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Entanglement phases, localization, and multifractality of monitored free fermions in two dimensions
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We investigate the entanglement structure and wave function characteristics of continuously monitored free
fermions with U(1) symmetry in two spatial dimensions. By deriving the exact fermion replica-quantum master
equation, we line out two approaches: (i) a nonlinear sigma model analogous to disordered free fermions,
resulting in an SU(R)-symmetric field theory of symmetry class AIII in (2 + 1) space-time dimensions, or (ii)
for bipartite lattices, third quantization leading to a non-Hermitian SU(2R)-symmetric Hubbard model. Using
exact numerical simulations, we explore the phenomenology of the entanglement transition in two-dimensional
(2D) monitored fermions, examining entanglement entropy and wave function inverse participation ratio. At
weak monitoring, we observe characteristic L log L entanglement growth and multifractal dimension Dq = 2,
resembling a metallic Fermi liquid. Under strong monitoring, wave functions localize and the entanglement
saturates towards an area law. Between these regimes, we identify a high-symmetry point exhibiting both
entanglement growth indicative of emergent conformal invariance and maximal multifractal behavior. While this
multifractal behavior aligns with the nonlinear sigma model of the Anderson transition, the emergent conformal
invariance is an unexpected feature not typically associated with Anderson localization. These discoveries add a
new dimension to the study of 2D monitored fermions and underscore the need to further explore the connection
between nonunitary quantum dynamics in D dimensions and quantum statistical mechanics in D + 1 dimensions.
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I. INTRODUCTION

The advances in realizing quantum devices with unitary
evolution and midcircuit measurements have put focus on a
novel type of quantum dynamics: the competition between
scrambling and localization of quantum information, caused
by the noncommutivity of delocalizing unitary dynamics and
localizing nonunitary measurements. The genuine quantum
mechanical competition culminates in a monitoring-induced
phase transition (MIPT) in the entanglement entropy. Two
types of protocols have crystallized: quantum circuits utilizing
discrete unitary gates and projective measurements [1–30] and
monitored Hamiltonians, augmenting a continuous unitary
evolution by measurements [31–55].

Recently, MIPTs in D dimensions have been linked to
localization-delocalization transitions in D + 1-dimensional
disordered quantum systems [28,34,35,38,56–63], comparing
random, nonunitary measurements in a D-dimensional evo-
lution with static disorder in D + 1 space-time dimensions.
However, the primary focus has been on dynamics in one spa-
tial dimension, where an exponentially diverging correlation
length of fermions with U(1) symmetry complicates the clear
identification of the MIPT [31,32,34,37,38].

Here we explore this link in a new arena with a rich
phenomenology: we study continuously monitored, U(1)-
symmetric free fermions in D = 2 spatial dimensions, as
illustrated in Figs. 1(a) and 1(b). We use a two-pronged ap-
proach, combining analytical tools and large scale numerical
simulations. An intriguing picture is provided by fermion
Keldysh replica field theory: a direct mapping of the R-
replicated lattice to a continuum theory yields a description
reminiscent of free disordered fermions with a dissipative but

space-time local four-fermion vertex [64]. Expanding around
the metallic saddle point, we derive a nonlinear sigma model
(NLσM) with SU(R) symmetry for the Goldstone modes, as
previously obtained for projective measurements [35]. How-
ever, we show for bipartite lattices that space-time locality
enables an alternative mapping of the replica Keldysh master
equation to an SU(2R)-symmetric, non-Hermitian Hubbard
model with a dissipative interaction vertex in third quan-
tization. This anticipates a rich phenomenology for MIPTs
in 2 + 1 dimensions, which we explore with numerical
simulations.

We numerically explore the phenomenology of the MIPT, a
localization-delocalization transition, whose features are sum-
marized in Fig. 1(c). At weak monitoring, the half-system
entanglement entropy exhibits L log L growth, characteris-
tic of a metallic phase, which transitions to a localized,
area-law phase at strong monitoring [see Fig. 1(d)]. Be-
tween these phases, we identify a unique high symmetry
point exhibiting scaling consistent with a conformal field
theory. This finding contrasts with Anderson localization,
which predicts area-law scaling at the transition [65]. In-
terestingly, at the high symmetry point, the fermion wave
functions display multifractal behavior, shown in Fig. 1(e),
that aligns with the nonlinear sigma model (NLσM) pre-
dictions for class AI in three dimensions [56,57,65–68].
We show that the purification time of a mixed initial
state is determined by the multifractal exponent. For free
fermions entanglement arises solely from particle number
fluctuations, which links the purification process to the
multifractal behavior at a MIPT with simultaneous charge
sharpening [69–71].
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FIG. 1. Measurement-induced phase transition of monitored
fermions in two dimensions. (a) Free fermions hopping on an
L × L square lattice are continuously monitored with rate γ .
(b) Sketch of the time evolution. Blue sheets represent snapshot wave
functions from which observables, including the half-system entan-
glement entropy S(A) for strips A = L × L/2 (yellow), are obtained.
(c) Schematic phase diagram showing observables and their char-
acteristic behavior. (d) At weak monitoring S(A) ∼ L log L, while
saturating to an area law ∼L for strong monitoring. (d) Multifractal
exponent Dq of the inverse participation ratio Pq: Wave function
multifractality is observed around γ = 2.15 [pink, D2 = 1.80(9),
D3 = 1.1(5) and D4 = 0.7(4)] and metallic behavior for weak mon-
itoring (blue, Dq = 2 for all q).

II. THEORETICAL BACKGROUND

A. Microscopic model

We consider fermions on a half-filled two-dimensional
(2D) L × L square lattice, with creation and annihilation op-
erators {ĉ�, ĉ†

�′ } = δ�,�′ on lattice sites �, �′. The fermions
undergo coherent nearest-neighbor hopping with Hamilto-
nian Ĥ = −∑

〈�,m〉 ĉ†
mĉ� + ĉ†

� ĉm. Simultaneously, the particle
number n̂� at each site is continuously monitored with
rate γ . Monitoring is implemented by the generalized
projector [72,73]

M̂({J�,t }) =
∏

�

[
2γ dt

π

] 1
4

exp[−γ dt (J�,t − n̂�)2]. (1)

The unnormalized wave function |ψ̃t 〉 evolves at time
t |ψ̃t+dt 〉 = exp(−iĤdt )M̂�({J�,t })|ψ̃t 〉 after measurement
outcomes J�,t ∈ R were recorded. The normalized wave
function |ψt 〉 = |ψ̃t 〉p({J�,t })−

1
2 is obtained via the Born prob-

ability for measuring the stream {J�,t ′<t } for all sites � and
times t ′ < t :

p({J�,t+dt }) = 〈ψt |M̂�({J�,t })2|ψt 〉p({J�,t })

= 〈ψ̃t+dt |ψ̃t+dt 〉. (2)

An equivalent formulation emerges in the limit of infinites-
imal time steps dt → 0+. For a single wave function, the
evolution of the normalized wave function |ψt 〉 → |ψt+dt 〉 in
an infinitesimal time step is composed of three steps. First, the
measurement outcomes J�,t are drawn from the Born prob-
abilities p({J�,t }). Second, the unnormalized wave function
is computed |ψ̃t+dt 〉 = exp(−iĤdt )M̂�({J�,t })|ψt 〉 from the
normalized one. Then |ψt+dt 〉 = |ψ̃t+dt 〉|||ψ̃t+dt 〉||− 1

2 normal-
ization is performed. For dt → 0+, the variables J�,t become
Gaussian distributed with mean J�,t = 〈n̂�〉t and variance
var(J�,t ) = 1

4γ dt . This is readily verified by taking the mth
moment of J�,t ,

Jm
�,t =

∫ ∞

−∞
dJ�,t Jm

�,t p({J�,t }), (3)

and the definition of the Born probabilities. Thus only the
mean of J�,t depends on the state but not its variance. This
is implemented by replacing J�,t → 〈n̂�〉t + ξ�,t

2γ dt with ξ�,t be-
ing Gaussian white noise. Inserting the replacement into the
generalized projector in Eq. (1) yields

M̂({J�,t }) =
∏

�

[
2γ dt

π

] 1
4

exp

[
−γ dt

(
〈n̂�〉t − n̂� + ξ�,t

2γ dt

)2]

=
∏

�

[
2γ dt

π

] 1
4

exp[−γ dt (〈n̂�〉t − n̂�)2

− ξ�,t (〈n̂�〉t − n̂�)]. (4)

We now expand the exponential to first order in dt , keeping in
mind that ξ 2

�,t = γ dt . It yields

M̂({J�,t }) ≈ 1

N

[
1−

∑
�

γ dt

2
(n̂� − 〈n̂�〉t )

2 − ξ�,t (n̂� − 〈n̂�〉t )

]
,

where N is a constant prefactor. Applying this expansion
to the wave function and subsequently normalizing it shows
that N drops out and one obtains the stochastic Schrödinger
equation (SSE) [31–33] (with m̂�,t = n̂� − 〈n̂�〉t )

d|ψt 〉 =
(

− idtĤ +
∑

�

[
ξ�,t m̂�,t − γ dt

2
m̂2

�,t

])
|ψt 〉. (5)

B. Fermion replica master equation and replica field theory

In order to average over the random measurement out-
comes, we utilize the replica framework [34,35,63] with
the generalized projector. We introduce r = 1, . . . , R repli-
cas of the fermion Hilbert space and their fermion operators
ĉ†(r)
� , ĉ(r)

� , and n̂(r)
� = ĉ†(r)

� ĉ(r)
� . The measurement-averaged

density matrix for fixed R, M > 0 is

ρR,M = p({J�,t })R ⊗M
r=1 |ψt 〉〈ψt |

= Tr(|ψ̃t 〉〈ψ̃t |)R−M⊗M
r=1 |ψ̃t 〉〈ψ̃t |

= Trr>M ρ̃, with ρ̃ = ⊗R
r=1|ψ̃t 〉〈ψ̃t |. (6)

The trajectory average amounts to an integration over all pos-
sible outcomes J�,t ∈ R. It relates the nonlinear average of
M-replicated wave functions, weighted with Born probability
p({J�,t })R to a linear average of R-replicated, unnormalized
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wave functions. The latter is well defined for R � M. The case
R = 1 is obtained via analytic continuation.

The infinitesimal evolution ∂t ρ̃ is obtained by perform-
ing the measurement average and expanding the result up to
O(dt ). Consider the unnormalized, trajectory averaged den-

sity matrix ρ̃ = ⊗R
r=1|ψ̃t 〉〈ψ̃t |. In an infinitesimal time step

t → t + dt , for each replica one unitary operator exp −iĤdt
and one generalized projector M̂({J�,t }) from Eq. (1) act from
the left and from the right on the density matrix. We attribute
to each operator a replica label r, indicating the replica Hilbert
space, and an additional sign σ = ± indicating whether it
acts from the left or from the right onto ρ̃, i.e., ĉ� → ĉ(r)

�,σ .

This simplifies the notation: each pair of fermions ĉ(r)
�,σ , ĉ(r′ )

�′,σ ′
is independent if any of the labels differ from each other. The

evolution is then ρ̃t+dt = U ⊗2RM̂({J�,t })⊗2Rρ̃t , with U ⊗2R =
1 − idt

∑R
r=1(H (r)

+ − H (r)
− ) and the averaged replica projec-

tor. Before the average,

M̂({J�,t })⊗2R =
∏

�

[
2γ dt

π

] R
2

exp

⎡
⎣−γ dt

∑
σ=±,r

(
J�,t−n̂(r)

�,σ

)2

⎤
⎦

=
∏

�

[
2γ dt

π

] R
2

e−γ dtR(2J̃2
�,t +L2 )

× exp
γ dt

2R
(N̂�,+ + N̂�,−)2. (7)

Here we have introduced N̂�,σ = ∑R
r=1 n̂(r)

�,σ and J̃�,t = J�,t −
1

2R (N̂�,+ + N̂�,−) and we have used the fermion property that
(n̂(r)

�,σ )2 = n̂(r)
�,σ and that

∑
� n̂(r)

�,σ = L2/2 is an exact identity
for a U (1) symmetric, half-filled lattice. Taking the trajectory
average over all possible measurement outcomes amounts to
integrating over all possible values for each J�,t . Since J�,t

for different time steps and lattice sites are independent, we
can perform this integration for each infinitesimal evolution
operator individually. The Born probabilities are implemented
at the end by the correct replica limit. Thus, performing the av-
erage on M̂({Jl,t })⊗2R amounts to a Gaussian integral, yielding

M̂({Jl,t })⊗2R = exp −γ dtRL2 + γ dt

2R
(N̂�,+ + N̂�,−)2

dt→0+= 1 − γ dt

R

∑
�

[
R2 − 1

2
(N̂�,+ + N̂�,−)2

]
.

(8)

The replica quantum master equation (rQME) is readily ob-
tained acting the operators N̂� on ρ̃t as indicated by the labels
σ = ±:

∂t ρ̃ = i[ρ̃, ĤR] − γ

R

∑
�

(
{N̂�(R − N̂�), ρ̃} + 1

2
[N̂�, [N̂�, ρ̃]]

)
.

(9)

Here, ĤR = ∑
r,σ Ĥ (r)

σ and N̂� = ∑
σ N̂�,σ = ∑

r,σ n̂(r)
�,σ are the

sum over r-replicated Hamiltonian and number operators.
Both are quadratic in fermions and thus invariant under replica
rotations. The competition between ĤR and N̂� drives the
MIPT: the latter prefers a replica-aligned local particle density

N̂� = 0, R, while the Hamiltonian instead aims to maximize
the kinetic energy, i.e., pushes N̂� → R

2 .
The fermion rQME can be mapped to a Keldysh path

integral [64,74]: at each infinitesimal time step t → t + dt
fermion coherent states are inserted on both sides of the
density matrix ρ̃t . Each fermion operator acting on coher-
ent states at time t is then replaced by Grassmann variables
c(r)†
�,σ , c(r)

�,σ → ψ̄
(r)
�,t,σ , ψ

(r)
�,t,σ . Here σ again denotes whether the

operator acts from the left (σ = +) or from the right (σ = −)
onto the density matrix [74]. For the monitoring part of the
action, this can be readily inferred from Eq. (7), yielding

iSmeas =
∫

dt
∑

�

[
R∑

r=1

(
ψ̄

(r)
�,t,+ψ

(r)
�,t,+ + ψ̄

(r)
�,t,−ψ

(r)
�,t,−

)]2

.

(10)

Now, one performs a canonical rotation into the fermion
Keldysh basis via [64] ψ

(r)
�,t,α = (ψ (r)

�,t,+ − (−1)αψ
(r)
�,t,−)/

√
2

and ψ̄
(r)
�,t,α = (ψ̄ (r)

�,t,+ + (−1)αψ̄
(r)
�,t,−)/

√
2, where α = 1, 2 is

the Keldysh index. Introducing the vector ψt,� = {ψ (r)
α,t,�}

and similarly ψ̄t,� and drawing the spatial continuum
limit (t, �) → (t, x) = X yields the partition sum Z =∫
D[{ψ, ψ̄}] exp(iSψ ) and action

Sψ =
∫

X

{
ψ̄X G−1

0 ψX − iγ

2R
Tr

[(
σ K

x ψX ψ̄X
)2]}

. (11)

The free part of the action ∼ ∫
X ψ̄X G−1

0 ψX with the free
Green’s function in Keldysh structure G−1

0 is familiar from
textbooks (see, e.g., Ref. [64]). Here ψX = {ψ (r)

α,X } is a 2R-
Grassmann vector and the trace runs over replica and Keldysh
index; the Pauli matrix σ K

x acts on the Keldysh index α. At half
filling, the bare Keldysh Green’s function in momentum space
P ≡ (ω, p) is G0(P) = δr,r′ [(ω − εp)1 − i0+σ K

z ]−1 with dis-
persion εq = 2cos(px ) + 2cos(py).

The action Sψ is reminiscent of the Keldysh action for
disordered fermions with U (1) symmetry [64]. The quar-
tic fermion vertex, however, displays two crucial differences
compared to static disorder, which are intrinsic to a monitored,
i.e., dynamic, theory. First, the structure in Keldysh space is
modified by σ K

x (disorder: σ K
x → 1). This reduces the sym-

metry of rotations in Keldysh-replica space: it gaps out R2 − 1
rotation modes, which can be treated perturbatively. The result
is an emergent space-time invariance at long wavelengths
and a dynamical critical exponent z = 1. Secondly, the vertex
is space-time local: measurements, unlike disorder, vary in
time and space. This eliminates the possibility of fermions
to interfere with their time-reversed partners and gives rise to
two local long-wavelength modes.

C. Bosonic theory: Saddle point and Gaussian fluctuations

We proceed by obtaining a bosonic action via a Hubbard-
Stratonovich decoupling. We multiply the partition function
Z = ∫

D({ψX })eiSψ by the identity

1 =
∫
D({QX })δ(QX − 2ψX ψ̄X ). (12)

Here QX ∈ C2R×2R is a 2R × 2R Hermitian matrix, while
ψX ψ̄X is a 2R × 2R matrix of Grassmann bilinears and δ(...) is
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the Dirac δ function. Shifting this identity into the Grassmann
integration, we use the δ function to replace the fermion bilin-
ear matrices ψX ψ̄X → QX in the quartic term. For the fermion
bilinears, one has the identity

Tr[(σxψX ψ̄X )2] = −(Tr[σxψX ψ̄X ])2, (13)

which has no counterpart for a general QX -matrix structure.
In terms of QX , both terms are relevant, i.e., due to the
space-time-local nature of the matrix QX both correspond to
slow, long-wavelength fluctuations in a Hartree-Fock decom-
position of the four fermion vertex. This is in contrast to
conventional disordered problems [64]. We therefore choose
a symmetric decoupling of both channels in this paper.

We thus have Z = ∫
D[{ψX , QX }]δ(QX − 2ψX ψ̄X )eiSψ−Q

with

Sψ−Q=
∫

X

{
ψ̄X G−1

0 ψX − iγ

8R
(Tr[(σxQX )2] − (Tr[σxQX ])2)

}
.

(14)

In order to implement the δ function, we use its integral
representation in terms of a 2R × 2R Hermitian matrix �X :

δ(QX − 2ψX ψ̄X ) ∼
∫
D[{�X }]e i

2 Tr[�X (QX −2ψX ψ̄X )]. (15)

As common for nonlinear sigma model approaches, we re-
place the hard constraint resulting from an integration over
� by a soft constraint [75]: we replace � by its saddle point
value, obtained by taking the variation with respect to QX .
The remaining action is quadratic in Grassmann variables.
Integrating them out and replacing � by the saddle point value
yields

iSQ =iS0 + γ

8R

∫
X

{[
Tr

(
σ K

x QX
)]2 − Tr

[(
σ K

x QX
)2]}

(16)

with iS0 = ∫
X Tr ln(G−1

0 + i γ

2R QX ). The replica diagonals
Q(rr)

αβ,X = ψ
(r)
α,X ψ̄

(r)
β,X represent the physical fermion bilinears,

such as, e.g., the fermion density n(r)
X = 1

2 (Q(rr)
12,X + Q(rr)

21,X ) and
provide access to the connected correlation function [34,35]:

C(x − x′, t ) = 〈
n(r)

x,t

[
n(r)

x′,t − n(r′ )
x′,t

]〉 = 〈n̂xn̂x′ 〉 − 〈n̂x〉〈n̂x′ 〉.
(17)

For free fermions it further enables computing an approxi-
mate value for the entanglement entropy SA of a subregion
A. The latter can be expressed in terms of a series in-
corporating all even (2n − th) order cumulants C(2n)

A of the
particle number N̂A = ∑

�∈A n̂� in subregion A [76,77]. It
yields SA = 2ζ (2)C(2)

A + O(C(2n�4)
A ). In order to obtain an

analytical expression for the entanglement entropy and the
mutual information, we approximate the series by the first or-
der term, which is proportional to C(2)

A = ∫
x,x′∈A C(x − x′, t ).

Here the time t is taken of the simulation, i.e., at a (2 + 1)-
dimensional space-time volume with “absorbing” temporal
boundaries [35].

In order to determine the saddle point of the action SQ

we take the variation with respect to QX . The locality of QX

in space-time simplifies the variation compared to disordered

fermions and yields the common result [64]:

0
!= δSQ

δQX
= iγ

2R

[(
G−1

0 + i
γ

2R
Q
)−1

X,X

− 1

2
σxQX σx + 1

2
σxTr(σxQ)

]
.

The equation is solved by QX = � = δr,r′σz, which also
implements causality for the saddle point fermion Green’s
function G−1

SP ≡ (G−1
0 + i γ

2R�)−1
X,X δr,r′ . It also implements a

half-filled Keldysh Green’s function and fulfills the nonlinear
constraint Q2

X = 1. The result amounts to the self-consistent
Born approximation [64] with an elastic mean-free time
τel = R/γ .

In order to extract density correlation functions we expand
the action around the saddle point by setting QX = � + δQX

and then expanding SQ to quadratic order in δQX . The zeroth
order term is a constant and the first order term vanishes,
leaving us with

S(2)
δQ = γ 2

8R2

∫
X,X ′

Tr(GSP(X − X ′)δQX ′GSP(X ′ − X )δQX )

− γ

8R

∫
X
{Tr[(σxδQX )2] − [Tr(σxδQX )]2}. (18)

This action can be significantly simplified: the Green’s
functions GSG are diagonal in replica and Keldysh index. Fur-
thermore, integrals over GR(X )GR(−X ) and GA(X )GA(−X )
are zero due to causality. We thus end up with a separation
of the action into replica diagonal modes �r

X = δQrr
X and off-

diagonal modes δQ̃r,r′
X . Furthermore, one finds a pairing of �12

and �21 in Keldysh index. It is convenient to introduce classi-
cal and quantum fields �

q,r
X = δQ21,rr

X and �c,r
X = δQ21,rr

X . In
Fourier space, we find

iS� = − 1

8

∫
P

(
�c,r

P ,�
q,r
P

)( 0 G−1(P)
G−1(−P) 0

)(
�c,r

−P

�
q,r
−P

)

+ γ (1 − δr,r′ )

8R

∫
P

(
�c,r

P ,�
q,r
P

)(1 1
1 1

)(
�c,r′

−P

�
q,r′
−P

)
. (19)

The inverse propagator here is defined via the integral

G−1(P) =
[
γ 2

R2

∫
P′

gR(P + P′)gA(P′)
]

− γ

R
, (20)

which for ω, p2  γ and R → 1 yields G−1(P) ≈ −iω +
2
γ

p2. Computing the particle number fluctuations as defined
previously thus yields

C(P) = Re[G(P)]

2 + 4γ Re[G(P)]
. (21)

When computing the Fourier transform of this equation, one
needs to consider that the observable is measured at the
temporal boundary of the 2 + 1 dimensional evolution. This
amounts to integral boundaries t ∈ [0,∞) instead of the usual
t ∈ (−∞,∞). Without this boundary, the prefactor for SA

would be π
6γ

. The correct expression is a factor of 2 larger
[35]. Thus, in the Gaussian approximation and for A = L/2 ×
L we find the cumulant and the leading order approximation
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for the entanglement entropy to be

C(P) = p2

γ (ω2 + 4p2)
and SA = π

3γ
ln(πL/2)L. (22)

D. Nonlinear sigma model

The long-wavelength fluctuations of the bosonic matrix
QX correspond to all symmetry-compatible rotations QX =
RX �R−1

X of the saddle point �. Each RX performs lo-
cal rotations in 2R × 2R-dimensional replica and Keldysh
space compatible with a U(2R) symmetry. Since � ∼ σz in
Keldysh space, 2R2 generators are trivial, i.e., those ≈ 1, σz in
Keldysh space. The resulting rotations act in U(2R)/U(R) ×
U(R) symmetric space and are parametrized by genera-
tors σx�x, σy�y, where �x,y are Hermitian R × R matrices
acting on replica coordinates. We set RX = Rx,XRy,X with
Rη,X = exp( i

2ση�η ).
Inserting this parametrization into the measurement part

and using identities for Pauli matrices to compute the trace
in Keldysh indices, we find

Tr[(σxQX )2] = −2TrR cos(2�y,X ) ≈ 4TrR
(
�2

y,X

)
,

(Tr[σxQX ])2 = (2TrR[sin(�y,X )])2 ≈ 4(TrR�y,X )2. (23)

Here TrR denotes the trace over the remaining replica indices.
We have expanded the nonlinear functions since the action
does not vanish for the traceless part of �y,X , i.e., for �̃y,X =
�y,X − 1

R TrR�y,X , which thus remains gapped independently
of the value of R. The remaining U(1) trace degree of freedom
θy,X ≡ TrR�y,X has a gap that vanishes in the limit R → 1 and
is thus not integrated out. It does not enter the computation
of the entanglement entropy and remains diffusive in the limit
R → 1, where it describes the average diffusion of particles.

The logarithm in the action SQ is rewritten [64]

Tr
[
ln

(
G−1

0 + i
γ

2R
QX

)]
= Tr

[
ln

(
R−1

X G−1
0 RX + i

γ

2R
�

)]

= Tr
[
ln

(
1 + GSPR−1

X

[
G−1

0 ,RX
])]

,

(24)

with GSP = (G−1
0 + i γ

2R�)−1. The logarithm is expanded to
leading order in derivatives. The temporal derivative yields

Tr
[
GR−1

X i∂tRX
] = − 1

2 Tr
[
σ K

x sin(�y,X )R−1
x,X ∂tRx,X

]
≈ − 1

2 TrR
[
�y,X e− i

2 �x,X (∂t e
i�x,X )e− i

2 �x,X
]
.

(25)

The spatial derivative appears only in quadratic order due to
inversion symmetry:

Tr((∇QX )2) = 2TrR[(∇ei�x,X )(∇e−i�x,X )]. (26)

Integrating out the gapped relative replica fluctuations �̃y,X in
the Gaussian approximation and rescaling time by a factor

√
2

yields

iSU = − g

2

∫
X

[∂tU∂tU
−1 + ∇U∇U −1] (27)

with U ∈ SU(R) and g = √
2/(8γ ). It also emerges in com-

mon disorder problems for the chiral unitary class AIII [65].

Setting R → 1 and in 2 + 1 dimensions, the one-loop renor-
malization group (RG) flow for the dimensionless coupling
g̃ = gl is (RG scale l) [78–80]

∂ g̃(l )/∂ ln(l ) = g̃(l ) − 1

4π
⇒ g̃(l ) = 1

4π
+

(
g − 1

4π

)
l

l0
.

(28)

Here, l0 = 1 is the UV scale (dimensionless lattice spacing)
and g̃(l0) = g. The flow equation predicts a MIPT at a critical
monitoring rate γc,th = π√

2
≈ 2.22. For γ < γc,th (γ > γc,th),

the theory flows to weak (strong) coupling.

E. Effective Non-Hermitian Hubbard model

While the continuum action in the boson framework in
Eq. (16) emphasizes the link to Anderson physics, it obscures
a higher SU(2R) that is present whenever fermions hop on
a bipartite lattice, composed of sublattices A and B, such
as, e.g., the square lattice. To reveal it, we utilize the third
quantization procedure [81,82] and reexpress the rQME by
viewing ρ̃ → ||ρ̃〉〉 as a state vector in Hilbert space with
evolution ∂t ||ρ̃〉〉 = iĤ ||ρ̃〉〉. Introducing an index σ denot-
ing operators acting on the left (σ = +1) or on the right
(σ = −1) of ρ̃ and performing a unitary transformation UA =
exp(−iπ

∑
�∈A N̂−

� ) that acts only on the (σ = −1) degrees
on sublattice A, one finds (half filling)

Ĥ =
∑
r,σ

Ĥ (r,σ ) + iγ

2R

∑
�

[(∑
r,σ

n̂(r,σ )
�

)
− R

]2

− iγ L2R.

(29)

The Hamiltonian Ĥ is invariant under rotation of 2R flavors
(r, σ ) and a global phase and thus displays a U(1) × SU(2R)
rotation symmetry. It resembles an attractive Hubbard model
with 2R flavors, where the attractive coherent interaction
vertex is replaced by a dissipative one through the evolu-
tion operator exp(iĤt ) acting on ||ρ̃〉〉. The stationary state
||ρ̃〉〉t→∞ corresponds to precisely the eigenstate of Ĥ whose
eigenvalue features the smallest imaginary part. For the case
R = 1, the stationary state and the excitation spectrum of the
dissipative Hubbard model in Eq. (29) have been explored in
the context of particle decoherence [82]. While decoherence
leads to a trivial stationary state, any R > 1 enforces a relax-
ation towards a nontrivial stationary state. We note that ||ρ̃〉 is
not a conventional wave function. For instance, its norm (the
trace) is computed with respect to a “flat” state 〈1|| [81] and it
is only preserved in the limit R = 1.

A full SU(2R)-symmetric Keldysh action is obtained by
either computing a “standard,” single-contour path integral
for the generator exp(iĤt ) or by performing the sublattice
transformation UA on the Keldysh action in Eq. (9) before
taking the spatial continuum limit. In the latter case, an addi-
tional particle-hole transformation on the σ = − contour with
ψ → ψ̄, ψ̄ → −ψ yields the Keldysh field theory with a full
SU(2R) symmetry [83]. This formulation of the problem in
terms of a dissipative Hubbard model or SU(2R)-symmetric
Keldysh theory opens a previously unanticipated direction on
monitored fermions. It remains a challenging task to explore
the analytical predictions from this approach and its con-
sequences on the MIPT of monitored fermions. Below, we
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demonstrate by numerical simulations that indeed the picture
of the fermion MIPT may need to be refined.

III. RESULTS

A. Numerical implementation

The SSE (5) is quadratic in ĉ�, ĉ†
� and efficiently simulated

with Gaussian states [31,32]

|ψt 〉 =
∏

1�s�L2/2

c†
s |0〉, c†

s =
∑

1���L2

ψ s
�,t c

†
�. (30)

The single-particle wave function ψ s
�,t ∈ C of fermion s at site

� implicitly depends on the history of noise events {ξ�,t ′<t }.
Normalization of the wave functions implies

∑
�(ψ s

�,t )
∗ψ s′

�,t =
δs,s′ , i.e., ψ

†
t ψt = 1. The trajectory evolution thus amounts to

updating ψt , which is done by a Suzuki-Trotter decomposition
of Eq. (5) [31,32]. Up to first order in dt and up to an overall
normalization, this leads to the matrix update

ψt+dt = diag
(
eξ1,t + γ dt

2 (2〈n̂1〉t −1), . . . , eξN,t + γ dt
2 (2〈n̂N 〉t −1)

)
e−ihdtψt .

Here, h�,�′ = −δ� n.n.�′ is the nearest-neighbor hopping matrix.
Normalization is obtained by performing a QR, i.e., Gram-
Schmidt, decomposition ψ = QR and redefining ψ ≡ Q. We
initialize each |ψt=0〉 in a random Gaussian state at half filling
and evolve it until our observables, i.e., the von Neumann
entanglement entropy S(A) and the statistics of ψ s

�,t , reach
stationary values.

For subsystems A, B we compute the trajectory averages:

S(A) = −Tr(ρA ln ρA), I(A, B) = S(A) + S(B) − S(A ∪ B).

The reduced density matrix ρA = TrĀ|ψt 〉〈ψt | is obtained by
tracing over the complement of A. Here, we take each sub-
system as a strip of size A = L × lA [see Fig. 1(b)]. The wave
functions ψ s

� are characterized by their inverse participation
ratio Pq, its variance σq, and anomalous dimension Dq:

Pq = 2L−2
∑
s,�

∣∣ψ s
�,t

∣∣2q ∼ L−Dq (q−1), σ 2
q = var(ln Pq). (31)

B. Entanglement and mutual information

The entanglement and mutual information in this paper are
exclusively computed from the von Neumann entanglement
entropy. For a Gaussian state, it is computed from the corre-
lation matrix 〈ψt |c†

�cm|ψt 〉 = (ψt ψ
†
t )�,m. In order to compute

the von Neumann entanglement of a subsystem A, one con-
siders the correlation matrix (ψt ψ

†
t )|A restricted to subsystem

A and computes its eigenvalues {λα}|A. The von Neumann
entanglement entropy for the subsystem is then

S(A) = −
∑

α

λα log λα + (1 − λα ) log(1 − λα ).

Numerical simulations underpin two entanglement
regimes: for weak measurements the entanglement entropy
grows as S(A = L × L/2) = c(γ )L ln(L) + b(γ )L, which is
reminiscent of a 2D metallic state and consistent with the field
theory result in Eq. (22). For strong measurements an area
law S(A) = b(γ )L, i.e., c(γ ) = 0, is observed in Fig. 1(d).
We extract the prefactor of the subextensive growth in three
ways.

FIG. 2. Entanglement entropy scaling. (a) Computing the half-
system entanglement entropy S(A = L × L/2) and fitting it to the
form S(A = L × L/2) = c(γ )L ln(L) + b(γ )L predicted by the sad-
dle point analysis yields a sharp crossing point of the prefactor c(γ )
at γ = 2.15. The black squares result from an extrapolation of c(γ )
to L → ∞. Agreement with the result of Eq. (22), c0(γ ) = π/3γ ,
is found for intermediate γ around γ ≈ 2.15. Inset: Finite-size scal-
ing data for γ c(γ ). (b) The residual entropy b(γ ) displays a sharp
crossing point at γ = 2.15 and vanishes in the vicinity of this point.

(i) For any given L, we perform a linear fit of S(A)/L̃ vs
ln L̃ for all even L̃ values in L̃ ∈ [2, L] and with L values up to
L = 50.

(ii) We use the relation c(γ ) ≈ S(A)/(L ln L) for each γ

value and L values up to L = 64.
(iii) Using the data of the entanglement entropy s(A) as

a function of the subsystem size A = L × lA, we perform a
linear fit of s(A) vs log[L sin(π lA/L)] for different γ and L
values.

All methods are in close agreement (see the Appendix for
a comparison). For intermediate values of γ , the numerical
prefactor is in good agreement with the Gaussian approxima-
tion c0(γ ) = π

3γ
in the metallic phase [see Fig. 2(a)] [84]. The

residual entropy b(γ ) in this regime remains small(|b(γ )| �
10−1) and crosses zero around γ ≈ 2.15 [see Fig. 2(b)]. We
have furthermore extrapolated the infinite-system values of
c(γ ) and b(γ ) [as computed with method (i)] by means of a
finite-size scaling analysis. In particular, we have performed a
linear fit c(γ ) = m/L + c(L → ∞) and thus extracted c(L →
∞) and similarly for b(L → ∞) [see inset of Fig. 2(a)].
Finite-size scaling of the metallic prefactor c(γ ) reveals a
sharp crossing point at γ ≈ 2.15 in Fig. 2(a). The existence
of a crossing point at nonzero c(γ ) is unanticipated in the
Anderson theory [35,85], which predicts a critical point with
area-law entanglement.

We confirm this feature by extracting the entropy line den-
sity s(A) = S(A)/L for fixed L = 64 and variable strip size
A = L × lA in Fig. 3. We compare it with the formula

s(A) = c(γ ) ln

[
L

π
sin

(
π lA
L

)]
+ b(γ ) (32)

for a quasi-one-dimensional geometry with conformal sym-
metry [86,87]. At γ ≈ 2.15, we find a perfect match with
Eq. (32), while the entanglement curve is flatter (sharper) for
γ > 2.15 (γ < 2.15). This emergent symmetry at γ ≈ 2.15 is
a major result of this paper and it is uncommon for Anderson-
type transitions.
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FIG. 3. Emergent conformal symmetry. (a) Entropy line density
for strips A = L × lA compared with Eq. (32), for L = 64. Devia-
tions are visible for all curves except for γ = 2.15. Inset: Deviation
from Eq. (32). Here h(lA) = [s(A) − b(γ )]/c(γ ) − ln[L sin(π lA/L)]
is zero only when Eq. (32) holds. (b) Entropy line density s(A) as
a function of log[L sin(π lA/L)] (circles) for L = 64 and different
measurement strengths. Dashed lines represent the linear fit results.
A clear linear behavior is seen only for γ ≈ 2.15. Inset: Same plot
for large measurement strengths γ � 4, highlighting the deviations
from Eq. (32).

A further measure for the MIPT is the mutual information
I(A, B), which provides an upper bound for the correlations
between disjoint subsystems A, B [88]. For free fermions it
is determined by particle number fluctuations between A and
B [76,77]. To leading order, I(A, B) = 4ζ (2)

∫
x∈A,x′∈B C(x −

x′, t ). For two strips of size L × 1, separated by a distance
dAB (see Fig. 4), Eq. (22) predicts I(A, B) ∼ d−2

AB /γ . This is
confirmed by a scaling collapse of I(A, B) for γ � 2.15 in
Fig. 4. For γ > 2.15, one instead observes deviations from
the predicted results and an evolution towards an exponential
decay log[I(A, B)] ∼ −dAB, confirming localization [85].

C. Multifractality

A striking feature of localization transitions is the emer-
gence of multifractality [65]. The multifractal exponent Dq

FIG. 4. Mutual Information. A scaling collapse of the mutual
information as a function of the chord distance d̃ confirms the saddle
point prediction I(A, B) ∼ d̃−2/γ from Eq. (22) in the metallic
phase for γ � 2.15. Data are computed for a fixed system size of
L = 64. Above this value deviations towards localization are visible.
Inset: Unrescaled data on a semilog scale, highlighting the exponen-
tial decay of the mutual information for γ � 2.15.

FIG. 5. Multifractality. (a) Multifractal exponent Dq for different
γ , q, estimated by evaluating Eq. (31) at L = 64 (triangles) and
from fit of ln(Pq )/(1 − q) vs ln(L) for even L ∈ [10, 64] (circles).
(b) The variance σq of the distribution P(ln Pq ) both for the moni-
tored fermions (pink circles) and the analytical prediction from the
three-dimensional Anderson model [68] (gray dashed lines). Inset:
The χ 2(γ ) deviation between theory and simulation [see Eq. (34)] is
minimal and close to zero for γ ≈ 2.15.

defined in Eq. (31) characterizes strong fluctuations of single-
particle wave functions. For wave functions in D dimensions,
it distinguishes a metallic phase, with Dq = D, from a lo-
calized phase where Dq → 0, both independent of q. At a
multifractal critical point 0 < Dq < 2 becomes a nontrivial
function of q.

We extract Dq in two different ways: (i) from a fit of
ln(Pq)/(1 − q) vs ln(L) for even L ∈ [10, 64] and (ii) evaluat-
ing Eq. (31) at L = 64. We find qualitative agreement between
both methods. In Fig. 5(a) we show Dq for a range of q and
γ values. It has sigmoid behavior: it saturates to the metallic
value Dq → 2 for γ → 0 for all q and slowly decays with
increasing monitoring strength, revealing an extended region
of multifractal behavior. We note that Dq approaches the value
Dq → 0 only very slowly, i.e., for both L and γ large, pointing
towards a large localization length.

A second characteristic of multifractality is the variance σq

of ln Pq. For symmetry class AI in D = 3 analytics predict

σ Th
q =

{
2πbq|(q − 1)| for |q| < q+
q/q+ for |q| > q+

, (33)

with b ≈ 0.088 and q+ ≈ √
2 [68]. Indeed, as pointed out in

Ref. [35], the one-loop flow equations for the chiral symmetry
class AIII in the replica limit R → 1 resemble those for the
orthogonal class AI in the replica limit R → 0 [78]. Therefore
we compare our data and Eq. (33) in Fig. 5(b). The quality of
agreement is quantified through a χ2 value

χ2(γ ) =
∑

i

∣∣σqi (γ ) − σ Th
qi

∣∣2/σ Th
qi

(34)

for a grid of qi ∈ (0, 1). Similarly, we have estimated the slope
of the linear behavior of our data and checked the closeness
to the predicted value of 1/q+. Both quantities predict a best
match with the theory at the symmetry point γ ≈ 2.15 [89].

D. Purification

MIPTs can be revealed from the purification of a mixed
initial state [4,90–92]. We extract the purification time scale
τpur ∼ Lα by initially entangling the L × L lattice with an
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FIG. 6. Purification time scale. (a) Unrescaled purification dy-
namics of an L × 1 ancilla for γ = 0.5 and different L values. The
drawing represents the system + ancilla setup. (b) Finite-size scaling
of the purification rate τpur ∼ Lα for strong (red) and weak (blue)
monitoring. Inset: Comparison of the purification rate exponent α

and the multifractal exponent D2 for different γ .

L × 1 ancilla [90], i.e., by bringing fermions into a super-
position between ancilla and system (see Fig. 6). For times
t > 0 only the L × L lattice undergoes monitoring described
by the SSE (5). The purity is provided by the entropy den-
sity of the ancilla sanc ≡ S(L × 1)/L ∼ exp(−t/τpur). While
the system is entangled with the ancilla and thus itself in a
mixed state, the global state of the system and ancilla is in a
Gaussian pure state. The global system can thus be numeri-
cally simulated as outlined above. The purification time scales
of the system, however, are typically much longer than the
time needed for other observables to reach stationary values.
The purification simulations are thus computationally more
costly and only smaller system sizes up to linear dimension
L = 16 are performed. To determine the scaling of the pu-
rification rate τpur with the system size L, we performed a
finite-size scaling analysis. This was done by rescaling time
as t → t/Lα and the ancilla entanglement density as sanc →
sanc/Lβ . Then, we found the α and β values which would col-
lapse the curves for different L values, as shown in Fig. 6(b).

The obtained purification exponent α closely resembles the
multifractal exponent D2 for γ � 2.15, while α → 0 rapidly
for γ � 2.15. This behavior can be rationalized: purifying a
particle (or hole) shared by system and ancilla amounts to
localizing it by measurement. The probability of finding the
particle in one measurement step depends on how its wave
function is scrambled, i.e., on its multifractal structure.

IV. OUTLOOK

Monitored free fermions in two dimensions experience
a localization-delocalization MIPT. On a bipartite lattice,
the microscopic R-replica model can be mapped to both an
SU(R)-symmetric nonlinear sigma model in 2 + 1 dimensions
and an SU(2R)-symmetric non-Hermitian Hubbard model
in two dimensions. Both models offer different perspectives
and introduce an unanticipated twist in our understanding
of MIPTs of fermions, which we explore through numeri-
cal simulations. While wave function multifractality, typical
for Anderson transitions, matches NLσM predictions at γ =
2.15, this point also exhibits a higher symmetry consistent
with conformal invariance—unexpected in Anderson theory.
This calls for a closer inspection of the link between mon-
itored fermions and equilibrium localization transitions, and

FIG. 7. Comparison of entanglement entropy scaling. Prefactor
of the logarithmic scaling of the half-system entanglement entropy
estimated from the entanglement entropy data as a function of system
size L (orange circles, equivalent to Fig. 2 main text) and subsystem
size lA (blue triangles). Despite using different methods, both data
agree well and in particular predict the same sharp crossing point at
γ ≈ 2.15.

whether monitored fermions may represent a new nonequi-
librium universality class. Further, we note that the mapping
to the SU(2R)-Hubbard model is exclusive to continuous
monitoring, raising the question of whether projective and
continuous measurements correspond to different universality
classes—a simultaneous work [85] reports agreement with
NLσM predictions for projective measurements in two di-
mensions. Clarifying the similarities and differences between
projective and continuous monitoring may be an interesting
future direction [18,19].

Probing multifractality via purification makes 2D moni-
tored fermions an ideal test bed to explore such questions. A
future goal is to devise experimental schemes to explore the
MIPT [93] through appropriate feedback protocols [94–98].

Note added. Recently, we learned about related works on
monitored fermions in D � 2 that appeared simultaneously
[85,99].

The numerical data shown in the figures are available on
Zenodo [100].
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APPENDIX: COMPARISON
OF ENTANGLEMENT SCALING

We present here a comparison between different proce-
dures to extract the logarithmic scaling prefactor c(γ ) of the
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half-system entanglement entropy S(A = L × L/2). The value
of c(γ ) in Fig. 2 is computed by means of a linear fit of
the entanglement entropy as a function of system size L. As
outlined in the main text, an alternative estimate of c(γ ) is
obtained by using the data of the entanglement entropy as a

function of the subsystem size A = L × lA, i.e., via a linear
fit of s(A) = S(A)/L vs log[L sin(π lA/L)] for L = 64 and
lA ∈ [1, 32]. Although both methods are clearly different, they
yield the same sharp crossing point at γ ≈ 2.15 and are in
close agreement between each other (see Fig. 7).
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