinsky, A thermodynamic theory of weak ferromag-
netism of antiferromagnetics, J. Phys. Chem. Solids 4, 241
(1958).

[2] T. Moriya, New mechanism of anisotropic superexchange inter-
action, Phys. Rev. Lett. 4, 228 (1960).

[3] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.
Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral
magnet, Science 323, 915 (2009).

[4] J. Kindervater, T. Adams, A. Bauer, F. X. Haslbeck, A. Chacon,
S. Mühlbauer, F. Jonietz, A. Neubauer, U. Gasser, G. Nagy, N.
Martin, W. Häußler, R. Georgii, M. Garst, and C. Pfleiderer,
Evolution of magnetocrystalline anisotropies in Mn1−xFexSi
and Mn1−xCoxSi as inferred from small-angle neutron scatter-
ing and bulk properties, Phys. Rev. B 101, 104406 (2020).

[5] N. Josten, T. Feggeler, R. Meckenstock, D. Spoddig, M.
Spasova, K. Chai, I. Radulov, Z.-A. Li, O. Gutfleisch, M.
Farle, and B. Zingsem, Dynamic unidirectional anisotropy in
cubic FeGe with antisymmetric spin-spin-coupling, Sci. Rep.
10, 2861 (2020).

[6] A. Chacon, L. Heinen, M. Halder, A. Bauer, W. Simeth, S.
Mühlbauer, H. Berger, M. Garst, A. Rosch, and C. Pfleiderer,
Observation of two independent skyrmion phases in a chiral
magnetic material, Nat. Phys. 14, 936 (2018).

[7] A. O. Leonov, C. Pappas, and I. Kézsmárki, Field and
anisotropy driven transformations of spin spirals in cubic
skyrmion hosts, Phys. Rev. Res. 2, 043386 (2020).

[8] M. Preißinger, K. Karube, D. Ehlers, B. Szigeti, H.-A. Krug von
Nidda, J. S. White, V. Ukleev, H. M. Rønnow, Y. Tokunaga, A.
Kikawa, Y. Tokura, Y. Taguchi, and I. Kézsmárki, Vital role of
magnetocrystalline anisotropy in cubic chiral skyrmion hosts,
npj Quantum Mater. 6, 65 (2021).

[9] X. Yu, M. Mostovoy, Y. Tokunaga, W. Zhang, K. Kimoto,
Y. Matsui, Y. Kaneko, N. Nagaosa, and Y. Tokura, Magnetic
stripes and skyrmions with helicity reversals, Proc. Natl. Acad.
Sci. USA 109, 8856 (2012).

[10] W. Wang, Y. Zhang, G. Xu, L. Peng, B. Ding, Y. Wang, Z. Hou,
X. Zhang, X. Li, E. Liu, S. Wang, J. Cai, F. Wang, J. Li, F. Hu,
G. Wu, B. Shen, X.-X. Zhang, A centrosymmetric hexagonal
magnet with superstable biskyrmion magnetic nanodomains in
a wide temperature range of 100–340 K, Adv. Mater. 28, 6887
(2016).

[11] X. Yu, Y. Tokunaga, Y. Taguchi, and Y. Tokura, Variation of
topology in magnetic bubbles in a colossal magnetoresistive
manganite, Adv. Mater. 29, 1603958 (2017).

[12] M. Altthaler, E. Lysne, E. Roede, L. Prodan, V. Tsurkan, M. A.
Kassem, H. Nakamura, S. Krohns, István Kézsmárki, and D.
Meier, Magnetic and geometric control of spin textures in the
itinerant kagome magnet Fe3Sn2, Phys. Rev. Res. 3, 043191
(2021).

[13] T. Okubo, S. Chung, and H. Kawamura, Multiple-q states and
the skyrmion lattice of the triangular-lattice Heisenberg antifer-
romagnet under magnetic fields, Phys. Rev. Lett. 108, 017206
(2012).

[14] S. Hayami, S. Z. Lin, and C. D. Batista, Bubble and skyrmion
crystals in frustrated magnets with easy-axis anisotropy Phys.
Rev. B 93, 184413 (2016).

[15] Y. Hu, X. Chi, X. Li, Y. Liu, and A. Du, Creation and annihi-
lation of skyrmions in the frustrated magnets with competing
exchange interactions, Sci. Rep. 7, 16079 (2017).

[16] T. Kurumaji, T. Nakajima, M. Hirschberger, A. Kikkawa, Y.
Yamasaki, H. Sagayama, H. Nakao, Y. Taguchi, T.-H. Arima,
and Y. Tokura, Skyrmion lattice with a giant topological Hall
effect in a frustrated triangular-lattice magnet, Science 365, 914
(2019).

[17] M. Hirschberger, T. Nakajima, S. Gao, L. Peng, A. Kikkawa, T.
Kurumaji, M. Kriener, Y. Yamasaki, H. Sagayama, H. Nakao,
K. Ohishi, K. Kakurai, Y. Taguchi, X. Yu, T.-H. Arima, and Y.
Tokura, Skyrmion phase and competing magnetic orders on a
breathing kagomé lattice, Nat. Commun. 10, 5831 (2019).

[18] A. N. Bogdanov and D. A. Yablonskiı̆, Thermodynamically sta-
ble vortices in magnetically ordered crystals. The mixed state of
magnets, Zh. Éksp. Teor. Fiz. 95, 178 (1989) [Sov. Phys. JETP
68, 101 (1989)].

[19] I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. M. Eng,
J. S. White, H. M. Rønnow, C. D. Dewhurst, M. Mochizuki, K.
Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, and A. Loidl, Néel-
type skyrmion lattice with confined orientation in the polar
magnetic semiconductor GaV4S8, Nat. Mater. 14, 1116 (2015).

[20] D. Ehlers, I. Stasinopoulos, V. Tsurkan, H.-A. Krug von Nidda,
T. Fehér, A. Leonov, I. Kézsmárki, D. Grundler, and A. Loidl,
Skyrmion dynamics under uniaxial anisotropy, Phys. Rev. B 94,
014406 (2016).

054416-8

https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1126/science.1166767
https://doi.org/10.1103/PhysRevB.101.104406
https://doi.org/10.1038/s41598-020-59208-8
https://doi.org/10.1038/s41567-018-0184-y
https://doi.org/10.1103/PhysRevResearch.2.043386
https://doi.org/10.1038/s41535-021-00365-y
https://doi.org/10.1073/pnas.1118496109
https://doi.org/10.1002/adma.201600889
https://doi.org/10.1002/adma.201603958
https://doi.org/10.1103/PhysRevResearch.3.043191
https://doi.org/10.1103/PhysRevLett.108.017206
https://doi.org/10.1103/PhysRevB.93.184413
https://doi.org/10.1038/s41598-017-16348-8
https://doi.org/10.1126/science.aau0968
https://doi.org/10.1038/s41467-019-13675-4
http://jetp.ras.ru/cgi-bin/dn/e_068_01_0101.pdf
https://doi.org/10.1038/nmat4402
https://doi.org/10.1103/PhysRevB.94.014406


ROLE OF MAGNETIC ANISOTROPY IN THE … PHYSICAL REVIEW B 110, 054416 (2024)

[21] D. Ehlers, I. Stasinopoulos, I. Kézsmárki, T. Fehér, V. Tsurkan,
H.-A. Krug von Nidda, D. Grundler, and A. Loidl, Exchange
anisotropy in the skyrmion host GaV4S8, J. Phys.: Condens.
Matter 29, 065803 (2017).

[22] S. Bordács, A. Butykai, B. G. Szigeti, J. S. White, R. Cubitt,
A. O. Leonov, S. Widmann, D. Ehlers, H.-A. Krug von Nidda,
V. Tsurkan, A. Loidl, and I. Kézsmárki, Equilibrium skyrmion
lattice ground state in a polar easy-plane magnet, Sci. Rep. 7,
7584 (2017).

[23] Á. Butykai, K. Geirhos, D. Szaller, L. F. Kiss, L. Balogh,
M. Azhar, M. Garst, L. DeBeer-Schmitt, T. Waki, Y. Tabata,
H. Nakamura, I. Kézsmárki, and S. Bordács, Squeezing
the periodicity of Néel-type magnetic modulations by en-
hanced Dzyaloshinskii-Moriya interaction of 4d electrons, npj
Quantum Mater. 7, 26 (2022).

[24] T. J. Hicken, S. J. R. Holt, K. J. A. Franke, Z. Hawkhead,
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