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Pseudospin density wave instability in two-dimensional electron bilayers
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We investigate the instability of layer pseudospin paramagnetic (PSP) state to the formation of pseudospin
density wave (PSDW) in two-dimensional (2D) electron bilayers, analogous to the formation of Overhauser spin
density wave (SDW) in a single-layer 2D electron gas (2DEG) with spin 1/2. Our comprehensive study on phase
diagrams, based on the self-consistent Hartree-Fock (HF) theory, reveals that the PSDW has a lower energy than
both PSP and pseudospin ferromagnetic (PSF) states near the PSP-PSF phase transition boundary. When the two
layers are populated by the same number of electrons, the PSDW momentum Qc ∼ 2kF near the PSP-PSDW
boundary, where kF = (2πn)1/2 is the Fermi momentum characterized by the density in one of the two layers,
and Qc decreases as the system transitions to the PSF regime. Extending the HF study to the case of unequal layer
densities, the PSP phase is unstable to PSDW for small density imbalances, with momentum Qc ∼ kF,t + kF,b,
where kF,t and kF,b are Fermi momenta of top and bottom layers, respectively. In PSDW regime, the ground-state
stability, defined by the energy difference between PSDW and the second-lowest-energy state, is one order
of magnitude lower than that in PSF regime, and decreases with increasing layer separation d . Furthermore,
incorporating RPA static screening with the Hubbard-type local field correction leads to disappearance of both
SDW and PSDW phases and pushes the phase boundaries of paramagnetic to ferromagnetic transitions to larger
rs values. Our study on PSDW in 2D electron bilayers is equally applicable to 2D hole bilayers. The idea of
pursuing PSDW is, in general, relevant across various 2D bilayer systems, not limited to the parabolic model
that we investigate in this paper, and provides a new possibility of exploring novel coherent phases.

DOI: 10.1103/PhysRevB.110.054405

I. INTRODUCTION

A two-dimensional (2D) electron bilayer, abbreviated as
an e-e bilayer in this paper as well, consists of two parallel
2D electron gas (2DEG) layers (in the xy plane) separated by
an out-of-plane distance d . Such an e-e bilayer, compared to
a single-layer 2DEG with spin 1/2, gains complexity from an
additional layer pseudospin, leading to interlayer coherence
driven by the exchange interaction. This interlayer coherence
is associated with a spontaneous U(1) symmetry breaking
in layer pseudospin. Previous studies [1–5] have investigated
homogeneous interlayer coherence in e-e bilayers through the
framework of Hartree-Fock (HF) mean-field theory, unravel-
ing both ground-state behaviors and temperature-dependent
phase transitions. Other research [6–8] on 2D bilayers have
focused on various symmetry-broken phases in the spin sec-
tor, which spontaneously break SU(2) symmetry. In contrast,
the pseudospin density wave (PSDW) discussed in this paper
pertains to the layer pseudospin sector, with spontaneous U(1)
symmetry breaking.

In a single-layer 2DEG with spin 1/2, the original
Overhauser instability theorem [9,10] states that the HF ho-
mogeneous paramagnetic state is unstable to the formation
of either charge density wave (CDW) or spin density wave
(SDW) for all electron densities. In the spiral spin density
wave (SSDW) phase, a specific case of SDW, the HF energy
is lowered by the hybridization of spin-up and spin-down
species near the Fermi surface, with a phase factor periodic

in real space. Figure 1(a) schematically illustrates a SSDW, in
which the spin rotates periodically about the spin quantization
axis ẑ. Analogously, in an e-e bilayer, the layer pseudospin
paramagnetic (PSP) state is unstable to the PSDW formation.
The main difference between the layer PSDW and the Over-
hauser SDW is the dependency of the Coulomb potential in
PSDW on the layer separation d , characterized by the factor
e−qd .

It is important to note that Overhauser’s original argument
for a long-range SDW for arbitrarily weak interactions can
only hold at T = 0 in 1D systems [11]. In 2D and 3D sys-
tems, the Overhauser SDW relies on the long-range nature of
Coulomb interactions and can be negated by Thomas-Fermi
static screening [12]. Despite these concerns, Overhauser
SDWs in 2D and 3D electron gases are not completely
ruled out, as rigorous dynamical screening, which is typically
weaker than Thomas-Fermi static screening, might still rescue
them. Additionally, CDWs and SDWs are more likely to occur
in metals or semimetals with complex Fermi surfaces that
satisfy Fermi surface nesting, or in materials with complex
band structures that exhibit weaker dynamical screening, a
topic we will discuss for future work in Sec. V.

In this paper, we expand on previous homogeneous HF
theory [1–5] to provide a comprehensive study on the PSDW
instability in 2D electron bilayers. Our main focus is the case
of equal layer densities where there are two main competing
phases: the PSP, where the pseudospin is unpolarized and
incoherent, and the pseudospin ferromagnet (PSF) where the
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FIG. 1. Schematic figures of spiral spin density wave (SSDW), pseudospin density wave (PSDW), and spin and pseudospin density wave
(S-PSDW). (a) SSDW in a single-layer 2DEG, spin-up and spin-down electrons hybridize with a periodic phase factor. (b) PSDW in a spinless
e-e bilayer of equal layer densities. The layer pseudospin (orange arrows) points in the xy plane and rotates periodically about ẑ axis. (c) S-
PSDW in a spinful e-e bilayer, which specifically shows the case that intralayer SDW and interlayer PSDW have the same periodicity, which
is not necessarily the case. S-PSDW has an independent spin SU(2) rotational symmetry in each layer.

pseudospin is polarized and oriented within the xy plane. In
Ref. [3], the PSP (PSF) is referred to as S1 (S2), respectively.
In the phase diagram calculated by the self-consistent HF
theory, we find a regime where the PSDW state has a lower
energy than both PSP and PSF states. The PSDW is stable
near the PSP-PSF phase boundary calculated by previous
homogeneous HF theory [3], across all layer separations d
and electron densities characterized by rs, occupying a larger
region within the PSP domain than in the PSF domain. In
addition, as d increases, the PSDW regime for a given d spans
a broader rs range. The stability of PSDW state, characterized
by its energy difference to the second-lowest-energy state in
the considered ground-state ansatz, is notably less robust (an
order of magnitude smaller) than that in the PSF regime at
large rs values, and the PSDW stability decreases with increas-
ing d . The PSDW momentum Qc is approximately 2kF near
the PSDW-PSP boundary, decreases toward the PSDW-PSF
boundary and drops to zero quickly when approaching the
PSF phase. This property is analogous to the Overhauser SDW
momentum QSDW

c as a function of rs, which begins around 2kF

at low rs values and decreases with increasing rs. Furthermore,
the RPA static screening, self-consistently included in our
HF calculations, eliminates all coherent phases, including the
spin ferromagnetic and SDW phases (the d = 0 limit of our
bilayer model), as well as PSF and PSDW phases for all d
values, leaving only the spin and pseudospin paramagnetic
phase in the phase diagram. After adding Hubbard-type local
field corrections, however, the spin ferromagnetic and PSF
phases reappear, though their phase boundaries shift to higher
rs values.

Extending to the case of unequal layer densities, the fate
of PSDW is similar to that of equal layer densities: PSDW
phase occupies the regime near the phase boundary of pseu-
dospin incoherent (S′

1 in Ref. [3]) and pseudospin coherent
(Sξ in Ref. [3]) phases, with momentum Qc ∼ kF,t + kF,b near
the pseudospin-incoherent-PSDW boundary and decreases to-
ward the pseudospin-coherent-PSDW boundary. For a fixed d ,
the PSDW only occurs for a small density imbalance since the
intralayer exchange interaction tends to polarize all electrons
to one of the layers if either layer imbalance m or average
interelectron distance r̄s is large.

The detection of PSDW proposed in this paper is likely
achievable through magneto-transport experiments [13],
which are adept at assessing Fermi surface properties, such
as the number of different orbits and their contours [14,15].

Compared to the incoherent state (PSP), interlayer coherent
states (PSF and PSDW) are distinguishable from Shubnikov–
de Haas (SdH) oscillations, through the variation of the
number of Fermi surfaces with electron density. The mini-
gap (gap) induced by interlayer coherence in PSDW (PSF)
manifests as anomalies in zero-field conductivity [16,17] mea-
sured as a function of electron concentration, owing to van
Hove singularities at band edges. Optical absorption tech-
niques can quantify the minigap or gap size [18,19]. Further
differentiation between PSF and PSDW requires detailed SdH
oscillation analyses relative to electron doping levels, which
provides insights into the Fermi surface geometry. Unlike the
isotropic Fermi surface of PSF, PSDW features a nonisotropic
Fermi surface due to broken translational and rotational sym-
metries. These analyses remain valid despite nonnegligible
interlayer tunneling [20]. Anti-crossing band structures sim-
ilar to PSDW have been studied in double quantum wells
subject to in-plane magnetic fields [21–25] and in electron in-
version layers on tilted Si surfaces [16,17,20,26,27], as well as
in the 2DEG with broken translational symmetry [28]. There-
fore, the experimental detection of PSDW is anticipated to be
similar to these well-studied systems. Additionally, the band
structures featuring minigaps and detailed Fermi surfaces can
be directly imaged using angle-resolved photoemission spec-
troscopy (ARPES).

This paper is organized as follows. Section II A intro-
duces the HF Hamiltonian and self-consistent equations that
breaks both translational and rotational symmetries, assuming
equal electron populations in the two layers. Section II B
examines the Overhauser SDW by setting the interlayer dis-
tance, d , to zero in the previously discussed model. The HF
phase diagram, parameterized by rs and d , is presented in
Sec. II C. To assist in future experiments, Sec. III extends
the analysis of PSDW and provides the HF phase diagram to
scenarios of unequal layer densities. Section IV investigates
the impact of screening on spin and pseudospin coherences,
in which both the primitive RPA static screening and the
ones corrected by Hubbard-type local field factors are self-
consistently taken into account in the HF calculations. Last,
in Sec. V, we comment on the impact of a finite-interlayer
tunneling on PSDW, as well as the relevance of PSDW to
other complex 2D systems, for example graphene- and TMD-
based 2D materials with valley degree of freedom. Additional
discussions on the spinful bilayer model are included in
Appendix B.
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Although our study utilizes the 2D bilayer of parabolic
electron gases as an example to conduct calculations, the
findings on PSDW instability is general, extending beyond
this specific electronic structure, and equally applicable to 2D
hole systems.

II. PSEUDOSPIN DENSITY WAVE INSTABILITY

In this section, we discuss the PSDW instability in an e-
e bilayer of equal layer densities. We focus on the spinless
PSDW model, which is justified by the decoupling of spin and
pseudospin sectors in our model. This decoupling allows us to
discuss pseudospin phases independently of spin, especially
in the low density regime that spin is polarized. The spinless
PSDW model is schematically shown in Fig. 1(b). The SU(2)
symmetric Overhauser SDW theory in a single-layer 2DEG,
depicted in Fig. 1(a), is recovered in the d = 0 limit of this
model.

A. Model

Consider a Hamiltonian H with two-fold degrees of free-
dom denoted by s and s̄, the translational and rotational
symmetries are broken by the single momentum Q,

H =
∑

k

h̄2|k + Q/2|2
2m∗ c†

s,k+ Q
2

cs,k+ Q
2

+
∑

k

h̄2|k − Q/2|2
2m∗ c†

s̄,k− Q
2

cs̄,k− Q
2

+ 1

2A

∑
k,k′,q

V 0
q c†

s,k+ Q
2 +q

c†
s,k′+ Q

2 −q
cs,k′+ Q

2
cs,k+ Q

2

+ 1

2A

∑
k,k′,q

V 0
q c†

s̄,k− Q
2 +q

c†
s̄,k′− Q

2 −q
cs̄,k′− Q

2
cs̄,k− Q

2

+ 1

A

∑
k,k′,q

V d
q c†

s,k+ Q
2 +q

c†
s̄,k′− Q

2 −q
cs̄,k′− Q

2
cs,k+ Q

2
. (1)

Without loss of generality, Q = Qx̂ is chosen to be in the
x axis. For layer pseudospins, s = t and s̄ = b. m∗ is the
effective mass, A is the sample area and εb is the di-
electric constant of the surrounding dielectric environment.
V d

q = 2πe2e−qd/εbq is the interlayer-separation-dependent
Coulomb potential: d = 0 for intralayer interactions and d �=
0 for interlayer interactions. The HF Hamiltonian H (k) with
basis spinor (cs,k+Q/2, cs̄,k−Q/2)T is

H (k) =
(

εs,k+Q/2 −�k

−�∗
k εs̄,k−Q/2

)
, (2)

and its quasiparticle eigenenergies and eigenvectors are

ε±,k = 1

2

(
εs,k+ Q

2
+ εs̄,k− Q

2

) ±
√

ξ 2
k + �2

k,(+, k

−, k

)
=

(
uk −vk

v∗
k u∗

k

)(
cs,k+ Q

2

cs̄,k− Q
2

)
, (3)

where

εs,k+ Q
2

= h̄2|k + Q/2|2
2m∗ − 1

A

∑
k′

V 0
k′−kρss(k′),

εs̄,k− Q
2

= h̄2|k − Q/2|2
2m∗ − 1

A

∑
k′

V 0
k′−kρs̄s̄(k′),

(4)

ξk = 1

2

(
εs,k+ Q

2
− εs̄,k− Q

2

)
,

�k = 1

A

∑
k′

V d
k′−kρss̄(k′).

�k is the PSDW order parameter with momentum Q. Order
parameters with larger momenta 2Q, 3Q, and so on, are ne-
glected. ρss(k), ρs̄s̄(k), and ρss̄(k) are density matrix elements
defined as

ρss(k) = 〈
c†

s,k+ Q
2

cs,k+ Q
2

〉
,

ρs̄s̄(k) = 〈
c†

s̄,k− Q
2

cs̄,k− Q
2

〉
, (5)

ρss̄(k) = 〈
c†

s̄,k− Q
2

cs,k+ Q
2

〉
.

The expectations are explicitly〈
c†

s,k+ Q
2

cs,k+ Q
2

〉 = |vk|2 f−,k + |uk|2 f+,k,〈
c†

s̄,k− Q
2

cs̄,k− Q
2

〉 = |uk|2 f−,k + |vk|2 f+,k, (6)〈
c†

s̄,k− Q
2

cs,k+ Q
2

〉 = ukv
∗
k( f−,k − f+,k ),

where f±,k ≡ f (ε±,k − μ) is the Fermi-Dirac distribution
function. The self-consistent equations to be solved are

ξk = h̄2

4m∗

(∣∣∣∣k + Q
2

∣∣∣∣
2

−
∣∣∣∣k − Q

2

∣∣∣∣
2
)

+ 1

A

∑
k′

V 0
k′−k

ξk′√
ξ 2

k′ + �2
k′

( f−,k′ − f+,k′ ), (7)

�k = 1

2A

∑
k′

V d
k′−k

�k′√
ξ 2

k′ + �2
k′

( f−,k′ − f+,k′ ).

The HF energy per electron, εtot, is the sum of the kinetic
energy εkin and the exchange energy εx, which includes in-
tralayer εintra

x and interlayer εinter
x contributions:

εtot = εkin + εintra
x + εinter

x ,

εkin = h̄2

2m∗N

∑
k

(∣∣∣∣k + Q
2

∣∣∣∣
2

ρss(k)

+
∣∣∣∣k − Q

2

∣∣∣∣
2

ρs̄s̄(k)

)
, (8)

εintra
x = − 1

2AN

∑
k,k′

V 0
k′−k

[
ρss(k′)ρss(k)

+ ρs̄s̄(k′)ρs̄s̄(k)
]
,

εinter
x = − 1

AN

∑
k,k′

V d
k′−kρss̄(k′)ρ∗

ss̄(k),
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where N = nA is the total number of electrons in the system.
The Hartree energy vanishes because of equal layer densities.

The convergent HF energy as a function of Q depends on
the initial conditions of the self-consistent equations Eq. (7).
For most parameter sets (rs, d) in the phase diagram, the
minimum HF energy is found by initializing Eq. (7) using
energies of the PSF state, i.e.,

ξ
(0)
k = h̄2

4m∗

(∣∣∣∣k + Q
2

∣∣∣∣
2

−
∣∣∣∣k − Q

2

∣∣∣∣
2
)

− e2kF

2πεb

[
f2D

( |k + Q/2|
kF

)
− f2D

( |k − Q/2|
kF

)]
,

�
(0)
k = e2kF

4πεb

[
I

( |k + Q/2|
kF

, kF d

)

+ I

( |k − Q/2|
kF

, kF d

)]
, (9)

where uk = vk = 1/
√

2 and f−,k = 1, f+,k = 0 are used.
Functions I (x, kF d ) and f2D(x) [3] are defined as

I (x, kF d ) =
∫ 1

0
dyy

∫ 2π

0
dθ

e−kF d
√

x2+y2−2xy cos θ√
x2 + y2 − 2xy cos θ

,

f2D(x) = 1

4
I (x, kF d = 0)

=
{

E (x), x � 1,

x
[
E

(
1
x

) − (
1 − 1

x2

)
K

(
1
x

)]
, x � 1.

(10)

K (x) and E (x) are the complete elliptic integral of the first
and the second kind, respectively. Near the PSDW-PSP phase
transition boundary, the minimum HF energy is obtained by
starting with a small perturbation to the PSP state, although
this energy only slightly differs from that obtained by starting
from the PSF state using Eq. (9). In the following presented
results, we only consider the PSDW state to have lower energy
than PSP or PSF state if the energy difference is greater than
∼0.001 Ry∗. The scale of k-grid in these calculations is cho-
sen to be ∼0.036kF and the momentum cutoff ∼3.6kF . The
self-consistent equations are solved until convergence when
the k-average of order parameter �̄k < 10−4 to 10−5 Ry∗.
Here Ry∗ is the effective Rydberg

Ry∗ = e2

2a∗εb
= h̄2

2m∗(a∗)2
. (11)

a∗ = εbh̄2/e2m∗ is the effective Bohr radius. In GaAs-AlGaAs
double quantum well, εb = 12.5, m∗ = 0.07me [29], a∗ =
98.3 Å, and Ry∗ ≈ 5.5 meV.

B. d = 0 limit—The Overhauser SDW

The d = 0 limit of the model described in Sec. II A, set-
ting spins s =↓ and s̄ =↑, recovers the Overhauser SDW
theory with SU(2) symmetry in a single-layer 2DEG. The
HF energies per electron of the SU(2) paramagnetic (εP

tot) and

7.
1×
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1.
8×
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11

7.
9×
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10

7.
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FIG. 2. SDW in a single-layer 2DEG. (a) HF energies per elec-
tron as a function of rs for paramagnetic (black), ferromagnetic
(yellow), and SDW (green) states. The dashed lines are calculated
using the exact formula Eq. (12) and the solid lines, slightly higher
in energy, are calculated by numerically summing over k-space oc-
cupied states using Eq. (13). The SDW state exhibits lower energy
at intermediate densities, rs ∈ [1.9, 3.2], with the most pronounced
instability near the paramagnetic to ferromagnetic transition at rs ∼
2.8, as indicated by the energy difference in panel (a). (b) The SDW
momentum, QSDW

c , plotted as a function of rs. QSDW
c is approximately

2kF at high densities (rs � 2), decreases as the density decreases (rs

increases) and drops to zero rapidly as rs approaches the critical value
∼3.2, where kF ≡ kP

F = (2πn)1/2. In these calculations, the scale of k
grid is chosen to be ∼0.036kF . The step-like features in panel (b) are
a result of finite number of Q gridding in our calculation.

ferromagnetic (εF
tot) states are, respectively,

εP
tot

Ry∗ = π (a∗)2n − 8
√

2a∗

3
√

π
n1/2,

εF
tot

Ry∗ = 2π (a∗)2n − 16a∗

3
√

π
n1/2, (12)

where n is the total electron density. εP
tot matches the energy

of the PSP state (S1 in Ref. [3]), and εF
tot corresponds to the

d = 0 limit of the PSF state (d = 0 limit of S2 in Ref. [3]).
Figure 2(a) shows εP

tot (black dashed line) and εF
tot (yellow

dashed line) as a function of rs = √
2/πn/a∗. The SU(2)

paramagnetic to ferromagnetic transition occurs at rs ∼ 2.8,
agreeing with the critical density for the S1 to S2 phase tran-
sition in the d = 0 limit (Fig. 2 in Ref. [3]). Equivalently, εP

tot
and εF

tot can be expressed as a summation over occupied states
in k-space,

εP
tot

Ry∗ = 2(a∗)2

N

∑
k�kP

F

k2 − 4πa∗

NA

∑
k,k′�kP

F

1

|k − k′| ,

εF
tot

Ry∗ = (a∗)2

N

∑
k�kF

F

k2 − 2πa∗

NA

∑
k,k′�kF

F

1

|k − k′| , (13)

where kP
F = (2πn)1/2 and kF

F = (4πn)1/2 are Fermi momenta
of paramagnetic and ferromagnetic states, respectively. En-
ergies calculated using Eq. (13) are plotted as solid lines
in Fig. 2(a), which are slightly higher in energy than those
calculated using the exact formula Eq. (12) but accurately
capture the critical rs of the paramagnetic to ferromagnetic
transition.
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FIG. 3. SDW in a single-layer 2DEG. (a) The exchange energy
εinter

x , which quantifies the coherence between opposite spins, as
a function of Q for several small rs values. For rs � 1.8, εinter

x is
significantly smaller than the energy scale of εtot in Fig. 2(a), and
therefore coherence can be easily inundated by correlations. (b) The
HF energy εtot versus Q for rs = 2.2, 2.8, 3.0, and 3.6. In the SDW
regime, rs ∈ [1.9, 3.2], the energy difference between the SDW and
the second-lowest-energy state increases and then decreases with
increasing rs, a trend which can be seen in Fig. 2(a) as well.

The green line in Fig. 2(a) plots the energy of the SU(2)
SDW, which is lower than both paramagnetic and ferromag-
netic states for intermediate electron densities, rs ∈ [1.9, 3.2].
The corresponding SDW momentum QSDW

c , as a function of
rs, is shown in Fig. 2(b). At high densities (rs � 2), QSDW

c is
approximately 2kF , where kF ≡ kP

F = (2πn)1/2. As the den-
sity decreases (rs increases), QSDW

c decreases and drops to
zero rapidly as rs approaches the critical value ∼3.2 [30]. The
step-like features in Fig. 2(b) are a result of finite number of
Q gridding in our calculations.

In the high-density limit, the correlation effects are
relatively weak and the exchange-driven instability, the Over-
hauser SDW here, should be stable. Our calculations shown in
Fig. 2(a), however, indicate that for rs � 1.9, there is no obvi-
ous energy benefit from the SDW formation. This is because
the exchange energy gain from the single Slater determinant
SDW state becomes exponentially small [31–35] at low rs val-
ues and can be easily inundated by correlations. The exchange
energy εinter

x , which quantifies the coherence between opposite
spins, is plotted as a function of Q for several small rs values

in Fig. 3(a). For rs � 1.8, εinter
x is significantly smaller than

the energy scale of εtot in Fig. 2(a). Figure 3(b) shows εtot

versus Q for rs = 2.2, 2.8, 3.0, and 3.6. In the SDW regime,
rs ∈ [1.9, 3.2], the energy difference between the SDW and
the second-lowest-energy state increases and then decreases
with increasing rs, a trend which can be seen in Fig. 2(a) as
well. The SDW instability is most pronounced near the para-
magnetic to ferromagnetic transition at rs ∼ 2.8 [Fig. 2(a)]
when εtot (Q = 0) approximates εtot (Q = 2kF ) in Fig. 3(b).
This property agrees with findings from previous studies in
3DEG [30,36,37].

In Fig. 4, we show all energy components—the kinetic
energy εkin, the exchange energy εx, including both intraspin
(εintra

x ) and interspin (εinter
x ) components—for rs = 2.2, 2.8,

and 3.6. At low rs (high densities), interspin coherence is
confined to a small region in momentum space near Q ∼ 2kF .
At high rs, ε

inter
x dominates and reaches its minimum at zero

momentum, thus favoring the ferromagnetic state (QSDW
c = 0),

as for example depicted in Fig. 4(c) for rs = 3.6. It should
be noted that the sailboat-like energy profiles at rs = 2.2 in
Figs. 3(b) and 4(a) directly result from the specific HF ini-
tialization condition, which is chosen to be Eq. (9) in these
figures. Such an initial condition results in the peak in the
kinetic energy εtot for Q < 2kF near the PSP-PSDW phase
transition.

C. HF phase diagram

The spinless model of PSDW in 2D electron bilayers
closely resembles the SDW in a single-layer 2DEG, except
that the Coulomb interaction in PSDW model includes a factor
of e−qd , reducing the SU(2) symmetry to U(1) for finite-layer
separation d . Consequently, the order parameter of PSDW is
significantly smaller than that of SDW.

In Fig. 5(a), we show the HF phase diagram as a function of
(rs, d) by solving the self-consistent equations from Sec. II A.
The HF ground-state transitions from the homogeneous PSF
(Qc = 0) at large rs to PSP at large d , which agrees with
the original phase boundaries calculated by homogeneous HF
theory [3] as marked by yellow dashed lines. In the regime
between the PSF and PSP phases, a new phase—the PSDW

FIG. 4. All energy components of the Overhauser SDW HF energy εtot (black solid lines): the kinetic energy εkin (blue solid lines) and the
exchange energy εx (green solid lines), including the one within the same spin εintra

x (green dashed lines) and the one captures the coherence
between opposite spins εinter

x (green dotted lines), for (a) rs = 2.2, (b) rs = 2.8, and (c) rs = 3.6. The dominance of εinter
x at high rs values leads

to the stabilization of the ferromagnetic state (QSDW
c = 0), for example in panel (c). In each figure, the y axis on the left measures εtot , and the

y axis on the right scales other energy components (εkin, εx, ε
intra
x , and εinter

x ) which are all offset for clarity and comparative convenience in the
same figure.
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FIG. 5. PSDW in 2D electron bilayers. (a) The HF phase diagram as a function of (rs, d). The HF ground state is homogeneous PSF at
large rs and PSP at large d , which agrees with the original phase boundaries calculated by homogeneous HF theory [3] as marked by yellow
dashed lines. In the regime between the PSF and PSP phases, the PSDW state has a lower energy across all rs and d values shown in the
phase diagram. This PSDW phase occupies a larger region within the original PSP domain than in the PSF domain, similar to the SDW case in
Fig. 2(a), and expands a broader rs range as d increases. The PSDW momentum Qc is ∼2kF near the PSDW-PSP boundary, decreases toward
the PSDW-PSF boundary and ultimately drops to zero as approaching the PSF phase. (b) The stability of PSF and PSDW phases, quantified
by the energy difference between the ground state and the second-lowest-energy state: in the PSF phase, it is �PSF = εPSP

tot − εPSF
tot and in the

PSDW phase �PSDW = min{εPSP
tot , εPSF

tot } − εPSDW
tot . The maximum of �PSDW is an order of magnitude smaller than that of �PSF. The maximum

of �PSDW tracks the original PSF-PSP phase boundary, marked by the yellow dashed lines, which is analogous to the observation in SDW that
the instability is most pronounced near the paramagnetic to ferromagnetic transition [Fig. 2(a)]. Note that the PSDW phase boundaries are
interpolated to a denser (rs, d) grid and we only consider the PSDW state to have lower energy than PSP or PSF state if the energy difference
is greater than ∼0.001 Ry∗.

state—that breaks both translational and rotational symme-
tries is found to have a lower energy across all rs and d
values shown in the phase diagram Fig. 5(a). This PSDW
phase occupies a larger region within the original PSP domain
than in the PSF domain, similar to the SDW case shown in
Fig. 2(a). Additionally, the PSDW phase for a given d expands
a broader rs range as d increases. The PSDW momentum Qc,
indicated by the color in Fig. 5(a), is approximately 2kF near
the PSDW-PSP boundary, decreases toward the PSDW-PSF
boundary, and quickly drops to zero as approaching the PSF
phase. This behavior of the density wave momentum is anal-
ogous to that observed in the Overhauser SDW case depicted
in Fig. 2(b).

The phase diagram is represented in Fig. 5(b) by the
ground-state stability, characterized by the energy difference
between the HF ground state and the second-lowest-energy
state: in the PSF phase, it is �PSF = εPSP

tot − εPSF
tot and in

the PSDW phase �PSDW = min{εPSP
tot , εPSF

tot } − εPSDW
tot . As indi-

cated by the color plot in Fig. 5(b), the maximum of �PSDW is
an order of magnitude smaller than that of �PSF. Interestingly,
the maximum of �PSDW tracks the original PSF-PSP phase
boundary, marked by the yellow dashed line, corroborating
the observation in SDW that the instability is most pronounced
near the paramagnetic to ferromagnetic transition [Fig. 2(a)].

Figure 6 illustrates the evolution of the HF energy, εtot , with
respect to d for fixed rs = 4 in Fig. 6(a), and with respect
to rs for fixed d’s in Figs. 6(b) and 6(c). As approaching
the PSP-PSDW phase boundary from the PSP side, interlayer
coherence first occurs in a confined region in k-space near
Q ∼ 2kF . In Fig. 6(a), as d decreases–effectively increasing
the interlayer Coulomb interaction–the energy of the homo-
geneous PSF state (at Q = 0) first rises then falls, while the
energy of the PSP state (at Q � 2kF ) remains unchanged

due to the d-independence of the interlayer incoherent state.
In Figs. 6(b) and 6(c), both the PSF and PSP states exhibit
changes in energy as rs varies. These figures reveal that as
the Coulomb interaction strengthens, either by decreasing d or
increasing rs, the PSDW state initially overtakes the PSP state,
becomes most stable when the PSF and PSP energies equalize,
and then gradually loses its energy advantage to the PSF state.
It should be noted that, similar to Figs. 3(b) and 4(a), the
sailboat-like εtot in Fig. 6 [the yellow lines in Figs. 6(a)–6(c)
and the orange line in Fig. 6(c)] is a direct result of choosing
the PSF state as the HF initial state in these calculations [38].

In Fig. 7, we show all energy components as a function
of Q at three marked points in the phase diagram Fig. 5(a).
These points represent distinct phases: one phase deep in the
PSF regime (rs = 8, d/a∗ = 1), one phase deep in the PSP
regime (rs = 4, d/a∗ = 3) and one phase within the PSDW
regime (rs = 4, d/a∗ = 1). In the PSF phase [Fig. 7(a)], the
HF energy is minimized at Q = 0 as εinter

x dominates and
is minimized at Q = 0. In the PSP phase [Fig. 7(c)], there
is no evident energy variation with Q. In the PSDW phase
[Fig. 7(b)], εtot reaches its minimum at a finite Q as a result of
the comparable scale of exchange and kinetic energies. Note
that in Fig. 7(a), unlike the scenario in Fig. 4, energies do not
plateau for large momentum Q > 2kF . This is because with
increasing rs, spontaneous coherence remains significant for
larger Q values, a phenomenon also observed in the SDW
case for larger rs values (not shown in figures presented in
the paper). The converged HF results, including quasiparticle
bands and interlayer coherence order parameter �k in these
three distinct phases are shown in Appendix A.

Even though we have focused on the two-band PSDW
model, ignoring the spin degree of freedom, there is no ob-
vious reason to rule out the possibility of the spin-pseudospin
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FIG. 6. PSDW in 2D electron bilayers. The HF energy, εtot , versus Q for (a) fixed rs = 4 and varying d , (b) fixed d/a∗ = 0.1 and varying
rs, and (c) fixed d/a∗ = 0.3 and varying rs. In panel (a), as d decreases, the energy of the homogeneous PSF state (at Q = 0) first rises then
falls, while the energy of the PSP state (at Q � 2kF ) remains unchanged due to the d-independence of the interlayer incoherent state. In panels
(b), (c), both the PSF and PSP states exhibit changes in energy as rs varies.

density wave (S-PSDW), i.e., both the intralayer SDW and
interlayer PSDW occur in an e-e bilayer, as schematically
shown in Fig. 1(c) as an example of S-PSDW. Because of
the exchange-driven nature of (pseudo)spin density waves,
S-PSDW state with the optimized combination of SDW and
PSDW momenta, Q1 and Q2, should have a lower energy.
However, these two independent density wave momenta com-
plicate the theory, we therefore briefly comment on the
four-band model, including both spin and pseudospin degrees
of freedom, in Appendix B.

III. PHASE DIAGRAM OF UNEQUAL LAYER DENSITIES

We extend our analysis of equal layer densities from
Sec. II to the case involving unequal layer densities. Our
self-consistent HF calculations indicate that the PSDW state
is only stable for a small layer density imbalance. Because
of the intralayer exchange interaction, all electrons tend to be
polarized into one of the layers if either the layer imbalance m
or the average interelectron distance r̄s is large–the HF theory
favors the layer fully polarized state.

In experimental setups, a layer density imbalance is
very often induced using a dual-gated structure, in which
the chemical potential across the system remains constant.
Consequently, a finite-displacement field is generated when
densities in the two layers are not equal. We model this exter-
nal displacement field as the electrostatic energy difference,
εg, between the two 2DEG layers [39]:

εg = εF,b − εF,t

= 2π h̄2

m∗ nm, (14)

where n is the total electron density, and m is a dimen-
sionless parameter that is used to tune the strength of the
chemical potential difference and induce a density imbalance.
Without loss of generality, we assume εF,b > εF,t , εg > 0. Un-
der these conditions, the Hamiltonian and the self-consistent
equations in Eqs. (1)–(7) continue to apply, with the addi-
tion of terms for the electrostatic energy difference, εg, and
Hartree energies proportional to the layer density imbalance.

FIG. 7. All energy components of PSDW HF energy εtot (black solid lines): the kinetic energy εkin (blue solid lines) and the exchange
energy εx (green solid lines), including εintra

x (green dashed lines), and εinter
x (green dotted lines). (a) rs = 8, d/a∗ = 1, deep in the PSF phase,

(b) rs = 4, d/a∗ = 1, in the PSDW phase and (c) rs = 4, d/a∗ = 3, which is deep in the PSP phase. In panel (a), the HF energy is minimized
at Q = 0 as εinter

x dominates and is minimized at Q = 0. In panel (b), εtot reaches its minimum at a finite Q as a result of the comparable scale of
exchange and kinetic energies. In panel (c), there is no obvious energy variation with Q. In each figure, the y axis on the left measures εtot , and
the y axis on the right scales other energy components (εkin, εx, ε

intra
x , and εinter

x ) which are all offset for clarity and comparative convenience in
the same figure.
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FIG. 8. PSDW in 2D electron bilayers. Phase diagram of unequal layer densities, with a fixed d/a∗ = 1, as a function of (m, r̄s), where
r̄s = (2/πn)1/2/a∗ is the average interelectron distance. (a) The schematic phase diagram of self-consistent HF calculations. In the m = 0 limit,
i.e., equal layer density case, the diagram recovers the phases found at d/a∗ = 1 in Fig. 5(a): PSP for r̄s � 4, PSDW for 4 � r̄s � 6, and PSF
for r̄s � 6. When m is nonzero, PSDW can in principle only occur at small layer density imbalances. As m increases, the energy benefit from
the PSDW formation is exponentially small and the interlayer coherence is confined to a tiny region in momentum space as a perturbation to
the paramagnetic state. At larger m or r̄s values, the dominant intralayer exchange energy leads to a full layer polarization, i.e., the pseudospin
fully polarized phase with an Ising order or equivalently the S3 phase in Ref. [3]. At smaller r̄s, pseudospins are incoherent. (b) The phase
diagram by directly comparing the HF energies between the pseudospin coherent and pseudospin incoherent states, denoted as Sξ and S′

1 in
Ref. [3], respectively. The HF energies are calculated using the same k-space grid as in panel (a).

Equation (4) is modified accordingly to include these factors,

εt,k+ Q
2

= h̄2|k + Q/2|2
2m∗ + εg + 2πe2d

εb
nt

− 1

A

∑
k′

V 0
k′−kρtt (k′),

(15)

εb,k− Q
2

= h̄2|k − Q/2|2
2m∗ + 2πe2d

εb
nb

− 1

A

∑
k′

V 0
k′−kρbb(k′).

The modified self-consistent equations that account for these
adjustments are

ξk = h̄2

4m∗

(∣∣∣∣k + Q
2

∣∣∣∣
2

−
∣∣∣∣k − Q

2

∣∣∣∣
2
)

+ εg

2
+ πe2d

εb
(nt − nb)

(16)

+ 1

A

∑
k′

V 0
k′−k

ξk′√
ξ 2

k′ + �2
k′

( f−,k′ − f+,k′ ),

�k = 1

2A

∑
k′

V d
k′−k

�k′√
ξ 2

k′ + �2
k′

( f−,k′ − f+,k′ ).

The HF energy, εtot, now incorporates additional electro-
static energy and Hartree energy reflective of the layer density
imbalance,

εtot = εkin + εH + εintra
x + εinter

x ,

εkin = Antεg

N
+ h̄2

2m∗N

∑
k

∣∣∣∣k + Q
2

∣∣∣∣
2

ρtt (k)

+ h̄2

2m∗N

∑
k

∣∣∣∣k − Q
2

∣∣∣∣
2

ρbb(k),

εH = πe2Ad

2εbN
(nt − nb)2, (17)

εintra
x = − 1

2AN

∑
k,k′

V 0
k′−k

[
ρtt (k′)ρtt (k)

+ ρbb(k′)ρbb(k)
]
,

εinter
x = − 1

AN

∑
k,k′

V d
k′−kρtb(k′)ρ∗

tb(k).

It should be noted that the electrostatic energies in Eq. (17)
specifically depend on the dual-gated experimental setup we
described previously. The self-consistent HF phase diagram,
with a fixed d/a∗ = 1, is schematically shown in Fig. 8(a) as
a function of (m, r̄s). Here, r̄s = (2/πn)1/2/a∗ is the average
interelectron distance. In the m = 0 limit, which corresponds
to equal layer densities, the diagram reflects the phases found
at d/a∗ = 1 shown in Fig. 5(a): PSP for r̄s � 4, PSDW for
4 � r̄s � 6, and PSF for r̄s � 6. When m is nonzero, PSDW
can in principle only occur at small layer density imbalances.
As m increases, the energy benefit from the PSDW formation
is exponentially small and the interlayer coherence is confined
to a tiny region in momentum space as a perturbation to the
paramagnetic state. At larger m or r̄s values, the intralayer
exchange energy becomes dominant, leading to a full polar-
ization of electrons into one layer, which is the pseudospin
fully polarized phase with an Ising order (in ẑ direction, i.e.,
S3 phase in Ref. [3]). At smaller r̄s, pseudospins are inco-
herent, resulting in uneven electron distribution across the
two layers.

Figure 8(b) shows the phase diagram by directly comparing
the HF energies between the pseudospin coherent state and
pseudospin incoherent state, denoted as Sξ and S′

1 [40] in
Ref. [3], respectively. Expressed in the summation of k-space
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occupied states,

ε
Sξ

tot = Antεg

N
+ h̄2

2m∗N

∑
k�k

Sξ
F

k2 + πe2Ad

2εbN
(nt − nb)2

− πe2

εbNA

∑
k,k′

�k
Sξ
F

α4 + β4 + 2α2β2e−|k−k′ |d

|k − k′| , (18)

ε
S′

1
tot = Antεg

N
+ h̄2

2m∗N

⎛
⎝ ∑

k�kF,t

k2α2 +
∑

k�kF,b

k2β2

⎞
⎠

− πe2

εbNA

⎛
⎜⎜⎝∑

k,k′
�kF,t

α4

|k − k′| +
∑
k,k′
�kF,b

β4

|k − k′|

⎞
⎟⎟⎠, (19)

where nt = nα2, nb = nβ2, and α2 + β2 = 1. kSξ

F = (4πn)1/2

is the Fermi momentum of Sξ state, kF,t = (4πnt )1/2 and
kF,b = (4πnb)1/2 are Fermi momenta in S′

1 state. Figure 8(b)
is calculated using the same k-space grid as in Fig. 8(a). The
difference from Fig. 3(f) in Ref. [3] in the phase diagram
Fig. 8(b) is attributed to the consideration of additional elec-
trostatic energy, which weakens the exchange energy benefits
in the Sξ state.

Comparing Figs. 8(a) and 8(b), PSDW tends to occur near
the Sξ -S′

1 boundary, similar to the behavior seen in the equal
layer density case in Fig. 5. The boundary of pseudospin
incoherent phase and pseudospin fully polarized phase with
an Ising order in Fig. 8(a) qualitatively aligns with the zero
energy-difference in Fig. 8(b).

IV. RPA STATIC SCREENING

Just as correlation effects suppress ferromagnetic insta-
bility, they also undermine the stability of SDW or PSDW
[41,42]. It is well established that screening effects always
favor the paramagnetic state [12,43]. Previous studies have
demonstrated the fragility of the Overhauser SDW instability
to correlation effects [12,44,45]. In a dense electron gas, any
perturbation to the paramagnetic state becomes local and such
local instabilities particularly susceptible to Thomas-Fermi
screening effect. Our HF calculations in Secs. II and III show
that at high densities, both interspin and interlayer coher-
ence become local (with large Qc), and the corresponding
exchange energy gain from the formation of SDW or PSDW
is insufficient to counterbalance the impact of correlations
[31]. In this section, we explore the HF phase diagram by
self-consistently taking into account the RPA static screening
effect and further correcting the model with Hubbard-type
local field corrections. We find that RPA static screening
eliminates all coherent phases, leaving only the spin and
pseudospin paramagnetic phase in the phase diagram. When
Hubbard-type local field corrections are included, spin ferro-
magnetic and PSF phases re-emerge, but SDW and PSDW
remain absent. Despite these results, a rigorous treatment of
dynamical screening theory could potentially rescue SDW and
PSDW, as unscreened (static RPA) are approximations over-
(under-) estimating the importance of screening, and the dy-

namically screened theories typically give results in between,
closer to the unscreened approximation [46,47]. However,
developing such a rigorous and appropriate RPA dynamical
screening theory is beyond the scope of the current work.

In RPA static screening theory, the Coulomb interaction V d
q

is screened by the static dielectric constant by

V d
sc (q) = ε−1(q)V d (q) = ε−1(q)

2πe2

εbq
e−qd , (20)

where εb is the dielectric constant of the surrounding medium.
The static dielectric function is

ε(q) = 1 − V d (q)χ0(q), (21)

where χ0(q) is the static polarization function. For a param-
agnet, using the Lindhard formula,

χ0(q) = g

A

∑
n,m,k

fnk − fmk+q

εnk − εmk+q
|〈mk + q|eiq·r|nk〉|2, (22)

where g is the spin or pseudospin degeneracy, n and m label
quasiparticle bands, and |nk〉 is the quasiparticle eigenvector.
In the long wavelength limit, q → 0, the intraband transitions
contribute a constant to the polarization function, which is just
the density of states at the Fermi level D(εF),

lim
q→0

χ intra
0 (q) = lim

q→0

1

A

∑
n,k

fnk − fnk+q

εnk − εnk+q

= −D(εF). (23)

The screened Coulomb interaction in the long wavelength
limit is the inverse of the density of states,

lim
q→0

Vsc(q) = D−1(εF). (24)

RPA static screening stabilizes both spin and pseudospin
paramagnetic states until extremely high rs values, leading
to the disappearance of spin and pseudospin ferromagnetic,
SDW, and PSDW states from the phase diagram. However,
the most primitive RPA static screening theory tends to over-
estimate the strength of screening since it only takes into
account the Hartree part. To incorporate exchange corrections
to the RPA approximation, we further include Hubbard-type
local field factors Gss′ = Gssδss′ , which ignores correlations
between opposite (pseudo)spins, Gss̄. For a general case with
any (pseudo)spin polarization,

Gss(q) = q√
q2 + k2

F,s

. (25)

The static dielectric constant for (pseudo)spin s (Appendix C)
is [48]

εs(q) = (1 + V d (q)Gssχ0s)

[
1 − V d (q)

∑
s′

χ̃s′

]
, (26)

where χ̃s is the proper density response function including the
effect of exchange interactions and is related to the Lindhard
function χ0s by

χ̃−1
s = χ−1

0s + V d (q)Gss. (27)
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FIG. 9. The RPA screened self-consistent HF phase diagram of
equal layer densities, with paramagnetic local field correction in
Eq. (28). At small densities (large rs) and small d , lowest energy state
is spin and pseudospin ferromagnetic (SF-PSF). For intermediate rs

and large d , it is the spin ferromagnetic and pseudospin paramagnetic
(SF-PSP) state. For rs � 3, it is the spin and pseudospin paramag-
netic (SP-PSP) state. The yellow dashed lines trace the HF phase
boundary without screening effects [3].

In the paramagnetic state, χ0s = χ0s̄ = χ0/2, Eq. (26) reduces
to the dielectric constant of original Hubbard’s result for a
paramagnet:

Gss = Gs̄s̄ = G,

εs = εs̄ = 1 − V d (q)

(
1 − G

2

)
χ0. (28)

The screened HF phase diagram is calculated by self-
consistently evaluating the screened Coulomb potential
Eq. (20), accounting for, from the most screened to the least
screened, the primitive RPA static screening, RPA with fer-
romagnetic and paramagnetic local field factor corrections.
The primitive RPA static screening eliminates all coherent
phases, including spin ferromagnetic and SDW phases in the
single-layer 2DEG (Appendix D), as well as PSF and PSDW
phases, across all considered parameters (rs, d). The primitive
RPA static screening leaves only the spin and pseudospin
paramagnetic (S0 in Ref. [3]) phase in the phase diagram. The
inclusion of Hubbard-type local field corrections reintroduces
the spin ferromagnetic and PSF phases into the phase diagram,
with phase boundaries shifted to higher rs values due to cor-
relations. Both SDW and PSDW are fragile to correlations.
Figure 9 shows the RPA statically screened HF phase diagram
for equal layer densities, with corrections from the paramag-
netic local field factor Eq. (28). The yellow dashed lines trace
the paramagnetic to ferromagnetic phase transition boundaries
in the absence of screening effects [3].

In Appendix D, Fig. 13 shows the critical temperature
Tc of the spin ferromagnetic state in a single-layer 2DEG,
calculated using the finite-temperature self-consistent HF with
RPA static screenings. With the inclusion of static screenings,
ranging from the weakest (RPA with paramagnetic local field

factor correction) to the strongest (the primitive RPA without
local field factor corrections) effect, correlations increasingly
suppress Tc and elevate the critical rs. In our calculations,
considering a maximum rs = 10, spin is not ordered under the
primitive RPA static screening theory.

V. DISCUSSION

In this paper, we investigate the PSDW instability in 2D
electron bilayers, providing the phase diagram based on self-
consistent HF theory. For bilayers with equal layer densities,
we find that the PSDW, characterized by the momentum
Qc ∼ 2kF , has the lowest energy near the PSP-PSF phase
transition boundary across all layer separations d and elec-
tron densities characterized by rs. For unequal layer densities,
the stability of PSDW decreases quickly with increasing
layer density imbalance. Our self-consistent HF calculation is
further supplemented by RPA static screening, which elim-
inates all coherent phases (spin ferromagnetic, SDW, PSF,
and PSDW). However, after adjusting for Hubbard-type local
field corrections, the spin ferromagnetic and PSF phases re-
emerge, even though SDW and PSDW are still absent in the
phase diagram. Experimental detection strategies for PSDW,
as discussed in Sec. I, include magneto-transport experiments
capable of elucidating Fermi surface properties, anomalies
in zero-field conductivity and ARPES. In bilayer systems,
interlayer tunneling is often unavoidable when d is small.
This tunneling suppresses the PSDW order, similar to the
suppression in homogeneous interlayer coherence [3].

We mention that the mean field HF theory, while being
qualitatively correct, often quantitatively overestimates var-
ious symmetry breaking instabilities, which is why we also
provide the results for the screened HF theories in this work.
Typically, an instability or phase transition predicted within
the HF theory occurs at stronger interaction compared with the
critical interaction strength predicted in theories beyond the
mean-field level. In the current problem involving Coulomb
instabilities in e-e bilayers, the dimensionless interaction is
characterized by rs and d/a∗, and we expect the experimental
critical values for rs (d/a∗) to be higher (lower) than those
predicted by our unscreened Hartree-Fock theory, as obtained
in our screened mean-field theories. The important point to
emphasize, however, is that both of these parameters, rs and
d/a∗, can be continuously varied in 2D bilayers, thus enabling
an experimental approach to the interesting PSDWs predicted
in our work. (This could not be done for the 3D Overhauser
instability where metallic carrier densities cannot be varied by
much.) Since the predicted PSDW is completely novel ground
state never before considered in the literature, we hope that
our theory will lead to experiments on various electron bilay-
ers at low carrier densities (i.e., large rs) and small layer sep-
arations to look for this interesting quantum phase of matter.

Since the observation of spontaneous CDWs and SDWs
originally proposed by Overhauser in single-layer 2DEGs is
challenging, the same applies to layer PSDWs in 2DEG bi-
layers. However, 2D systems with complex band structures
and Fermi surfaces show promise for realizing PSDWs. In
general, the pseudospin concept [49], which is closely anal-
ogous to real spins, applies to any two-level system. This
includes the layer degree of freedom in bilayers (as discussed
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in this paper), subbands in wide quantum wells, sublattice or
valley degrees of freedom in honeycomb and triangular lattice
materials, and cyclotron orbits in Landau levels [50–57]. In
multilayer graphene moiré systems, the intervalley coherent
state has been proposed as the ground state at charge neu-
trality [58,59], and Kekulé spiral order at nonzero integer
fillings [60]. In these systems, two valleys in momentum space
are approximately decoupled due to large momentum separa-
tion, and thus are analogous to the layer degree of freedom
in nearly decoupled bilayers. Even in graphene multilayer
systems without moiré superlattices, the intervalley coherent
phase can occupy a large portion of the phase diagram [61–65]
and is closely related to unconventional superconductivity. We
anticipate that general PSDWs, involving pseudospin in the
sense of layer or valley, are likely to occur in a bilayer struc-
ture composed of two rhombohedral multilayer graphenes
(RMGs) separated by a thin dielectric film, which prevents
tunneling between the two RMGs while allowing interactions.
By applying dual-gated and/or bias voltages, the displace-
ment field between RMGs and the Fermi level in each RMG
can be individually tuned. The trigonal warping in the band
structure, resulting from next-nearest-neighbor hoppings in
RMGs, can facilitate the formation of PSDWs by increasing
the number of available states for coherence near the Fermi
surface. Although our current study, based on the 2DEG
model with circular Fermi surfaces, may not directly relate to
experiments, it provides a foundational framework for future
investigations into novel coherent behaviors in general 2D bi-
layers under varying electronic and structural conditions. De-
tailed exploration of these phenomena is left for future work.
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APPENDIX A: HF CONVERGED QUASIPARTICLE BANDS
AND INTERLAYER COHERENCE ORDER PARAMETERS

Figures 10–12 show the converged HF results in three
distinct phases for equal layer densities: one phase within the
PSDW regime (Fig. 10, rs = 4, d/a∗ = 1), one phase deep
in the PSF regime (Fig. 11, rs = 8, d/a∗ = 1) and one phase
deep in the PSP regime (Fig. 12, rs = 4, d/a∗ = 3).

APPENDIX B: SPIN-PSEUDOSPIN DENSITY
WAVE (S-PSDW)

In e-e bilayers, the HF ground state for rs � 2 is spin and
pseudospin paramagnetic (S0 phase in Ref. [3]). Therefore,
the spin and pseudospin degrees of freedom should be treated
on an equal footing, and the SDW and PSDW can in principle
both occur in an e-e bilayer. An example of the S-PSDW phase
is schematically shown in Fig. 1(c).

We present a special model of S-PSDW below, restrict-
ing that SDW and PSDW having the same momentum, in
which primitive signatures of nonvanishing intralayer SDW
and interlayer PSDW order parameters are seen in our self-
consistent HF calculations. However, independent density
wave momenta make it challenging to find the optimal SDW
and PSDW momenta combination which lower the total
energy.

FIG. 10. Converged HF results in the PSDW phase, rs = 4, d/a∗ = 1. I(a) and II(a) show k-space distributions of ε−,k, in which the
black dashed lines plot the Fermi surface contours. I(b) and II(b) show quasiparticle bands ε±,k (solid lines) and the interlayer coherence
order parameter �k (yellow dashed lines). The black horizontal dashed lines are Fermi levels. The color of solid lines represents the layer
polarization, Pb − Pt . I(c)–(e) and II(c)–(e) show quasiparticle wave-function probabilities v2

k, u2
k, and vku∗

k defined in Eqs. (3)–(6). Panels
I(a)–(e) are for Q = 0, panels II(a)–(e) are for Q = 2kF .
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FIG. 11. Converged HF results in the PSF phase, rs = 8, d/a∗ = 1. Same as described in the caption of Fig. 10.

With the four-component spinor basis
(ct↓,k+Q/2, ct↑,k−Q/2, cb↓,k+Q/2, cb↑,k−Q/2)T , the HF
Hamiltonian in Eq. (2) is generalized to

H (k) =

⎛
⎜⎜⎜⎝

εt↓,k+Q/2 −gt,k(Q) −�k(0) −�k(Q)

−g∗
t,k(Q) εt↑,k−Q/2 −�k(−Q) −�k(0)

−�∗
k(0) −�∗

k(−Q) εb↓,k+Q/2 −gb,k(Q)

−�∗
k(Q) −�∗

k(0) −g∗
b,k(Q) εb↑,k−Q/2

⎞
⎟⎟⎟⎠.

(B1)

Since we only focus on the possibility of the spontaneous
SDW and PSDW, but not a rigorous phase diagram, we have
assumed that the intralayer SDW and interlayer PSDW have
the same momentum Q. Note that if the momenta are generi-
cally different, the Hamiltonian does not admit such a simple
form as Eq. (B1) and the necessary matrix to diagonalize
will grow with system size. The diagonal matrix elements of
H (k) are

εlσ,k±Q/2 = h̄2|k ± Q/2|2
2m∗

− 1

A

∑
k′

V 0
k′−k

〈
c†

lσ,k′± Q
2

clσ,k′± Q
2

〉
, (B2)

l = t, b label layer and σ =↑,↓ label spin degrees of free-
dom. The intralayer SDW order parameters are

gl,k(Q) = 1

A

∑
k′

V 0
k′−k

〈
c†

l↑,k′− Q
2

cl↓,k′+ Q
2

〉
. (B3)

The homogeneous interlayer coherence order parameter
�k(0) and the PSDW order parameter �k(±Q) are,
respectively,

�k(0) = 1

A

∑
k′

V d
k′−k

〈
c†

bσ,k′± Q
2

ctσ,k′± Q
2

〉
,

�k(Q) = 1

A

∑
k′

V d
k′−k

〈
c†

b↑,k′− Q
2

ct↓,k′+ Q
2

〉
, (B4)

�k(−Q) = 1

A

∑
k′

V d
k′−k

〈
c†

b↓,k′+ Q
2

ct↑,k′− Q
2

〉
.

Expressed in the eigenfunctions of Hamiltonian Eq. (B1),

|nk〉 =
∑
l,σ

z(n)
lσ (k)|lσ, k〉, (B5)

FIG. 12. Converged HF results in the PSP phase, rs = 4, d/a∗ = 3. Same as described in the caption of Fig. 10.

054405-12



PSEUDOSPIN DENSITY WAVE INSTABILITY IN … PHYSICAL REVIEW B 110, 054405 (2024)

the Hamiltonian matrix elements are

εlσ,k± Q
2

= h̄2

2m∗

∣∣∣∣k ± Q
2

∣∣∣∣
2

− 2πe2

εbA

∑
n,k′

1

|k′ − k|
∣∣z(n)

lσ (k′)
∣∣2

fnk′ ,

gl,k(Q) = 2πe2

εbA

∑
n,k′

1

|k′ − k| z̄(n)
l↑ (k′)z(n)

l↓ (k′) fnk′ ,

(B6)

�k(0) = 2πe2

εbA

∑
n,k′

e−|k′−k|d

|k′ − k| z̄(n)
bσ (k′)z(n)

tσ (k′) fnk′ ,

�k(Q) = 2πe2

εbA

∑
n,k′

e−|k′−k|d

|k′ − k| z̄(n)
b↑ (k′)z(n)

t↓ (k′) fnk′ ,

�k(−Q) = 2πe2

εbA

∑
n,k′

e−|k′−k|d

|k′ − k| z̄(n)
b↓ (k′)z(n)

t↑ (k′) fnk′ .

Even though we have specified spins associated with the
interlayer coherence, the Hamiltonian Eq. (B1) has SU(2) ×
SU(2) symmetry, i.e., independent spin rotational symmetry
in each pseudospin sector, and therefore the interlayer order
parameters �k are actually spin independent because of spin-
independent Coulomb interaction.

In this four-band model, we have seen the signatures of
lowing the total energy by forming SDW and PSDW together
near the S0-S1 phase boundary in Ref. [3]. However, the den-
sity wave momenta for intralayer SDW and interlayer PSDW
can be different.

APPENDIX C: RPA STATIC SCREENING THEORY
WITH HUBBARD-TYPE LOCAL FIELD CORRECTIONS

With local field factors Gσσ ′ , the screened Coulomb
potential is

Vsc,σ = Vext,σ +
∑
σ ′

vq(1 − Gσσ ′ )n1σ ′ , (C1)

where vq is the bare Coulomb potential including the dielec-
tric environment of surrounding media and n1σ is the induced
charge density,

n1σ = χ0σVsc,σ

= χ0σ

[
Vext,σ +

∑
σ ′

vq(1 − Gσσ ′ )n1σ ′

]
, (C2)

which is the response to Vsc,σ by the noninteracting response
function χ0σ . Absorbing the local field factors Gσσ ′ into the
response function χ̃σ , n1σ can also be written as

n1σ = χ̃σ

[
Vext,σ +

∑
σ ′

vqn1σ ′

]
. (C3)

Solving the coupled equations (C2) and (C3), and ignoring the
correlation-hole correction, i.e., G↑↓ = G↓↑ = 0,

χ̃σ = χ0σ

1 + vqGσσχ0σ

. (C4)

By solving the coupled equations (C1) and (C2),

Vsc,σ = Vext,σ +
∑
σ ′

vq(1 − Gσσ ′ )χ0σ ′Vsc,σ ′ , (C5)

and in the matrix form

Vsc = ε−1Vext. (C6)

The inverse of dielectric constant matrix is

ε−1 = 1

det(ε)

(
1 − vq(1 − G↓↓)χ0↓ vqχ0↓

vqχ0↑ 1 − vq(1 − G↑↑)χ0↑

)
.

(C7)

Using Vext,↑ = Vext,↓, and defining the spin-resolved dielectric
constant εσ ,

Vsc,σ = Vext,σ

εσ

, (C8)

we have

εσ = (1 + vqGσσχ0σ )[1 − vq(χ̃↑ + χ̃↓)], (C9)

i.e., Eq. (26) in the main text.

APPENDIX D: SPIN FERROMAGNETIC PHASE
WITH RPA STATIC SCREENING

With the primitive RPA static screening, the spin para-
magnetic state is stable for all rs values considered in our
calculations. It is known that RPA static screening theory
always overestimates the strength of screening because it
ignores the exchange-correlation effects. In magnetic transi-
tions, the exchange interaction is important. We, therefore,
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FIG. 13. (a) Tc of the spin polarized state, calculated by finite-
temperature self-consistent HF. (b) Same as panel (a) but Tc is shown
in the unit of Fermi energy TF = εF/kB. Without screenings (black
lines), Tc is the highest and the critical rs,c of the paramagnetic to
ferromagnetic transition is ∼2 (the Bloch transition). With the RPA
static screening including the Hubbard-type paramagnetic local field
correction (GP

σσ , blue lines), Tc is suppressed and the critical rs,c is
pushed to a higher value � 3. Tc is further suppressed and rs,c ∼ 3 in-
cluding the Hubbard-type ferromagnetic local field correction (GF

σσ ,
green lines), which takes into account different Fermi surfaces of
two spins. Under the primitive RPA static screening theory, spin is
not ordered for all rs values considered in our calculations.
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consider the Hubbard-type local field factor to the primitive
RPA static theory to include the corrections from the exchange
effect.

Figure 13 shows Tc of the spin polarized state, calculated
by finite-temperature self-consistent HF. Without screenings
(black lines), Tc is the highest and the critical rs,c of the
paramagnetic to ferromagnetic transition is approximately ∼2
(the Bloch transition). With the RPA static screening including

the Hubbard-type paramagnetic local field correction (GP
σσ ,

blue lines), Tc is suppressed and the critical rs,c is pushed to
a higher value � 3. Tc is further suppressed and rs,c ∼ 3 in-
cluding the Hubbard-type ferromagnetic local field correction
(GF

σσ , green lines), which takes into account different Fermi
surfaces of two spins. Under the primitive RPA static screen-
ing theory, spin is not ordered for all rs values considered in
our calculations.
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