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Current-driven domain wall motion in ferrimagnetic nanowires
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Current-driven DW motion in a ferrimagnetic (FiM) nanowire through spin transfer torques (STTs) is
explained by the energy-work principle. An adiabatic STT (a-STT) can be incorporated into the Lagrangian as an
energy functional and tends to twist DW planes. DWs in homogeneous FiM nanowires can resist an a-STT from
moving below a critical value proportional to the maximal transverse anisotropic field. Second, a nonadiabatic
STT (na-STT) cannot be included in the Lagrangian and can enter the spin dynamics through the Rayleigh
functional. A static DW cannot exist under a na-STT such that a DW in a homogeneous FiM nanowire must
propagate under an arbitrarily small na-STT. Third, STTs do positive work on a DW which must compensate by
energy dissipated by moving spins inside the DW through damping. Below the Walker breakdown current, the
na-STT does positive work and the a-STT does no work. Above the Walker breakdown, a DW starts to precess
around the wire axis during its propagation along the axis. Whether the a-STT does a negative or a positive work
depends on the direction of the DW precession, while the na-STT still does a positive work. Last, a DW velocity
formula is obtained, which agrees with simulations both below and above the Walker breakdown current. In the
vicinity of the angular momentum compensation point, the precession frequency of a DW reaches its maximum,
and the DW structure is distorted. The DW distortion and spin wave emission modify the DW motion, which
deviates from its linear dependence on current density. This theory explains well the observed DW mobility near
the angular momentum compensation point of FiM nanowires and resolves the puzzle of the unphysical negative
na-STT problem.

DOI: 10.1103/PhysRevB.110.054414

I. INTRODUCTION

Magnetic domain walls (DWs) are solitons [1–3] which are
topologically protected from annihilation and creation in the
bulk of a material because a transformation from a DW to
a different state such as a topologically trivial single domain
needs to overcome an infinite potential barrier. DWs can be
easily manipulated by many external stimuli such as magnetic
fields [4], electric currents [5–10], spin waves [11,12], and
thermal gradient [13]. The fundamental interest [14,15] and
promising applications [16] of DW dynamics have attracted
much attention in recent years, especially for the current-
driven DW-motion.

One goal in DW research is to achieve stable high DW
velocity at least hundreds of meters per second. The hurdle
of achieving this goal in ferromagnets is the low Walker
breakdown fields/currents beyond which DW mobility drops
significantly. One recent breakthrough is high DW velocity
of over 1000 meters per second and high Walker breakdown
fields/currents observed in ferrimagnetic (FiM) nanowires
near the so-called angular momentum compensation point
(AMCP) [17–40].

*Contact author: phxwan@ust.hk

Tunability of ferrimagnets are much higher than their
ferromagnetic counterparts. A ferrimagnet has at least two
spin sublattices antiferromagnetically coupled with each other
and may have an AMCP, at which the angular momenta
of the two sublattices cancel each other, and a magnetiza-
tion compensation point, at which the magnetizations cancel
each other. Magnetization and angular momentum are not the
same, but related. Magnetization interacts with a magnetic
field while the angular momentum moves under a torque
as described by the Landau-Lifshitz-Gilbert (LLG) equa-
tion. They do not need to appear and disappear together
although they do in many ferrimagnets. Rare-earth-transition-
metal (RE-TM) alloys are one class of ferrimagnets whose
AMCP and magnetization compensation point are gener-
ally different and can be tuned by temperature and by the
compositions [19,41].

An electric current interacts with DWs in magnetic
nanowires through two spin-transfer torques (STTs) [5,6,42]:
an adiabatic STT (a-STT) and a nonadiabatic STT (na-STT).
Different from a static magnetic field that can create an en-
ergy density difference between two domains separated by
a DW, STTs do not change the energy density of homoge-
neous domains. Field-driven DW motion is caused by energy
density differences between two domains, and DW speed is
proportional to the energy dissipation [4,40,43,44]. However,
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current-driven DW motion is generally believed to be caused
by an angular momentum transfer, even though a DW does not
always propagate along the direction of electron movement in
multilayer wires [45]. Despite all the fundamental differences
in DW driving mechanisms, one puzzle is the great simi-
larities between field-driven and current-driven DW motion.
For example, both exhibit Walker breakdown phenomenon [4]
below which DWs undergo a rigid-body motion and above
which an oscillatory DW motion appears [6,9,46–48]. The
unified approach in the field is the collective mode theory that
assumes DWs as rigid-bodies and can be described by their
centers and DW plane angles [20,29–35].

Although collective mode theory brought us many good
understandings of DW motion under various driven forces
such as the linear responses to the field/current below the
Walker breakdown field/current, existing theories [20,29–
35] encounter difficulties in understanding the experimen-
tally [20] and numerically [29,34] observed DW motion at
high field/current and, especially, around the AMCP when
the rigid-body assumption is violated [34]. Recently, it was
shown that both high and low field-driven DW motion can
be understood from the energy balance viewpoint at both
qualitative level and highly quantitative level [40,43,44]. Nat-
urally, one may ask whether the energy balance can be
used to understand current-driven DW motion and overcome
the difficulties of collective mode theory in explaining high
current DW motion and nonlinear DW dependence on the
current near the AMCP, as well as the negative na-STT
problem [20].

In this paper, we present a theory of current-driven DW
motion based on the generic FiM dynamics [49,50] and the
energy-work principle. We show that in a homogeneous FiM
nanowire, static DWs can exist under a small a-STT while
DWs must move under an arbitrarily small na-STT. During
the DW motion, STTs do an overall positive work which
compensates the dissipated energy of moving spins inside
DW. Based on the energy-work principle, a DW velocity for-
mula, applicable both below and above the Walker breakdown
current, was obtained. This theory explains the experimentally
observed current-driven DW motion and resolves the negative
na-STT puzzle [20].

II. MODEL AND METHODOLOGY

A. Domain walls in FiM wires

Figure 1 schematically illustrates a FiM strip consisting
of two antiferromagnetically (AFM) coupled ferromagnetic
layers (sublattices) labeled by �(=1, 2), called A-type ferri-
magnet. It is believed that general DW features of A-type
ferrimagnet should be applicable to all types of ferrimag-
nets. The easy-axis is along the wire axis defined as the
z axis. A head-to-head (HH) DW is at the center of the
wire and an applied uniform current of density j is along
the z axis. M� = M�m� are the magnetization of the two
sublattices with M� and m� being the saturation magneti-
zation and unit vector of the magnetization. In terms of
polar and azimuthal angles θ� and φ�, the three Cartesian
components are m� = (sin θ� cos φ�, sin θ� sin φ�, cos θ�). The
Lagrangian density functional describing the nanowire is

FIG. 1. Schematic diagram of a head-to-head DW in a FiM
nanowire. Region I and III are two uniform FiM domains, separated
by a DW (region II) whose width is �. j is the electric current
density. Colors denote the spin orientations: red for spins along +ẑ
and light blue for spins along −ẑ. S is the cross-section area of the
wire.

L = T − ε, consisting of kinetic energy density func-
tional T = −∑

�=1,2 s� cos θ�∂tφ� and potential energy
density functional ε = εm + εa [49,50]. εm = Jm1 · m2 +∑

�=1,2[A�(∇m�)2 + f�(m�)] is the magnetic energy func-
tional, εa (discussed below) is the energy density functional
from the a-STT. s� = M�/γ� and γ� = g�μB/h̄ are the spin
densities and gyromagnetic ratios of sublattice �, and g�, μB,
and h̄ are, respectively, the Landé g-factor of �th sublattice,
the Bohr magneton, and the Planck constant. J is the inter-
layer AFM coupling constant, A� and f� are the exchange
stiffness and magnetic anisotropy energy of sublattice �. f� has
two equal minimum at m� = ±ẑ. Below the Greek subscripts
μ, ν = 0, 1, 2, 3 denote t, z, x, y, and the Latin subscript i =
1, 2, 3 denote z, x, y. The Einstein summation convention for
repeated subscripts of both Greek and Latin letters is ap-
plied, while this convention is not applied to the sublattice
index �. The Gilbert damping is described by the Rayleigh
dissipation functional Rα = ∫

Rαd3x, with the Rayleigh
dissipation density Rα = 1

2 s1α11(∂t m1)2 + 1
2 s2α22(∂t m2)2 +

1
2 ( α12s2γ2

γ1
+ α21s1γ1

γ2
)(∂t m1 · ∂t m2), α11, α22 and α12, α21 are

intrasublattice and intersublattice damping coefficients. We
have α12s2γ2/γ1 = α21s1γ1/γ2 due to the action-reaction law
[49,50]. When a spin polarized electric current passes through
the DW, the exerted STTs on the local spins take the form
of τ� = τa,� + τna,�, where τa,� = −P� h̄

2e ∂zm� is the a-STT and
τna,� = β�P� h̄

2e m� × ∂zm� is the na-STT. j, β�, P� and e (> 0)
are electric current density, the nonadiabaticity coefficients,
spin polarizations for �th sublattice and the electron charge,
respectively. The a-STT can be included in the Lagrangian by
adding a term of Ea = ∑

�=1,2

∫
j ·A�d3x [9,14], i.e., τa,� =

m� × δEa
δm�

. A� = −P� h̄
2e φ�∇ cos θ� is not unique and subjects

to following gauge-transformation A� →A� + ∇(θ�, φ�)
for an arbitrary functional  of θ�, φ�. However, na-STT en-
ters the dynamics through the Rayleigh functional by adding
a term of Rna = ∑

�=1,2

∫
Rna,�d3x with the correspond-

ing functional density Rna,� = β�P� h̄
2e (∂t m�) · ( ji∂im�)d3x, i.e.,

Rayleigh functional R = ∫
Rd3x = Rα + Rna. Using Euler-

Lagrange equations

∂μ

(
∂L

∂ (∂μq�)

)
− ∂L

∂q�

+ ∂R
∂ (∂t q�)

= 0, (1)

in terms of generalized coordinates q� = θ�, φ� (� = 1, 2),
the FiM magnetization dynamics in the presence of STTs is
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governed by [49,50]

s1∂t m1 = −m1 ×
(

−δEm

δm1
− α11s1∂t m1 − α12s2γ2

γ1
∂t m2

)

+ τ1,

s2∂t m2 = −m2 ×
(

−δEm

δm2
− α22s2∂t m2 − α21s1γ1

γ2
∂t m1

)

+ τ2, (2)

where −μ−1
0 δEm/δM� ≡ H� are effective fields on M�, and

μ0 is the vacuum permeability.
It is interesting to notice the opposite results of STTs in

homogeneous magnetic states. There, Slonczewski antidamp-
ing torque, which gives rise to the a-STT in an inhomogeneous
magnetic material, is not conservative, and cannot be included
in the Lagrangian while the field-like torque, which becomes
a na-STT inside a DW, can be.

m1 and m2 are always antiparallel to each other when
the field associated with J is much stronger than the ex-
ternal stimulus. One can then use a single order parameter
m = m1 = −m2 to describe the system. (θ1 = π − θ2 = θ ,
φ1 = φ2 + π = φ, θ , φ are the polar angle and azimuthal
angle of m). The dynamics of m is governed by the following
effective LLG equation [30,51–53]:

∂t m = −γ m × H + αm × ∂t m + τ, (3)

where τ = (τ1 + τ2)/δs = −u∂zm + βum × ∂zm, γ =
μ0(M1 − M2)/δs, δs = s1 − s2, H = (M1H1 −
M2H2)/(M1 − M2), α = (α11s1 + α22s2 − α12s2γ2/γ1 −
α21s1γ1/γ2)/δs, P ≡ (P1 − P2), u = (Ph̄ j)/(2eδs), and
β = (β1P1 + β2P2)/P are the effective STT, the effective
gyromagnetic ratio, the net spin angular momentum,
the effective field, and the effective Gilbert damping
coefficient, the effective spin polarization, the effective
spin drift velocity, and the effective nonadiabaticity
coefficient, respectively. Note that αδs > 0 is required
by the second law of thermodynamics to ensure the
dissipativeness (positive-definite) of the Rayleigh functional
Rα = αδs

2

∫
(∂t m)2d3x. The total magnetic energy written

in terms of m is Em[m] = ∫
[A(∇m)2 + f (m)]d3x, with

A = A1 + A2 and f (m) = f1(m) + f2(−m), then the effective
field is given by H = −[μ0(M1 − M2)]−1δEm/δm. γ , τ, and
α diverge near the AMCP, δs → 0, and a proper limit should
be considered in dealing with Eq. (3).

B. Micromagnetic simulations

Throughout this study, all analysis and theoretical results
will be verified and compared with numerically solutions
of Eq. (2) [not the effective Eq. (3)] obtained by MuMax3
[54] without any approximation for DWs in FiM strip wires
as shown in Fig. 1 and explained in the previous section.
In our simulations, strip size is 8 nm × 2 nm × 2048 nm.
The cell size is chosen to be 1 nm × 1 nm × 0.5 nm. To
mimic a rare-earth-transition-metal alloy (such as GdFeCo,
GdFe, GdCo) [17,18,20,22,55–59], the model parameters are
J = 109.08 MJ/m3, A1 = A2 = 1.1 × 10−11 J/m, where f� =
−K�,zm2

�,z + K�,ym2
�,y (� = 1, 2) is used if not stated oth-

erwise, we choose K1,z = K2,z = 0.7 MJ/m3, K1,y = K2,y =

0.07 MJ/m3. α11 = α22 = 0.01, α12 = α21 = 0, P1 = 0.7,
P2 = 0.3, M1 = 1010 kA/m and M2 = 900 kA/m are as-
sumed if not stated otherwise. The J value is equivalent to
hundreds of Tesla to guarantee the antiparallel alignment of
spins in two sublattices. Other parameters such as β1 = β2, γ1

and γ2 can vary in our simulations to mimic and to simulate
different FiM wires. In the simulations below, AMCP is mod-
eled by γ1M2/M1 = γ2 = 1.76 × 1011s−1T−1. Away from the
AMCP, γ1 = γ2 = 1.76 × 1011s−1T−1 are used if not stated
otherwise. In terms of parameters in Eq. (3), P = P1 − P2 =
0.4, Kz = 1.4 MJ/m3, and A = 2.2 × 10−11 J/m.

In simulations, a DW is first created at the center of
nanowire, then an electric current is applied in the +ẑ
direction. The velocity is obtained from the linear fit of time-
evolution curve of the DW center (where mz = 0). For current
density above the Walker breakdown, the average velocities
are obtained from data accumulated for more than four oscil-
lating periods.

III. RESULTS

A. DW plane twisting by an a-STT

Similar to the well-known result in the ferromagnetic case
[5], a static DW is possible under an a-STT below a critical
value. A static DW must satisfy δ(Em+Ea )

δm = 0, or

d2θ

dz2
− 1

2A

∂ f

∂θ
−

(
dφ

dz

)2

sin θ cos θ + Ph̄ j

4Ae

dφ

dz
sin θ = 0,

(4a)

d

dz

(
sin2 θ

dφ

dz

)
− 1

2A

∂ f

∂φ
− Ph̄ j

4Ae

dθ

dz
sin θ = 0.

(4b)

For simplicity and considering the widely used biaxial model
of f = −Kz cos2 θ + Ky sin2 θ sin2 φ, Eq. (4) for a small cur-
rent have a well-known solution of φ = const. and θ (z) =
2 arctan[exp(z/�)], where � =

√
A/(Kz + Ky sin2 φ) [4,5].

The solution comes from a delicate cancellation of ∂ f /∂φ ∝
sin2 θ with the term of dθ/dz ∝ sin θ in Eq. (4b). The cancel-
lation occurs at φ = const. θ is then determined by Eq. (4a)
at a constant φ giving by � sin 2φ = ± Ph̄ j

2eKy
for j below

jW = 2e
Ph̄ max[±Ky� sin 2φ], “+” (“−”) for a TT (HH) DW,

respectively.
φ = const., or flat DW plane, under an a-STT is only true

for the special biaxial model where ∂ f /∂φ ∝ sin2 θ and the
term of dθ/dz ∝ sin θ in Eq. (4b) cancel with each other. For
a wire of general magnetic anisotropy, θ and φ are coupled,
and the Walker solution does not apply. One can only numer-
ically solve Eq. (4). From Ea = − ∫ Ph̄ j

2e φ(∂z cos θ )d3x, the
a-STT has a spatially dependent φ-component which tends to
twist DW plane. The twisting direction depends on the cur-
rent direction and topological charge density ρ = − 1

2∂z cos θ

[14,15]. The integral over z is DW winding angle or DW
charge, Q = ∫ +∞

−∞ ρdz = ±1, 1 for a head-to-head (HH) DW
and −1 for a tail-to-tail (TT) DW.

To show DW plane twisting, we consider a modified biaxial
model of f = −Kz cos2 θ + K ′

y sin4 θ sin4 φ in Eq. (4) such
that there is no exact cancellation any more. MuMax3 [54]
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FIG. 2. Distribution of the azimuthal and polar angles of m
under different current densities for a HH DW (a) and a TT DW
(b). Symbols are simulation results for j = 0.8 (green), 0.6 (dark
blue), 0.4 (orange), 0.2 (violet), 0.1(light blue), 0 (yellow) in unit
of 1012A/m2. The black solid lines in panels (a, b) have slopes of
dφ/dz = ±QPh̄ j/(8eA). (c) θ (z) and dθ/dz for a HH DW under a
current j = 0.8 × 1012A/m2. Solid line is the Walker profile. (d) φ

at the DW center as a function of j. The blue dots and green tri-
angles are for a HH and a TT DW, respectively. The red solid line
is Eq. (5). fl = −Kl,z cos2 θl + K ′

l,y sin4 θl sin4 φl with K ′
1,y = K ′

2,y =
0.1 MJ/m3. �0 = 3.96 nm, α11 = α22 = 0.1 (we use larger damping
coefficients to get a static solution more quickly), α12 = α21 = 0, and
other material parameters are specified in Sec. II B.

(see Sec. II B for details) is used to numerically solve Eq. (2)
in the presence of a-STT. Thus, simulation results can also be
used to test how good the approximated Eqs. (3) and (4) are.
Starting from a static DW at the center of a nanowire, φ� of the
DW is 0 (π ) for a HH (TT) DW in the absence of a-STT. An
a-STT from various current density given in Fig. 2 is turned
on at t = 0. In less than 0.5 ns, the DW becomes static again
(∂t m� = 0), showing the existence of a static DW. In terms of

variables of Eq. (3), the spatial distribution of φ for a HH and a
TT DW is shown in Figs. 2(a) and 2(b), respectively. Clearly,
spins inside the HH (TT) DW rotate along the wire, either
clockwise or counterclockwise. Away from the DW center,
the azimuthal angle varies linearly along the wire with a slope
of ±QPh̄ j

8eA , indicated by the black solid lines in Figs. 2(a)
and 2(b).

For a realistic current density j = 0.8 × 1012 A/m2 and ef-
fective material parameters of A = 2.2 × 10−11 J/m, P = 0.4,
Kz = 1.4 MJ/m3, dφ

dz is order of Ph̄ j
8eA ∼ 1.2 × 106 m−1,

and dθ
dz is about �−1

0 = √
Kz/A ∼ 2.5 × 108 m−1. Since

d2θ
dz2 , 1

2A
∂ f
∂θ

∼ 1016 m−2, and ( dφ

dz )2 sin θ cos θ , Ph̄ j
4eA

dφ

dz sin θ ∼
1012 m−2, Eq. (4a) is dominated by the first two terms,
4 orders of magnitude larger than the other two terms.
θ (z) is then well approximated by the Walker profile
θ (z) 
 2 arctan[exp(Qz/�0)], dθ/dz 
 Q sin θ/�0 =
Q sech(z/�0)/�0 as shown in Fig. 2(c) with an excellent
agreement between the theory (solid lines) and micromagnetic
simulations (symbols) of Eq. (2) for j = 0.8 × 1012A/m2.
The good agreements demonstrate that Eq. (4) can well
describe the static solutions of Eq. (2). It is worth noting that
the spatial variation of φ under an a-STT is visible, but very
small. Away from DW center, θ is 0 or π , and φ is not well
defined and has no effect on wire energy and magnetization
dynamics.

φ at the DW center can also be estimated from energy
minimization. Since φ does not change much according to
analysis above, thus we can express the DW energy Em +
Ea as a function of φ by integrating over the wire us-
ing the Walker profile and constant φ. Use

∫ +∞
−∞ sin2 θdz =

2�0,
∫ +∞
−∞ sin4 θdz = 4

3�0, we have Em + Ea = S[4
√

AKz +
4
3�0K ′

y sin4 φ + QPh̄ j
e φ]. Minimizing this total energy with re-

spect to φ gives us the azimuthal angle at the DW center under
applied current density j,

16

3
�0K ′

y sin3 φ cos φ + QPh̄ j

e
= 0. (5)

Equation (5) [the red solid line in Fig. 2(d)] ex-
plains well micromagnetic simulations (dots) as shown in
Fig. 2(d).

As shown above, DW plane twisting by an a-STT is gen-
eral, absent only for a special class of biaxial wires. Although
both magnetic field and an a-STT can be incorporated in the
Lagrangian as the Zeeman energy functional and Ea, respec-
tively, static fields and a-STTs have very different effects on
DWs. A static magnetic field (along +ẑ) creates an energy
density difference between two uniform magnetic domains
separated by a DW such that the static DW cannot exist
[40,43,44], in contrast, an a-STT changes energy density (Ea)
only inside the DW such that a static DW is possible un-
der an a-STT alone and the a-STT tends to twist the DW
plane. This twisting occurs only within a DW, thus it should
have important implications to DW motion. Results above are
general and applicable to other forms of anisotropy, such as
cubic anisotropy presented in gadolinium iron garnets [60];
see Appendix C for details.
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B. Nonexistence of a static DW under an arbitrarily small
na-STT

Two results are presented here. One is that a na-STT cannot
be expressed as an energy functional, unlike an a-STT being
incorporated into the Lagrangian. Second, a static DW cannot
exist in a homogeneous FiM nanowire under an arbitrarily
small na-STT. The importance of this na-STT to DW motion
in ferromagnetic wires was known for a long time [6,9].

To prove nonexistence of Ena,� such that m� × δEna,�

δm�
=

τna,� = β�P� h̄ j
2e m� × ∂zm�, we assume that this assertion is in-

correct. Then one has Ena,� ≡ ∫
εna,�(θ�, φ�, ∂zθ�, ∂zφ�)d3x

because the na-STT depends on m� and ∂zm�. In the local
coordinate system of (em�

, eθ�
, eφ�

), one has

∂εna,�

∂θ�

− ∂z

(
∂εna,�

∂ (∂zθ�)

)
= β�P�h̄ j

2e
∂zθ�, (6a)

∂εna,�

∂φ�

− ∂z

(
∂εna,�

∂ (∂zφ�)

)
= β�P�h̄ j

2e
∂zφ� sin2 θ�. (6b)

Equation (6a)×∂zθ� + Eq. (6b)×∂zφ� and integrate over z, we
have [

εna,� − ∂εna,�

∂ (∂zθ�)
∂zθ� − ∂εna,�

∂ (∂zφ�)
∂zφ�

]∣∣∣∣
z=+∞

z=−∞

= β�P�h̄ j

2e

∫ +∞

−∞
(∂zm�)2dz. (7)

(∂zθ�)2 + (∂zφ� sin θ�)2 = (∂zm�)2 is used above. Applying
Eq. (7) to a wire with two DWs such that two domains on the
far left and the far right are the same, i.e., εna,�(z = −∞) =
εna,�(z = +∞), the left-hand side (LHS) of Eq. (7) vanishes
while the right-hand side (RHS) of Eq. (7) is nonzero and
positive definite because of the contributions from the DWs
in the wire. Thus, the assumption of existence of Ena,� cannot
be true. The similar conclusion was also made in a recent work
from collective coordinate assumption and introduction of an
artificially charge [62].

To show nonexistence of a static DW in the presence
of an arbitrarily small na-STT, let us assume Eq. (2) have
time-independent solution (∂t m1 = ∂t m2 = 0) such that the
left-hand sides of Eq. (2), as well as the second and the third
terms in the brackets on the right-hand sides, are zeros. In
the coordinate of (em�

, eθ�
, eφ�

), the eθ�
and eφ�

components
of Eq. (2) become

δEm

δθ�

= −τφ,�, (8a)

δEm

δφ�

= τθ,� sin θ� (8b)

where � = 1, 2 labels two sublattices. For quasi-1D
nanowires of a uniform spin distribution in the xy-plane,
i.e. ∂xm� = ∂ym� = 0, one has

∫
d3x = S

∫
dz, where S is

the cross-section area of the nanowire. ∂zθ� × Eq. (8a) +
∂zφ� × Eq. (8b), summing over � and integrating over z, we
obtain, by using τθ,� = −P� h̄ j

2e ∂zθ� − β�P� h̄ j
2e sin θ�∂zφ�, τφ,� =

−P� h̄ j
2e sin θ�∂zφ� + β�P�hbar j

2e ∂zθ� and after some algebra,

S
∫ +∞

−∞

dεm

dz
dz = −S

∑
�=1,2

β�P�h̄ j

2e

∫ +∞

−∞
(∂zm�)2dz. (9)

The LHS of Eq. (9) is zero since S[εm(z = +∞) − εm(z =
−∞)], while the RHS is nonzero unless β� = 0 due to the
spin variations inside the DW. Thus, Eq. (9) cannot be true
and a static DW cannot exist in the presence of a na-STT. A
DW must move under an arbitrarily small na-STT.

C. Energy-work principle and DW velocity

Since a DW must move under a na-STT which does a
positive work, the energy-work principle says that the power
done by STTs should equal to the sum of the dissipated
power during the DW motion and the magnetic energy chang-
ing rate. Approximating Eq. (2) by Eq. (3), the magnetic
energy changing rate is dEm

dt = ∫
δEm
δm · ∂t md3x = μ0(M1 −

M2)
∫ −H · ∂t md3x. Operate ∂t m · (m × · · · ) on both sides of

Eq. (3), one has the LHS equal to zero, and solving RHS = 0
for H · ∂t m gives H · ∂t m = γ −1[α(∂t m)2 − ∂t m · (m × τ)].
Substitute it to the expression of dEm

dt above, the first term gives
the energy dissipation rate, and the second term gives power
supplied by the a-STT and na-STT when the corresponding
STTs in τ are used. Interestingly, instead of scalar product of
torque with the angular velocity as the power done by a torque
on a Newtonian rigid-body with inertial, the power done by a
torque on the spin angular momentum governed by the LLG
equation is proportional to ∂t m · (m × τ). With some algebra,
the energy change rate equal to the sum of dissipative power
and powers from the a-STT and na-STT,

dEm

dt
= Pα + Pna + Pa. (10)

The dissipative power is

Pα = −2Rα = −αδs
∫

(∂t m)2d3x

= − δsα

(1 + α2)

∫
[(γ Hφ + τθ )2

+ (γ Hθ − τφ )2]d3x, (11)

the power by the na-STT is the Rayleigh functional of the na-
STT,

Pna = −Rna = −δsuβ

∫
(∂t m · ∂zm)d3x, (12)

and the power by the a-STT is

Pa = δsu
∫

m · (∂t m × ∂zm)d3x. (13)

Equation (10) is applicable to any magnetic texture described
by the LLG equation. If one uses total energy E = Em + Ea =∫

[(
∑�=1,2

q=θ�,φ�

∂L
∂ (∂t q)∂t q) −L]d3 x, then the energy-work rela-

tion becomes dE
dt = −2Rα − Rna since dEa/dt = −Pa. It is

equivalent to use either E or Em. Equation (10) was known
before [5,10], but was not used to understand DW motion.

To connect the energy-work principle to DW motion and to
be specific, we consider a HH DW in the widely studied biax-
ial wires, f = −Kz cos2 θ + Ky sin2 θ sin2 φ. Rewrite Eq. (3)
in terms of θ, φ,

(1 + α2)∂tθ = γ Hφ + αγ Hθ + τθ − ατφ, (14a)

(1 + α2)∂tφ sin θ = αγ Hφ − γ Hθ + ατθ + τφ, (14b)
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with Hθ = 1
μ0(M1−M2 ) [2A ∂2θ

∂z2 − ∂ f
∂θ

− 2A sin θ cos θ ( ∂φ

∂z )2] and

Hφ = − 1
μ0(M1−M2 ) sin θ

∂ f
∂φ

+ 2A
μ0(M1−M2 ) sin θ

∂
∂z (sin2 θ

∂φ

∂z ).
For j < jW discussed below, one can verify that

θ [(z − vt )/�] = 2arctan{exp[(z − vt )/�]} and φ = const.,

with v = βu/α and � =
√

A
Kz+Ky sin2 φ

, are exact solu-

tions of Eq. (14) with τθ = −u∂zθ , τφ = βu∂zθ , and
∂ f
∂θ

= 2 sin θ cos θ (Kz + Ky sin2 φ). The solution has
∂zθ = sin θ/� and ∂zzθ = (cos θ/�)∂zθ = sin θ cos θ/�2,
2A∂zzθ − ∂ f /∂θ = 0, and ∂zφ = 0 such that Hθ = 0.

From these conditions, Eq. (14b) becomes

∂tφ = 1

δs(α2 + 1)

(
β1P1 + β2P2 − αP

�

h̄ j

2e
− αKy sin 2φ

)
.

(15)

The rigid-body motion requires ∂tφ = 0, and Eq. (15) can
only be true when j is smaller than the Walker breakdown cur-
rent density jW = 2e

h̄ max[ αKy� sin 2φ

β1P1+β2P2−αP ]. jW does not diverge
at AMCP (δs = 0 and α → ∞) unless P = 0 or P1 = P2.
This result differs from the absence of Walker breakdown
at AMCP for field-driven DW motion [17,40]. We will see
below that this difference leads to unique dynamical behav-
iors of current-driven FiM DW motion around AMCP. The
energy-work relation in the rigid-body motion ( j < jW ) is
Pα + Pna = 0 since dE/dt = 0. The physical picture of this
relation is clear: The power of na-STT overcomes the dissi-
pation power caused by DW motion to maintain a constant
DW speed. Putting ∂tφ = 0 and Hθ = 0 into Eq. (14b), one
has γ Hφ = −(ατθ + τφ )/α. Substitute these expressions into
Eq. (11), one obtains Pα = −δs(β2u2/α)

∫
(∂zθ )2dz. Substi-

tute ∂t m · ∂zm = ∂tθ∂zθ = −v(∂zθ )2 into Eq. (12), one has
Pna = δsvβu

∫
(∂zθ )2dz. Combining these results with Pα +

Pna = 0, we derived the well known DW velocity of v =
βu/α. In terms of model parameters used in Eq. (2), DW
velocity is

v = β1P1 + β2P2

αδs

h̄ j

2e
. (16)

For j > jW , a DW precesses around the nanowire axis as it
propagates along the wire. The magnetic energy of the DW
oscillates with time because the DW experiences different
magnetic anisotropy, resulting in the variation of the DW
width.

Of course, the long time-averaged DW energy chang-
ing rate is zero because the DW energy varies in a narrow
range. Interestingly, Eq. (14) can still approximately describe
a propagating DW [5] (numerical verification is provided in
Appendix B), θ (z, t ) = 2 arctan{exp[(z − ∫ t

0 v(t ′)dt ′)/�(t )]}
and φ = φ(t ), where �(t ) =

√
A

Kz+Ky sin2 φ(t )
is the DW width.

Then Hθ 
 0, Hφ 
 −Ky sin 2φ sin θ

μ0(M1−M2 ) . Under these approxima-
tions (see Appendices A and B for detailed derivations
and validations), the power from the na-STT is Pna =
2Suδsβv(t )/�(t ). Thus v(t ) is proportional to Pna�(t ), in-
stead of Pna. To evaluate v̄, where the bar denotes the
long-time average, we thus multiply both sides of Eq. (10) by
�, and take the time average such that Pna� = 2Suδsβv̄. The
energy-work relation becomes �dEm/dt = Pα� + Pna� +

FIG. 3. j-dependencies of Pα�/S (orange), Pna�/S (blue),
Pa�/S (green), and �dEm/dt (cyan) for β1 = β2=0.3 (a), 0.0695
(b), 0.02 (c), and 0 (d), α11 = α22 = 0.01, α12 = α21 = 0. Sym-
bols are MuMax3 simulations of Eq. (2) and curves are Eq. (18)
(red),Pna�/S = 2uδsβv̄ (blue), Eq. (19) (green), and �dEm/dt = 0
(cyan). The Walker breakdown current densities are jW = 1.24 (a),
+∞ (b), 5.77 (c), 4.11 and (d) ×1012 A/m2. The effective parameters
are calculated as α = 0.1736 and β = 0.75 > α (a), β = α (b), β =
0.05 < α (c), and β = 0 (d). Other parameters for each sublattice are
the same as those given in Sec. II B.

Pa�, or equivalently,

2Suδsβv̄ = �dEm/dt − Pα� − Pa�. (17)

�dEm/dt = 0 because Em = 4AS/�(t ) and �dEm/dt =
−4AS[d ln(�/�0)/dt]. The other two terms on the RHS of
Eq. (17) can be expressed as follows, after employing proper
approximations discussed in Appendices A and B,

Pα� = 2Suδs

(
−β2u

α
+ (β2 − α2)

α(1 + α2)

√
u2 − u2

W

)
, (18)

and

Pa� = −2Suδs�∂tφ = −2Suδs
(β − α)

(1 + α2)

√
u2 − u2

W , (19)

where uW = (Ph̄ jW )/(2eδs) is u at jW . The analytical ex-
pressions of Pα�, Pna�, Pa�, and �dEm/dt , based on spin
dynamics of Eq. (3) are verified by MuMax3 simulations on
Eq. (2) as shown in Fig. 3. From Eq. (17), the averaged DW
velocity v̄ is

v̄ = β

α
u − (β − α)

α(1 + α2)

√
u2 − u2

W . (20)

In terms of current density, it is

v̄ = μ1 j + μ2

(
j −

√
j2 − j2

W

)
, (21)

where

μ1 = P + α(β1P1 + β2P2)

δs(1 + α2)

h̄

2e
, (22a)
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is the asymptotic DW mobility for j � jW , and

μ2 = (β − α)P

αδs(1 + α2)

h̄

2e
(22b)

is a correction to DW mobility above the Walker breakdown
current. An interesting observation is that, although Eq. (21)
is obtained for the case of j > jW , result for j < jW is the real
part of Eq. (21), namely v̄ = (μ1 + μ2) j = β1P1+β2P2

αδs
h̄
2e j.

Equations (18)–(20) derived from the energy-work rela-
tions in the precessional regime ( j > jW ) are beyond the
collective mode theory. Without the loss of generality, we
assume j > 0, P > 0, and δs > 0. On the one hand, work
done by a na-STT is always nonzero and positive. On the other
hand, an a-STT can do either negative or positive work, de-
pending on the direction of the DW precession, or the sign of
∂tφ. (1) When β > α, the DW plane precesses right-handedly
(∂tφ > 0), a-STT does a negative work [Fig. 3(a)]. (2) When
β = α (∂tφ = 0), the DW does not precess, and the a-STT
does no work [Fig. 3(b)]. (3) When β < α (∂tφ < 0), the
a-STT does a positive work [Fig. 3(c)].

In the absence of a na-STT (β = 0), the work done by
the a-STT in the precessional regime must be dissipated
by the damping through DW propagation along the wire
as revealed in Fig. 3(d). The eφ component of Eq. (3) is
sin θ∂tφ = −γ Hθ + α∂tθ + τφ . Multiply both sides of the
equation by sin θ and integrate over z, the left-hand side is
2�∂tφ because of

∫
sin2 θdz = 2�. The second term on the

right-hand side is −2αv because θ (z, t ) = 2 arctan{exp[(z −∫ t
0 v(t ′)dt ′)/�(t )]} leads to v = −0.5

∫
sin θ∂tθdz. The first

and third terms on the right-hand side vanish because Hθ = 0
and τφ = −u sin θ∂zφ = 0 (since ∂zφ is negligible, see Ap-
pendices A and B). After taking the long-time average, one
has αv̄ = −�∂tφ. From �∂tφ given in Eq. (19), the average

DW speed is v̄ = 1
1+α2

√
u2 − u2

W , the same as Eq. (20) for
β = 0.

Figure 4(a) shows current density dependence of DW
speed in a wire away from the AMCP. Symbols are MuMax3
simulations of Eqs. (2) and curves are Eq. (16) for j < jW and
Eq. (21) for j > jW . The excellent agreements demonstrate
again the good approximation of Eq. (3) by Eq. (2), as well
as the accuracy of our analysis. In summary, Eq. (20) [or
equivalently Eq. (21)] is applicable to current density, both
below and above the Walker breakdown.

D. DW velocity around AMCP

jW does not diverge at AMCP (δs = 0) in general, unless
P1 = P2 (P = 0). Thus, the Walker breakdown occurs even at
the AMCP, in contrast to the absence of the Walker breakdown
(HW = ∞) at AMCP for field-driven DW motion. For j > jW ,
DW precession velocity ∂tφ is proportional to α

δs(1+α2 ) accord-
ing to Eq. (15). The limit of ∂tφ under δs → 0 (α → ∞) is
finite and reaches its maximal value. Thus, a DW precesses
at a high velocity of ∂tφ ∼ −Ph̄ j/(2eδsα�) at the AMCP.
The high precession is mainly caused by the a-STT, consistent
with the fact that the energy of the a-STT prefers a smaller φ

for a HH DW. Although Eq. (21) predicts no change in DW
mobility beyond the Walker breakdown at the AMCP, a high
precession can lead to a significant DW structure change, and

FIG. 4. Current-density dependencies of averaged DW velocity
for a nanowire away from the AMCP (a) and at AMCP (b), (c). An
AMCP is modelled by γ1M2/M1 = γ2 = 1.76 × 1011s−1T−1. Away
from the AMCP, γ1 = γ2 = 1.76 × 1011s−1T−1 are used. The sym-
bols are MuMax3 simulations on Eq. (2), the yellow solid curves are
Eq. (16) (for j < jW ) and (21) (for j > jW ), and the yellow dashed
curves in panels (b), (c) are prediction of Eq. (27). Model parameters
are α11 = α22 = 0.01, α12 = α21 = 0, β1 = β2 = 0.3 (blue), 0.0695
(orange), 0.02 (green), and 0 (violet), respectively. The effective
parameters calculated from sublattice parameters in panel (a) are
α = 0.1736, and β = 0.75 > α (blue), β = α (orange), β = 0.05 <

α (green), and β = 0 (violet), respectively. While α in panels (b), (c)
diverges since it is at AMCP. Other parameters for each sublattice are
the same as those given in Sec. II B.

a time-dependent DW deformation emits spin waves during
the DW propagation. The DW deformation and spin wave
emissions invalidates most of the approximations used in
previous analysis. Six videos in the Supplemental Material
[61] show strong spin wave emission around the AMCP when
the applied current is above the Walker breakdown current
(Videos 1–4) and negligible spin wave emission away from
the AMCP and above the Walker breakdown (Videos 5 and
6). The simulation setup in the videos are the same as that in
Sec. II B and Fig. 4.

However, the effective LLG equation [Eq. (3)] is still valid.
We extract the φ1, φ2 + π , components of m1, m2 from simu-
lation done for the nanowire at AMCP with β1 = β2 = 0.3,
α11 = α22 = 0.01, α12 = α21 = 0. γ1M2/M1 = γ2 = 1.76 ×
1011s−1T−1. The current density is j = 5 × 1012A/m2 >

jW = 4.1 × 1012A/m2. Other material parameters are spec-
ified in Sec. II B. We plot φ1, φ2 + π , and components of
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FIG. 5. Azimuthal angles φ1, φ2 and components of m1, m2 at
three different moments t = 1.3, 3, 6.2 ps obtained from simulation
done for the nanowire at AMCP with β1 = β2 = 0.3, α11 = α22 =
0.01, α12 = α21 = 0. γ1M2/M1 = γ2 = 1.76 × 1011s−1T−1. The cur-
rent density is j = 5 × 1012A/m2 > jW = 4.1 × 1012A/m2. Other
material parameters are specified in Sec. II B. The solid lines in panel
(a) are φ1 while the dashed lines are the φ2 + π . In (b)–(d), the red,
green, and light blue solid lines are the m1,x, m1,y, and m1,z, while the
blue, black, and yellow dashed lines are the −m2,x, −m2,y, and −
m2,z.

m1, m2 (at the middle of the column of the films for each given
z) as functions of z in Fig. 5. The overlap between solid and
dashed lines verifies the validity of Eq. (3).

Now we generalize Eq. (21) to the case of DW deformation
[yellow solid lines and color dots in Figs. 4(b) and 4(c)]. Let
us rewrite Eq. (3) as

δs∂t m = m × δEm

δm
+ αδsm × ∂t m − Ph̄ j

2e
∂zm

+ βPh̄ j

2e
m × ∂zm. (23)

At AMCP, δs = 0, the LHS of Eq. (23) vanishes.∫
dz{∂zm · [m × Eq. (23)]} yields

αδs
∫

∂zm · ∂t mdz + βPh̄ j

2e

∫
(∂zm)2dz = 0. (24)

One may note that αδs is not zero. The first and third
term on the RHS of Eq. (23) vanish since

∫
dz{∂zm · [m ×

(m × δEm
δm )]} = −[εm − ∂εm

∂ (∂zθ )∂zθ − ∂εm
∂ (∂zφ)∂zφ]|z=+∞

z=−∞ = 0,

and
∫

dz[∂zm · (m × ∂zm) = 0. The DW velocity can be
found from the ansatzes of θ (z, t ) = θ (z − ∫ t

0 v(t ′)dt ′),
φ(z, t ) = �(z − ∫ t

0 v(t ′)dt ′) + ωt [10,26], where � describes
DW-plane twisting and DW distortion. ω is the rotation
velocity of the spin at DW center. Using ∂tθ = −v∂zθ , ∂tφ =
−v∂z� + ω, ∂zφ = ∂z�, one obtains ∂zm · ∂t m = ∂zθ∂tθ +
∂zφ∂tφ sin2 θ = −v[(∂zθ )2 + (sin θ∂z�)2] + ω sin2 θ∂z�,
∂zm · ∂zm = (∂zθ )2 + (sin θ∂z�)2. The time-averaged DW
velocity is

v̄ = βPh̄ j

2eαδs
+

{
ω

∫
sin2 θ∂z�dz∫

[(∂zθ )2 + (sin θ∂z�)2]dz

}
. (25)

To further simplify the second term on the RHS, we write∫
sin2 θ∂z�dz = 2��z and assume �z = ∂zφ(z)|z=0, deriva-

tive of φ at the DW center. Also,
∫

[(∂zθ )2 + (sin θ∂z�)2]dz 

2/�, then { ω

∫
sin2 θ∂z�dz∫

[(∂zθ )2+(sin θ∂z�)2]dz } 
 ω� ��z, so the DW veloc-
ity becomes

v̄ = βP

αδs

h̄ j

2e
+ ω� ��z. (26)

We will make a few remarks on Eq. (26) before proceeding
further. The second term on the RHS of Eq. (26) is purely
caused by the a-STT. Although the a-STT is not explicitly
included in Eq. (24), it still has a significant effect on DW
dynamics by inducing a high DW precession of ω and by
distorting the DW structure (��z). As a result, the DW
velocity deviates from a linear relation to the current den-
sity, in sharp contrast to the field-driven case, where DW
velocity is proportional to the external field strength. The
reason for this difference lies in the fact that the STT has
both adiabatic and nonadiabatic components, whereas a static
external magnetic field exerts only a precessional torque on
the spins.

One can estimate the DW precession frequency as ω� 

− (P1−P2 )

αδs
h̄ j
2e . The relation between DW twisting ��z and cur-

rent density is too complicated to derive analytically, so we fit

��z to c
√

j2 − j2
W , where c is a fitting parameter measuring

the degree of DW twisting, c = 0 for no twisting. Substituting
these expressions into Eq. (26), an approximate formula for
DW velocity ( j > jW ) is obtained,

v̄ = βP

αδs

h̄ j

2e
− c

P

αδs

h̄ j

2e

√
j2 − j2

W . (27)

In our simulations below, β1 = β2 and α11 = α22 are
used. By fitting DW structure data obtained from sim-
ulations (see Sec. III E for details), we obtained c =
1.46 × 10−13(β� − α��) m2/A. We compared our theoret-
ical predictions [Eq. (27), the yellow dashed lines in
Fig. 4] with MuMax3 simulations (the colored dots) in
Figs. 4(b) and 4(c). These results demonstrate that our
theory provides an accurate prediction of DW velocity
at AMCP.

Our theory provides a novel theoretical explanation to the
current-driven DW motion in FiMs at AMCP. No unphysical
negative na-STT is used, and the long-standing problem in the
field [20,28–32] is solved. DW velocity at AMCP observed in
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simulations and experiments [20,29] can perfectly explained
by the DW deformation.

E. Comparison of simulations with theory for DW twisting
at the AMCP

To test how good Eq. (27) is for the velocity of a twisted
DW at the AMCP, we carry out simulations for α11 =
α22 = 0.01 and four different nonadiabaticities β1 = β2 =
0.3, 0.0695, 0.02, 0. γ1M2/M1 = γ2 = 1.76 × 1011 s−1T−1 is
used to simulate the AMCP while all other parame-
ters for each sublattice are the same as those given in
Sec. II B.

The DW structures θ�(x, z, nδt ) and φ�(x, z, nδt ) (� = 1, 2)
are recorded every δt=0.1 ps for a duration of 20 ps (n =
1, 2, .., 200). The average polar and azimuthal angles along
the z direction are defined as θ�(z, t ) = 1

8

∑
x=1,2,...,8 θ�(x, z, t )

and φ�(z, t ) = 1
8

∑
x=1,2,...,8 φ�(x, z, t ). The spatial derivatives

of φ� along z direction are defined as ∂zφ� = φ�(z,t )−φ�(z−δz,t )
δz

with δz = 0.5 nm. Only ∂zφ�(z, t ) within [z0 − 5�0, z0 +
�0] are collected since ∂zφ�(z, t ) outside this range is
not well defined. We use

∫
sin2 θ�dz = 2�� to calculate

��(t ), ��(t ) = 0.5δz
∑

n1=1,2...,4096 sin2 θ�(z = n1δz, t ). Ac-
cording to Eq. (26), we need to evaluate ��z (the derivative
of φ at DW center), which is defined as ��z = 0.5[�1�1,z +
�2�2,z], where ��,z = ∂zφ�(z)|z=0 (� = 1, 2) are the deriva-
tive of φ� at DW center, and they are calculated as ����,z =

1
200

∑
n=1,2,...,200 ��(nδt )∂zφ�[z = z0, nδt], where δt = 0.1 ps,

n = 1, 2, ..., 199, 200.
The symbols in Fig. 6 show ��z (red circles) �1�1,z (blue

circles), and �2�2,z (green circles) as functions of current
density j for β� = 0.3 (a), 0.0695 (b), 0.02 (c), and 0 (d). The
damping coefficients are fixed as α11 = α22 = 0.01, α12 =
α21 = 0. We then fit the ��z (red circles) data under j >

jW = 4.1 × 1012A/m2 with a function c
√

j2 − j2
W , results

are shown by black curves in Fig. 6(a) β� = 0.3, 6(b) β� =
0.0695, 6(c) β� = 0.02, and 6(d) β� = 0, where the fitting
parameter c = 4.246 (a), 0.776 (b), 0.139 (c), and −0.124 (d)
( ×10−14m2/A), respectively.

To see how the fitting parameter c depends on the sublattice
nonadiabaticity parameter β�, we plot c as a function of β�,
as shown by the magenta circles in Fig. 6(e). We find that c
depends linearly on β� and c changes its sign around β� =
α��. We thus perform another fitting to the c − β� data using
a function c′(β� − α��), the fitting parameter is obtained as
c′ = 1.46 × 10−13(m2/A).

We have also compared previous simulations and the-
ory in Ref. [29] with our formula of Eq. (27). For the
uniaxial FiM nanowire considered in Ref. [29], jW = 0,
our formula of Eq. (27) is v̄ = βP

αδs
h̄ j
2e − c P

αδs
h̄
2e j2. The co-

efficients are βP
αδs

h̄
2e = −4.35 × 10−9β1 m3/(s · A), P

αδs
h̄
2e =

−4.35 × 10−9 m3/(s · A), according to the parameters given
in Ref. [29], c is the only fitting parameter. We extract
the simulation data (symbols in Fig. 7) and theoretical re-
sults (solid curves in Fig. 7) of DW velocity at AMCP
from Ref. [29] using an online digitization tool WebPlot-
Digitizer [64]. Then we fit their simulation data with our
formula v̄ = βP

αδs
h̄ j
2e − c P

αδs
h̄
2e j2, where the fitting parame-

FIG. 6. ��z (red circles), �1�1,z (blue circles), and �2�2,z

(green circles) as functions of current density for β� = 0.3 (a),
0.0695 (b), 0.02 (c), and 0 (d). The damping coefficients are fixed as
α11 = α22 = 0.01, α12 = α21 = 0. The black solid curves are fittings
results with a function c

√
j2 − j2

W . The fitting parameter c = 4.246
(a), 0.776 (b), 0.139 (c), and −0.124 (d) ( ×10−14m2/A). Figure 6(e)
plots the fitting parameter c as a function of β� (magenta circles), the
black line in panel (e) is c = 1.46 × 10−13(β� − α��)(m2/A), where
the coefficient 1.46 × 10−13(m2/A) is obtained from another fitting.
The inset in panel (e) is an enlargement for β� ∈ [0, 0.03], which
shows that c changes its sign at β� = α�� = 0.01.

ter c = −5.109,−3.802,−2.513( ×10−16m2/A) for β1 = 0
(black), 0.0005 (red), 0.001 (blue), respectively. The pre-
dictions of our formula are shown by the dashed curves in
Fig. 7, it compares much better with the simulation data
(symbols) than the previous theoretical formula (solid curves)
in Ref. [29].

IV. DISCUSSIONS AND CONCLUSIONS

We point out that the unphysical negative na-STT found in
experiments [20] is based on an incorrect DW velocity for-
mula. This unphysical result does not show up if one use our
DW formula near the AMCP which include the DW twisting
and high DW precession speed. The DW speed is significantly
hindered and not simply proportional to β/α especially in the
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FIG. 7. Comparison between previous results in Ref. [29]
and our formula of Eq. (27), for β1= 0 (black), 0.0005 (red),
and 0.001 (blue) in a uniaxial wire. The damping coefficients
are α11 = α22 = 0.002, α12 = α21 = 0. Symbols (simulation re-
sults) and solid lines (theory) are from Ref. [29]. The dashed
curves are our Eq. (27), v̄ = βP

αδs
h̄ j
2e − c P

αδs
h̄
2e j2, with fitting pa-

rameter of c = −5.109, −3.802, and −2.513( ×10−16m2/A) for
β1 = 0, 0.0005, and 0.001, respectively. The linear coefficient of
(β1P1+β2P2 )

αδs
h̄
2e = −4.35 × 10−9β1 m3/(s · A) is from the parameters

given in Ref. [29].

case of β > α. From Eq. (27), the DW mobility should be

μ ≡ d v̄

d j
= βP

αδs

h̄

2e
− c

P

αδs

h̄

2e

2 j2 − j2
W√

j2 − j2
W

. (28)

Existing theories for current-driven DW motion at AMCP
have only considered the first term in Eq. (28), which is in-
consistent with numerical simulations [29] and experiments in
the vicinity of AMCP [20]. The reason is that the second term
in Eq. (28) reduces the DW mobility when j > jW , c > 0,
P > 0, leading to a negative β if one only considers the first
term in Eq. (28).

In conclusion, we have developed a theory for current-
driven DW motion in FiM wires based on generic FiM
dynamics and energy-work principle. Our theory provides
an insight to the different roles of adiabatic and nonadia-
batic torques in current-driven DW motion. Several exact
results were obtained. DWs in homogeneous FiM nanowires
can resist an a-STT until it reaches a critical value propor-
tional to transverse anisotropy. A static DW cannot exist
under an arbitrarily small na-STT. Thus, a DW must move
under a na-STT. The total STT does an overall positive
work on the DW during its motion, and this positive work
compensates the dissipated energy caused by the DW mo-
tion. Below the Walker breakdown current, only the na-STT
does positive work and the a-STT does no work. Above
the Walker breakdown, the DW precesses around the wire
axis, the a-STT does either a negative or a positive work,
depending on the handedness of DW precession, while the
na-STT still does a positive work. Based on the energy-work
principle, a DW velocity formula, which agrees with simula-
tions both below and above the Walker breakdown current,
is obtained. In the vicinity of AMCP, the DW precession

frequency reaches its maximum, accompanied by spin wave
emission and large DW structure distortion, which signifi-
cantly hinders the DW motion. Our theory explains well the
observed DW mobility near the AMCP of FiM nanowires
and resolves the puzzle of unphysical negative na-STT
problem.
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APPENDIX A: DERIVATION OF EQS. (18)–(20)

To simplify the three terms on the right-hand side of
Eq. (10) in the main text, following assumptions will be used:
(1) All spins in the DW almost lie in a plane and ∂zφ 
 0
is a small perturbation. Thus, only leading order or terms
not higher than 1 will be kept. (2) The θ (z, t ) profile is well
described by the Walker solution. (3) The DW width is ap-

proximated by �(φ(t )) =
√

A
Kz+Ky sin2 φ(t )

[40,63]. The validity

of these assumptions are verified by micromagnetic simula-
tions in the next Appendix.

Under these assumptions, the dissipation rate is

Pα = −δs
α

1 + α2

∫
(γ Hφ + τθ )2 + (γ Hθ − τφ )2d3x

= −Sδs
2�α

1 + α2

[(
Ky sin 2φ

δs
+ u

�

)2

+
(

βu

�

)2
]
, (A1)

where τθ = −u∂zθ , τφ = βu∂zθ ,

Hθ = 1

μ0(M1 − M2)

[
2A

∂2θ

∂z2
− ∂ f

∂θ
− 2A sin θ cos θ

(
∂φ

∂z

)2
]


 1

μ0(M1 − M2)

(
2A

∂2θ

∂z2
− ∂ f

∂θ

)
, (A2a)

Hφ = − 1

μ0(M1 − M2) sin θ

∂ f

∂φ

+ 2A

μ0(M1 − M2) sin θ

∂

∂z

(
sin2 θ

∂φ

∂z

)


 − 1

μ0(M1 − M2) sin θ

∂ f

∂φ
= −Ky sin 2φ sin θ

μ0(M1 − M2)
, (A2b)

and γ = μ0(M1 − M2)/δs are used. The final expressions
of the effective fields result from ∂zφ = 0. Hθ 
 0 since
the Walker solution satisfy 2A ∂2θ

∂z2 − ∂ f
∂θ

= 0. The integral of
sin2 θ is the twice of DW width

∫
sin2 θdz = 2�. Multiplying

Eq. (A1) by � on both sides, the time averaged Pα� is

Pα� = − Sδs
2α

1 + α2

((
Ky

δs

)2

�2 sin2 2φ + 2
Kyu

δs
� sin 2φ

+ (1 + β2)u2

)
. (A3)
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With the following approximations (elaborated in detail at the
end of this Appendix),

Ky

δs
� sin 2φ 
 β − α

α

(
u −

√
u2 − u2

W

)
, (A4)(

Ky

δs

)2

�2 sin2 2φ 
 (β − α)2

α2

(
u2 − u

√
u2 − u2

W

)
, (A5)

one has

Pα� = 2Suδs

(
−β2u

α
+ (β2 − α2)

α(1 + α2)

√
u2 − u2

W

)
. (A6)

This is Eq. (18) in the main text.
The power done by a na-STT is

Pna = −Rna = −δsβu
∫

(∂tθ∂zθ + ∂tφ∂zφ sin2 θ )d3x

= −Sδsβu
∫

−v
sin θ

�

sin θ

�
dz = 2Sδsβu

v

�
. (A7)

Multiplying Eq. (A7) by � on both sides, the time averaged
Pna� is

Pna� = 2Sδsβuv̄. (A8)

It explains why DW velocity v is related to Pna�, instead of
Pna.

The power done by the a-STT is

Pa = δsu
∫

m · (∂t m × ∂zm)d3x

= δsu
∫

(∂tθ∂zφ − ∂tφ∂zθ ) sin θd3x

= −Sδs
∫

(∂tφ sin θ∂zθ )dz = −2Sδsu∂tφ. (A9)

Substituting Eq. (15) of ∂tφ into Eq. (A9) and multiplying
both sides by �, we can derive Eq. (19),

Pa� = −2Sδsu

(
β − α

1 + α2
u − αγ Ky� sin 2φ

(1 + α2)μ0(M1 − M2)

)

= −2Sδs
β − α

1 + α2
u
√

u2 − u2
W . (A10)

Since �dEm/dt = 0 as explained in main text, one has
Pα� + Pna� + Pa� = 0. Substituting Eqs. (A6), (A8), and
(A10) into the above equation, the equation for v̄ is(

−β2u

α
+ (β2 − α2)

α(1 + α2)

√
u2 − u2

W

)
+ βv̄ − β − α

1 + α2

√
u2 − u2

W

= 0, (A11)

which gives Eq. (20) in the main text. The accuracy of
Eqs. (A6), (A8), and (A10) have already been discussed in
the main text.

To prove Eqs. (A4) and (A5), we start from Eq. (15) which
is valid under the approximations mentioned at the beginning
of this Appendix. Equation (15) can be expressed in a dimen-
sionless form,

dφ

dt̃
= �W

�
j̃ − sin 2φ, (A12)

where t̃ = αKy

(1+α2 )δs t , j̃ = sgn(β − α) j
jW

, �W ≡
max(� sin 2φ) = 2√

2
√

1+k+2+k
�0, with k = Ky/Kz,

�0 = √
A/Kz. �W is the maximum of �0 sin 2φ√

1+k sin2 φ
with

respect to φ. Equation (A12) is difficult to solve in general
due to the φ-dependence of � = �0√

1+k sin2 φ
. If one simply

assumes �W /� = 1, which should not be too bad for small
k, then Eq. (A12) becomes

dφ

dt̃
= j̃ − sin 2φ. (A13)

This equation has static solutions φ = 0.5(arcsin j̃) + nπ

(n = 0,±1,±2, . . .) which corresponds to the rigid-body DW
propagation when j̃ < 1 (φ = −0.5(arcsin j̃) + 0.5nπ are
unstable). The solution of this equation for j̃ > 1 with initial
condition φ(0) = 0 is

φ(t̃ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan

⎧⎨
⎩

1+
√

j̃2−1 tan

[√
j̃2−1t̃−arctan

(
1√
j̃2−1

)]
j̃

⎫⎬
⎭ t̃ ∈ [0, t̃1),

arctan

⎧⎨
⎩

1+
√

j̃2−1 tan

[√
j̃2−1t̃−arctan

(
1√
j̃2−1

)]
j̃

⎫⎬
⎭ + nπ t̃ ∈ [t̃n, t̃n+1), n = 1, 2, 3, ...,

(A14)

where t̃n = 1√
j̃2−1

[ (2n−1)π
2 + arctan( 1√

j̃2−1
)]. φ is continuous

and differentiable. The piecewise expression of φ is purely be-
cause arctangent function is defined in the range of [−π

2 , π
2 ].

The solution for j̃ < −1 case only differs with Eq. (A14) by
an overall minus sign. The period of φ-precession is T̃ =

2π√
j̃2−1

in the unit of (1+α2 )δs
αKy

. Equation (A14) is of course

not an exact solution of Eq. (A12), but a very nice approxi-
mate one. There are at least two reasons for it being a good
approximation: (1) Both Eq. (A13) and Eq. (A12) have the
same critical current density ( jW ). (2) Although φ-dependence
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FIG. 8. Azimuthal angle φ as a function of t . (a) j̃ > 0 and
(b) j̃ < 0. The symbols are numerical solutions to Eq. (A12) for
| j̃| = 1.1 (blue), 1.2 (orange), 1.5 (yellow), 2 (violet), and 3 (green).
The black solid curves are Eq. (A14).

of � in Eq. (A12) is neglected, the time-dependence of �

is still kept through its definition. This good approximation
can also be checked by the following numerical solutions
of Eq. (A12) for j̃ = 1.1, 1.2, 1.5, 2, 3 and β > α, and j̃ =
−1.1,−1.2,−1.5,−2,−3 and β < α. Equation (A12) is
solved by using a Runge-Kutta solver (ode23) in MATLAB
and the results are shown by the dots in Fig. 8. Equation (A14)
(black solid curves) compares well with the exact numerical
solutions.

With the time-dependent solution of φ, � sin 2φ and

�2 sin2 2φ can be computed at least numerically. In the case
of k  1 such that � 
 �W , analytical expressions can be
found,

� sin 2φ 
 �W sin 2φ = �W

T̃

∫ T̃

0
sin 2φdt̃

= �W

T̃

∫ 2π

0

sin 2φ

j̃ − sin 2φ
dφ

= �W

T̃

∫ 2π

0
−1 + j̃

j̃ − sin 2φ
dφ

= �W

(
j̃ −

√
j̃2 − 1

)
, (A15)

�2 sin2 2φ 
 �2
W sin2 2φ = �2

W

T̃

∫ T̃

0
sin2 2φdt̃

= �2
W

T̃

∫ 2π

0

sin2 2φ

j̃ − sin 2φ
dφ

= �2
W

T̃

∫ 2π

0
−( j̃ + sin 2φ) + j̃2

j̃ − sin 2φ
dφ

= �2
W

(
j̃2 − j̃

√
j̃2 − 1

)
. (A16)

We have used
∫ 2π

0
1

j̃−sin 2φ
dφ = T̃ above. Although the ex-

pressions of � sin 2φ and �2 sin2 2φ were obtained from
small k approximation, they are surprisingly accurate even
for k = 1, 2 as shown in Fig. 9. The colored symbols are
numerical results of φ(t̃ ) of Eq. (A12). The black curves are
j̃ −

√
j̃2 − 1 (solid line) and j̃2 − j̃

√
j̃2 − 1 (dashed line).

FIG. 9. � sin 2φ

�W
(circles) and �2 sin 2φ

�2
W

(diamonds) calculated nu-

merically from Eq. (A12) for k = 0 (dark blue), k = 0.01 (orange),
k = 0.05 (violet), k = 0.1 (green), k = 0.5 (light blue), k = 1 (dark
red), and k = 2 (yellow). The black curves are j̃ −

√
j̃2 − 1 (solid

line) and j̃2 − j̃
√

j̃2 − 1 (dashed line).

(� sin 2φ)
�W


 j̃ −
√

j̃2 − 1 and (�2 sin2 2φ)
�2

W

 j̃2 − j̃

√
j̃2 − 1

are exactly Eqs. (A4) and (A5) with j̃ = sgn(β − α) u
uW

and

uW = αKy�W /(δs|β − α)|). More explicitly, Kyu
δs � sin 2φ =

Kyu�W

δs
(� sin 2φ)

�W
= β−α

α
u(u −

√
u2 − u2

W ), ( Ky

δs )2�2 sin2 2φ =
( Ky�W

δs )2 (�2 sin2 2φ)
�2

W
= (β−α)2

α2 (u2 − u
√

u2 − u2
W ).

APPENDIX B: VERIFICATION OF APPROXIMATIONS
IN APPENDIX A

To demonstrate the excellence of approximations used
in Appendix A, we carried out MuMax3 simulations of
Eq. (2) for a DW motion in a FiM wire of 8 nm × 2 nm ×
2048 nm under current densities of j = 5 × 1012 A/m2 >

jW = 1.24 × 1012 A/m2 for β = 0.75 > α = 0.1736, and
j = 8 × 1012 A/m2 > jW = 4.1 × 1012 A/m2 for β = 0 <

α = 0.1736, identical to those used in Sec. II B. The mesh
size in the simulations is 1 nm × 1 nm × 0.5 nm, thus the top
layer is for m1 and the bottom layer is for m2. The x direction
consists of eight elements, labeled by x = 1, . . . , 8.

We recorded DW structures θ�(x, z, nδt ) and φ�(x, z, nδt )
every δt = 0.1 ps for a duration of 50 ps (= 1, . . . 500), where
� = 1, 2 are for the top and bottom layers, respectively. The
average polar and azimuthal angles along the z direction is de-
fined as θ (z, nδt ) = 1

16

∑
x=1,2,...,8[θ1(x, z, δt ) − θ2(x, z, nδt )]

and φ(z, nδt ) = 1
16

∑
x=1,2,...,8[φ1(x, z, δt ) + φ2(x, z, nδt ) −

π ]. Figure 10 shows the snapshots of tan φ [Figs. 10(a)
and 10(b)] and cos θ [Figs. 10(c) and 10(d)] for j = 5 ×
1012A/m2 > jW = 1.24 × 1012A/m2 and β = 0.75 > α =
0.1736 [Figs. 10(a) and 10(c)] at t = 1 ps (dark blue dots),
t = 5 ps (orange dots), t = 9 ps (yellow dots), t = 15 ps
(violet dots), and t = 19 ps (green dots); and for j =
8 × 1012A/m2 > jW = 4.1 × 1012A/m2 and β = 0 < α =
0.1736 [Figs. 10(b) and 10(d)] at t = 1 ps (dark blue dots),
t = 13 ps (orange dots), t = 18 ps (yellow dots), t = 23 ps
(violet dots), t = 37 ps (green dots), and t = 41 ps (light blue
dots). The simulation data show small DW plane twisting
(z-dependence of φ) such that the existence of a DW plane
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FIG. 10. Snapshots of tan φ (a), (b) and cos θ (c), (d) as functions of z. Panels (a) and (c) are for j = 5 × 1012A/m2 > jW = 1.24 ×
1012A/m2, β = 0.75 > α = 0.1736 at t = 1 ps (dark blue), t = 5 ps (orange), t = 9 ps (yellow), t = 15 ps (violet), and t = 19 ps (green).
Panels (b) and (d) are for j = 8 × 1012A/m2 > jW = 4.1 × 1012A/m2, β = 0 < α = 0.1736 at t = 1 ps (dark blue), t = 13 ps (orange),
t = 18 ps (yellow), t = 23 ps (violet), t = 37 ps (green), and t = 41 ps (light blue). The solid curves in panels (c), (d) are Walker profiles.
The DW width obtained from fitting with Walker profiles are �(t = 1 ps) = 3.94 nm �(t = 5 ps) = 3.86 nm, �(t = 9 ps) = 3.78 nm, �(t =
15 ps) = 3.82 nm, �(t = 19 ps) = 3.94 nm in panel (c) and �(t = 1 ps) = 3.93 nm �(t = 13 ps) = 3.87 nm, �(t = 18 ps) = 3.84 nm, �(t =
23 ps) = 3.80 nm, �(t = 37 ps) = 3.80 nm �(t = 41 ps) = 3.88 nm in panel (d). Note that the DW centers in panels (c), (d) are shifted for a
better view.

is a good assumption. cos θ (z, t ) can be fitted well by the
Walker profile of cos{2 arctan[exp( z−z0

�
)]} [the black curves

in Figs. 10(c) and 10(d)], z0 is the DW center position (where
mz = 0). It justifies our assumption of the Walker profile with
a time-dependent DW width in Appendix A. Only φ(z, t )
within z ∈ [z0 − 5�0, z0 + 5�0] are collected since φ outside
this range is not well defined.

We have used
∫

sin2 θdz = 2� to compute �(t ), �(t ) =
0.5δz

∑
n1=1,2,...,4096 sin2 θ (z = n1δz, t ). Figures 11(a) and

11(b) are �(t ) versus t from simulations (dots), the formula of

�(t ) =
√

A
Kz+Ky sin2 φ(t )

(orange solid curves) with φ(t ) given

by Eq. (A12), and Eq. (A14) (yellow dashed curves) for j =
5 × 1012 A/m2 > jW = 1.24 × 1012 A/m2 and β = 0.75 >

α = 0.1736 (a), and for j = 8 × 1012 A/m2 > jW = 4.1 ×
1012 A/m2 and β = 0 < α = 0.1736 (b). The nice agreement
demonstrates that the instantaneous DW width is well approx-

imated by �(t ) =
√

A
Kz+Ky sin2 φ(t )

.

Figures 11(c) and 11(d) are the comparison of the
time-dependence of the magnetic energy Em from the
MuMax3 simulations on Eq. (2) (dots) and the magnetic en-

(a)

(c) (d)

(b)

FIG. 11. DW width (green symbols) and DW magentic energy (blue symbols) as functions of time for j = 5 × 1012A/m2 > jW = 1.24 ×
1012A/m2, β = 0.75 > α = 0.1736 (a), (c), and for j = 8 × 1012A/m2 > jW = 4.1 × 1012A/m2, β = 0 < α = 0.1736 (b), (d). Curves are

�(t ) =
√

A
Kz+Ky sin2 φ(t )

(a), (b) and Em/S = 4A/�(t ). Curves are numerical solution to Eq. (A12) (orange solid curves), and the analytical

solution Eq. (A14) (yellow dashed curves).
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FIG. 12. Current-density dependencies of �
∫

γ 2H 2
φ dz (dark blue), �

∫
γ Hφτθ dz (orange), �

∫
τ 2
θ dz/6 (yellow), �

∫
γ 2H 2

θ dz (violet),

�
∫

γ Hθ τφdz (green), and �
∫

τ 2
φ dz/6 (light blue). (a) β = 0.75 > α = 0.1736. (b) β = 0 < α = 0.1736. Symbols are simulations and curves

are Eqs. (B1)–(B4). For a better visualization, a factor 1/6 is inserted into �
∫

τ 2
θ dz/6 and �

∫
τ 2
φ dz/6 to make values in the similar ranges.

ergy of Em(t )/S = ∫
[A(∂zθ )2 + (Kz + Ky sin2 φ) sin2 θ ]dz =

4A/�(t ) = 4
√

A[Kz + Ky sin2 φ(t )] (solid and dashed lines)

for j = 5 × 1012A/m2 > jW = 1.24 × 1012A/m2 for β =
0.75 > α = 0.1736 (c), and j = 8 × 1012A/m2 > jW =
4.1 × 1012A/m2 for β = 0 < α = 0.1736 (d). The calculated
energy is based on the assumption of ∂zφ = 0 [φ = φ(t )] and

θ = 2 arctan[exp( z−z0
�(t ) )] with �(t ) =

√
A

Kz+Ky sin2 φ(t )
and φ(t )

of Eq. (A12) [the orange solid curves in Figs. 11(c) and 11(d)]
or φ(t ) of Eq. (A14) [the yellow dashed curves in Figs. 11(c)
and 11(d)]. The good agreement between simulations results
(the symbols) and theoretical prediction (the curves) of DW
energy further confirmed the excellent approximations used.

We compared also terms in Pα� directly from
MuMax3 simulations and those from our approximations.
We verified the terms involved Hθ are indeed close to
zero. Figure 12 shows current-density dependencies of
�

∫
γ 2H2

φ dz (dark blue), �
∫

γ Hφτθdz (orange), �
∫

τ 2
θ dz

(yellow), �
∫

γ 2H2
θ dz (violet), �

∫
γ Hθ τφdz (green), and

�
∫

γ Hθ τφdz (light blue) for β = 0.75 > α = 0.1736
(a) and β = 0 < α = 0.1736 (b). The symbols are from
the MuMax3 simulations obtained from simulated spin
configurations and definitions of effective fields of Eq. (A2a)
and (A2b), and definitions of τθ = −u∂zθ − βu sin θ∂zφ

and τφ = −u sin θ∂zφ + βu∂zθ . Derivatives of θ and φ

are numerically obtained from ∂zθ (z, t ) = θ (z,t )−θ (z−δz,t )
δz ,

∂zφ(z, t ) = φ(z,t )−φ(z−δz,t )
δz , ∂zzθ (z, t ) = ∂zθ (z,t )−∂zθ (z−δz,t )

δz ,

∂zzφ(z, t ) = ∂zφ(z,t )−∂zφ(z−δz,t )
δz with δz = 0.5 nm. Same as

before, only data within z ∈ [z0 − 5�0, z0 + 5�0] are used
for φ.

The curves in Fig. 12 are the results from the approxima-
tions stated in Appendix A. They are

�
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The simulation results (symbols in Fig. 12) compare well
with the approximate analytical expressions Eqs. (B1)–(B4)
(solid curves in Fig. 12), which demonstrates the validity of
the approximations used. In summary, all the assumptions we
made in Appendix A are valid.
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FIG. 13. Distribution of the azimuthal and polar angles
of m under different current densities for a HH DW
(a) and a TT DW (b) in a cubic-anisotropic wire of f� =
−K�,z cos2 θ� + K�,c(sin4 θ� sin2 φ� cos2 φ� + sin2 θ� cos2 φ� cos2 θ� +
sin2 θ� sin2 φ� cos2 θ�) with K1,c = K2,c = 0.1 MJ/m3. �0 = 3.96
nm, α11 = α22 = 0.1 (we use larger damping coefficients to speed
up simulations), α12 = α21 = 0, and other material parameters are
specified in Sec. II B. Symbols are simulation results for j = 0.8
(green), 0.6 (dark blue), 0.4 (orange), 0.2 (violet), and 0 (yellow)
in unit of 1012 A/m2. The slopes of the black solid lines in panels
(a, b) are ±QPh̄ j/(8eA). (c) θ (z) and dθ/dz for a HH DW under
current j = 0.8 × 1012 A/m2. The solid line is the Walker profile.
(d) φ at the DW center as a function of j. The blue dots and green
triangles are for a HH and a TT DW, respectively. The red solid line
is Eq. (C1).

APPENDIX C: DW PLANE TWISTING
IN CUBIC-ANISOTROPY WIRES

In this Appendix, we demonstrate that a DW plane in
cubic-anisotropy wires, f = −Kzm2

z + Kc(m2
xm2

y + m2
ym2

z +
m2

z m2
x ), can be twisted by an a-STT. We use MuMax3 [54]

(See Sec. II B for details) to solve Eq. (2) in the presence
of an a-STT. Starting from a static DW at the center of a
nanowireis, φ� of the DW is 0 (π ) for a HH (TT) DW in the
absence of a-STT. An a-STT from various current densities
given in Fig. 13 is turned on at t = 0. In less than 0.5 ns, the
DW becomes static again (∂t m� = 0), showing the existence
of a static DW. The spatial distribution of φ for a HH and a TT
DW is shown in Figs. 13(a) and 13(b), respectively, in terms
of variables of Eq. (3). Spins inside the HH (TT) DW rotate
along the wire, either clockwise or counterclockwise. Away
from the DW center, the azimuthal angle varies linearly along
the wire with a slope of ±QPh̄ j

8eA , indicated by the black solid
lines in Figs. 13(a) and 13(b).

For a realistic current density j = 0.8 × 1012 A/m2 and ef-
fective material parameters of A = 2.2 × 10−11 J/m, P = 0.4,
Kz = 1.4 MJ/m3, dφ

dz is order of Ph̄ j
8eA ∼ 1.2 × 106 m−1,

and dθ
dz is about �−1

0 = √
Kz/A ∼ 2.5 × 108 m−1.

Since d2θ
dz2 , 1

2A
∂ f
∂θ

∼ 1016 m−2, and ( dφ

dz )2 sin θ cos θ ,
Ph̄ j
4eA

dφ

dz sin θ ∼ 1012 m−2, Eq. (4a) is dominated by the
first two terms, 4 orders of magnitude larger than
the other two terms. θ (z) is then well approximated
by the Walker profile θ (z) 
 2 arctan[exp(Qz/�0)],
dθ/dz 
 Q sin θ/�0 = Q sech(z/�0)/�0 as shown in
Fig. 13(c) with an excellent agreement between the theory
(solid lines) and micromagnetic simulations (symbols) of
Eq. (2) for j = 0.8 × 1012A/m2. The good agreements
demonstrate that Eq. (4) can well describe the static solutions
of Eq. (2). It is worth noting that the spatial variation of φ

under an a-STT is visible, but very small. Away from the
DW center, θ is 0 or π , and φ is not well defined and has no
significant effect on wire energy and magnetization dynamics.

φ at the DW center can also be estimated from energy
minimization. Since φ does not change much according to
analysis above, thus we can express the DW energy Em +
Ea as a function of φ by integrating over the wire us-
ing the Walker profile and constant φ. Use

∫ +∞
−∞ sin2 θdz =

2�0,
∫ +∞
−∞ sin4 θdz = 4

3�0, we have Em + Ea = S[4
√

AKz +
2
3�0Kc + 1

3�0Kc sin2 2φ + QPh̄ j
e φ]. Minimizing this total en-

ergy with respect to φ yields the azimuthal angle at the DW
center (red solid line),

2

3
�0Kc sin 4φ + QPh̄ j

e
= 0, (C1)

which explains well the data from micromagnetic simulations
(dots) as shown in Fig. 13(d).
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