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Bloch equations in terahertz magnetic-resonance ellipsometry
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A generalized approach derived from Bloch’s equation of motion of nuclear magnetic moments is presented
to model the frequency, magnetic field, spin density, and temperature dependencies in the electromagnetic
permeability tensor for materials with magnetic resonances. The resulting tensor model predicts characteristic
polarization signatures which can be observed, for example, in Mueller matrix element spectra measured. When
augmented with thermodynamic considerations and suitable Hamiltonian description of the magnetic eigenvalue
spectrum, important parameters such as density, spectral amplitude distribution, relaxation time constants, and
geometrical orientation parameters of the magnetic moments can be obtained from comparing the generalized
model approach to experimental data. We demonstrate our approach by comparing model calculations with full
Mueller matrix element spectra measured at an oblique angle of incidence in the terahertz spectral range, across
electron spin resonance quintuplet transitions observed in wurtzite-structure GaN doped with iron. Our model
correctly predicts the complexity of the polarization signatures observed in the 15 independent elements of the
normalized Mueller matrix for both positive and negative magnetic fields and will become useful for future
analysis of frequency and magnetic field-dependent magnetic resonance measurements.
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I. INTRODUCTION

Magnetic resonance spectroscopy stands as a cornerstone
in the realm of molecular and materials research. Origi-
nating from the seminal observations by Zeeman on the
impact of magnetic fields on spectral lines, magnetic reso-
nance spectroscopy has evolved into a comprehensive suite
of techniques, including nuclear magnetic resonance (NMR),
electron paramagnetic resonance (EPR), and ferromagnetic
resonance (FMR). These methodologies have provided un-
paralleled insights into molecular structures, and dynamics,
significantly advancing our understanding across chemistry,
materials science, medicine, and semiconductor physics. EPR
is widely used to study quantum transitions of molecular
magnetic moments [1]. Conventional EPR instruments detect
magnetic resonance at a few fixed frequencies, typically at
a few tens of GHz [2]. The Zeeman splitting energy, �E ,
of a free electron at 10 GHz, for example, corresponds to a
magnetic field of B = �E

gμB
= 357 mT, and vacuum wavelength
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of λ ≈ 3 cm, where μB = eh̄
2me

is the Bohr magneton, e is the
unit electric charge, h̄ is the reduced Planck constant, and
me is the free electron mass. Pioneered by Felix Bloch in
his seminal 1946 paper [3], electromagnetic absorbance loss
measurements of magnetic transitions are typically performed
in resonator cavities at fixed frequencies under near-field con-
ditions and slowly scanning external magnetic field permitting
for relatively small sample size and highly sensitive detection.
Historically, thus conventional EPR practice is positioning
the sample within a resonant microwave cavity. While effec-
tive for certain applications, this setup inherently imposes a
restriction on the system, confining it to a finite set of dis-
crete frequencies. This limitation has traditionally hindered
the ability to fully explore frequency-dependent magnetic
suscetibility characteristics [4]. Tuning frequency or modi-
fying polarization in such resonator geometries is difficult,
however, investigating magnetic resonances at larger magnetic
fields is generally desirable since energy and magnetic field
resolutions improve. At 100 GHz, λ ≈ 3 mm and a magnetic
field of B = 3.57 T are needed for the single free electron
Zeeman splitting to match. Such magnetic fields can be con-
veniently achieved with superconducting magnets. Studies of
magnetic properties at higher magnetic fields are of interest
for large and complex magnetic systems [5,6], for systems
with large spin quantum numbers and strong spin-spin cou-
pling [7,8], and for more comprehensive investigations of
defect properties in wide-bandgap semiconductors, e.g., in
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SiC [9–11] and GaN, and in ultrawide-band-gap semiconduc-
tors, e.g., AlN [12,13], or gallium oxide [14–21].

In recent years, several groups have developed new meth-
ods of performing EPR at higher magnetic fields with the
possibility of tuning the frequency used [5,22–25]. Transi-
tioning the resonance conditions into the THz range, far-field
optical techniques such as spectroscopic ellipsometry become
available. In addition to frequency variation with few-kHz
resolution capability, frequency multiplication of highly po-
larized solid-state synthesizer sources have become available
recently as well. Implementing suitable polarization modula-
tion, THz spectroscopic ellipsometry was developed lately,
permitting measurement of Mueller matrix spectra [26,27].
Thereby, the anisotropic THz optical properties of samples
with complex layer structures and low-symmetry crystal
structures can be assessed and quantified. THz ellipsometry
was also demonstrated on samples immersed in strong mag-
netic fields within superconducting split-coil Helmholtz-type
magnets for measurement of the optical Hall effect [26–28].
Such measurements can be performed in reflection and trans-
mission geometries and have demonstrated sensitivity to free
charge carrier properties such as effective mass, mobility,
density, and sign (electron, hole). Employing the advantages
of free space propagation such as freely tunable frequency,
free choice of propagation direction, and, most importantly,
variation of all possible polarization conditions, THz EPR
ellipsometry permits investigations of magnetic transitions,
including their energy-magnetic field diagrams as well as their
polarization properties [29,30]. THz EPR thereby dispenses
with the need for resonance cavities and permits the study
of semiconductor heterostructures and thin films. Frequency-
magnetic field maps allow investigators to quickly identify
the origins of observed transitions because different mecha-
nisms, such as hyperfine structure splitting, Zeeman splitting,
or zero-field splitting, reveal different frequency-field dia-
grams [5]. Also, level populations change with magnetic field
and, therefore, with frequency and reveal dynamics in the
complex-valued spin susceptibility, which can be measured
using ellipsometry [1,31].

The previously developed THz Optical Hall effect in-
strumentation is readily available for THz EPR ellipsometry
measurements. Magnetic field and frequency dependent lin-
early and circularly polarized Mueller matrix element spectra
were measured of the magnetic spin transitions associated
with cubic and hexagonal lattice site nitrogen impurities in
4H-SiC [29]. In our recent work, we have reported mag-
netic field-scanning THz-EPR ellipsometry measurements at
selected frequencies of transitions associated with iron im-
purities in β-Ga2O3 [32] The high-spin S = 5/2 state of
Fe3+ causes five transitions which were all detected si-
multaneously, in contrast to conventional low-field EPR.
Analysis of the ellipsometry data, based on direct line-
shape matching to the Mueller-matrix elements, resulted in
the full set of fourth-order monoclinic zero-field splitting
parameters for the octahedrally and tetrahedrally coordi-
nated defects. A subsequent Hamiltonian analysis revealed
that simplified second-order orthorhombic approximations
are insufficient to model the high-spin system at high mag-
netic fields owing to the monoclinic symmetry of the host
crystal [32].

Ellipsometry is a method for accurately characterizing
the linear optical properties of materials, particularly of thin
films [33]. Data analysis requires model calculations which
consider plane wave propagation throughout the sample in-
cluding Fabry-Perot interference, and requires appropriate
assumptions about the complex-valued dielectric (ε) and mag-
netic (μ) material functions within Maxwell’s equations, D =
ε0εE, and B = μ0μH, where D and E, and B and H are
dielectric displacement and electric field phasors, and mag-
netic induction and magnetic field phasors, respectively. Both
response functions are second-rank tensors and are complex-
valued. The structure of the tensors reveals the underlying
physical polarization processes that lead to the optical re-
sponse of a given system. It is commonly accepted for optical
frequencies that the permeability μ is unity and isotropic,
independent of frequency and wave vector. However, at
THz frequencies across magnetic transitions, the magnetic
susceptibility can differ significantly from unity. This was
demonstrated in our previous work reporting the magnetic
field- and frequency-scanning THz-EPR ellipsometry mea-
surement of the Nitrogen impurity in SiC [29]. The prototype
in-house built THz-EPR ellipsometery instrument at the THz
Materials Analysis Center used in this work measures the
complete Mueller matrix in the THz spectral range with freely
tunable frequency at a spectral resolution of approximately
50 kHz, for example, in the 200 to 210 GHz region. The avail-
ability of the full Mueller matrix spectra offers new access
to detailed sample polarization properties and the underlying
physical mechanisms using appropriate model calculations.

In order to perform model analysis to obtain accurate quan-
titative physical parameters in ellipsometry, a suitable model
must be selected. For dielectric processes, such models are
referred to as model dielectric function (MDF) approaches
which are then used to identify, for example, band-to-band
transition energies, or phonon modes and their eigendielectric
polarization directions [33–35]. An eigendielectric displace-
ment vector summation approach was presented recently
for polar vibrations in materials with arbitrary crystal sym-
metry systems, which was derived from the microscopic
Born-Huang description of polar lattice vibrations in the har-
monic approximation [36]. This eigendielectric polarization
or eigenpolarization model was later applied to detailed anal-
yses of phonon mode properties on monoclinic crystal, for
example, in gallium oxide [34], cadmium tungstate [35], yt-
trium orthosilicate [37], and also in orthorhombic neodymium
gallate [38]. This eigenpolarization model also permitted to
provide a detailed understanding of the effects of the so-called
directional modes in the Born-Huang model and the pecu-
liar order of the transverse and longitudinal phonon modes
in polar crystals with monoclinic symmetry [39], as well as
the mechanisms of coupling with free charge carriers [40].
A significant feature of this eigenpolarization model is the
existence of a vector, an eigenpolarization vector, which rep-
resents the direction of the dipole oscillation. These MDF
approaches are derived and founded on physical models and
fundamental principles of classical and quantum mechanics
including energy, charge, and momentum conservation. How-
ever, ad hoc model functions are often used, which lack
rigorous physical derivations. For analysis of our previous
THz-EPR ellipsometry data [29], such an ad hoc model was
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implemented. This model sufficed to reproduce the main
features of the ellipsometry spectra. However, other char-
acteristic measured properties did not correspond well with
the ad hoc model. Previous model descriptions that correctly
render the complex-valued frequency and external magnetic
field dependencies for the tensor appearance of the magnetic
susceptibility for spin or general magnetic transitions are not
known from ellipsometry investigations. Hence, such model
descriptions must be searched for and tested. In this paper,
we present a derivation of a permeability tensor that describes
the full magneto-optic response of a material and sufficiently
explains THz EPR ellipsometry data for spin transitions. We
derived this model from the Bloch equations [3] of the mag-
netic induction under the influence of an external static and
high-frequency magnetic field. We find a model that is similar
in structure to the Born-Huang model where magnetic instead
of dielectric eigenpolarization directions and eigenfunctions
are defined which produce the appearance of the permeability
tensor and can be used in summations over multiple magnetic
processes. We believe this model will also become useful
for analysis of the frequency and magnetic field dependent
responses of general magnetic transitions and excitations.

The Bloch equations [3] describe the time evolution of
a macroscopic ensemble of magnetic moments by phe-
nomenologically introducing relaxation times. The “Bloch
susceptibility” is the form of the magnetic susceptibility
derived from the Bloch equations. As the signal strength
is proportional to the magnetization, the imaginary part of
the Bloch susceptibility is often used to describe absorp-
tion spectra within the fields of EPR and nuclear magnetic
resonance (NMR) [41–46]. By deconvoluting the lineshape,
the relaxation times of the studied magnetic moments can
be obtained. These relaxation times are intricately linked to
the local interactions of paramagnetic centers with their sur-
rounding environment, and yield information regarding the
studied system’s electronic structure and molecular motions
[47]. The absorption spectra obtained by conventional EPR
are in arbitrary units. Analysis of information related to abso-
lute amplitude requires great care. This can be done by using
a reference sample with a known spin volume concentration
or by studying polarization effects rather than intensity as
performed in this study. Once obtained, the amplitude of an
EPR signature can be related to the longitudinal relaxation
time and the spin volume concentration.

Our work here aims to rigorously evaluate the efficacy
of employing the Bloch equation formalism for interpret-
ing magnetic resonance data, specifically obtained through
Mueller matrix ellipsometry [33,48–50]. The original Bloch
equations, while proficient in providing a fundamental and
intuitive framework for understanding the rate processes in-
herent in magnetic resonance phenomena, frequently fall short
in precisely replicating experimental outcomes. This discrep-
ancy arises primarily due to the oversimplified nature of the
phenomenological relaxation times, which inadequately cap-
ture the complex dynamics of magnetic moments, particularly
in scenarios where there is significant interaction and inter-
conversion among them. Here, we demonstrate the validity
of the Bloch model by robust agreement between mea-
sured and best-match model calculated Mueller matrix spectra
for impurity-induced electron spin resonance transitions in

Fe-doped GaN as an example. The zero-field splitting parame-
ters of the S = 5/2 high-spin impurity Fe3+ in GaN have been
investigated previously with fixed frequency low-magnetic
field EPR [51]. The frequency-dependent measurements at
fixed magnetic fields revealed in this work demonstrate the
new capabilities of THz EPR ellipsometry to directly infer
spin parameters from individual spectra. In addition, the spin
Hamiltonian parameters can be determined from analysis of
the eigenvalue spectrum at fixed magnetic fields.

In Sec. II B, we present the derivation of the frequency-
dependent complex-valued Bloch susceptibility tensor, which
is then expanded to high-spin systems in Sec. II D. Based on
the results in Sec. II B, we demonstrate the structure of the
anisotropic magnetic response function tensor and the result-
ing anisotropic properties. We thereby introduce the Bloch
eigenmagnetic polarizability functions and eigenvectors in
Sec. II E. These functions establish the base of the Model
Magnetic Function (MMF) approach used in Sec. III C for
analysis of THz-EPR ellipsometry measurements performed
on Fe-doped GaN. In Sec. III B, we present our THz-EPR
ellipsometry method used here. Data reduction and param-
eter determination are discussed in Sec. III D. Section IV
details the results of the analysis for low-density Fe-doped
GaN. Line-shape analysis results, including amplitude, broad-
ening, and frequency parameters of the two equivalent GaN
lattice sites’ zero-field-split spin transition quintuplets, are
shown, discussed, and compared with available literature data
from low-field, fixed-frequency EPR. We then demonstrate
the quantitative determination of the spin density using the
results of the MMF analysis in combination with a Brillouin
magnetization summation approach. The experiment on the
spin S = 5/2 system in GaN is selected for the purpose of
demonstration. The Hamiltonian description of the zero-field
split system is well known and, thereby, is suitable for the
purpose here. For this reason, the spin measurements are per-
formed in a specific orientation of the crystal such that Fe3+

in two equivalent sites produce identical spin eigenvalues, and
thereby simplify the analysis for improved transparency of our
MMF approach implemented here.

II. THEORY

A. Generalized spectroscopic ellipsometry

The results of Mueller-matrix ellipsometry [33] are com-
monly described by Mueller-Calculus, which is a mathemati-
cal framework where Mueller matrices [48]

M =

⎛
⎜⎜⎜⎝

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎞
⎟⎟⎟⎠, (1)

operate on Stokes vectors [33]

S =

⎛
⎜⎜⎜⎝

Ip + Is

Ip − Is

I45◦ − I−45◦

IRCP − ILCP

⎞
⎟⎟⎟⎠, (2)
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where s, p, ±45◦ denote linearly polarized light perpen-
dicular, parallel, ±45◦ to the plane of incidence, while RCP
and LCP denote right and left circularly polarized light, re-
spectively. As such, Mueller matrices connect the incident
(Sinput) and emergent (Soutput) Stokes vectors after transmission
through or reflection of a sample

Soutput = MsampleSinput. (3)

Specifically, Msample is measured using Mueller matrix ellip-
sometry. How we compute Mueller matrices is detailed in
Appendix A.

B. Bloch susceptibility

To predict the frequency dependence of the complex-
valued permeability tensor for a set of magnetic resonances,
a model based on the Bloch equations is derived. The set
of Bloch equations describes how a magnetization vector
M = (Mx, My, Mz ) responds to an external perturbation when
subjected to a static or slow-changing magnetic induction field
B0. The magnetic moment associated with the magnetization
vector is thought of a continuum density, and may be inter-
preted as caused by a homogeneous distribution of infinitely
small magnetic objects with volume (spin) density ns. Without
loss of generality, with B0 oriented along direction z, the Bloch
equations including the phenomenological relaxation times
are represented as follows [52,53]:

∂Mx

∂t
= −ω0My − Mx

T2
,

∂My

∂t
= ω0Mx − My

T2
,

∂Mz

∂t
= −Mz − M0

T1
, (4)

where ω0 = γeB0 is the classical Larmor frequency, γe is the
gyromagnetic ratio, M0 is the dc magnetization along the z
axis and is assumed to be linearly proportional to B0, T1

is the longitudinal relaxation time, and T2 is the transverse
relaxation time. To assess the response of vector M to an oscil-
lating magnetic induction field, i.e., a time-harmonic external
perturbation due to an electromagnetic plane wave traversing
a magnetized medium, it is advantageous to employ a rotating
frame of reference with an identical angular frequency ω as
that of the oscillating magnetic field. Moreover, assuming that
the oscillating magnetic field is comprised of left-circularly
polarized (LCP) light whose oscillating amplitude H1 = 1

μ0
B1

(CGS units are used throughout this derivation, resulting in
H1 = B1) then remains fixed along the x axis within the ro-
tating frame, where μ0 is the vacuum permeability and H1

(B1) is the auxiliary magnetic (induction) field, the Bloch
equations transform into

∂M̃x

∂t
= −(ω0 − ω)M̃y − M̃x

T2
,

∂M̃y

∂t
= (ω0 − ω)M̃x − M̃y

T2
− γeB1Mz,

∂Mz

∂t
= −Mz − M0

T1
+ γeB1M̃y, (5)

where “∼” annotates components of M in the rotating frame
around the z axis. Solving (5) for a steady-state expression
while assuming very large longitudinal relaxation time T1

yields [52]

M̃x = χ0T2ω0
(ω0 − ω)T2

1 + T 2
2 (ω0 − ω)2

B1,

M̃y = χ0T2ω0
1

1 + T 2
2 (ω0 − ω)2

B1,

Mz = M0, (6)

where we have assumed that B1 � B0, which is typically the
case, and we introduce the dc susceptibility χ0 = M0/B0. We
can thus express frequency-dependent susceptibility functions
χ ′ and χ ′′ in the rotating frame of reference

χ ′(ω) = M̃x

B1
= χ0T2ω0

(ω0 − ω)T2

1 + T 2
2 (ω0 − ω)2

,

χ ′′(ω) = M̃y

B1
= χ0T2ω0

1

1 + T 2
2 (ω0 − ω)2

. (7)

We consider the magnetization response to a left-handed cir-
cularly polarized (LCP, +) electromagnetic plane wave and
seek the complex-valued frequency-domain Bloch suscep-
tibility χB,+ ≡ χ1 + iχ2 in the static reference frame. The
amplitude of the oscillating induction component of the elec-
tromagnetic field in the x direction can be expressed as Bx =
B1e−iωt when the plane wave is propagating along the positive
direction of the z axis. Consequently,

Mx = �(χB,+B1e−iωt )

= B1(χ1 cos(ωt ) + χ2 sin(ωt )), (8)

where � denotes the real part. We then express the magneti-
zation through the components in the rotating frame

Mx = M̃x cos ωt + M̃y sin(ωt )

= B1(χ ′ cos(ωt ) + χ ′′ sin(ωt )), (9)

and by comparison with Eq. (8)

χB,+ = χ ′(ω) + iχ ′′(ω), (10)

or equivalently

χB,+(ω) = χ0
ω0

ω0 − ω − i/T2
. (11)

It is noteworthy that the foregoing derivation assumes a
positive-valued static induction field, enabling LCP light to
drive spin transitions, and resulting in the observed magneti-
zation

Mx = (χ ′ cos(ωt ) + χ ′′ sin(ωt ))B1,

My = (−χ ′′ cos(ωt ) + χ ′ sin(ωt ))B1,

Mz = χ0B0, (12)

which is neatly summarized by the magnetic susceptibility
tensor

χM,+ = 1

2

⎛
⎜⎝

χB,+ −iχB,+ 0

iχB,+ χB,+ 0

0 0 2χ0

⎞
⎟⎠, (13)
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where the third diagonal element highlights the distinct mag-
netic response along the z-axis. The time-harmonic response
of the magnetic induction within the magnetized medium is
then obtained from the summation over the vacuum and spin
contributions, B = μ0(1 + 4πχM,+)H1 = μ0μM,+H1.

Tensor χM,+ in Eq. (13) represents the optical response for
transitions that are induced by LCP light. This polarization
state predominantly influences the optical response near reso-
nance frequencies in the presence of positive magnetic fields.
To construct a comprehensive tensor encompassing responses
for all polarization states, it is essential to augment the re-
sponse of right-handed circularly polarized (RCP) light [54].
This augmentation is further based on the principle that any
polarization state and its response from a given medium can be
represented as a superposition of LCP and RCP components.
Considering RCP light as the time-reversed analog of LCP
light, the response for RCP light can be derived by applying
the time-reversal operator to χ+ [55,56]. In the frequency
domain, the time reversal results in the following transforma-
tions [57]

B0 → −B0, M0 → −M0,

χ0 → χ0, ω0 → −ω0. (14)

This means that Eq. (11) transforms into

χB,− = χ0
ω0

ω0 + ω + i/T2
, (15)

and Eq. (13) into

χM,− = 1

2

⎛
⎜⎝

χB,− iχB,− 0

−iχB,− χB,− 0

0 0 2χ0

⎞
⎟⎠, (16)

when considering the response of RCP light as opposed to
LCP light.

The magnetic susceptibility tensor χM which renders the
optical response for all magnetic field directions is the sum of
χM,+’s and χM,−’s transverse components

χM = 1

2

⎛
⎜⎝

χB,+ + χB,− −i[χB,+ − χB,−] 0

i[χB,+ − χB,−] χB,+ + χB,− 0

0 0 2χ0

⎞
⎟⎠. (17)

With Eqs. (11) and (15) we can express the on-diagonal
and off-diagonal components of χM in the frequency
domain

χM,xx = χM,yy = 2χ0
ω2

0

ω2
0 − ω2 − 2iω/T2

, (18)

χM,xy = −χM,yx = i2χ0
ω0ω

ω2
0 − ω2 − 2iω/T2

. (19)

Equations (18) and (19) are central to the further discussions
in this work. It is noted that the on-diagonal components are
equal. Their frequency dependence is identical to that of a
harmonically broadened Lorentzian oscillator model. This is
no surprise since the Bloch equations describe the motion

of a magnetic moment in a harmonic potential. The off-
diagonal components differ in sign and are purely imaginary
in case of infinite relaxation time T2. Hence, the off-diagonal
components render circular dichroism, and when T2 < ∞,
the off-diagonal components also describe circular birefrin-
gence. The spectral behavior between on- and off-diagonal
components is almost identical if ω ≈ ω0; however, it dif-
fers distinctly when ω → 0 or ω → ∞. Specifically, the
off-diagonal components vanish towards infinite wavelengths,
while the on-diagonal components approach χ0, the dc mag-
netic susceptibility. Both components approach zero at high
frequencies. A further interesting feature of this model is
the fact that the on-diagonal components do not change sign
with reversal of the external induction field, B0, while the
off-diagonal terms do. This phenomenon was noted previ-
ously during analysis attempts of THz EPR ellipsometry
measurements using an ad-hoc model approach, which failed
to explain the observed sign changes in Mueller matrix el-
ements upon magnetic field reversal [29]. Finally, it can be
shown that Eqs. (18) and (19) always lead to loss and no gain
for 0 � T2, regardless of direction of external induction B0 and
choice of polarization.

To construct the full permeability tensor, we consider the
external induction field parallel direction z, and Mz = M0 =
χ0B0, then

μM = 1 + 4πχM

=

⎛
⎜⎜⎜⎝

1 + 4π
χ0ω

2
0

ω2
0−ω2−2iω/T2

−i4π
χ0ω0ω

ω2
0−ω2−2iω/T2

0

i4π
χ0ω0ω

ω2
0−ω2−2iω/T2

1 + 4π
χ0ω

2
0

ω2
0−ω2−2iω/T2

0

0 0 1 + 4πχ0

⎞
⎟⎟⎟⎠.

(20)

C. Bloch permeability eigenfunction μBl

The Bloch permeability μBl is introduced as the determi-
nant of the permeability tensor which yields

μBl = 1 + 4πχM,xx = 1 + 8πχ0
ω2

0

ω2
0 − ω2 − 2iω/T2

. (21)

Note that χM,xx does not change sign upon change of the
magnetic field direction. Therefore, μBl does not depend
on the external magnetic field direction. Furthermore, the
permeability tensor can now be written in the following
form:

μM = 1

2

⎛
⎜⎝

1 + μBl i ω
ω0

(1 − μBl) 0

−i ω
ω0

(1 − μBl) 1 + μBl 0

0 0 1
2 (1 + 4πχ0)

⎞
⎟⎠,

(22)

and we obtain that μBl is indeed eigenfunction to the mag-
netic component of the electromagnetic wave for LCP (RCP)
light at frequencies close to resonance ω0 (−ω0), which is
easily confirmed by multiplying the tensor with an LCP (RCP)
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magnetic field phasor H+ = (1, i, 0)T (H− = (1,−i, 0)T )

B = μMH± = 1

2

⎛
⎜⎝

1 + μBl i ω
ω0

(1 − μBl) 0

−i ω
ω0

(1 − μBl) 1 + μBl 0

0 0 1
2 (1 + 4πχ0)

⎞
⎟⎠

⎛
⎜⎝

1

±i

0

⎞
⎟⎠|ω→±ω0

≈ 1

2

⎛
⎜⎝

1 + μBl ±i(1 − μBl) 0

∓i(1 − μBl) 1 + μBl 0

0 0 1
2 (1 + 4πχ0)

⎞
⎟⎠

⎛
⎜⎝

1

±i

0

⎞
⎟⎠ = μBlH±. (23)

As such, considering only one circular polarization mode, the
scalar function μBl can be sufficient to represent the optical
response at frequencies close to the resonant frequencies.
μBl is measured and modeled in this work here and will be
discussed in Sec. IV. Note specifically that μBl is eigenfunc-
tion near resonance for LCP at positive magnetic field B0

and eigenfunction for RCP at negative magnetic field B0. At
resonance, the permeability response is unity both for RCP at
positive field and for LCP at negative magnetic field. At fre-
quencies outside resonance, the behavior of the permeability
is more complex, and this will be discussed below in Sec. II E.
Note that the polarization of the light is also affected by the
dielectric tensor. The calculation of the polarization state of
the propagating electromagnetic waves within the material is
discussed in Appendix A.

D. Bloch model extrapolated to high-spin systems

The Bloch model, originally formulated on a rate equa-
tion for a two-level system, presents limitations when applied
directly to a high-spin system with 2S + 1 levels. Effectively,
this results in 2S distinct EPR active species corresponding to
the 2S spin projections with the lowest energy. Consequently,
the rate equations need to be modified if there is any intercon-
version between the species [53] by, for instance, utilizing the
Bloch-McConnell equations. We still motivate using the sim-
ple Bloch model as we operate under the condition B1 � B0,
resulting in minimal interconversion by photon absorption.
Furthermore, we assume an absence of interactions between
the constituent spins within the system as the sample is weakly
doped. Effectively, this means that each spin projection is
considered to be a separate spin species. Secondly, zero-field
splitting results in strongly orientation-dependent effective g
factors, which introduce inhomogeneous broadening due to
small variations in the orientation of the impurities. This is
commonly called g-strain [58,59] and results in underesti-
mated relaxation times.

Subsequently, for a spin S > 1/2 system, the frequency-
dependent Bloch susceptibility is extrapolated from the
two-state model under the assumption that the 2S spin tran-
sitions adhere to the line shape predicted by the derived Bloch
susceptibility, i.e.,

χ
xy
M =

2S∑
j=1

χ0, jω0, j

ω2
0, j − ω2 − 2iω/T2, j

(
ω0, j −iω

iω ω0, j

)
, (24)

where the superscript xy denotes only the response in the xy
plane, or equivalently

χ
xy
M =

2S∑
j=1

χ0, jω0, j

ω2
0, j − ω2 − 2iω/T2, j

[
ω

(
1 −i

i 1

)

+ (ω0, j − ω)

(
1 0

0 0

)
+ (ω0, j − ω)

(
0 0

0 1

)]
, (25)

where χ0, j, ω0, j and T2, j denote the contribution to the dc
magnetic susceptibility, the resonance frequency, and the
transverse relaxation time for a given spin projection j =
1, . . . , 2S, respectively. Here j = 1 corresponds to the tran-
sition from the lowest to the second lowest-lying state, j = 2
from the second to the third lowest-lying state, etc.

E. Bloch eigenmagnetic polarizability model

Inspired by Max Born’s description of lattice dynamics
in crystalline materials [60], an eigendielectric displace-
ment vector dyad summation was recently proposed as a
physical model approach to render the measured dielectric
function tensor across the spectral range of j = 1, . . . , N
long-wavelength active phonon modes [34–38,61]

ε = ε∞ +
N∑

j=1

� j (ê
†
j ⊗ ê j ), (26)

where �l is a complex-valued response function representing
dispersion and loss caused by phonon mode l, ê j is a vector
whose direction renders the maximum response of phonon
mode j to the electric field component of an electromagnetic
wave, † indicates transpose and complex-conjugate, and ⊗ is
the dyadic product. ê j further defines a normal to the plane
within which the electric field cannot excite mode j. The
obvious advantage of this summation approach lies in the
possibility to add contributions of individual dipolar linear
optical excitations to the total response function of a given
material, i.e., the dielectric function tensor. The eigenpolar-
ization direction parameter ê j and eigendielectric function
� j were demonstrated as necessities to correctly describe
and determine phonon mode frequency parameters including
their amplitudes and broadening information for materials
with low-symmetry lattice structures, i.e., monoclinic and tri-
clinic crystal systems [34–38,61]. The approach is generally
valid for all symmetries, and correctly predicts generalized,
coordinate-invariant representations of the dielectric functions
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and coordinate-invariant formulations of the Lyddane-Sachs-
Teller relationship [36], the evolution of longitudinal phonon
mode coupling with free charge carriers [40], the existence of
hyperbolic shear polaritons [62], and the anisotropic proper-
ties of band-to-band transitions in low-symmetry solid-state
materials [63], for example.

It is of interest here to analyze the Bloch susceptibility
model for its representation in terms of an analogous sum-
mation and the aim is to identify a concept analogous to
the summation of lattice excitations, where the occurrence of
multiple magnetic excitations can be added arbitrarily with
respect to their magnetic polarization properties. The question
that follows is, can a similar eigenvector be found which
represents a magnetic excitation and a response function be
rendered that contains dispersion and loss. Inspecting the
result in Eq. (25) one recognizes a dyad decomposition into
three contributions such that

μ = 1 +
2S∑
j=1

(
�CP

j (â†
j ⊗ â j ) + �LP

j [x̂†
j ⊗ x̂ j + ŷ†

j ⊗ ŷ j]
)
,

(27)

where â j = (1,−i, 0), x̂ j = (1, 0, 0), and ŷ j = (0, 1, 0).
Equation (27) is the Bloch eigenmagnetic polarizability model
and is a central finding of this work. We note with interest
that dyad (1,±i, 0)†

j ⊗ (1,±i, 0) was shown in Ref. [29]
to represent the magnetic susceptibility tensor for a purely
left/right-circularly polarized eigenprocess. Eigenvectors
x̂ j = (1, 0, 0) and ŷ j = (0, 1, 0) are the previously described
linear eigenpolarization vectors [34–38,61]. Note that
Eq. (27) remains unchanged under rotation around vector
â�

j × â j = (0, 0,−2i), where × indicates the cross or
vector product and � is the complex-conjugate. Likewise,
rotation around direction x̂� × ŷ = (0, 0, 1) leaves Eq. (27)
unchanged. Here, this direction is parallel to the external
magnetic field direction, B0

B0
. Thereby, we can also express

the gyration vector of the jth eigenmagnetic polarizability
contribution

g j = i

2
â�

j × â j = x̂� × ŷ. (28)

Note further that rotation of the magnetic susceptibility tensor
μ relative to a given sample and ellipsometer coordinate sys-
tem can be performed simply by using Euler angle rotations
and rotation matrix A defined in Appendix B 1. Equation (27)
is then rewritten for new μ′ = AμA−1 by replacing ê′

j =
ê jA−1, x̂′

j = x̂ jA−1, and ŷ′
j = ŷ jA−1, hence, g′

j = Agj [64].
It is commonly assumed that gyration vectors of all j spin
resonances are parallel to the external magnetic field, g′

j = B0
B0

.
However, this latter statement may not necessarily be true. In-
vestigations using THz EPR ellipsometry at multiple angles of
incidence, for example, could be used to test this assumption
in the future.

When the eigenvectors â j, x̂ j , and ŷ j are all equal among
the j = 1, . . . , 2S magnetic transitions, then the associated
Bloch response function components obtained here are [65]

�CP
j = χ0, jω0, jω

ω2
0, j − ω2 − 2iω/T2, j

,

�LP
j = χ0, jω0, j (ω0, j − ω)

ω2
0, j − ω2 − 2iω/T2, j

, (29)

ω → 0 then �CP
j → 0

ω → ω0, j then �CP
j → 2iχ0, jω0, jT2

ω → ∞ then �CP
j → 0

ω → 0 then �LP
j → χ0, j

ω → ω0, j then �LP
j → 0

ω → ∞ then �LP
j → 0. (30)

The two functions differ subtly in their spectral dependencies.
The circularly polarized process is linear in the external mag-
netic induction, B0, while the linearly polarized process has
a component which is linear and another which is quadratic
in B0. The circularly polarized process disappears when ω

approaches zero and infinity, while at resonance, the response
function is purely imaginary and the amplitude is proportional
to the magnetization associated with the l th spin transition, its
frequency, and transverse relaxation time. At resonance, there
is no linearly polarized component of the magnetization. The
latter also vanishes at infinite frequencies. However, at zero
frequency, the linear polarizability function reveals χ0, j . The
linear components constitute a superposition of two equiva-
lent linear eigenmagnetic contributions polarized within the
(x, y) plane in this coordinate system and the response within
this plane is isotropic.

It is useful to introduce the Bloch susceptibility function
for magnetic transition j, χBl, j

χBl, j = χ0, jω0, jω

ω2
0, j − ω2 − 2iω/T2, j

; (31)

and rewrite Eq. (29)

�CP
l = χBl, j ;

�LP
l = χBl, j

ω0, j − ω

ω
. (32)

We can then express, and plot if necessary, the scalar,
complex-valued Bloch permeability eigenfunction as a sum
over all Bloch susceptibility functions for all magnetic transi-
tions j = 1, . . . , 2S

μBl = 1 +
2S∑
j,1

χBl, j . (33)

We propose use of Eq. (27) and its component vectors and
functions as suitable decomposition approach to analyze the
measured spectral appearances of real and imaginary parts
of the permeability function, for example, obtained from
THz-EPR ellipsometry, or magnetooptic ellipsometry inves-
tigations. We note that Eq. (27) is applicable for all magnetic
field orientations, necessitating only an appropriate rotation
of the tensor to ensure consistency in the analysis of the
ellipsometry data. As such, this is a new approach for the
study of the polarization response of spin transitions affected
by zero-field splitting. We also propose use of Eq. (33) to
present and discuss the spectral response of spin transitions
if such can be considered to share a common gyration vector.
Future work will illuminate properties and usefulness of this
approach.
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FIG. 1. (a) Wurtzite crystal structure of GaN along the [0001̄]
direction (c axis). The nitrogen atoms are depicted in blue color
and the gallium atoms are depicted in green color and denoted by
either Ga1 or Ga2, depending on the relative rotation of the two
nonequivalent gallium sites with respect to the internal ligand field.
The GaN (112̄3) plane is shown. Produced with computer software
VESTA [70]. (b) Orthographic projection (the axes are pointing out-of-
plane) of selected crystallographic and ligand-field axes (a1, b1, c1)
and (a2, b2, c2) of the two gallium sites onto the (112̄3) plane. This
figure schematically illustrates the definitions of the angles α and γ ,
along with an arbitrarily oriented magnetic field. For more details on
the coordinate system of the spin Hamiltonian, we refer to Ref. [69],
from which this figure is adapted.

F. Hamiltonian of the S = 5/2 Fe3+ impurity in GaN

Iron-doped wurtzite GaN has previously been studied ex-
tensively by several groups [51,66,67], where it was observed
that iron takes on the Fe3+ charge state that has a total spin
S = 5/2 and orbital angular momentum L = 0. The ground
state is thus 6S5/2. Furthermore, in GaN, there are two Ga sites
that are inequivalent with regard to the internal crystal field
due to the neighboring N and Ga ions as illustrated in Fig. 1.
It is possible to direct the external magnetic field in such a
way that the two inequivalent sites are rendered equivalent,
and in that case, yield the energy-level diagram shown in
Fig. 2, where the magnetic field is assumed to be 45◦ towards
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FIG. 2. Energy-level diagram for the two inequivalent sites of the
Fe3+ impurity in GaN, with the magnetic field directed 45 degrees
towards the crystallographic c axis with the sample in-plane direction
such that the two inequivalent Ga sites are equivalent with regards
to the internal crystal field. The allowed �ms = ±1 transitions at
205 GHz are indicated by vertical black lines, with corresponding
numbers to identify each transition. Simulated using the software
package EASYSPIN [58].

the crystallographic c axis. Moreover, it was shown that the
spin-Hamiltonian suggested by Bleany et al. [68] and altered
by Geschwind [69] suffices to explain the experimental results
and local symmetry of the S = 5/2 Fe3+ impurity

H = gμBB0Szcosθ + 1

2
gμBB0sinθ (S+ + S−)

+ D

(
S2

z − 1

3
S(S + 1)

)
− 1

180
(a − F )

× (
35S4

z − 30S(S + 1)S2
z

+ 25S2
z − 6S(S + 1) + 3S2(S + 1)2

)
×

√
2

36
a(Sz(S3

+e−i3(ψ±α) + S3
−ei3(ψ±α) )

+ (S3
+e−i3(ψ±α) + S3

−ei3(ψ±α) )Sz ). (34)

Here, the g factor is taken to be isotropic, and S, S+, S− and Sz

are the usual S = 5/2 spin matrices. Furthermore, the effect
of zero-field splitting is represented in Eq. (34) by D and
F , which are the axial crystal field parameters to the second
and fourth order, respectively, and a is the cubic crystal field
parameter. Kashiwagi et al. [51] conclusively demonstrated
by applying Eq. (34) to conventional X- and Q-band EPR that
Fe3+ substitution of Ga3+ in GaN occurs, and observed that
there are two nonequivalent Ga sites in wurtzite GaN with re-
spect to the internal crystal field (Fig. 1). The nonequivalence
is due to the two sites’ different rotations with regard to the
internal crystal (ligand) field, and thus have different α angles,
as discussed below. In addition, the selection rule �ms = ±1,
where ms is the sextet of projections, suggests that five spin
transitions are allowed for each of the two sites, resulting
in up to a total of ten allowed spin transitions. The angles
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θ, γ , and α correspond to the angle between the magnetic
field and the [0001] axis, the angle between the magnetic
field projection onto (112̄3) and the [101̄0] direction, and
the angle between the cubic crystal field axis a1,2 and the
[21̄1̄0] direction, respectively, are depicted in Fig. 1. For all
measurements, the sample was rotated such that it rendered
the two distinct sites equivalent in terms of the crystal field,
consequently resulting in a total of five discreet spin transi-
tions observable within each spectrum. This is the case when
the magnetic field is aligned with 〈11̄00〉. Consequently, the
spin species corresponding to each of the two sites are treated
as one, which is an exception for this given rotation.

G. Brillouin magnetization of the S = 5/2
Fe3+ impurity in GaN

In extension to using Eq. (20) and to best-match model
the frequency-dependent permeability function we augment
additional constraints for our specific S = 5/2 system. The
constraints affect the amplitude values of the spin transitions
at a fixed magnetic field, and are obtained from the summation
of magnetic moments according to their thermal population.
This constraint then permits the use of the spin volume con-
centration ns as the input parameter for the MMF approach. A
similar analysis was performed by Maryasov and Bowman on
a S = 5/2 system [71]. We start by writing the dc magnetiza-
tion as

M0 =−gμB

2
((n+1/2 − n−1/2)

+ 3(n+3/2 − n−3/2) + 5(n+5/2 − n−5/2)). (35)

The expression, sometimes referred to as Brillouin magne-
tization, can be comprehended as an outcome wherein each
unpaired electron contributes gmsμBl to the overall magnetiza-
tion, and n+1/2, n−1/2, etc., refer to the spin population volume
density in level +1/2, −1/2, etc. Furthermore, Eq. (35) can be
restructured as

M0 = gμB

2
(5(n+3/2 − n+5/2) + 8(n+1/2 − n+3/2)

+ 9(n−1/2 − n+1/2) + 8(n−3/2 − n−1/2)

+ 5(n−5/2 − n−3/2)) =
5∑
j

M0, j, (36)

i.e., as a sum corresponding to the five allowed spin transi-
tions. The occupancy of each state is given by its Boltzmann
factor

nn−1 − nn = e−En−1/kT − e−En/kT∑
j e−Ej/kT

ns, (37)

where the energy levels En are given by the eigenvalues of
Eq. (34), and ns is the spin volume concentration that is as-
sumed to be equivalent to the concentration of iron impurities
situated on any of the two gallium sites. In the same manner,
the dc magnetic susceptibility function is modeled as a sum of
all allowed spin transitions contributing independently

χ0 = M0

B0
=

5∑
j

M0, j

B0
=

5∑
j

χ0, j . (38)

Hence, Eq. (37) provides specific ratios between amplitude
strengths among the five transitions of the S = 5/2 spin sys-

tem for any given magnetic field B0, and the scaling factor on
all amplitudes provides the spin density, which is analogus to
the impurity concentration for a given site. Because the mag-
netic field changes the eigenenergies, the ratios of amplitudes
change as well, which can be measured by THz-EPR ellip-
sometry. Hence, measurements at different magnetic fields
and/or different temperatures combined provide sensitivity to
the spin density.

III. EXPERIMENTS AND METHODS

A. Sample

We conduct a quantitative assessment of the THz per-
meability properties of a wurtzite-structure single crystalline
GaN bulk sample doped with iron. The GaN sample with
(0001) c-plane surface orientation is fabricated by hydride
vapor phase epitaxy [72]. The sample thickness of 0.365 mm,
as measured by THz ellipsometry, agrees very well with
the value of 0.350 ± 0.015 mm, specified by the provider
Suzhou Nanowin Science and Technology Co. Ltd. The lat-
eral dimensions of the GaN sample are 20 × 20 mm2. The
dislocation density in the GaN samples was estimated from
x-ray diffraction [73] and cathodoluminescence panchromatic
imaging [74] to be in the order of 1 × 107 cm−2. The GaN
sample is semi-insulating with a resistivity >106 � cm at
300 K.

B. THz-EPR ellipsometry

Measurements of the Mueller matrix elements are per-
formed using an in-house built THz ellipsometer system at
the Terahertz Materials Analysis Center at Lund University.
The instrument uses a dual-rotating waveplate setup with
fast continuing frequency-sweeping, which differs from the
optical Hall effect and THz EPR generalized ellipsometry in-
struments described in our previous works [26–29]. Note that
the instrument incorporates additional anisotropic polarizing
optical elements allowing for the measurements of the 15
normalized Mueller matrix elements as reported here. It fur-
ther uses a fixed linear polarizer, rotating waveplate, sample,
rotating waveplate, and fixed linear polarizer (analyzer) con-
figuration. The instrument calibration and operation schemes
for data acquisition follow the same procedures described
by Ruder et al. [75,76]. The anisotropic waveplates consist
here of 3D-printed plastic slanted columnar thin films. Such
structures produce sufficient anisotropy in the THz spectral
range to modulate the Stokes vector components at normal
incidence transmission upon rotating the waveplates around
its surface normal [77,78]. A more detailed instrument de-
scription will be provided elsewhere. For measurements with
the sample immersed in a magnetic field, a superconducting
split-coil magnet is employed, capable of creating magnetic
fields from −8 to 8 T with a magnetic field homogeneity of
approximately 3000 ppm across a central cylindric volume
with a diameter of 10 mm (Cryogenics Ltd. London UK).
Further details of the magnet setup are given in Refs. [27,29].

THz EPR ellipsometry measurements were performed in
the spectral range from 199–208 GHz in steps of 9.8 MHz.
The source bandwidth was approximately 50 kHz. The in-
strument uses a solid-state synthesizer source with digital
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control over frequency and duty cycle [29]. The Mueller
matrix elements are obtained from a subsequent collection
of intensity readings at the solid-state detector for various
settings of polarizer, waveplate 1, waveplate 2, and analyzer as
described by Ruder et al. [75,76]. Although the waveplates are
not ideal, they still provide enough modulation to determine
the handedness of the elliptically polarized light, which is
sufficient to resolve the full Mueller matrix. The instrument
then records the full 4 × 4 Mueller matrix, i.e., 16 elements
normalized by element M11. Measurements are performed in
reflection configuration with the sample positioned between
the split coils at 45◦ angle of incidence. In this configuration,
the magnetic field direction aligns parallel with the incident
beam. Thereby the magnetic field is oriented at an angle of 45◦
towards the crystallographic axis c of the GaN sample. Addi-
tionally, the sample is rotated around its normal (azimuthal
rotation) to achieve positioning of the two nonequivalent gal-
lium sites with respect to the static magnetic field such that
their respective magnetic spin eigenenergy values coincide.
This is the case when the projection of the magnetic field
in the sample plane is aligned with [11̄00] or an equivalent
direction as described in Sec. II F. As a result, the two quintu-
plets merge and appear exactly one quintuplet in the THz-EPR
ellipsometry spectra. This orientation is selected here for the
purpose of simplifying the analysis by reducing necessary
model calculations because the thermodynamic distribution
across one common spin system must be considered only. The
purpose of the experiment is to demonstrate the approach. The
sample temperature is held constant during measurements.
Data were measured at temperatures of 20 and 30 K, and at
a magnetic field strength of −7.23 and 7.23 T. Data were
also measured at zero magnetic field, and the zero-magnetic
field data were subtracted from the magnetic field data in
order to determine small-signal difference data which were
then used as target data during the subsequent Hamiltonian
and best-match model calculation analyses. Finally, the data
collected from the −7.23 T scan were subtracted from the
+7.23 T scan, to further amplify the signal strength.

C. Ellipsometry model calculations

The ellipsometry data model analysis is performed using
the Berreman [79] 4 × 4 transfer matrix approach augmented
with modifications described by Schubert [80]. The approach
is briefly summarized in Appendix A. A three-phase Al
holder-GaN sample-air model is used. The Al holder re-
flects 100% of the incident electromagnetic waves and it is
modeled as a highly conductive material using the isotropic

Drude model, ε = 1 − ω2
p

ω(ω−iγp) with plasma frequency ωp =
10−6 cm−1 and plasma scattering time γp = 0 cm−1. The
dielectric properties of the GaN sample were calculated us-
ing the anisotropic dc dielectric constant values reported by
Hibberd et al. [81], where εa and εc refer to the dielectric
permittivity for polarization along crystal axes a and c, re-
spectively,

ε =

⎛
⎜⎝

εa 0 0

0 εa 0

0 0 εc

⎞
⎟⎠ =

⎛
⎜⎝

9.22 0 0

0 9.22 0

0 0 10.32

⎞
⎟⎠, (39)

and wherein the coordinate system (x′, y′, z′) of the dielec-
tric tensor is congruent with the laboratory reference frame
utilized for the ellipsometric data evaluation. Note that due
to the fact that Fe acts as compensating dopant in GaN, the
material is electrically fully insulating and no Drude model
contribution to the model dielectric tensor is necessary. The
permeability tensor was modeled according to Eq. (20) and
the parameters were inferred from the best-match parameter
model described below. This tensor undergoes a rotation, ex-
plained in Appendix B 1, employing Euler angles ψ = −90◦
and θ = 45◦. This rotation is imperative to align the tensor’s
gyration [Eq. (28) in Sec. II E] axis with the externally applied
magnetic field and to align the (x, z) plane with the incidence
plane of the electromagnetic wave. Subsequently, both the
dielectric and permeability tensors are integrated into the �̂

matrix (Appendix A). This integration facilitates the compu-
tation of the optical response via the 4 × 4-matrix approach.

From the 4 × 4-matrix method, the calculated Mueller-
matrix elements M23, M32, M14 and M41 are compared to the
best-match model. These specific elements are most sensitive
to spin transitions and are thus chosen. A more detailed expla-
nation of how these are calculated is presented in Appendix B.
To improve the signal-to-noise ratio, we add M32 to M23 and
subtract M41 from M14, because from the permeability tensor
model (20) used in our analysis it follows that M32 = M23 and
M14 = −M41. This can be seen directly in the full Mueller
matrix element spectra set in Fig. 4. As such, “effective”
Mueller-matrix elements are calculated from experimental
and model calculated data

M23+32 = M23 + M32

2
(40)

and

M14−41 = M14 − M41

2
. (41)

D. MMF parameter regression analysis

The best-match model was calculated using the curve_fit
function from the SCIPY library [82]. The curve_fit func-
tion uses a trust region reflective algorithm, which aims to
minimize the sum of squared residuals

S =
j∑

i=1

(yi − fi )
2, (42)

where the sum runs over all frequencies, yi =
[M23+32, M14−41](ωi ) at frequency ωi, and N is the total
number of frequencies at which Mueller matrix elements
were included into the regression analysis. The model
response fi is calculated by simultaneously optimizing
parameters related to the spin-Hamiltonian D, a, F, g, and
θ , and the Bloch permeability parameters ns and T2, j for all
j = 1, . . . , 5 spin transitions. Error estimates are determined
as the square root of the diagonal elements of the covariance
matrix, as computed by the curve-fitting procedure. Note that
no data-point uncertainty-based biasing was performed in
Eq. (42) because the experimentally determined uncertainty
(variance) on every Mueller matrix element was observed to

054413-10



BLOCH EQUATIONS IN TERAHERTZ … PHYSICAL REVIEW B 110, 054413 (2024)

FIG. 3. Results from frequency-swept THz-EPR ellipsometry measurements performed at [(a) and (b)] 20 K and [(c) and (d)] 30 K. The
calculated best-match model is represented by the solid red line and is based on the Bloch-Brillouin model. The black symbols indicate
the experimental data. In (a) and (c), M23+32 = (M23 + M32)/2 is shown, which scales with circular birefringence. In (b) and (d), M14−41 =
(M14 − M41)/2 is shown, which scales with circular dichroism. Experimental and model data are obtained as difference data for magnetic field
B = −7.23 and 7.23 T. In (d), the corresponding index for each transition is indicated.

be uniform (≈0.01%, see Fig. 4) across the spectral range
investigated.

IV. EXAMPLE: SPIN TRANSITIONS IN FE-DOPED GAN

The experiment on the spin S = 5/2 system in GaN is
selected here for the purpose of demonstration. THz EPR
ellipsometry was performed as described above. The Hamil-
tonian description of the zero-field split system is well known,
and thereby is suitable for the purpose here. As outlined
in earlier sections, the sample is oriented such that the two
zero-field splitting quintuplets align in their eigenvalues and
thermodynamic spin distributions. As a result, only one com-
mon quintuplet is observed.

A. Results

Figures 3(a)–3(d) show experimental and best-match
model calculated data for M14−41 and M23+32 at 20 and at
30 K, respectively. Note the different amplitude distributions
between the different temperature measurements. The full sets
of Mueller matrix data taken at the two magnetic fields at
20 K are shown in Fig. 4. The best-match model calculated
data are obtained by varying the Hamiltonian parameters for
calculation of the eigenenergies ω0, j , the total spin density and
impurity concentration ns, and the transverse relaxation time
parameters for each transition. An excellent match between
experimental and model-calculated data is obtained. The
match supports the validity of the model derived in this work.
Particularly, the match upon reversal of magnetic field, which
changes signatures such that M14(B) = M41(−B), M23(B) =
−M32(−B) as well as M14(B) = −M41(B) and M23(B) =
M32(B), as can be seen in Fig. 4 is consistent between ex-
periment and theory. This observation is the first to our
knowledge because no Mueller matrix elements have been
reported thus far for spin resonances in the THz spectral range.
Equation (20) can account for the expected sign change upon
magnetic field reversal experimentally observed here, which

was not the case with the ad hoc model used previously for
THz-EPR ellipsometry data analysis [29]. There, the perme-
ability tensor suffered from being invariant to a change of the
sign of ω0.

The congruence between the model and experimental
observations is further noteworthy because the amplitude
variations are consistent with predictions derived from the
Brillouin magnetization theory, with the only model pa-
rameters used to calculate ten amplitudes over the two
measurements being the spin volume concentration and the
zero-field splitting parameters. Moreover, the spectral line
shapes align with the theoretical projections based on the
Bloch equations. This can be seen by the amplitude distribu-
tion match in Figs. 3(a)–3(d) as well as in the full Mueller
matrix displayed in Fig. 4. The extracted Bloch permeability
μBl as given by Eq. (33) obtained from the experimental data
at 7.23 T and 20 K is shown in Fig. 5. This result highlights the
ability of the method to measure and determine both the imag-
inary and real parts of the frequency-dependent permeability
tensor and thus yield access to further polarization properties
of a given magnetic transition as well as the possibility of
inferring dc properties by extrapolating the value of μBl at
ω = 0.

The zero-field splitting, g factor, and spin density param-
eters deduced from our best-match model calculations are
cataloged in Table I. The transverse relaxation times are sum-
marized in Table II.

B. Discussion

The zero-field splitting parameters deduced here agree
well with those reported in prior studies [51,66,67]. Never-
theless, the substantial standard deviations, in particular for
parameters a and F indicate that multiple combinations of
the zero-field splitting parameters can produce equally satis-
factory model calculations matching our data obtained for a
singular sample azimuth (rotation) orientation. Additionally,
a small angular offset between the magnetic field direction
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FIG. 4. Orange dots represent experimental data collected from terahertz magnetic resonance ellipsometry at 20 K, showing the difference
between measurements at 0 and 7.23 T on the left side, and 0 and −7.23 T on the right side. The blue solid line indicates the calculated best-fit
model based on the Bloch model described in the text.

and the sample plane was observed and is due to a slight mis-
alignment of the magnet cryostat to dampen standing waves
within the inner wedged diamond windows of the cryostat.
The quantitatively determined spin volume concentration ns is
in agreement with the nominal range of iron concentration of
this specific sample. In light of these findings, a future com-
prehensive analytical investigation is warranted to ascertain
the reliability and accuracy of this technique for measuring
spin volume concentration by augmenting further magnetic
field, temperature, and sample rotation data.

The calculated transverse relaxation times are presented
in Table II. It is important to emphasize that these relax-
ation times are inflated due to the rather large magnetic
field broadening introduced by our superconducting magnet,
which is not engineered for optimal magnetic field homo-

FIG. 5. Extracted Bloch permeability eigenfunction μBl at B =
7.23 T and 20 K from the best-match model according to (33). The
lower part shows the imaginary part of μBl as a solid blue line,
and the upper half shows the real part of μBl as a solid green line.
The distribution of amplitudes across the five spin transitions is the
result of the thermodynamic Brillouin model, the eigenfrequencies
are the result of the Hamiltonian calculations predicting the zero-field
splitting spin transition in this example.

geneity. This lack of flatness introduces a notable broadening
of the observed transitions [83]. To obtain more accurate
relaxation time parameters, a thorough consideration of the
broadening causes attributable to both the magnetic field
inhomogeneity and g-strain is required. However, such an
in-depth analysis falls beyond the scope of this article. It is
noted that the T2, j values differ among the transitions. The
cause of this could be due to several reasons, such as the
two nonequivalent sites not perfectly overlapping or the width
of the transitions being unequal because of the difference in
how the spin projections interact with the local environment.
The longitudinal relaxation times are not accessible from
this steady-state continuous-wave single-frequency type mea-
surement, and time-dependent measurement approaches are
necessary. Such are conceivable using solid-state source- and
detector-based techniques and could be the subject of further
investigations. We propose that THz-EPR ellipsometry is a
robust technique for investigating transverse spin relaxation
times, offering significant potential for future studies in this
domain.

The pairs of Mueller matrix elements M14, M41 and
M23, M32 are routinely associated with circular dichroism and
circular birefringence. [84] Hence, one can interpret data in
Figs. 3(a) and 3(b) with circular dichroism and in Figs. 3(c)
and 3(d) with circular birefringence. The former is then ex-
pected to appear as a Lorentzian absorption line, while the
latter is expected to appear as a form with increasing nor-
mal dispersion towards resonance, negative dispersion across
resonance, and normal dispersion approaching zero above
resonance. Note that all features shown in Figs. 3(a)–3(d)
invert with magnetic field reversal, while spectra shown in
Fig. 5 remain unchanged. This is due to the definition we
chose in Sec. II E. Then, function μBl represents the LCP
circular birefringence in its real part and circular polarized
loss in its imaginary part for positive magnetic field. Upon
magnetic field reversal, μBl then represents the RCP circular
birefringence in its real part and circular polarized loss in
its imaginary part. Both functions are unchanged between
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TABLE I. Summary of model parameters obtained from analysis of the THz-EPR ellipsometry measurements on iron-doped GaN. The
parameters were determined by minimizing the least-squares difference between the best-match model and experimental data gathered at
temperatures of 20 and 30 K. The optimization process was confined to the Mueller-matrix elements M23, M32, M14, and M41. All parameters
are shown with error bars according to one standard deviation as approximated from the square roots of the covariance matrix.

D MHz a MHz F MHz g n/a θ◦ ns cm−3

This work −2250 ± 14 210 ± 280 15 ± 280 2.008200 ± 8 × 10−6 44.4 ± 0.05 1.92 × 1018 ± 1.57 × 1016

Kashiwagi et al.a −2290 240 −27 2.008 − −
Maier et al.b −2138 144 −12 1.995 − −
Baranov et al.c |2144| − − 1.994 − −
aX- and Q-band EPR, Ref. [51].
bReference [67].
cX-band EPR, Ref. [66].

LCP at positive and RCP at negative magnetic fields. Hence,
μBl directly represents the chiroptical properties of magnetic
resonance transitions. We note that signatures observed in our
experiment relate to electron spin resonance.

Future research trajectories may consider the implemen-
tation of advanced versions of the Bloch equations to delve
deeper into magnetic resonance phenomena. This includes the
Bloch-Bloembergen equations [85] which modify the external
magnetic field to an effective magnetic field that encom-
passes the internal magnetic field generated by the sample,
thereby making it more suitable for systems with higher spin
volume concentrations. This modification allows for a more
accurate representation in ferromagnetic resonance studies. In
parallel, both the Gilbert equation [86] and Landau–Lifshitz
equation [87] offer a reformulation where phenomenological
relaxation times are substituted with a relaxation rate that
is proportional to the time derivative of the magnetization,
accompanied by a damping parameter. This damping pa-
rameter is crucial in the study of energy dissipation within
the system, particularly relevant for the investigation of spin
waves and strong ferromagnets characterized by interacting
magnetic moments and domain formation [88]. The Bloch-
McConnell [42] equations represent another extension of the
original Bloch equations, designed to include the dynamics of
chemical exchange processes in NMR studies. These modified
equations are essential for examining the interaction of nu-
clear spins in systems where species undergo interconversion,
leading to distinct NMR signatures. By integrating terms for
chemical exchange rates, the Bloch-McConnell equations en-
hance the capability to analyze the impact of such exchanges
on the system’s magnetization. The Bloch equations can also
be applied to pulsed magnetic resonance [89], making it feasi-
ble to study fast processes such as spin dynamics in biological
samples [90].

TABLE II. Measured transverse relaxation time T2, j parame-
ters and one standard deviation in units of 10−11 s for various
temperatures.

T T2,1 T2,2 T2,3 T2,4 T2,5

K 10−11 s 10−11 s 10−11 s 10−11 s 10−11 s

20 224 ± 5 232 ± 5 288 ± 7 240 ± 10 238 ± 24
30 215 ± 5 217 ± 4 260 ± 5 191 ± 6 223 ± 13

V. CONCLUSIONS

We presented a generalized approach based on Bloch’s
equation of motion of nuclear magnetic moments. Our ap-
proach can model the frequency, magnetic field, moment
density, and temperature dependencies of the permeability in
magnetic resonance. Our model predicts polarization prop-
erties in electromagnetic wave interactions, which can be
observed, for example, in full polarization-resolved Mueller
matrix element spectra measured across magnetic resonances
as a function of frequency, magnetic field, spin density, and
temperature. Thermodynamic considerations are augmented
using the concept of Brillouin magnetization. Hamiltonian
perturbation approaches for zero-field splitting and Zee-
man interaction are incorporated further and the magnetic
eigenvalue spectrum, spectral amplitude distribution, and ge-
ometrical orientation parameters of the magnetic moment
density are obtainable from comparing the generalized model
approach to experimental data. We demonstrate the validity
of our approach by analyzing the oblique angle of incidence
terahertz spectral range magnetic field ellipsometry to detect
electron spin resonance quintuplet transitions in wurtzite-
structure GaN doped with iron. Measurements at magnetic
fields of ±7.23 T and cryogenic temperatures of 20 and 30 K
detail the occurrence of linear and circular birefringence and
dichroism associated with each of the zero-field split spin
transitions in the S = 5/2 system. We derive and discuss
the spectral dependence of the magnetic susceptibility func-
tion and obtain the temperature and magnetic field-dependent
Hamiltonian parameters and spin density. The 15 independent
elements of the normalized Mueller matrix for both positive
and negative magnetic fields are matched excellently with our
model. We propose the employment of our approach to study
magnetic resonance in ferromagnetic, antiferromagnetic, and
nuclear magnetic resonance spectroscopy.
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APPENDIX A: 4 × 4 MATRIX FORMALISM

To compute the Mueller matrix and establish a connec-
tion between experimental data and a theoretical model,
employing the 4 × 4 formalism introduced by Berreman [79]
is convenient. This formalism was further elaborated upon by
Schubert [80]. Fundamentally, the formalism is based on the
transfer matrix equation, which can be written as within the
coordinate system introduced in Ref. [80]⎛

⎜⎜⎜⎝
EI

p

EI
s

ER
p

ER
s

⎞
⎟⎟⎟⎠ = L

⎛
⎜⎜⎜⎝

ET
p

ET
s

EB
p

EB
s

⎞
⎟⎟⎟⎠, (A1)

where I and R pertain to the electric components of the in-
coming and reflected electromagnetic (EM) waves, while B
and T correspond to the electric components of the backward-
traveling and transmitted portions of the outgoing EM waves.
The transfer matrix L consists of three factors:

L = L−1
I

k∏
j

L jLT . (A2)

In this expression, the incident transfer matrix L−1
I projects

the incident electromagnetic plane wave onto the sample’s
surface, and the exit transfer matrix LT projects the trans-
mitted wave components onto the substrate. The second
factor encapsulates the properties of the various layers within
the sample, with k representing the total number of lay-
ers. The transfer matrix for each individual layer can be
expressed as

L j = exp

(
−i

ω�̂d

c

)
, (A3)

where c is the speed of light in vacuum, ω is the frequency of
the electromagnetic wave, d the thickness of the sample. The
�̂ matrix is derived directly from Maxwell’s equations and
contains elements of the permeability and permittivity tensor
in the frequency domain expansion:

�̂ =

⎛
⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎠, (A4)

where qx = nI sinθ is the x component of the reduced wave
vector ω

c q = k of the incoming wave vector k at the sample
surface parallel to the plane of incidence, nI is the index
of refraction of the isotropic incident medium, and θ is
the angle of incidence to the surface normal. In this co-
ordinate choice, the plane of incidence is the (x, z) plane,
the sample surface is parallel to the (x, y) plane, z points
into the sample, and the surface is at the coordinate origin
of the Cartesian system (x, y, z). Given that spin transitions
manifest as magnetic resonances, it becomes imperative to
model the permeability tensor in addition to the permittivity
tensor.

APPENDIX B: MUELLER MATRIX ELEMENTS

Once the transfer matrix is calculated, determining
the Mueller matrix elements becomes a straightforward
task. For an in-depth explanation, readers are referred to
Refs. [33,48,50,91]. To exemplify the procedure, the deriva-
tion of elements M14,41 and M23,32 from the result of the 4 × 4
calculation scheme are presented here. It has been observed
that the Mueller-matrix elements M14,41 are proportional
to the circular dichroism, and the Mueller-matrix elements

M23,32 are proportional to the circular birefringence caused
by the spin transitions [29]. Consequently, the Mueller matrix
elements M23,32 and M14,41 are employed for the detec-
tion of EPR signals in this study. These elements can
be written in the form of transfer matrix elements Lk,l

with k, l = 1, 2, 3, 4:

M23 = Re

(
(L11L43 − L13L41)(L11L23 − L13L21)∗

L11L33 − L13L31

− (L33L21 − L31L23)(L33L41 − L31L43)∗

L11L33 − L13L31

)
, (B1)

M32 = Re

(
(L11L43 − L13L41)(L33L41 − L31L43)∗

L11L33 − L13L31

− (L33L21 − L31L23)(L11L23 − L13L21)∗

L11L33 − L13L31

)
, (B2)

M14 = Im

(
(L11L43 − L13L41)(L11L23 − L13L21)∗

L11L33 − L13L31

− (L33L21 − L31L23)(L33L41 − L31L43)∗

L11L33 − L13L31

)
, (B3)
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FIG. 6. Definition of the Euler angles ϕ, θ , and ψ and the
orthogonal rotations as provided by A. (ξ, η, ζ ), and (x, y, z) refer
to the Cartesian auxiliary and laboratory coordinate systems, re-
spectively. Reprinted from Ref. [34] with copyright permission by
American Physical Society.

and

M41 = Im

(
(L11L43 − L13L41)(L33L41 − L31L43)∗

L11L33 − L13L31

− (L33L21 − L31L23)(L11L23 − L13L21)∗

L11L33 − L13L31

)
, (B4)

where ∗ symbolizes complex conjugate. From these expres-
sions, it is evident that M14 and M23 are the imaginary and
real part of the same function, respectively, and the same holds
true for M41 and M32.

1. Euler rotations

For a given magnetic field orientation, Euler angle rotations
are required to bring μ into the correct appearance within the
ellipsometer system (x, y, z). Euler rotations which perform

such operations are shown in Fig. 6. Operation R1(v = φ)
renders rotation around z, R2(v = θ ) around x, and R1(v = ψ )
around new direction ζ with mathematically positive (nega-
tive) sense for positive (negative) arguments

R1(v) =

⎛
⎜⎝

cos v − sin v 0

sin v cos v 0

0 0 1

⎞
⎟⎠, (B5)

R2(v) =

⎛
⎜⎝

1 0 0

0 cos v − sin v

0 sin v cos v

⎞
⎟⎠. (B6)

The full set of rotations, ϕ, θ, ψ indicated in Fig. 6, is then
described by matrix A

A = R1(ϕ)R2(θ )R1(ψ ), (B7)

where μ̂ indicates the tensor appearance of μ in a new auxil-
iary system

μ̂ = AμA−1. (B8)

Due to the rotational invariance of Eq. (27) around its
gyration vector in Eq. (28) rotation R1(ψ ) is not needed
for addressing the magnetic field direction relative to the
sample system within the ellipsometer system. However,
the rotational dependencies of the Hamiltonian parameters
will depend on the sample orientation relative to the el-
lipsometer system and the magnetic field direction. For
proper sample rotation to align the dielectric tensor within
the ellipsometer system, all three Euler rotations maybe
necessary.
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