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Neutron scattering signature of the Dzyaloshinskii-Moriya interaction in nanoparticles
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The antisymmetric Dzyaloshinkii-Moriya interaction (DMI) arises in systems with broken inversion symmetry
and strong spin-orbit coupling. In conjunction with the isotropic and symmetric exchange interaction, magnetic
anisotropy, the dipolar interaction, and an externally applied magnetic field, the DMI supports and stabilizes
the formation of various kinds of complex mesoscale magnetization configurations, such as helices, spin spirals,
skyrmions, or hopfions. A question of importance in this context addresses the neutron scattering signature of the
DMI, in particular in nanoparticle assemblies, where the related magnetic scattering signal is diffuse in character
and not of the single-crystal diffraction-peak type, as it is, e.g., seen in the B20 compounds. Using micromagnetic
simulations we study the effect of the DMI in spherical FeGe nanoparticles on the randomly averaged magnetic
neutron scattering observables, more specifically on the spin-flip small-angle neutron scattering cross section,
the related chiral function, and the pair-distance distribution function. Within the studied parameter space for
the particle size (60 nm � L � 200 nm) and the applied magnetic field (−1 T � μ0H0 � 1 T), we find that the
chiral function is only nonzero when the DMI is taken into account in the simulations. This result is discussed
within the context of the symmetry properties of the magnetization Fourier components and of the involved
energies under space inversion. Finally, for small applied magnetic fields, we provide an easy-to-implement
phenomenological correlation function for the DMI-induced spin modulations (with wave vector kd). The
corresponding randomly averaged spin-flip small-angle neutron scattering cross section reproduces the main
features found in the numerical simulations.

DOI: 10.1103/PhysRevB.110.054404

I. INTRODUCTION

The Dzyaloshinkii-Moriya interaction (DMI) is due to
the relativistic spin-orbit coupling and arises in condensed-
matter systems that exhibit a crystal-field environment with
no inversion symmetry [1,2]. This is, e.g., the case in non-
centrosymmetric crystal structures (such as MnSi or FeGe),
where the DMI is intrinsic to the material [3,4], or in
microstructural-defect-rich samples (such as ultrathin film
architectures, mechanically deformed magnets, or magnetic
nanoparticles), where the DMI is due to the breaking of
structural inversion symmetry at the defect sites [5–14]. The
recent renaissance of the DMI is largely related to the fact
that it is the essential ingredient for the stabilization of various
types of topological spin structures, such as skyrmions, which
might be of importance for spintronics applications (see, e.g.,
Refs. [15–20] and references therein).

A question of interest addresses the signature of the DMI
in experimental data. This is a highly nontrivial point since
the DMI generally appears only in concert with other, usually
much stronger, magnetic interactions, such as the isotropic
and symmetric exchange interaction or the magnetodipolar
interaction; these may then mask the fingerprint of the DMI in
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a particular measurement. In contrast to isotropic exchange,
which favors the parallelism of magnetic moments, the DMI
energy prefers noncollinear spin configurations, similar to
the magnetostatic interaction that gives rise to flux-closure
patterns [21,22]. Measurement of the topological Hall effect is
frequently used to establish the occurrence of chiral spin struc-
tures (where the DMI plays an important role), but a recent
review critically discusses the challenges and limitations of
this method [23]. Likewise, Lorentz transmission electron mi-
croscopy also allows the study of topological spin structures,
as was recently shown for the case of hopfion rings in an FeGe
crystal [24]. Magnetic neutron scattering is another important
technique in this regard since the cross section for polarized
neutrons contains the so-called chiral function; for instance,
using an advanced polarized diffuse neutron diffraction tech-
nique, Schweika et al. [25] have experimentally discovered
a chiral spin liquid ground state in a single-domain single
crystal of the noncentrosymmetric swedenborgite compound
YBaCo3FeO7.

Here, we focus on magnetic small-angle neutron scattering
(SANS), which is a powerful method for the investigation
of mesoscale spin structures within the volume of magnetic
media [26,27]. The relevant quantity for understanding mag-
netic SANS is the three-dimensional magnetization vector
field M = M(r), which can be computed using the contin-
uum theory of micromagnetics [28]. The Fourier transform
M̃ = M̃(q) of the real-space spin structure then determines
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the magnetic neutron scattering cross section. Using numer-
ical micromagnetic computations, we study the signature of
the DMI in spherical FeGe nanoparticles in the randomly
averaged SANS observables, in particular in the spin-flip
SANS cross section and the related chiral function, which
can be obtained from polarized SANS measurements via a
uniaxial polarization analysis [29–32]. As we will see, the
chiral function in the polarized SANS cross section is a very
important means to disentangle the presence of the DMI in
nanoparticles. We note that a similar approach of combining
micromagnetic simulations with SANS polarization analysis
has been introduced by Ukleev et al. [32] to investigate the
domain structure of a magnetic multilayer system.

The article is organized as follows. In Sec. II we provide
information on the micromagnetic simulations, we display
the expressions for the spin-flip SANS cross section, the
chiral function, and for the pair-distance distribution func-
tion, and we recall the basic symmetry properties of these
quantities. In Sec. III we present and discuss the simulation
results, while Sec. IV summarizes the main findings of this
study and provides an outlook on future challenges. The Ap-
pendix displays additional results for the randomly averaged
magnetization curve, the spin-flip SANS cross section, the
chiral function, and for the pair-distance distribution function
of FeGe nanoparticles.

II. DETAILS ON THE MICROMAGNETIC SIMULATIONS,
SPIN-FLIP SANS CROSS SECTION, CHIRAL FUNCTION,

AND PAIR-DISTANCE DISTRIBUTION FUNCTION

We were using the open-source software package MUMAX3
(version 3.10) for the micromagnetic simulations [33,34].
This progam is a widely used micromagnetic simulation
tool that enables researchers to investigate the static and dy-
namic nanoscale behavior of magnetic materials. MUMAX3
employs a finite-difference discretization scheme of space
using an orthorhombic grid of cells (see Fig. 1). The fol-
lowing contributions to the total magnetic Gibbs free energy
G = Ez + Ed + Eani + Eex + Edmi were taken into account:
Zeeman energy Ez in the external magnetic field H0, dipolar
(magnetostatic) interaction energy Ed, energy of the (cubic)
magnetocrystalline anisotropy Eani, isotropic and symmetric
exchange energy Eex, and the Dzyaloshinkii-Moriya interac-
tion (DMI) energy Edmi. The continuum expressions for these
energies are the following [28]:

Ez = −μ0Ms

∫
m · H0 dV, (1)

Ed = −1

2
μ0Ms

∫
m · Hd dV, (2)

Eani = Kc1

∫
[(c1 · m)2(c2 · m)2 + (c1 · m)2(c3 · m)2

+ (c2 · m)2(c3 · m)2] dV, (3)

Eex = A
∫

[(∇mx )2 + (∇my)2 + (∇mz )2] dV, (4)

Edmi = D
∫

m · ∇ × m dV, (5)

where μ0 = 4π × 10−7 T m/A, m(r) = M(r)/Ms denotes
the unit magnetization vector field with Ms being the satu-
ration magnetization, H0 is the (constant) applied magnetic
field, Hd(r; M(r)) is the magnetostatic self-interaction field,
Kc1 is the first-order cubic anisotropy constant with the c1,2,3

vectors representing the local (mutually perpendicular) cu-
bic anisotropy axes, A is the exchange-stiffness constant,
D is the bulk DMI constant, and the integrals are taken
over the volume of the sample. In the simulations, we used
the following material parameters for FeGe [35,36]: Ms =
384 kA/m, Kc1 = 1.0 × 104 J/m3, A = 8.8 × 10−12 J/m,
and D = 1.6 × 10−3 J/m2. These values result in a magne-
tostatic exchange length of ls = √

2A/(μ0M2
s ) = 9.7 nm, a

domain-wall parameter of lk = √
A/Kc1 = 29.7 nm, and in a

helical period of ld = 4πA/D = 69.1 nm [36,37]. We refer to
Ref. [33] for a discussion of how the above continuum expres-
sions for the magnetic energies are numerically implemented
on a discrete spatial grid. Thermal fluctuations were not taken
into account in the simulations.

By noting that the magnetic field and the magnetization
are both pseudovectors that exhibit an even behavior under
the space-inversion operation (r → −r) [38], it is seen that
Eqs. (1)–(4) are invariant under the parity transformation.
On the other hand, due to the fact that the del operator
∇ breaks the space-inversion symmetry, the DMI energy
[Eq. (5)] is a pseudoscalar that acquires a minus sign on
r → −r; in other words, the DMI energetically favors a
particular chirality in the system, which would otherwise
be chirally symmetric. These symmetry properties remain
after the variation of the total magnetic Gibbs free energy
(with respect to m) is carried out to obtain the partial dif-
ferential equations that describe the system behavior. For
the static case, the ensuing equations for the equilibrium
magnetization configuration (Brown’s equations) can be con-
veniently written in the form of a torque equation, m(r) ×
heff (r) = 0, where heff = −μ−1

0 M−2
s δG/δm = Heff/Ms de-

notes the (dimensionless) effective magnetic field [28]. More
specifically, for the energies Eqs. (1)–(5), the effective field
reads

heff = h0 + hd + hani + hex + hdmi, (6)

where h0 = H0/Ms is the normalized applied magnetic field,
hd = Hd/Ms is the magnetostatic field,

hani = − 2Kc1

μ0M2
s

{c1(c1 · m)[(c2 · m)2 + (c3 · m)2]

+ c2(c2 · m)[(c1 · m)2 + (c3 · m)2]

+ c3(c3 · m)[(c1 · m)2 + (c2 · m)2]} (7)

represents the cubic anisotropy field, hex = l2
s ∇2m =

l2
s {∇2mx,∇2my,∇2mz} is the exchange field, and hdmi =
−ldmi∇ × m denotes the conjugate field related to the DMI
[ldmi = 2D/(μ0M2

s ), ldmi = 17.3 nm for FeGe]. On space in-
version, only hdmi changes its sign.

Figure 1 displays the structural model used in the micro-
magnetic SANS simulations of FeGe nanospheres. We carried
out simulations for sphere diameters L ranging between
60 nm � L � 200 nm. The sphere volume was discretized
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FIG. 1. Illustration of the discretization of a nanosphere into
cubical cells with a size of 2 × 2 × 2 nm3. The blue-colored cells
mark the middle layer through the center of the particle for which
the topological charge [Eq. (8)] has been computed. The small-angle
scattering from such a sphere in the saturated state agrees very well
with the analytical solution for the sphere form factor [39,40].

into cubical cells “i” with a size (volume) of Vi = 2 × 2 ×
2 nm3 (finite-difference method). This cell size is motivated
by the above values for ls, lk, and ld and by the aim to
resolve spatial variations in the magnetization that are smaller
than these characteristic length scales (see the discussion in
Refs. [41,42]). In each cell “i” with volume Vi, the mag-
netic moment vector is given by μi = μi(r) = MsVimi(r),
where mi(r) is a unit vector along the local direction of the
magnetization. Open boundary conditions were used, since
we are interested in the scattering behavior of an ensemble
of noninteracting single particles having random easy-axis
orientations c1,2,3 [43]. All simulations were carried out by
first saturating the nanoparticle by a strong external field H0

and then the field was decreased in steps of typically 5 mT
following the major hysteresis loop. For each step of H0 and
for each particular easy-axis orientation, we have obtained the
equilibrium spin structure mx,y,z(x, y, z) by employing both
the “Relax” and “Minimize” functions of MUMAX3. The for-
mer solves the Landau-Lifshitz-Gilbert equation without the
precessional term and the latter uses the conjugate-gradient
method to find the configuration of minimum energy. To ob-
tain an idea on the existence of a possible skyrmion texture
in the FeGe nanoparticles, we have numerically computed the
topological charge Q for the middle layer within the x-y plane
according to (compare Fig. 1) [44,45]

Q = 1

4π

∫
m ·

(
∂m
∂x

× ∂m
∂y

)
dx dy. (8)

For an idealized vortex-type planar structure with m =
1
2 {−y, x, 0} and ∇ × m = {0, 0, 1}, one finds Q = 0, while
Q = ±1 for skyrmions [17]. However, one should keep in
mind that the latter values suppose that the skyrmion fully fits
inside the particle and that the magnetization vector far away
from the skyrmion center approaches a constant value (the so-
called ferromagnetic background). This is of course fulfilled
by the mathematical trial functions that are used to describe
Néel and Bloch skyrmions (e.g., Ref. [4]). Here, for finite-
sized nanoparticles, the magnetodipolar interaction (which is
always present) aims to avoid volume and surface charges by
demanding that ∇ · m = 0 and m · n = 0, where n denotes
the local unit normal vector to the surface. This implies that
the surface spins (those far away from the skyrmion center,
which is supposed to be localized in the sphere center due to

FIG. 2. Sketch of the scattering geometry assumed in the micro-
magnetic simulations. The neutron optical elements (polarizer, spin
flipper, and analyzer) that are required to measure the spin-flip SANS
cross section and the chiral function are not drawn. The applied
magnetic field H0 ‖ ez is perpendicular to the wave vector k0 ‖ ex

of the incident neutron beam (H0 ⊥ k0). The momentum-transfer or
scattering vector q is defined as the difference between k0 and k1,
i.e., q = k0 − k1. SANS is usually implemented as elastic scattering
(k0 = k1 = 2π/λ) and the component of q along the incident neutron
beam, here qx , is much smaller than the other two components
so that q ∼= {0, qy, qz} = q{0, sin θ, cos θ}. This demonstrates that
SANS probes predominantly correlations in the plane perpendicular
to the incident beam. The angle θ = ∠(q, H0) is used to describe
the angular anisotropy of the recorded scattering pattern on the
two-dimensional position-sensitive detector. For elastic scattering,
the magnitude of q is given by q = (4π/λ) sin(ψ ), where λ denotes
the mean wavelength of the neutrons and 2ψ is the scattering angle.

symmetry reasons) may not attain a constant value, but vary
over the sphere surface. Therefore, in micromagnetic simula-
tions using open boundary conditions on finite-sized systems
one should not expect to find Q values very close to unity. The
quantities of interest are the elastic differential spin-flip scat-
tering cross section and the related so-called chiral function,
which are usually obtained in a uniaxial polarization-analysis
experiment [29–32]. For the most commonly used scattering
geometry in magnetic SANS experiments, where the applied
magnetic field H0 ‖ ez is perpendicular to the wave vector
k0 ‖ ex of the incident neutrons (see Fig. 2), the two spin-
flip SANS cross sections d�+−

sf /d	 and d�−+
sf /d	 can be

written as [26,27]

d�+−
sf

d	
= 8π3

V
b2

H(|M̃x|2 + |M̃y|2 cos4 θ + |M̃z|2 sin2 θ cos2 θ

− (M̃yM̃∗
z + M̃∗

y M̃z ) sin θ cos3 θ − iχ ), (9)

d�−+
sf

d	
= 8π3

V
b2

H(|M̃x|2 + |M̃y|2 cos4 θ + |M̃z|2 sin2 θ cos2 θ

− (M̃yM̃∗
z + M̃∗

y M̃z ) sin θ cos3 θ + iχ
)
. (10)

The superscripts “+” and “−” refer to the neutron-spin
orientation (parallel or antiparallel) relative to the di-
rection of H0, V denotes the scattering volume, bH =
2.91 × 108 A−1m−1 is the magnetic scattering length in
the small-angle regime (the atomic magnetic form factor
is approximated by 1, since we are dealing with for-
ward scattering), M̃(q) = {M̃x(q), M̃y(q), M̃z(q)} represents
the Fourier transform of the magnetization vector field
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TABLE I. Summary of all the possible combinations of sym-
metry properties (even or odd) of the real-space magnetization
components Mx,y,z(r) and the ensuing symmetries (real or imaginary)
of the Fourier-space magnetization components M̃x,y,z(q) and the
chiral function χ (zero or nonzero). The case that the Mx,y,z(r) are
composed of a nonzero even and odd part will always result in a
nonzero chiral function.

Mx (r) My(r) Mz(r) M̃x (q) M̃y(q) M̃z(q) −iKχ (q)

Odd Odd Odd Imaginary Imaginary Imaginary Zero
Even Odd Odd Real Imaginary Imaginary Nonzero
Odd Even Odd Imaginary Real Imaginary Nonzero
Even Even Odd Real Real Imaginary Nonzero
Odd Odd Even Imaginary Imaginary Real Nonzero
Even Odd Even Real Imaginary Real Nonzero
Odd Even Even Imaginary Real Real Nonzero
Even Even Even Real Real Real Zero

M(r) = {Mx(r), My(r), Mz(r)}, θ denotes the angle between
q and H0, the asterisk “∗” marks the complex-conjugated
quantity, i2 = −1, and χ = χ (q) is the chiral function. The
latter quantity is obtained from (one-half times) the difference
between the two spin-flip SANS cross sections, according
to [27]:

−iKχ (q) = 1

2

(
d�+−

sf

d	
− d�−+

sf

d	

)
= −iK[(M̃xM̃∗

y − M̃∗
x M̃y) cos2 θ

− (M̃xM̃∗
z − M̃∗

x M̃z ) sin θ cos θ ], (11)

where K = 8π3

V b2
H. Note that the chiral function vanishes

at complete magnetic saturation (MH0→∞
x = MH0→∞

y = 0).
Moreover, by expressing the magnetization Fourier compo-
nents M̃x,y,z in terms of their real (“R”) and imaginary (“I”)
parts, i.e., M̃x = M̃R

x + iM̃I
x, M̃∗

x = M̃R
x − iM̃I

x (with M̃R
x ∈ R

and M̃I
x ∈ R) and so on for the other two components, one can

rewrite −iKχ (q) ∈ R as follows:

−iKχ (q) = − 2K
[(

M̃R
x M̃I

y − M̃I
xM̃R

y

)
cos2 θ

− (
M̃R

x M̃I
z − M̃I

xM̃R
z

)
sin θ cos θ

]
, (12)

which demonstrates that the chiral function vanishes for
purely real-valued or for purely imaginary magnetization
Fourier components M̃x,y,z. By exploiting the fact that the
magnetization vector is a real-valued quantity, i.e., Mx,y,z(r) ∈
R, one can use the well-known result that the real parts
of the M̃x,y,z(q) are even functions of q, while the imagi-
nary parts are odd functions of q, i.e., M̃R

x,y,z(q) = M̃R
x,y,z(−q)

and M̃I
x,y,z(q) = −M̃I

x,y,z(−q). This implies that both terms
in Eq. (12), which always involve the product of two even
functions (e.g., M̃R

x and sin θ cos θ ) and one odd function
(e.g., M̃I

z), are odd functions of q, such that the following
symmetry relation holds (odd under spatial inversion of q):

iKχ (q) = −iKχ (−q). (13)

Table I lists the chiral function (zero or nonzero) for all the
possible combinations of symmetry properties (odd or even)
of the real-space magnetization components. We also refer to

the review by Maleev [46] for a discussion of the symmetry
properties of the chiral function.

Besides the difference between d�+−
sf /d	 and d�−+

sf /d	,
we can also consider (one-half times) their sum:

d�sf

d	
= 1

2

(
d�+−

sf

d	
+ d�−+

sf

d	

)
= K (|M̃x|2 + |M̃y|2 cos4 θ + |M̃z|2 sin2 θ cos2 θ

− (M̃yM̃∗
z + M̃∗

y M̃z ) sin θ cos3 θ ). (14)

In the following, for simplicity, the quantity d�sf/d	 is called
the (polarization-independent) spin-flip SANS cross section.
In contrast to the chiral function, d�sf/d	 has the well-
known property that it is an even function of q [47] (even
under spatial inversion of q),

d�sf

d	
(q) = d�sf

d	
(−q). (15)

Note that the cross term in Eq. (14) can be written as
−(M̃yM̃∗

z + M̃∗
y M̃z ) = −2(M̃R

y M̃R
z + M̃I

yM̃I
z ), which is an even

function of q, as are the |M̃x|2, |M̃y|2, and |M̃z|2.
It is often convenient to average two-dimensional SANS

data f (q) = f (qy, qz ) = f (q, θ ), where f either stands for
d�sf/d	 or for −iKχ , along certain directions in q space,
e.g., parallel (θ = 0) or perpendicular (θ = π/2) to the ap-
plied magnetic field, or even over the full angular θ range.
In the following, we consider 2π azimuthally averaged
SANS data

Isf (q) = 1

2π

∫ 2π

0
f (q, θ ) dθ, (16)

which allows for the computation of the pair-distance distri-
bution function psf (r) according to

psf (r) = r
∫ ∞

0
Isf (q) sin(qr)q dq. (17)

This Fourier transform corresponds to the distribution of real-
space distances between volume elements inside the particle
weighted by the excess scattering-length density distribution;
see the reviews by Glatter [48] and by Svergun and Koch
[49] for detailed discussions of the properties of psf (r). As
a reference for nonuniformly magnetized spherical particles,
we specify here the psf (r) of a uniformly magnetized sphere,
which for r � L = 2R equals

psf (r) ∝ r2

(
1 − 3r

4R
+ r3

16R3

)
. (18)

For the calculation of the spin-flip SANS cross sec-
tion d�sf/d	 [Eq. (14)] and the chiral function −iKχ

[Eq. (12)], it is necessary to compute the discrete Fourier
transform of all the mi = mi(r) belonging to the spherical
nanomagnet. Using μi = μi(r) = MsVimi(r), the discrete-
space Fourier transform is computed as (Vi = a3):

M̃(q) ∼= Msa3h(q)

(2π )3/2

K∑
i=1

mi exp (−iq · ri ), (19)

where ri is the location point of the ith spin and q rep-
resents the wave vector (scattering vector). The function
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FIG. 3. Field-diameter phase diagram of an oriented FeGe
sphere with L ranging between 60 nm and 200 nm and −1 T �
μ0H0 � 1 T. One of the cubic anisotropy axes is parallel to the
externally applied magnetic field H0 ‖ ez. (a) Topological charge Q
[Eq. (8)] numerically calculated for the middle layer in the x-y plane.
(b) Q averaged over all layers in the particle. The spacing (resolution)
in L and H0 is, respectively, 5 nm and 5 mT.

h(q) = sin(qxa/2)
qxa/2

sin(qya/2)
qya/2

sin(qza/2)
qza/2 denotes the form factor of

the cubic discretization cell with a = 2 nm being the cell
size; for |qx,y,z|a/2 � 1, h → 1. For atomistic calculations
[50,51], this correction is irrelevant in the small-angle regime,
but for the present calculation the cell size becomes already
noticeable for q � 0.3 nm−1 (compare Fig. 14 in the Ap-
pendix). Equation (19) establishes the relation between the
outcome of the simulations, mi, and d�sf/d	 and −iKχ .
The Fourier components are evaluated in the plane qx = 0
(corresponding to the scattering geometry shown in Fig. 2
with q ∼= {0, qy, qz} = q{0, sin θ, cos θ}) and used in Eqs. (12)
and (14) to compute the spin-flip SANS cross section and the
chiral function according to

〈 f 〉EA =
N∑
i=1

fi, (20)

where fi represents (for fixed H0) either d�sf/d	 or −iKχ

of a spherical particle with diameter L and with a partic-
ular random easy-axis (“EA”) orientation “i.” In our paper,
we consider results for the SANS observables for the case
of a random distribution of the cubic magnetocrystalline
anisotropy axes of the particles with respect to the global
direction of the external field H0 ‖ ez. At each value of H0,
micromagnetic simulations for typically N ∼ 500 random
orientations between the easy particle axis and H0 were car-
ried out. Equation (20) implies that interparticle-interference
effects are ignored in the simulations.

III. RESULTS AND DISCUSSION

Figure 3 depicts the numerically computed values of the
topological charge Q [Eq. (8)] of a single nanoparticle for
sphere diameters L between 60 nm and 200 nm and for
applied fields μ0H0 ranging from −1 T to +1 T. In this
particular example one of the cubic anisotropy axes has been
chosen to be parallel to H0, so that the results in Fig. 3 are
representative for an oriented particle and not for an ensemble
of randomly oriented nanoparticles (to be discussed later). The
topological charge has been computed for the middle layer
in the x-y plane [Fig. 3(a)] and Q has also been averaged
over all the layers in the particle [Fig. 3(b)]. As can be seen,
the averaging procedure results (as expected) in a smearing
of the data, leaving however the main features unaltered.
Several regions with Q values approaching unity are found
indicating a possible skyrmion phase; most prominently is a
region 165 nm � L � 175 nm and 0.05 T � μ0H0 � 0.65 T,
where Q → −1.

The purpose of Fig. 3 is to demonstrate that also
skyrmionic spin structures may form in individual, favorably
oriented nanoparticles of an ensemble [36]. Changing the di-
rection of the magnetic anisotropy axes of the particle relative
to the global direction given by H0, as it is required for the
description of a particle ensemble (the subject of the paper),
alters the energetics of the problem and may result in a frac-
tion of the particles being in a skyrmion or a vortexlike state
while other particles exhibit textures with zero net topological
charge [Eq. (8)], such as spiral-type textures or even near
single-domain structures. This is illustrated in Figs. 4(a)–4(d),

FIG. 4. (a) Spin structure (snapshot) of a 170-nm-sized FeGe sphere at an external magnetic field of μ0H0 = 5 mT. Initially, the spin
structure was saturated along H0 ‖ ez. One of the three cubic anisotropy axes was chosen to be parallel to the global H0 direction. In panel
(b) we display the spin structure within the middle-layer x-y plane, resulting in a topological charge of Q ∼= −0.94. (c) Similar to (a), but with
the same cubic anisotropy axis from (a) oriented at an angle of 72◦ relative to H0. (d) Same as in (b), but with the cubic axis at 72◦ relative to
H0 (Q ∼= −0.39).
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FIG. 5. (a) Spin-flip SANS cross section d�sf/d	 and (b) chiral function −iKχ (both at 5 mT) of an ensemble of N = 500 randomly
oriented 170-nm-sized FeGe nanoparticles. (c) Selected spin structure at 5 mT. (d)–(f) Corresponding d�sf/d	, −iKχ , and spin structure
without the DMI.

where the spin structures of two differently oriented FeGe
spheres are shown. In Fig. 4(a) we display the structure of
a 170-nm-sized FeGe sphere at an external magnetic field
of 5 mT and with one of the cubic anisotropy axes aligned

FIG. 6. (a) Isf (q) and (b) psf (r) for randomly oriented FeGe
nanoparticles with L = 60 nm, 120 nm, and 150 nm and at an
applied magnetic field of μ0H0 = 0.02 T (see inset). (c) Isf (q) and
(d) psf (r) without DMI. Black dashed line in (b): psf (r) ∝ sin(kdr)
with kd = 0.09 nm−1.

parallel to H0; Fig. 4(b) features the spin distribution in the
middle-layer x-y plane, which is characterized by a topologi-
cal charge of Q ∼= −0.94. When the particle is oriented with
the same cubic anisotropy axis at an angle of ∼72◦ relative
to H0 [Fig. 4(c)] a significantly different magnetization distri-
bution is obtained, with Q ∼= −0.39 in the middle-layer plane
[Fig. 4(d)]. These considerations imply that for a dilute set
of randomly arranged FeGe nanoparticles, the different spin
configurations of differently oriented nanoparticles give rise
to a spin-disorder-induced smearing of the SANS observables,
even in the absence of a particle-size distribution. This smear-
ing effect is of course the most pronounced at low fields [see,
e.g., Fig. 7(a) below].

FIG. 7. (a) Isf (q) and (b) psf (r) of randomly oriented FeGe
nanoparticles with L = 170 nm and at three different applied mag-
netic fields (3 T, 0.12 T, and 0.02 T; see inset). The DMI is included
in the simulations. Black dashed line in (a): Isf (q) ∝ q−4. Yellow
dashed line in (b): analytical expression for a uniformly magnetized
sphere [Eq. (18)].
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FIG. 8. Comparison between the simplified model [Eqs. (21) and (22)] and the numerical micromagnetic simulations. (a) Isf (q), (b) csf (r),
and (c) psf (r) of randomly oriented FeGe nanoparticles (L = 170 nm and μ0H0 = 0.02 T). Black dashed lines: micromagnetic simulation.
Blue solid lines: Eqs. (21) and (22) (scaled to the simulation data).

The results for the randomly averaged two-dimensional
spin-flip SANS cross section d�sf/d	 and for the chiral
function −iKχ with and without DMI are shown in Fig. 5
for μ0H0 = 5 mT and L = 170 nm. The Appendix features
results for d�sf/d	 and −iKχ for several other applied mag-
netic fields and diameters. Additionally, we display examples
for spin structures that contribute to the respective scattering
cross section [Fig. 5(c) with DMI and Fig. 5(f) without DMI].
Close to saturation, we (of course) always recover the char-
acteristic sin2 θ cos2 θ -type angular anisotropy of d�sf/d	

[compare Eq. (14)], pointing towards a uniformly magnetized
nanoparticle spin structure. Reducing the field results (for a
given L) in the emergence of a variety of complex M(r) pat-
terns [compare, e.g., Figs. 4(a) and 4(c)] and in a concomitant
complicated randomly averaged d�sf/d	 [Fig. 5(a)]. Leaving
out the DMI gives rise to a drastically changed d�sf/d	

[Fig. 5(d)], exhibiting (here for 5 mT and L = 170 nm) a
sin2 θ -type anisotropy that resembles the saturated state in
unpolarized SANS in the H0 ⊥ k0 scattering geometry.

A central result is that in all of our simulations on ran-
domly arranged particle ensembles, more specifically for
60 nm � L � 200 nm and −1 T � μ0H0 � 1 T, we find a
vanishing chiral function when the DMI is excluded [com-
pare Figs. 5(b) and 5(e) and the corresponding data in the
Appendix]. In other words, due to the absence of chirality
selection, the individual Fourier cross correlations in the ex-
pression for −iKχ [Eq. (12)] add up to zero in the random
average case and no DMI. Similar to previous simulations
on Fe nanospheres [39,40], we find dipolar-energy-driven
vortex-type structures in FeGe when the DMI is not taken
into account. The ensemble of vortex configurations exhibit,
on the average, an equal amount of clockwise and counter-
clockwise rotation senses, so that the corresponding chiral
function averages to zero. This result is somehow expected
(no chirality selection) and the symmetry properties of the
chiral function are well known [46], but here we comprehen-
sively study the signature of the DMI on the diffuse SANS
cross section of an ensemble of randomly oriented magnetic
nanoparticles.

The results for the azimuthally averaged neutron data Isf (q)
along with the pair-distance distribution psf (r) are displayed
in Figs. 6 and 7. Figure 6 shows the effect of the DMI for

FeGe particle sizes of L = 60 nm, 120 nm, and 150 nm
and at an applied magnetic field of μ0H0 = 0.02 T, while
Fig. 7 highlights the field dependence of Isf (q) and psf (r)
at a fixed particle size of L = 170 nm (including the DMI).
Although it is difficult to make general statements regarding
the spin structure of individual nanoparticles, we observe the
tendency of the formation of periodic domain structures when
the DMI is included [see, e.g., Fig. 5(c)]. This can be seen
in the psf (r) data, which (for L = 120 nm and L = 150 nm)
exhibit three zero crossings with DMI [Fig. 6(b)], while only
one such zero crossing is seen when the DMI is excluded
[Fig. 6(d)]. The observation of only one such zero crossing
in psf (r) is indicative of a vortex-type spin structure [39]. The
L = 60 nm spheres are in a nearly single-domain state without
DMI [Fig. 6(d)] and reveal a vortex-type spin structure with
DMI [Fig. 6(b)]. For particle sizes that are roughly larger than
the single-domain limit (lsd

∼= 72
√

AKc1/(μ0M2
s ) = 115 nm),

the “periodicity” of the psf (r) in Fig. 6(b) (dashed line) can be
well reproduced by the following characteristic wave number
kd = 2π/ld ∼= 0.09 nm−1 with ld = 4πA/D = 69.1 nm being
the helical period.

As becomes visible in Fig. 7, at a saturating field of
3 T, we recover the results for a homogeneously magne-
tized sphere [yellow dashed line in Fig. 7(b)]. Reducing
the field to 0.12 T and 0.02 T results in the already
mentioned spin-disorder-induced smearing of the scattering
curves [Fig. 7(a)]; the form factor oscillations (most promi-
nent at 3 T) get smeared and damped. Asymptotically, at
large q, where structure on a real-space length scale of only
a few nanometers is probed, we find for all scattering curves
the familiar Porod law Isf (q) ∝ q−4 [see blacked dashed line
in Fig. 7(a)]. Despite the possible highly inhomogeneous
internal spin structure, the asymptotic behavior of Isf (q) is
determined by the discontinuous jump of the magnetization
at the particle surface, which results in the q−4 dependency.
We also see that the nucleation of an inhomogeneous spin
structure at lower fields is accompanied by the formation of
a maximum in the Isf (q) curve at intermediate momentum
transfers and the concomitant reduction of the value of Isf (q)
when q → 0. The latter observation is due to the fact that
the value of the spin-flip SANS cross section at q = 0 re-
flects the behavior of the average ensemble magnetization,
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which decreases with decreasing field [compare to Eqs. (14)
and (19)].

To describe the scattering behavior of the randomly aver-
aged system at low fields and for not too small particle sizes
(so that a DMI-induced spin modulation appears), we intro-
duce the following expression for the correlation function:

csf (r) = B j0(kdr) exp(−r/R), (21)

where B is a scaling constant, R = L/2 is the sphere radius,
and j0(z) = sin(z)/z denotes the zeroth-order spherical Bessel
function that provides a damped oscillation with a wave num-
ber of ∼kd. We emphasize that Eq. (21) does not represent a
true particle correlation function, since it extends to infinity
and does not vanish for r > L. The exponential decay forces
the spatial extent of csf (r) to be roughly limited to r � L.
Equation (21) is an easy-to-implement expression that, as
we will see below, grasps the main low-field characteristics
found in the simulations. The corresponding expression for
the spin-flip SANS cross section reads

Isf (q) =
∫ ∞

0
csf (r) j0(qr)r2dr

= 2BR3

[1 + (q − kd )2R2][1 + (q + kd )2R2]
, (22)

which exhibits a field-independent maximum at qmax =√
k2

dR2 − 1/R ∼= kd and an asymptotic q−4 dependency;
Isf (q = 0) = 2BR3/(1 + k2

dR2)2.
Figure 8 features a comparison between Eqs. (21) and (22)

and the numerically computed Isf (q), csf (r), and psf (r) =
r2csf (r). Overall, we see that the expressions reproduce the
main features of the spin-flip scattering, i.e., a peak at about
the helical wave vector kd followed by a q−4 Porod decay at
large q. The r2 factor in the definition of psf (r) amplifies the
error at the larger distances. The behavior of Isf (q) at large q
does not depend on kd. It is also emphasized that there is some
generality in our simulations: Changing the materials parame-
ters (Ms, Kc1, A, D), e.g., from FeGe to MnSi, has (of course)
an effect on the relevant micromagnetic length scales (e.g., on
the helical period ld = 4πA/D). But the main features in the
neutron scattering observables will remain, albeit at different
momentum transfers. Choosing, for instance, a smaller D will
result in a larger helical period, so that larger system sizes
in the micromagnetic simulations become necessary. This is
illustrated in Fig. 13 in the Appendix, which shows the scal-
ing of the peak maximum in Isf (q) and psf (r) with the DMI
constant.

Moreover, it has been assumed in our simulations that
all the particles have the same size (due to the related high
numerical cost). The effect of a particle-size distribution
function on the SANS observables has been studied in
Ref. [40], however, using much smaller particle sizes as in
the present simulations and without taking the DMI into
account. Nevertheless, the results in Ref. [40] indicate a
certain stability of the oscillatory features in the low-field
SANS data in the presence of a not too wide size distribution.

IV. CONCLUSION

Using numerical micromagnetic computations, we have
investigated the signature of the antisymmetric Dzyaloshinkii-
Moriya interaction (DMI) in the diffuse magnetic spin-flip
small-angle neutron scattering cross section (SANS) of an
ensemble of randomly oriented FeGe nanoparticles. The DMI
energy is a pseudoscalar that breaks space-inversion sym-
metry, in contrast to the other magnetic energies that are
considered in our simulations (isotropic exchange, magnetic
anisotropy, dipolar, and Zeeman energies). Depending on the
relative orientation between the magnetic anisotropy axes
of the nanoparticles and the global direction of the ex-
ternally applied magnetic field, a variety of different spin
structures may appear in nanoparticles of a given size class
L (e.g., skyrmions, vortex- and spiral-type, nearly single
domain). This results in an intrinsic spin-disorder-induced
broadening of the spin-flip SANS cross section (even when
all the particles have the same size). Within the studied pa-
rameter space for the particle size (60 nm � L � 200 nm)
and the applied magnetic field (−1 T � μ0H0 � 1 T), we
find that the randomly averaged chiral function −iKχ is
only nonzero when the DMI is taken into account in the
simulations. An interesting open question in this context ad-
dresses the relation between the symmetry properties of the
micromagnetic energies (and conjugate fields) under space
inversion and the real and imaginary parts of the M̃x,y,z(q). For
this, Brown’s nonlinear equations would need to be Fourier
transformed, which involves however complicated convolu-
tion products that cannot be evaluated straightforwardly. Only
within a linearized analytical approach, suitable for bulk fer-
romagnets, it has been shown in Ref. [11] that a nonzero
DMI results in complex M̃x,y,z(q) and, consequently, in the
appearance of a nonzero chiral function. Motivated by the ap-
pearance of low-field spin textures that are modulated by the
characteristic wave number kd = D/(2A), we have suggested
phenomenological expressions for the correlation function
and the ensuing SANS cross section [Eqs. (21) and (22)] that
are able to reproduce the main features of a random ensemble
of FeGe nanoparticles.
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APPENDIX: OVERVIEW OF SANS RESULTS
FOR THE SPIN-FLIP SANS CROSS SECTION

AND THE CHIRAL FUNCTION WITH AND WITHOUT
THE DZYALOSHINSKII-MORIYA INTERACTION

In this Appendix we display additional results for the
randomly averaged magnetization curve, the spin-flip SANS
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FIG. 9. (a) Normalized magnetization curves of randomly
oriented FeGe nanoparticles with particle diameters of L =
60 nm, 120 nm, and 150 nm (see inset). The solid lines are with
DMI and the dashed lines are without DMI. (b) Same as (a), but
for −0.15 T � μ0H0 � 0.15 T. The reduced remanence of the L =
60 nm “sample” is ∼0.832 (without DMI), which is very close to the
Stoner-Wohlfarth value, suggesting the presence of single-domain
particles [54].

cross section d�sf/d	, the chiral function −iKχ , and for the
pair-distance distribution function psf (r) of FeGe nanoparti-
cles (Figs. 9–14). All the magnetic interactions [Eqs. (1)–(5)]
were taken into account in the simulations and we compare
results with and without the DMI energy. Within the scanned
parameter space (60 nm � L � 200 nm and −1 T � μ0H0 �
1 T), we find a vanishing chiral function for the case when the
DMI is absent. Figure 9 shows that the inclusion of the DMI
results in a reduced remanent magnetization of the particle
ensemble, as was previously reported in Ref. [53]. Figure 13
highlights the scaling of the peak maximum in Isf (q) and
psf (r) with the DMI constant and Fig. 14 shows the effect
of the form factor of the cubic discretization cell, h(q), on the
randomly averaged Isf (q).

FIG. 10. Comparison of simulation results for the randomly averaged spin-flip SANS cross section d�sf/d	 and the chiral function −iKχ

of L = 60-nm-sized FeGe nanoparticles at a series of applied magnetic fields. (a) μ0H0 = 0.02 T; (b) μ0H0 = 0.12 T; (c) μ0H0 = 0.67 T. The
left panel shows simulation results with DMI, while the data in the right panel have no DMI.
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FIG. 11. Similar to Fig. 10, but for L = 120 nm.
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FIG. 12. Similar to Fig. 10, but for L = 150 nm.

FIG. 13. Dependence of the randomly averaged Isf (q) (a) and
psf (r) (b) of FeGe nanospheres on the DMI constant (see inset) (L =
170 nm and μ0H0 = 0.02 T). The peak maximum in Isf (q) scales
with kd = D/(2A). Peak positions in (a): 0.062 nm−1 (0.073 nm−1),
0.086 nm−1 (0.091 nm−1), and 0.172 nm−1 (0.182 nm−1). The values
in brackets correspond to the analytical values for kd using A =
8.8 × 10−12 J/m and 0.8D, D, and 2D with D = 1.6 × 10−3 J/m2

being the input value in the micromagnetic simulations. This results
in relative deviations between about 5–15%.

FIG. 14. Effect of the form factor of the cubic discretization cell,
h(q), on the randomly averaged spin-flip SANS cross section Isf (q)
[compare Eq. (19)]. Shown is Isf (q) for L = 120 nm and at μ0H0 =
0.12 T with the function h(qx = 0, qy, qz ) = sin(qya/2)

qya/2
sin(qza/2)

qza/2 in-
cluded using a cell size of a = 2 nm (black line) and for h = 1 (red
line) (log-log scale). As is seen, the q dependent cell form factor
suppresses the scattering curve. Here, significant deviations become
noticeable for q � 0.3 nm−1.
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