
PHYSICAL REVIEW B 110, 054411 (2024)

Quantitative description of long-range order in the spin-1
2 XXZ antiferromagnet on the square lattice

Nils Caci ,1,2,* Dag-Björn Hering ,3,† Matthias R. Walther ,4,‡ Kai P. Schmidt ,4,§

Stefan Wessel ,2,‖ and Götz S. Uhrig 3,¶

1Laboratoire Kastler Brossel, Collège de France, Centre National de la Recherche Scientifique,
École Normale Supérieure–Université PSL, Sorbonne Université, 75005 Paris, France

2Institute for Theoretical Solid State Physics, RWTH Aachen University, Otto-Blumenthal-Straße 26, 52074 Aachen, Germany
3Condensed Matter Theory, TU Dortmund University, Otto-Hahn-Straße 4, 44221 Dortmund, Germany

4Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany

(Received 14 May 2024; revised 10 July 2024; accepted 11 July 2024; published 6 August 2024)

The quantitative description of long-range order remains a challenge in quantum many-body physics. We
provide zero-temperature results from two complementary methods for the ground-state energy per site, the
sublattice magnetization, the spin gap, and the transverse spin correlation length for the spin-1/2 quantum XXZ
antiferromagnet on the square lattice. On the one hand, we use exact, large-scale quantum Monte Carlo (QMC)
simulations. On the other hand, we use the semianalytic approach based on continuous similarity transformations
in terms of elementary magnon excitations. Our findings confirm the applicability and quantitative validity of
both approaches along the full parameter axis from the Ising point to the symmetry-restoring phase transition at
the Heisenberg point and further provide quantitative reference results in the thermodynamic limit. In addition,
we analytically derive the relation between the dispersion and the correlation length at zero temperature in
arbitrary dimension, and discuss improved second-moment QMC estimators.
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I. INTRODUCTION

The collective behavior of matter is one of the most im-
portant topics of modern science. Understanding it is crucial
in basic research as it holds the key to a variety of correlated
many-body states—realized for example in topologically or-
dered quantum phases such as spin liquids and fractional
quantum Hall liquids or superconductors. At the same time, it
is clear that this understanding forms the basis for many tech-
nological applications such as magnetic data storage [1] and
spintronics [2,3] which define the modern era. In particular, it
is decisive to gain a systematic and quantitative understanding
of collective phenomena.

Quantum magnetism has turned out to serve as a very
fruitful playground to study collective quantum phenomena.
Indeed, frustrated magnets are known to host a variety of
exotic quantum phases such as spin-liquid ground states
with topological quantum order. Unfrustrated quantum
antiferromagnets with long-range magnetic Néel order
play an important role for the physics of high-temperature
superconductors [4], because the undoped parent compounds
represent two-dimensional antiferromagnetic Heisenberg
magnets with S = 1/2 on the square lattice [5]. Furthermore,
spintronics is a huge field of applications in which the
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manipulation of magnetism is crucial [1–3], requiring a
fundamental understanding of the underlying mechanisms.

It is very common to describe the magnetic excitations
of quantum antiferromagnets by essentially interaction-free
magnons [6]. By “essentially free of interactions” we
mean that some static renormalization of the dispersions is
accounted for, but the magnon-magnon scattering processes
are rarely considered quantitatively. Yet it turned out that the
interaction of the magnons is very important to understand
certain dips (dubbed “roton dips”) in the dispersion [7,8] and
the distribution of spectral weight in the continua [9]. This
has been shown by establishing a continuous basis change,
namely a continuous similarity transformation (CST), such
that the number of magnons in the target basis is conserved, at
least to very good approximation [7,9,10]. This facilitates the
interpretation of the results greatly, for instance the dispersion
can be read off immediately. The computation of continua
at zero temperature formed from two or three elementary
excitations [11] only requires solving a two- or three-particle
problem, avoiding complicated diagrammatic techniques.
In this fashion, also bound states of two [12–15] or three
particles [11] were identified.

To support these calculations and to assess their validity,
we turn to static quantities such as the ground-state energy
per site e0, the sublattice magnetization mz, the spin gap
�, and the transverse spin correlation length ξ and compare
theoretical results for them stemming from two very different
approaches.

One is the above-mentioned CST which maps the original
model expressed by magnon creation and annihilation oper-
ators to an effective model in magnon operators, but with
conservation of the number of magnons. The CST consists in
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setting up a general flow equation in all couplings and solving
this flow equation. The first step is analytical, the second
numerical eventually providing the coupling constants of a
magnonic model in second quantization. Thus, we classify
this approach as semianalytical. The data for e0, �, and ξ are
already published in Ref. [10].

The second approach involves quantum Monte Carlo
(QMC) simulations using the stochastic series expansion
(SSE) algorithm with directed loops [16–19], which is a
well-established numerically exact method for unbiased,
large-scale studies of quantum magnets.

Our paper demonstrates the applicability and quantitative
validity of CST and QMC along the full parameter line from
the Ising to the Heisenberg model. In particular, we capture
the phase transition from the gapped ordered phase at any
finite anisotropy to the gapless Heisenberg point with full
SU(2) symmetry. Our results confirm that associated criti-
cal exponents at this symmetry-restoring phase transition are
given exactly by the ones from spin-wave theory.

The paper is set up as follows. In Sec. II we briefly
introduce the model and describe the two employed com-
plementary methods concisely with an emphasis on how the
particular quantities are computed. The results are presented
and discussed in Sec. III. Section IV concludes the paper.

II. MODEL AND METHODS

A. Model

We consider an insulating quantum antiferromagnet with
S = 1/2 and easy-axis anisotropy defined by the anisotropy
parameter λ = Jxy/Jz ∈ [0, 1] so that the Hamiltonian takes
the form

H = J
∑
〈i, j〉

[
λ

2
(S+

i S−
j + S−

i S+
j ) + Sz

i Sz
j

]
(1)

in terms of the spin ladder operators. The model is bipartite
and thus unfrustrated. It breaks the Z2 symmetry of spin
flips Sz

i → −Sz
i by displaying long-range alternating magnetic

order with a finite sublattice magnetization mz at zero tem-
perature. We assume mz to be positive for simplicity, but its
negative value is physically equivalent. At the spin isotropic
point λ = 1 the continuous SU(2) symmetry is restored in
the Heisenberg model so that the elementary excitations, the
magnons, become Goldstone bosons with vanishing spin gap
� = 0 [6]. For any value 0 � λ < 1 a finite energy gap � > 0
is present, which takes the value 2J in the Ising limit λ = 0.
No rigorously exact results are known for this model for
λ > 0. But there is a wealth of evidence for its character-
istic behavior [5,6,20]. Since the singular behavior at the
Heisenberg point originates from Goldstone excitations and
not by critical fluctuations, the associated exponents are ex-
pected to correspond exactly to the spin-wave values [21].
This has been confirmed by high order series expansions
about the Ising limit as well as CST for the closing of the
one-magnon gap � [10,21,22] with an exponent 1/2.

B. Methods

Next, we briefly sketch the two approaches used.

1. Quantum Monte Carlo simulations

The starting point of the SSE QMC method is a high-
temperature expansion of the quantum partition function:

Z = Tre−βH =
∑
{|α〉}

∞∑
n=0

βn

n!
〈α|(−H )n|α〉. (2)

Here, {|α〉} denotes an orthonormal basis of the full Hilbert
space and n the expansion order of the exponential term.
Further, H is decomposed into a sum of local bond operators
H = −∑

b,t Hb,t , characterized by a bond b and an operator
type t . These bond operators are chosen such that, given
the basis {|α〉}, they are nonbranching, i.e., Hb,t |α〉 ∝ |α′〉,
∀|α〉, |α′〉 ∈ {|α〉}. The standard approach for the basis, which
we also use here, is a product state of local |Sz

i 〉 eigenstates,
i.e., |α〉 = ⊗N

i=1 |Sz
i 〉, where N is the number of lattice sites.

Here, a suitable bond decomposition is given by the operators

Hb,1 = −JSz
i Sz

j, (3)

that are diagonal in |α〉 as well as the off-diagonal bond
operators

Hb,2 = −Jλ

2
(S+

i S−
j + S−

i S+
j ). (4)

The different products of bond operators contributing
to Z can be encoded into an ordered operator sequence
Sn = [(t1, b1), . . . , (tn, bn)], thus yielding for the quantum
partition function

Z =
∑
{|α〉}

∞∑
n=0

∑
{Sn}

βn

n!
〈α|Hbn,tn · · · Hb2,t2 Hb1,t1 |α〉. (5)

The length of Sn corresponds to the expansion order and
thus fluctuates. For numerical simulations, however, it is more
convenient to truncate the sum to a maximal expansion order
M. Since the average expansion order is (sharply) centered
around 〈n〉 ∝ N β, this cutoff does not introduce any system-
atic error in practice as long as we always ensure M � 〈n〉. A
fixed length operator string SM can be obtained by padding Sn

with unity operators H0,0, which finally yields for the quantum
partition function

Z =
∑

{|α〉,SM }

βn(M − n)!

M!
〈α|

M∏
p=1

Hbp,tp |α〉, (6)

where an additional combinatorial factor
(M

n

)−1
has to be in-

troduced to account for the possible insertion positions of the
unity operators. Here, the expansion order n corresponds to
the number of nonunity operators in SM . For a bipartite lattice,
such as the square lattice considered here, all finite contribu-
tions to Z in Eq. (6) can be rendered positive, upon adding
an appropriate constant C to the diagonal Hb,1 → Hb,1 + C
[16]. To efficiently sample the configuration space {|α〉, SM}
by means of Markov chain Monte Carlo, a tandem of two
updates is usually carried out. In a first local update step
[16,17], diagonal operators are inserted or removed in SM ,
effectively sampling the expansion order n. The next update
is the directed-loop update [18,19]. Here, by carrying out
a succession of local bond operator updates, a global and
efficient update to sample different operator types, i.e., both
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diagonal and off-diagonal, in SM as well as |α〉 is obtained.
For more details we refer the reader to Refs. [18,23].

When approaching the Ising limit λ → 0, we would ideally
like our updating procedure to reduce to a classical (cluster)
update on the spins in |α〉. While this is indeed the case for the
word-line based loop algorithm (see Ref. [24] for a review),
which reduces in the Ising limit to a classical Swendsen-Wang
cluster update [25] for β → ∞ [26], this is not the case for
the directed-loop update in the SSE picture for the following
reasons. Flipping a spin in |α〉 here corresponds to flipping the
spin on all operators in SM that are connected to that site. For
the local bond operator updates during the directed-loop up-
date, there is in the general case λ �= 1 always the possibility
to backtrack the loop propagation (this is also referred to as
a “bounce”). As the probability for these bounces becomes
large for λ → 0, this process becomes very inefficient for
β → ∞, since the number of operators connected to a site is
proportional to β [18]. A simple trick to overcome this issue
is to perform a unitary rotation in spin space, resulting in the
Hamiltonian

H̃ = J
∑
〈i, j〉

[
Sx

i Sx
j + λ

(
Sy

i Sy
j + Sz

i Sz
j

)]
. (7)

Rotating the Hamiltonian in spin space such that the largest
matrix elements are associated with off-diagonal bond oper-
ators more generally seems to help with sampling issues that
arise in the directed-loop update, as recently reported in spin-1
systems with single-ion anisotropies [27] or in spin-1/2 JQ2

models [28].
Thus, we typically carry out simulations for the rotated

Hamiltonian H̃ . In the following, we briefly discuss how we
measure the relevant observables, where 〈·〉H (〈·〉H̃ ) refers
to thermal expectations with respect to H (H̃). We further
note that we always simulate quadratic lattice geometries with
N = L2 sites and periodic boundary conditions.

In terms of the SSE, the energy is related to the average
expansion order and given by E = −〈n〉H/β = −〈n〉H̃/β. To
obtain an estimate of the ground-state energy e0 per spin in
the thermodynamic limit (TDL), we simulate E/N for linear
system lengths L = {48, 64, 72} at inverse temperature β = L
and linearly extrapolate the data, using the leading finite-size
behavior L−3.

While the spectrum of the Hamiltonian is not directly ac-
cessible within the SSE approach, it is indirectly encoded in
imaginary time correlation functions

C(τ ) = 〈Ô(τ )Ô〉 = 〈eτH Ôe−τH Ô〉, (8)

where Ô is some operator and τ ∈ [0, β] denotes the imagi-
nary time. If Ô is chosen such that it excites the ground state,
i.e., 〈GS|Ô|GS〉 = 0 and Ô|GS〉 �= 0, the ground-state excita-
tion gap � can be efficiently estimated in the TDL based on
a (convergent) sequence of moments of C(τ ) as introduced in
Ref. [29]. Here an order m gap estimator �m,β is constructed
using the Fourier components of C(τ ):

C̃(ωk ) =
∫ β

0
C(τ )eiτωk dτ, (9)

where wk = 2πk/β, k ∈ Z denote bosonic Matsubara fre-
quencies. The gap estimator �m,β is then given as

follows:

�m,β = ω1

√√√√−
m∑

k=0

k2xm,kC̃(ωk )/
m∑

k=0

xm,kC̃(ωk ), (10)

where the numbers xm,k are defined by
xm,k = 1/

∏m
j=0, j �=k (k + j)(k − j). Here, the important

property

lim
m→∞ lim

β→∞
�m,β = lim

β→∞
lim

m→∞ �m,β = � (11)

holds, where the limits are in particular interchangeable. For
more details we refer the reader to Ref. [29]. A suitable
operator for the one-magnon excitations is the staggered mag-
netization in the spin-x direction M̂x such that we consider
C(τ ) = 〈M̂x(τ )M̂x〉H = 〈M̂z(τ )M̂z〉H̃ . For the gap estimator
�m,β , we measure C̃(ωk ) with respect to the rotated system
H̃ . In practice, as outlined in Ref. [29], a sufficient choice for
convergence of �m,β is given by m = 5 and β = 2π/�̃, where
�̃ is an initial guess of �, for which we use the CST results. To
eliminate finite-size effects, we choose linear system lengths
of L ≈ 2β, including system lengths up to L = 384 near the
isotropic Heisenberg point.

The staggered longitudinal magnetization mz can be
obtained as mz =

√
〈(M̂z/N )2〉H =

√
〈(M̂x/N )2〉H̃ from

the spin-spin correlation function at maximal distance
�rmax = (L/2, L/2) [20,23,30]:

〈(M̂x/N )2〉H̃ =
{ 〈Sx

i Sx
j 〉H̃ (ri j = |�rmax|), if λ < 1

3〈Sx
i Sx

j 〉H̃ (ri j = |�rmax|), if λ = 1
, (12)

where ri j = |�ri − �r j | and the factor 3 is included for λ = 1
to account for the SU(2) symmetry. The off-diagonal spin-
spin correlation function 〈Sx

i Sx
j 〉H̃ can be efficiently measured

during the directed-loop update [19,31]. To obtain an estimate
of the ground-state magnetization mz, we extrapolate data for
linear system sizes L = {48, 64, 72} at inverse temperatures
β = L to the TDL using the leading finite-size scaling behav-
ior L−1 (here it is important to take the square root after the
extrapolation). Close to the isotropic Heisenberg point, the
finite-size effects are stronger, and we here linearly extrap-
olate data for linear system sizes L = {96, 128, 140, 160} at
inverse temperatures β = L.

The transverse correlation length ξ x quantifies the expo-
nential asymptotic decay of the spin-spin correlation function
〈Sx

i Sx
j 〉H ∝ exp(−ri j/ξ

x )/ri j . It is always finite for λ < 1 and
relates to the quantum fluctuations that arise for λ �= 0. In
addition to the dominant exponential term an algebraic fac-
tor 1/ri j appears for the two-dimensional system considered
here. In Appendix A, we provide a general derivation of the
algebraic correction factor within a saddle point approxima-
tion for general dimensions, and identify its actual presence
explicitly for the system under consideration from QMC sim-
ulations in Sec. III. One possible means of extracting the
correlation length ξ x is thus to perform a fit of the numeri-
cal data to this asymptotic decay within appropriate ranges
of the distance ri j . Another standard approach to estimate
ξ x is by means of the staggered spin structure factor Sx(�q),
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defined by

Sx(�q) = 1

N

∑
i, j

(±1)e−i �q·(�ri−�r j )
〈
Sx

i Sx
j

〉
H

= 1

N

∑
i, j

(±1)e−i �q·(�ri−�r j )
〈
Sz

i Sz
j

〉
H̃
, (13)

where for the staggering sign “+1” is chosen if the sites i and
j belong to the same sublattice and “−1” otherwise. In terms
of this quantity, ξ x can be estimated by the second-moment
estimator

ξ x =
√

2
1

| �q1|

√
Sx(�0)

Sx(�q1)
− 1, (14)

where �q = �0 corresponds to the antiferromagnetic ordering
and �q1 = �ex2π/L is one of the reciprocal lattice vectors
closest to �0. The factor

√
2 is specific to the algebraic cor-

rection term 1/ri j in the spin-spin correlation function (see
Appendix B for other cases). For our analysis, we focus on the
regime λ � 0.8. The measurement of off-diagonal correlation
functions during the directed-loop update is known to yield
better statistics compared to measuring diagonal correlation
functions [19,31]. Since for the regime λ � 0.8 efficient sim-
ulations can be carried out without performing a spin rotation,
we thus measure 〈Sx

i Sx
j 〉H as an off-diagonal observable during

the directed-loop update. Further, we extrapolate the data to
the TDL using polynomials of degree 3 in 1/L for linear sys-
tem sizes up to L = 100 and at inverse temperature β = 1/L.

2. Continuous similarity transformations

For the semianalytic CST approach we rewrite the spin
model (1) in terms of bosons according to Dyson and
Maleev [32,33] which hides the manifest Hermiticity of the
Hamiltonian. But it ensures that the bosonic Hamiltonian

H = J
∑

i∈
A,δ

[
− S2 + S(a†

i ai + b†
i+δbi+δ

+ λaibi+δ + λa†
i b†

i+δ )

− a†
i aib

†
i+δbi+δ − λ

2
a†

i aiaibi+δ − λ

2
a†

i b†
i+δb†

i+δbi+δ

]
(15)

comprises at maximum quartic terms in the bosonic creation
and annihilation operators. Here the sum runs over the sites
of the A sublattice 
A where the a bosons are located. The b
bosons are located on the B sublattice 
B while the δ links
nearest neighbors, i.e., a site on 
A to one of its adjacent sites
on 
B.

The next step is to Fourier transform the bosonic operators
to ak and bk and their Hermitian conjugates, which yields the
Hamilton operator with bilinear and quartic bosonic terms in
reciprocal space with wave vectors k. These wave vectors are
chosen from the magnetic Brillouin zone because we distin-
guish between both sublattices. Subsequently, we perform a
standard Bogoliubov transformation to operators αk and βk to
eliminate the bilinear terms creating or annihilating pairs of
bosons. This is done self-consistently, i.e., the bilinear terms

changing the number of bosons vanish after normal ordering
all quartic terms. Normal ordering is meant here relative to the
bosonic vacuum after the Bogoliubov transformation: all cre-
ation operators are commuted to the left, and all annihilation
operators are commuted to the right. Truncating the resulting
Hamiltonian at the bilinear level provides the usual mean-field
Hamiltonian which neglects all interactions between the ele-
mentary excitations, but comprises a static renormalization of
the dispersion on the level of a self-consistent Hartree-Fock
theory.

We proceed by keeping all quartic terms, which generally
consist of three classes of terms: (i) leaving the number of
bosons invariant, (ii) changing this number by ±2, and (iii)
changing this number by ±4. Class (i) consists of terms with
two creation and two annihilation operators, and class (ii)
consists of terms with three creation and one annihilation
operator or vice versa. Finally, class (iii) consists of terms with
four creation operators or four annihilation operators.

This quartic Hamiltonian is not manifestly Hermitian be-
cause of the properties of the Dyson-Maleev representation.
Thus, we apply a CST to it which is not manifestly unitary.
The flow of coupling constants results from

d

d�
H (�) = [η(�), H (�)], (16)

where � is the continuous flow parameter running from � = 0
where H equals the initial Hamiltonian to � = ∞ where one
obtains an effective Hamiltonian Heff = H (∞) [34,35]. The
initial Hamiltonian results from the self-consistently deter-
mined Bogoliubov transformation while the final effective
Hamiltonian Heff no longer contains terms of classes (ii) and
(iii). In order to reach this nice property, which facilitates
the subsequent interpretation, we choose the particle conserv-
ing generator ηPC(�) [36,37] which includes all terms in the
Hamiltonian at � of classes (ii) and (iii). Those terms which
increase the number of bosons have exactly the same prefactor
as in H (�) while those terms which decrease the number of
bosons have the opposite sign in the prefactor of the same
term in H (�).

Assuming convergence of the flow implies η(∞) = 0 so
that Heff conserves the number of excitations, here magnons.
Then, the energy of single-magnon states can be read off
directly from the dispersion ω(k) without any further many-
body corrections. In order to be able to solve (16) two further
approximations are necessary. First, we solve the problem for
a finite cluster of L2 sites for various boundary conditions so
that there is a finite number of points in reciprocal space. We
point out that, compared to QMC, a unit cell with two sites is
chosen with L2 points for each sublattice 
A and 
B resulting
in a total of N = 2L2 points. Second, on the right hand side
of (16) quartic terms are also commuted with quartic terms
so that hexatic terms are generated. First, we normal order
them so that their constant, bilinear, and quartic content is
kept. But the genuine hexatic terms are not included because
of their higher scaling dimension [7,9,10]. This introduces
a small truncation error for intermediate anisotropies. But
close to the isotropic point λ = 1 we hardly detect truncation
errors [10].

The constant arising in Heff is the ground-state energy E0.
The total sublattice magnetization Mz in z direction can be
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found as the derivative of the ground-state energy with respect
to an alternating magnetic field halt:

Mz = d

dhalt
E0

∣∣∣∣
halt=0

(17)

according to the Hellmann-Feynman theorem. In practice, we
compute the derivative by the ratio [E0(halt ) − E0(0)]/halt for
small halt ≈ 10−7J .

The ground-state energy per site and the sublattice mag-
netization per site are denoted e0 and mz, respectively. The
magnon dispersion is denoted ω(k); its minimum defines the
spin gap � which is located at �k = (π, π ). The correlation
length is computed based on the full dispersion choosing a
direction n = ex in reciprocal space, first fitting the squared
dispersion by a sum of cosine terms

ω(k)2 =
L/2∑
n=0

Ancos(nk) (18)

(see Ref. [38] and Appendix A) and then solving

ω(iκ n) = 0 with Re κ = 1/ξ (19)

according to a generalization of the results in Ref. [38] from
one to two dimensions (see Appendix A for the generaliza-
tion to any spatial dimension including also leading power
law corrections). In the dispersions studied here, we never
found a value of κ with a finite imaginary part. Finally, the
results obtained for L2 sites for various boundary conditions
are extrapolated to the thermodynamic limit L → ∞. We
use results for L ∈ {17, 19, 21} and antiperiodic boundary
conditions because odd linear lengths and these boundary
conditions display the smallest dependence on the finite size
of the evaluated cluster. For the technical details, we refer to
Refs. [7,9,10].

III. RESULTS

The key results of the ground-state properties of the
anisotropic spin-1/2 XXZ antiferromagnet on the square lat-
tice are collected in Fig. 1. The CST data for the ground-state
energy, spin gap, and the correlation length have been pub-
lished in Ref. [10] already. Overall, the QMC and CST data
agree extremely well.

In the ground-state energy per site e0, the relative errors
of the QMC data are of order 10−6. The systematic error of
the finite-size extrapolation is negligible, i.e., much smaller
than the statistical errors. The error of the CST data is sys-
tematic since no stochastic aspects are involved. Two main
error sources can be identified: (i) the truncation of the flowing
Hamiltonian to quartic order and (ii) the finite-size effect. The
finite-size effect can be assessed by varying the extrapolations
and the boundary conditions, and we estimate it to be of order
10−5. The effect of the truncation cannot be estimated intrin-
sically, but only by comparison to results from other methods.
We find that above λ ≈ 0.4 the CST data start to deviate from
the QMC data. This deviation appears to be systematic, since
it does not change in sign and furthermore evolves smoothly.
The deviation becomes maximum around λ ≈ 0.9, where it
is approximately 2 × 10−4. We analyze the deviations of the

−0.65

−0.60

−0.55

−0.50

e 0
/
J

10−3
1 − λ

10−3

e0/J − eiso
0 /J

e0/J − eiso
0 /J

∝ (1 − λ)σ

σ = 0.988(3)

0.30

0.35

0.40

0.45

0.50

m
z

10−3
1 − λ

0.01

mz − mz
iso

mz−mz
iso

∝ (1 − λ)σ

σ = 0.50(5)
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Ising
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λ
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Δ
/
J
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1 − λ
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Δ/J ∝ (1 − λ)σ
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FIG. 1. Comparison of ground-state data obtained by CST
(circles) and QMC (triangles) both extrapolated to the TDL. The
points at λ = 0 (green marker) denote the exact result of the 2D Ising
model. All QMC errors are statistical and smaller than the marker
size. Upper panel: Ground-state energy per site e0. The relative statis-
tical QMC errors are of order 10−6. The systematic error of the CST
data is estimated to be of order 10−5. The inset shows that the energy
approaches its isotropic value linearly agreeing with previous results
[39,40]. Middle panel: Sublattice magnetization per site mz. The rela-
tive statistical QMC errors are of order 10−3; the CST error is of order
10−4. In addition, we presume that the CST has a small systematic
error. The inset shows that the sublattice magnetization approaches
its isotropic value like a square root agreeing with mean-field re-
sults [39,40]. Lower panel: Spin gap � with errors shown in the
inset. The data provide strong evidence for � ∝ √

1 − λ as assumed
previously [39,40].

CST results from the QMC results in Appendix C including a
detailed comparison. Still the agreement is very good.

Repeating the estimates for the sublattice magnetization
per site mz, we arrive at relative statistical QMC errors of
order 10−3. In terms of the CST, the error of the finite-size
effect and the effect of approximating a derivative by a ratio
in the CST data is estimated as 10−4. The deviation between
the data from QMC and CST becomes here maximal around
λ ≈ 0.9 as well, where it is around 5 × 10−3 in absolute
terms corresponding to ≈1.3%. This deviation, similarly to
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FIG. 2. Rescaled transverse spin-spin correlations ri j〈Sx
i Sx

j 〉, ob-
tained from QMC simulations at λ = 0.96, as functions of the
distance ri j for systems of different linear system sizes L, plot-
ted in logarithmic form in order to probe the approach towards
the anticipated asymptotic behavior. The black dashed line depicts
the excellent agreement with the exponential behavior ri j〈Sx

i Sx
j 〉 ∝

exp(−ri j/ξ
x ).

the deviation observed for the energy, does not change sign
and evolves relatively smoothly. Thus, we presume that it is
systematic and can be attributed to the CST truncation. Still,
the agreement of the data from the two distinct approaches
over the whole parameter range is very good.

Next, we address the value of the spin gap �. The relative
statistical errors of the QMC data are of order 10−3 and near
the isotropic Heisenberg point of order 10−2. The relative
error estimate for the CST data yields 10−4 and lower for
λ < 0.9 and rises up to 0.66% close to the isotropic point.
While there is a small systematic deviation of the CST data,
both approaches agree very well. We highlight that the double-
logarithmic plot in the inset of the lowest panel in Fig. 1
displays an excellent agreement. Both data sets support the
conclusion that the spin gap vanishes in a square-root fashion
∝ √

1 − λ, as reported in Refs. [39,40]. Similarly, the mag-
netization approaches its value for the isotropic Heisenberg
model also following a square-root law.

Finally, we consider the correlation length ξ . Since we are
dealing with a long-range ordered phase at all values of λ

in the ground state of the Hamiltonian (1) this leads to an
infinite (longitudinal) correlation length in the Sz direction.
But the magnons stand for transversal fluctuations of this or-
der parameter. Hence, we consider the transversal correlation
length ξ x pertaining to the dominantly exponential decay of
〈Sx

i Sx
j 〉 ∝ exp(−ri j/ξ

x )/ri j for large values of ri j .
As shown in Appendix A for this two-dimensional system,

an additional algebraic factor 1/ri j appears in the asymptotic
scaling. We can demonstrate the above scaling behavior also
based on QMC simulations. This is illustrated for the case
of λ = 0.96 in Fig. 2. As we consider systems with periodic
boundary conditions, the correlations 〈Sx

i Sx
j 〉 for a system

size L are shown for distances ri j � L/2. We find that the
rescaled quantity ri j〈Sx

i Sx
j 〉 approaches an exponential decay,

as anticipated. By fitting the rescaled QMC data for L = 64
to an exponential decay (see solid black line in Fig. 3), within
the regime of ri j between 5 and 20, we thus obtain a robust

0.80 0.85 0.90 0.95 1.00

λ

0.0

2.5

5.0

7.5

10.0

12.5

15.0

ξx

CST
QMC, second moment estimator
QMC, correlation function fit

FIG. 3. Ground-state transverse correlation length ξ x as a func-
tion of λ in the infinite-size limit obtained by CST (circles) and QMC
(triangles).

estimate for the correlation length ξ x in the TDL. We also
used the improved second-moment estimator in Eq. (14) in
order to obtain the correlation length ξ x from the structure
factor which is extrapolated to the TDL including systems
up to L = 100 with β = L. In CST, as given in Eq. (18), we
describe the square of the dispersion ω(k) obtained numer-
ically by a sum of cosine terms such that the dispersion is
exactly captured. Then, we determine the correlation length
by solving for the zeros in (19). Again, as shown in Fig. 3, the
agreement is very good.

Concerning the power laws upon approaching the isotropic
Heisenberg point, the CST and the QMC data sets strongly
support the linear behavior of the ground-energy and square-
root behavior for the sublattice magnetization, the spin gap,
and the correlation length. The latter two power laws are
not independent, but linked according to ξ ∝ 1/�. All these
power laws agree with the results of spin-wave theory [39]
which may appear surprising. But we emphasize that ap-
proaching the isotropic point does not represent a true
quantum phase transition because the system stays in the same
long-range ordered phase. The observed gap closure does not
indicate a second order transition, but the restoration of the
continuous symmetry of spin rotation which in turn implies
the occurrence of Goldstone bosons. Since no critical quantum
fluctuations appear the exponents remain the same as in mean-
field theory. Our findings are further in agreement with very
recent density-matrix renormalization-group studies [41].

IV. CONCLUSIONS

In this paper we examined the ground-state properties
of the anisotropic spin-1/2 XXZ quantum antiferromagnet
on the two-dimensional square lattice in the thermodynamic
limit. For this purpose we considered two approaches, namely
unbiased SSE QMC simulations as well as the semianalytic
CST method.

Based on our analysis of the ground-state energy e0, the ex-
citation gap �, the sublattice magnetization mz, as well as the
transverse correlation length ξ x, we report a very good agree-
ment of both approaches over the whole parameter range,
from the Ising limit λ = 0 to the SU(2) symmetric isotropic
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Heisenberg point λ = 1. Our findings support the quantitative
validity of both approaches. In terms of the CST approach,
this is particularly interesting as the method may be applied
to extract quantum-critical properties as well as dynamical
correlation functions of frustrated systems such as the J1-J2

model or the Heisenberg model on the triangular lattice, where
the statistical accuracy of QMC methods is severely limited,
due to the sign problem.

Our data are available in Ref. [42] and provide quantitative
reference results in the thermodynamic limit; the raw data are
available upon request. We envision this to be of particular
use for benchmarking purposes of numerical approaches for
strongly correlated quantum spin systems.
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APPENDIX A: CORRELATION FUNCTION
FROM THE ONE-PARTICLE DISPERSION

This Appendix contains a generalization of the results of
Ref. [38] from one to any spatial dimension concerning the
computation of the correlation length based on the full one-
particle dispersion. In addition, we also derive the leading
power law corrections.

We consider a translationally invariant system on a lattice
in which the elementary excitations are bosonic and display a
gap. Note that an ordered antiferromagnet on a bipartite lattice
can be made translationally invariant by a 180◦ rotation of the
spins on one sublattice so that it belongs to the considered
kind of systems. The Hamiltonian reads

H =
∑
�k∈BZ

[
A�kb†

�kb�k + 1

2
B�k (b†

�kb†
−�k + b�kb−�k )

]
+ HI, (A1)

where b(†)
�k are the usual bosonic annihilation (creation) op-

erators and HI is an interaction term which does not need to
be specified further. The lattice constant is henceforth set to
unity. Neglecting the interaction, the dispersion reads

ω2
�k = A2

�k − B2
�k > 0 (A2)

and the correlation G�r := 〈b†
jbi 〉 with �r := �r j − �ri is given at

zero temperature by

G�r = 1

(2π )d

∫
BZ

〈b†
�kb�k〉 exp(i�r · �k)dkd (A3a)

= 1

2(2π )d

∫
BZ

(
A�k
ω�k

− 1

)
exp(i�r · �k)dkd . (A3b)

If we include interaction effects, the functions A�k and B�k
will be modified and hence ω�k . For simplicity, we refrain
from introducing new labels for these modified quantities.
In addition, Eq. (A3b) does not hold anymore in a rigorous
sense because of multiboson contribution. But multiboson
contributions form continua in the (ω, �k) space which in-
duce dependences in real space which decay quicker than
the contributions of the δ distributions resulting from the
single-boson states. However, the weights of the single-boson
states are reduced due to hybridization with multiboson states.
Introducing a weight factor Z�k yields for the long-range part
GLR

�r of the correlation

GLR
�r = 1

2(2π )d

∫
BZ

Z�k
A�k
ω�k

exp(i�r · �k)dkd (A4)

where we also left out the constant background stemming
from the summand −1 in (A3b).

From (A4) one realizes that a significant contribution re-
sults from small values of the dispersion. But this observation
is not yet sufficient to find the correlation length. For this, the
saddle point approximation needs to be invoked. For clarity,
we first discuss the one-dimensional case (see Ref. [38]).

1. One dimension

The dispersion can be described by a sum of trigonomet-
ric functions so that it is analytic. Note that the finite gap
0 < � � ωk avoids the occurrence of singularities. The same
holds true for the numerator ZkAk . Then we can shift the
integration from the real axis to a path γ in the complex plane
crossing a point where ωk0 = 0:

GLR
x = 1

4π

∫
γ

Z�k
A�k
ω�k

exp(ixk)dk. (A5)

In order to deal with the singularity in the above integrand, we
substitute k by k(z) fulfilling

dk

dz
= ωk ⇔ dz

dk
= 1/ωk . (A6)

We denote by z0 the point in C with k(z0) = k0. The chain rule
implies

k′′ = d2k

dz2
= dωk

dk

dk

dz
= dωk

dk
ωk = 1

2

d
(
ω2

k

)
dk

. (A7)

By γ̃ we denote the contour of which the image is the original
contour, i.e., γ = k(γ̃ ) with k(z1) = −π and k(z2) = π . Then
we can write

GLR
x = 1

4π

∫
γ̃

Z (z)A(z) exp[ixk(z)]dz. (A8)

This integration can be evaluated for x → ∞ by the saddle
point approximation, also known as the method of the steepest
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descent, yielding

GLR
x = 1

4π
Z (z0)A(z0) exp(ixk0)

√
2π

x|k′′
0 | , (A9)

where k′′
0 := d2k

dz2 |z=z0
. With 1/ξ = Imk0 we obtain

GLR,1D
x ∝ exp(−|x|/ξ )√|x| . (A10)

For x → −∞, we repeat the above reasoning for −k0 which
also fulfills ω−k0 = 0 if the dispersion is even as is the case for
systems with inversion symmetry.

We stress that the above derivation yields the power law
correction 1/

√|x| in addition to the exponential decrease.
Note that this power law differs from the classical Ornstein-
Zernike law [43].

2. Two dimensions

In essence, we repeat the arguments of the one-dimensional
case. But the integration over the wave vectors is two-
dimensional. We solve this issue by assuming rotational
invariance of the asymptotic behavior in space, i.e., only r =
|�r| matters. Correspondingly, we assume that the integrand in
(A4) is rotationally invariant in reciprocal space. This is not
completely true, but can be justified a posteriori: we found
that ξ hardly depends on the direction (1, 0)� or (1, 1)�.
The difference is only a few percent in the range ξ ≈ 1 and
vanishes exponentially for larger correlation lengths.

Under the assumption of rotational invariance Eq. (A4)
becomes

GLR
�r ≈ 1

8π2

∫ π

0

∫ 2π

0
kZk

Ak

ωk
exp(irk cos ϕ)dϕdk

(A11a)

= 1

4π

∫ π

0
kZk

Ak

ωk
J0(rk)dk. (A11b)

The upper limit of the k integration is an approximation, but
one does not need to bother because it does not enter the
saddle point approximation. The function Jν (z) is the νth
Bessel function of the first kind. Its asymptotic behavior for
large arguments is

Jν (z) ∝ Re exp[iz − π (ν + 1/2)/2]/
√

z (A12)

so that we can apply again the substitution and the saddle point
approximation as in the one-dimensional case yielding finally

GLR,2D
r ∝ exp(−r/ξ )

r
(A13)

with 1/ξ = Im(k0) from ωk0 = 0 as before. Note that the
additional power law results from the asymptotic behav-
ior of the Bessel function which in turn stems from the
angular integration. It reflects how large the contribution
of exp(irk) is.

3. Three dimensions

We repeat the arguments for the two-dimensional case.
Assuming rotational invariance as in two dimensions the in-
tegration over the solid angle yields

1

4π

∫
�

d� exp[irk cos(ϑ )] = 1

2

∫ 1

−1
exp(irku)du (A14a)

= 1

rk
Im exp(irk). (A14b)

As to be expected, the exponential dependence remains the
same, but the power law exponent is lowered by 1/2. This
leads us to

GLR,3D
r ∝ exp(−r/ξ )

r3/2
(A15)

with 1/ξ = Im(k0) from ωk0 = 0 as before.

4. Arbitrary dimension

The obvious generalization of the above findings reads

GLR,AD
r ∝ exp(−r/ξ )

rd/2
(A16)

in d dimensions with 1/ξ = Im(k0) from ωk0 = 0. Note that
d − 1 factors of

√
r in the denominator result from a phase

space argument or geometrical dilution. But one factor
√

r
stems from the saddle point approximation (see the derivation
in one dimension).

Equation (A16) can be derived as before. First, we integrate
in (A4) over all angles at fixed modulus q. We choose �r to
point along �e1 so that �r · �k = rk1 and the angular integration
yields

f (r, q) =
∫

BZ
ei�r·�kδ(k − q)dkd (A17a)

=
∫∫ q

−q
eirk1δ(k − q)dkd−1

⊥ dk1 (A17b)

=
∫ q

−q

∫ q

0
eirk1δ(k − q)ρd−1(k⊥)dk⊥dk1 (A17c)

where we denoted k for
√

k2
1 + k2

⊥ and used �k⊥ for the wave
vector perpendicular to �e1 and the density of the modulus k⊥
is given in dimension d by ρd (k⊥) ∝ kd−1

⊥ . The integration
over k⊥ is carried out with the help of the δ distribution
yielding

f (r, q) = q
∫ q

−q
eirk1

ρd−1
(√

q2 − k2
1

)√
q2 − k2

1

dk1 (A18a)

∝ q
∫ q

−q
eirk1

(
q2 − k2

1

)(d−3)/2
dk1 (A18b)

= qd−1
∫ 1

−1
eirqx (1 − x2)(d−3)/2dx (A18c)

= qd/2
√

π

(
2

r

)d/2−1


((d−1)/2)Jd/2−1(rq) (A18d)

where we substituted k1 = qx. In the final integra-
tion over q, we use again the asymptotics (A12) and
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employ the saddle point approximation to obtain (A16) stated
above.

Equation (A16) constitutes the powerful generalization of
the one-dimensional result in Ref. [38] to arbitrary dimension
including the leading multiplicative power law corrections.

We finally note that the above result in Eq. (A16)
results from replacing in the Ornstein-Zernike law for
the correlation function [43] in d spatial dimensions,
GOZ(r) ∝ exp(−r/ξx )/r (d−1)/2, the dimension d by
d + 1, corresponding to the usual quantum-to-classical
mapping.

APPENDIX B: QMC ESTIMATOR
FOR THE CORRELATION LENGTH

In this Appendix, we discuss the QMC estimator for the
correlation length in different spatial dimensions and for dif-
ferent correlation function asymptotics. In the case of the
Ornstein-Zernike form of the correlation function [43] in d
spatial dimensions, 〈Sx

i Sx
j 〉 ∝ exp(−ri j/ξ

x )/r (d−1)/2
i j , the im-

proved second-moment estimator reads

ξ x =
√

8d

(1 + d )(3 + d )

1

| �q1|

√
Sx(�0)

Sx(�q1)
− 1, (B1)

as discussed in Ref. [23] [note that there is an apparent typo
in Eq. (71) of Ref. [23]]. The numerical prefactor in the
above estimator is of order 1 and thus often ignored when
extracting correlation lengths based on this estimator. Indeed,
for d = 1 and 3 the prefactor simplifies to 1 exactly, while
for d = 2 it reads

√
16/15, explicitly. For other algebraic

factors in the correlation function asymptotics, the numerical
prefactor however differs. In particular, for the asymptotic be-
havior 〈Sx

i Sx
j 〉 ∝ exp(−ri j/ξ

x )/rd/2
i j derived in the preceding

Appendix we similarly obtain, upon analytically performing
the Fourier transformation in the continuum limit, the cor-
responding prefactors

√
8/3,

√
2, and

√
4/3 for d = 1, 2, 3,

respectively.

APPENDIX C: QUANTITATIVE COMPARISON
OF CST AND QMC RESULTS

Here, we show a quantitative comparison of the CST and
QMC results in terms of the statistical and systematic errors.
In Fig. 4 the deviations of the CST data relative to the QMC
data are plotted for the ground-state energy per site e0, the
magnetization per site mz, and the energy gap �. In energy
and magnetization the deviation is remarkably small for small
values of λ growing for large λ. We attribute this to the
truncation of the tracked terms on quartic level corresponding
to scaling dimension 2. Hence, it is a systematic deviation
which we had observed before in the binding energies of
two-magnon bound states [10]. We do not have a complete
understanding of the deviations of the spin gap which is rather
constant. Still, we presume a systematic origin linked to the
truncation in the CST approach. Remarkably, the deviations
decrease in all three quantities upon approaching the isotropic
point. We interpret this as a justification of the truncation
according to scaling dimension which allows us to find the
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FIG. 4. Quantitative comparison of the CST and QMC results
in the TDL of the ground-state energy e0 (top panels), the ground-
state magnetization mz (middle panels), and the spin gap � (bottom
panels) as a function of λ.

relevant effective model close to the isotropic point almost
quantitatively.

Finally, Fig. 5 displays the deviation of three ways to
access the transversal correlation length. The two QMC esti-
mators agree well below the 1% level. Such minor deviations
may result from uncertainties in performing the actual finite-
size fitting process. The CST results acquire large errors
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close to the isotropic point because the correlation length
depends inverse proportionally on the spin gap so that tiny

inaccuracies in the latter induce large inaccuracies in the cor-
relation length.
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