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An analytical theory is developed for predicting the nonlinear susceptibility of ionic polarization to continuous
electromagnetic waves in both bulk and strained thin film ferroelectrics. Using a perturbation method for solving
the nonlinear equation of motion for ionic polarization within the framework of Landau-Ginzburg-Devonshire
theory, the full second-order nonlinear susceptibility tensor is derived as a function of frequency, temperature,
and strain. The theory predicts the coexistence of a significantly enhanced second-order dielectric susceptibility
and a relatively low dielectric loss in BaTiO3 films with a strain-stabilized monoclinic ferroelectric phase and
in a strained SrTiO3 film near its temperature-driven second-order ferroelectric-to-paraelectric phase transition.
In this paper, we establish a theoretical framework for predicting and exploiting nonlinear interactions between
terahertz waves and ferroelectric materials and, more generally, suggest exciting opportunities to strain-engineer
nonlinear dynamical properties of ferroelectrics beyond the static and quasistatic limits.
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I. INTRODUCTION

Nonlinear susceptibility in the terahertz (THz) band (fre-
quency: 0.1–10 THz) is critical to nonlinear THz wave
interactions such as THz high-order harmonic generation
[1–5], THz-field-induced second harmonic generation (SHG)
[6–8], and THz field-induced Kerr effect [9]. These nonlin-
ear processes underpin the development of a wide variety of
THz applications ranging from nonlinear THz spectroscopy to
high-power THz sources to THz imaging [10,11].

Ferroelectric materials, due to their noncentrosymmetric
nature, permit even-order harmonic generation and have been
widely used for nonlinear wave phenomena at optical fre-
quencies (∼1014 Hz). For example, LiNbO3, a workhorse
nonlinear optical material [12,13], is a uniaxial ferroelectric
whose spontaneous polarization (denoted as Pion to indicate
its origin in ionic displacements) aligns along the c axis of
its hexagonal unit cell. More specifically, in displacive ferro-
electric systems such as LiNbO3, PbTiO3, and BaTiO3, Pion

is caused by the condensation of a soft mode phonon below
the Curie temperature and can be expressed as Pion = Z∗

PQP,
where Z∗

P and QP are the Born effective charge density and the
normal coordinates of the soft mode, respectively [14,15].

In the optical regime, frequency-dependent dynamic (lin-
ear or nonlinear) susceptibility of ferroelectric materials is
primarily associated with the optical electric field-induced
electronic polarization Pe [16,17] (note that Pe = 0 under
zero electric field). In the THz and gigahertz (GHz) regimes,
dynamic susceptibility of ferroelectrics contains contributions
from both the Pion and Pe because both types of polarizations

*Contact author: jhu238@wisc.edu

can promptly respond to the GHz-THz electric fields given
their high resonant frequencies (∼1012 Hz for Pion [18] and
∼1015 Hz for Pe). However, the contribution of Pion to the
dynamic susceptibility should be much more significant [19]
because the linear dielectric susceptibility of Pion is much
larger than the induced Pe in the GHz-THz range and because
the Pion can resonantly interact with the THz electric field.

Frequency-dependent nonlinear susceptibilities of Pion in
bulk ferroelectric crystals have been analytically calculated
by employing the perturbation method to solve the equation
of motion for Pion within the framework of a Landau-
Devonshire-type thermodynamic energy density function (a
polynomial of Pion) [20–24]. However, the thermodynamic
potential used in these works [20–24] does not incorporate the
coupling between Pion and strain (i.e., the piezoelectric effect),
which has recently been shown to have a significant influ-
ence on the resonant frequency of the Pion even in stress-free
bulk ferroelectric materials [18,25]. Furthermore, these works
[20–24] are largely focused on the mathematical derivation
without extensively discussing the underlying physical pic-
ture, e.g., the relation between the nonlinear susceptibility and
the landscape of the thermodynamic energy density.

In this paper, based on the equation of motion for Pion

(specifically, the ionic polarization associated with the soft
mode) and the Landau-Ginzburg-Devonshire (LGD) thermo-
dynamical energy density function of Pion that incorporates
the coupling between Pion and strain, we analytically derive
the full nonlinear susceptibility tensor of Pion in monodomain
ferroelectrics and incipient ferroelectrics as a function of fre-
quency, temperature, and in the case of coherently strained
thin films, the epitaxial strain.

While the theoretical framework presented in this pa-
per is directly applicable to various types of THz nonlinear
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phenomena [e.g., third harmonic and sum frequency gen-
eration (SFG)/difference frequency generation (DFG)] in
ferroelectrics, the examples are focused on THz SHG, where
a nonlinear THz polarization Pion with an angular frequency
2ω is generated in the material by an incident THz field
E with an angular frequency ω. After calculating the THz
second harmonic susceptibility in a few bulk ferroelectric
single crystals, we predict a dramatically enhanced THz sec-
ond harmonic susceptibility in monodomain BaTiO3 films
with a strain-stabilized monoclinic phase as well as near the
temperature-driven ferroelectric-to-paraelectric phase transi-
tion in strained SrTiO3 films. These findings indicate the
potential application of using these strained ferroelectric films
for source-current-free SHG at both the microwave and THz
frequencies. The theory advances the physical understanding
of the nonlinear interaction between THz waves and ferro-
electrics. More broadly, in this paper, we suggest exciting
opportunities for strain engineering of nonlinear dynamic
properties in ferroelectrics beyond the static and quasistatic
limits.

II. THEORY

The nonlinear THz susceptibilities refer to the third- and
higher-rank χ tensors in the relation between the total ionic
polarization Pion (hereafter P) and the incident electric field
E. In ferroelectric materials that have a spontaneous polariza-
tion P0

i under zero electric field, the total polarization can be
written as

Pi = P0
i + �Pi = P0

i + �P(1)
i + �P(2)

i + . . . ,

(1a)

�P(1)
i (ω) = κ0

∑
j

χ
(1)
i j (ω)Ej (ω), (1b)

�P(2)
i (ωn ± ωm) = κ0

∑
jk

∑
(mn)

χ
(2)
i jk (ωn ± ωm, ωn, ωm)

×Ej (ωn)Ek (ωm), (1c)

where κ0 is the vacuum permittivity, and Ei is the electric-
field component of the incident THz wave. The subscripts
i,j,k = 1,2,3 indicate crystal physics coordinates. Under the
plane-wave assumption in the thin slab limit, i.e., the thickness
of the ferroelectric is significantly smaller than THz wave-
length λc = 2π

kRe (kRe is the real component of the complex
wave number k [25]), one has Ei = E0

i exp(−iωt ). Equa-
tion (1c) follows the notation in Refs. [26,27] except that all
P’s hereafter referring to ionic polarization; �Pi in Eq. (1a)
is the dynamic variation of the ionic polarization, which
can be separated into a first-order polarization �P(1)

i (ω) =
�P(1),0

i exp(−iωt ) that has the same angular frequency as
the incident THz wave [Eq. (1b)] and second-order polariza-
tion �P(2)

i (ωn ± ωm) = �P(1),0
i exp[−i(ωn ± ωm)t] that can

contain multiple frequency components [Eq. (1c)]. Here, i
denotes the imaginary unit. Specifically, an incident THz
wave containing waves of two angular frequencies ωn and
ωm [the notation (mn) indicating that the ωn ± ωm is fixed,
while ωn and ωm can individually vary] can generate two
SHG polarization components �P(2)

i (2ωn) and �P(2)
i (2ωm),

a SFG component �P(2)
i (ωn + ωm), a DFG component

�P(2)
i (ωn − ωm), and a dc polarization shift �P(2)

i (0) induced
by a static electric field rectified from complex electric fields
Ei(ω) = E0

i exp(−iωt ) and its conjugate E∗
i (ω) = Ei(−ω) =

E0
i exp(iωt ).

Each second-order polarization component is
associated with its own χ

(2)
i jk tensor, including

χ
(2)
i jk (2ωn, ωn, ωn), χ

(2)
i jk (2ωm, ωm, ωm), χ

(2)
i jk (ωn + ωm,

ωn, ωm), χ
(2)
i jk (ωn − ωm, ωn,−ωm), and χ

(2)
i jk (0, ωm,−ωm)

and/or χ
(2)
i jk (0, ωn,−ωn). In this paper, the analytical formulae

for all these χ
(2)
i jk tensors are derived. The examples focus on

the THz SHG, where a monochromatic incident THz wave
with an angular frequency ω, E(ω), generates a second-order
polarization �P(2)

i (2ω), i.e.,

�P(2)
i (2ω) = κ0

∑
jk

χ
(2)
i jk (2ω,ω,ω)Ej (ω)Ek (ω). (2)

The analytical formulae for the frequency-dependent linear
susceptibility χ

(1)
i j and second-order susceptibility χ

(2)
i jk can be

obtained by finding the steady-state solution of the equation
of motion for �Pi [25], which is analogous to the equation of
motion for an anharmonic oscillator, given as

μ
∂2�Pi

∂t2
+γi j

∂�Pj

∂t
= �E eff

i

= ELandau
i + EElast

i + Ed
i + Ei + E rad

i ,

(3)

where the subscripts i = 1,2,3 of the polarization component
indicate the Cartesian crystal physics coordinates of the para-
electric cubic phase within the framework of the LGD theory
[28]. Here, μ = 1

κ0ω2
p

is the mass coefficient (polarization

inertia) with an ionic plasma frequency ωp =
√

1
κ0V0

∑
n

q2
n

Mn
,

where qn and Mn are the charge and mass of the nth charged
ion in a unit cell with a volume V0 [29], and γi j is the phe-
nomenological viscous damping coefficient that can be related
to the crystal viscosity [30]; the temporal variation of the total
effective electric field is �E eff

i = E eff
i (Pi) − E eff

i (P0
i ). At the

initial equilibrium state (Pi = P0
i ), one has E eff

i (P0
i ) = 0, and

thus, �E eff
i = E eff

i (Pi). Among the various (effective) electric

fields contributing to the E eff
i , ELandau

i = − ∂ f Landau

∂Pi
and EElast

i =
− ∂ f Elast

∂Pi
are nonlinear polynomials of Pi ( f Landau and f Elast are

the Landau and elastic energy densities, respectively) [25].
The derivation of Eq. (3) is provided in Appendix A.

Specific ferroelectric materials considered in this paper
include (i) tetragonal perovskite ferroelectric single crystals
BaTiO3 and PbTiO3, where the initial equilibrium polariza-
tion P0 aligns along the x axis in the lab coordinate system;
(ii) trigonal ferroelectric single crystals LiTaO3 and LiNbO3,
where the initial equilibrium polarization P0 also aligns along
the x axis in the lab coordinate system; (iii) an anisotropically
strained (001)pc BaTiO3 (pc: pseudocubic) thin film, which
has a surface parallel to the (001) plane of its cubic paraelec-
tric phase; and (iv) an biaxially strained (001)pc SrTiO3 film
grown on an orthorhombic (o) DyScO3 (110)o substrate [31].
Normal incidence of a p-polarized THz wave is considered
under the plane-wave assumption, where the THz electric
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FIG. 1. Schematics of (a) the tetragonal unit cells of BaTiO3 and
PbTiO3 and (b) the hexagonal unit cells of the LiTaO3 and LiNbO3.
(c) and (d) Cubic representation of the pseudocubic (pc) unit cells
of a (001)pc strained BaTiO3 film and a (001)pc strained SrTiO3 film.
The red arrow indicates the direction of the spontaneous polarization.
In (c) and (d), x1-x2-x3 coordinates indicate the Cartesian axes of the
cubic paraelectric unit cells of the BaTiO3 and SrTiO3, consistent
with the notation Pi (i = 1, 2, 3) in the Landau-Ginzburg-Devonshire
(LGD) thermodynamic energy density function. x-y-z coordinates
indicate the lab coordinate system.

field inside the ferroelectric material, Ei in Eq. (3), only
contains an x component in the lab coordinate system. The
lab and the crystal physics coordinate systems in the above
four cases are illustrated in Fig. 1. Expressions of f Landau

and f Elast for BaTiO3, PbTiO3, SrTiO3, LiTaO3, and LiNbO3

and the relevant material parameters are summarized in
Appendix B.

Under the plane-wave assumption in the thin slab limit
(i.e., the thickness of the ferroelectric slab is much smaller
than the THz wavelength in the slab), the polarization-
oscillation-induced radiation electric field can be calculated
as E rad

i = (− d0
2κ0c

∂Px
∂t , − d0

2κ0c
∂Py

∂t , 0) for a single-domain ferro-
electric [25], where d0 is the thickness of the ferroelectric,
and c is the speed of light in vacuum. For thick bulk crystals,
E rad

i has a complex analytical expression and varies spatially
along the thickness direction, as derived in Ref. [25]. At the
initial equilibrium state, both Ei and E rad

i are zero. For a
single-domain ferroelectric thin film with an infinitely large
x-y plane and mobile screening charges (e.g., electrons, holes,
and absorbed ions) at the top and bottom surfaces, the depolar-
ization field at the initial equilibrium state is zero. Under the
excitation by THz or higher-frequency electric fields, we as-
sume that these charged species at the surfaces remain largely
frozen. Consequently, the film is subjected to a dynamic de-
polarization field that is given by �Ed

i = (0, 0, − 1
κ0κb

�Pz ),
where κb is the background dielectric constant accounting
for the contribution from the electronic contribution [32,33].
Here, a typical value of κb = 5 [34] is used for all ferroelec-
tric materials in the calculation. The lab coordinate system
(i = x, y, z) is used in the above expressions for Ei, E rad

i ,
and Ed

i .

The elastic energy f Elast = 1
2 ci jkl (εkl − ε0

kl )(εi j − ε0
i j ),

where ci jkl is the elastic stiffness tensor under constant electric
field and temperature; the stress-free strain ε0 is induced by
the Pi through the electrostrictive effect. The solution of the
total strain εi j at the initial equilibrium state depends on the
mechanical boundary condition of the system. In the case of
coherently strained BaTiO3 and SrTO3 thin films, one has a
mixed boundary condition [35] with ε11 = εmis

11 , ε22 = εmis
22 ,

ε12 = 0, and σi3 = 0 (i = 1,2,3) from which the expressions
of the total strain εi3 can be obtained. The mismatch strains
εmis

11 and εmis
22 result from the lattice constant and/or thermal

expansion coefficient mismatch between the epitaxial film
and substrate. It is known that such mismatch strain can
enable polymorphic ferroelectric phase transitions that are
absent in the stress-free state or modulate the ferroelectric-to-
paraelectric transition temperature in ferroelectric thin films
[35,36] and that the static (i.e., driven by dc electric field) lin-
ear dielectric susceptibility χ

(1),dc
i j = ∂Pi

κ0∂Ej
can be significantly

enhanced near such phase transitions [28,37].
To analytically solve χ

(2)
i jk , we first rewrite Eq. (3) into the

following matrix form by expanding ELandau
i and EElast

i in
Taylor series and dropping the higher-order terms (see
Appendix C):

μ
∂2�P
∂t2

+γeff ∂�P
∂t

+ K�P + C�PII = E, (4)

where both the polarization change �P =
(�P1, �P2, �P3)T and the incident THz electric
field E = (E1, E2, E3)T are a 3 × 1 matrix; �PII =
(�P2

1 , �P2
2 , �P2

3 , 2�P1�P2, 2�P1�P3, 2�P1�P2)T is
a 6 × 1 matrix; γeff is a 3 × 3 matrix which contains
contributions from both the phenomenological intrinsic
damping (related to crystal viscosity of the ferroelectric)
and the radiation-induced damping [18,25]. For strained
ferroelectric thin films in the thin slab limit, one has

γeff ≈

⎡
⎢⎣γ11 + 1

2
d0
κ0c 0 0

0 γ22 + 1
2

d0
κ0c 0

0 0 γ33

⎤
⎥⎦, (5)

where the off-diagonal components are assumed to be
zero, and the intrinsic damping coefficients are assumed
to be isotropic γ11 = γ22 = γ33 = 2 × 10−7 � m [25]. The
additional term added to γ11 and γ22 describes the radiation-
electric-field-induced damping [18], where the thickness of
the ferroelectric film d0 = 10 nm is small enough to ensure
that the film is coherently strained by the substrate. For thick
bulk crystals, the complex expression of the radiation elec-
tric field E rad

i would result in a radiation-induced damping
that varies along the thickness and does not have an explicit
analytical expression [25]. For simplicity, we use the same
γeff in the analytical calculation of both bulk and thin-film
ferroelectrics in this paper. For the components of the 3
× 3 matrix K, Ki j = −Ai j − Bi j (i,j = 1,2,3). In the case
of (001)pc BaTiO3 and SrTiO3 thin films [Figs. 1(c) and
1(d)] under dynamic electric-field excitation (ω �= 0), we use
K33 = −A33 − B33 + 1

κ0κb
, where the term 1/κ0κb results from

the dynamic depolarization field �Ed
z (t ) = −�Pz(t )/κ0κb

(z ≡ 3) in a thin film with infinitely large x-y plane (see
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Appendix C). In the case of dc excitation (ω = 0) and/or bulk
ferroelectric crystals, the dynamic depolarization field does
not need to be considered; thus, K33 = −A33 − B33. For the
components of the third-rank tensor C, Ci jk = − 1

2 Ai jk − 1
2 Bi jk

(i,j,k = 1,2,3), where

Ai j = − ∂2 f Landau

∂Pi∂Pj

∣∣∣∣
P=P0

, Ai jk = − ∂3 f Landau

∂Pi∂Pj∂Pk

∣∣∣∣
P=P0

, (6a)

Bi j = − ∂2 f Elas

∂Pi∂Pj

∣∣∣∣
P=P0

, Bi jk = − ∂3 f Elas

∂Pi∂Pj∂Pk

∣∣∣∣
P=P0

. (6b)

Thus, Ki j and Ci jk represent, respectively, the local curva-
ture of the total free energy density (a sum of the Landau and
elastic energy density) at the initial equilibrium (spontaneous)
polarization state P0. Both the mismatch strain and the tem-
perature can modulate the P0, K, and C tensors.

We then employ the perturbation method, which has pre-
viously been used to derive the nonlinear susceptibility of
electronic polarization at optical frequencies [26], to an-
alytically solve Eq. (3) for both the linear and nonlinear
susceptibility (see Appendix C). The linear susceptibility
χ

(1)
i j (ω) is given as

χ
(1)
i j (ω) = 1

κ0

⎡
⎣D11(ω) K12 K13

K21 D22(ω) K23

K31 K32 D33(ω)

⎤
⎦

−1

,

i, j = 1, 2, 3, (7)

In Eq. (7), the diagonal components Dii(ω) =
μ(ω2

i − ω2) − iγ eff
ii ω, where the resonant frequency of

polarization oscillation ωi = √
Kii/μ [25]. Under the

application of a static (dc) electric field (ω = 0), one has
χ

(1),dc
i j = 1/κ0Ki j (i,j = 1,2,3).

The THz SHG susceptibility χ
(2)
i jk (2ω,ω,ω) is given by

χ
(2)
i jk (2ω,ω,ω) = −κ2

0

∑
α,β,γ=1,2,3

Cαβγ χ
(1)
iα (2ω)χ (1)

β j (ω)χ (1)
γ k (ω),

i, j, k = 1, 2, 3. (8)

Equation (8) indicates that χ
(2)
i jk can be expressed as a

function of linear susceptibilities χ
(1)
i j , which is consistent

with the theory by Garret [38] and Mayer and Keilmann [39].
A notable finding of our theory is that the coefficient Cαβγ ,
which was referred to as the generalized Miller’s coefficient
[39] and typically fitted to experimental measurement [11,39],
is now specifically connected to the third-order derivatives
of the LGD energy density with respect to the equilibrium
polarization P0. For SHG, the tensor di jk = 1

2χ
(2)
i jk is also used.

In this paper, we use χ
(2)
i jk to show its relation with χ

(1)
i j , as in

Eq. (8).
To demonstrate the validity of Eq. (8), two tests are per-

formed (see details in Appendix D). First, the expression of
χ

(2),dc
i jk directly from thermodynamic analysis is the same as

the expression obtained by letting ω = 0 in Eq. (8). As an
example, in the case of a tetragonal BaTiO3 bulk crystal,
we first calculate the static χ

(2),dc
333 based on Eq. (8), which

describes the generation of static nonlinear polarization �P3

by a static electric field E3 [≡Ex in the lab coordinate sys-
tem, see Fig. 1(a)]. The calculate value [χ (2),dc

333 = −1.573 ×

10−6 m/V] agrees well with the value of −1.576 ×
10−6 m/V extracted by fitting a static P3 − E3 curve ob-
tained from thermodynamic analysis. Second, the numbers
of nonzero and independent elements in the third-rank tensor
χ

(2),dc
i jk for stress-free BaTiO3 crystals of cubic, tetragonal, or-

thorhombic, or rhombohedral phase are consistent with those
of the second-order susceptibility tensor of the electronic
polarization (optical SHG) under the same crystal symmetry
[26].

III. RESULTS AND DISCUSSION

We first calculate the frequency-dependent nonlinear sus-
ceptibility at room temperature (25 °C) in the bulk tetragonal
BaTiO3 and PbTiO3 as well as the trigonal LiNbO3 and
LiTaO3 single crystals. As shown in Figs. 1(a) and 1(b),
the initial equilibrium polarization P0 aligns along the polar
axis of BaTiO3, PbTiO3, LiNbO3, and LiTaO3 in the crystal
physics coordinates, which is the x axis in the lab coordinate
system. When the incident THz wave is polarized only along
x in the lab coordinate system (Ex ≡ E3), one has

�P(2)
3 (2ω) = κ0χ

(2)
333E3(ω)2. (9)

Since the amplitude of the incident THz electric field inside
the material has a time-dependence E3(ω) = E0

3 exp(−iωt ),
the amplitude and the phase of the second-order nonlinear
polarization �P(2)

3 (2ω) = �P(2),0
3 exp{i[−2ωt + ϕ(2)]} are re-

lated to the modulus |χ (2)
iii | and the argument θ of χ

(2)
i jk ,

respectively, i.e.,

�P(2),0
3 = κ0

2

∣∣χ (2)
333

∣∣E0
3

2
, ϕ(2) = θ. (10)

Figure 2(a) shows the frequency-dependent |χ (2)
333| for the

four ferroelectric materials. Notably, in the case of LiTaO3,
by tuning the Landau parameters provided in Ref. [40],
good agreement with the experimental measurement [39]
is achieved both in the nonlinear susceptibility modules
|χ (2)

333| and the resonant frequencies. Based on Eq. (8), one
has

χ
(2)
333 = −κ2

0C333χ
(1)
33 (2ω)χ (1)

33 (ω)2. (11)

Equation (11) also suggests the existence of two peaks
for |χ (2)

333| at ω = ω3, ω3/2, where χ
(1)
33 (ω) and χ

(1)
33 (2ω)

reach their maximum, respectively, as shown in Fig. 2(a).
By comparison, χ

(1)
33 (ω) resonates only at ω3, as shown in

Fig. 2(b). The |χ (2)
333| at ω3/2 is at about the same order of

magnitude with its value at ω3. Furthermore, the dielectric loss
of the ferroelectric [41], which is represented by the imagi-
nary part of the linear susceptibility χ

(1),Im
33 , is three orders of

magnitude smaller at ω3/2 [see bottom panel of Fig. 2(b)].
Therefore, for potential applications of THz SHG, it is an
attractive option to set the frequency of the incident THz wave
at the half-resonance frequency of the ionic polarization in
ferroelectrics.

By letting ω = 0 in Eq. (11), one has χ
(2),dc
333 =

−κ2
0C333χ

(1),dc
33

3
. Therefore, materials with large dc dielectric

susceptibility χ
(1),dc
33 also tend to have large χ

(2),dc
333 . From

Fig. 2(a), it is evident that the tetragonal BaTiO3 has a sub-
stantially larger χ

(2),dc
333 and larger peak values of |χ (2)

333| than
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FIG. 2. Frequency-dependent (a) modulus of the nonlinear susceptibility |χ (2)
333| and (b) real and imaginary components of the linear

susceptibility χ
(1)
33 in tetragonal BaTiO3 (BTO) and PbTiO3 (PTO) as well as the trigonal LiTaO3 (LTO) and LiNbO3 (LNO) bulk ferroelectric

crystals. (c) Free energy density f as a function of �P3 = P3 − P0
3 in these four materials. (d) dc linear susceptibility χ

(1),dc
33 and the magnitude

of the dc second-order nonlinear susceptibility |χ (2),dc
333 | of these four materials. The temperature is 298 K, which is below the Curie temperature

of the four ferroelectric materials studied herein.

the other three ferroelectric materials. As shown in Fig. 2(c),
the local curvature of the energy landscape near P0

3 is the
smallest in the tetragonal BaTiO3. As a result, the tetrago-
nal BaTiO3 has the largest χ

(1),dc
33 and hence |χ (2),dc

333 | among
the four materials, as shown in Fig. 2(d). Furthermore, the
analytically calculated |χ (2)

333| of the tetragonal BaTiO3 agrees
well with the values extracted independently from dynamical
phase-field simulations (see Appendix E), demonstrating that
the analytical model is valid.

We now calculate χ
(2)
111 in an anisotropically strained

(001)pc BaTiO3 film at room temperature (25 °C). Here, χ
(2)
111

is associated with the generation of second-order nonlinear
polarization �P1 by a dynamic electric field E1 [≡Ex in the
lab coordinate system, see Fig. 1(c)]. The BaTiO3 film is
subjected to a fixed mismatch strain εmis

22 = −1%, yet the
strain εmis

11 can vary. This strain condition is considered for
three reasons. First, varying εmis

11 from 2 to −1% leads to a
transition from an in-plane tetragonal T1 phase with (P0

1 �= 0,
0, 0) to an out-of-plane orthorhombic O13 phase with (P0

1 �=
0, 0, P0

3 �= 0), followed by a transition to an out-of-plane
tetragonal T3 phase with (0, 0, P0

3 �= 0), as shown in Fig. 3(a).
We can therefore study how these two typical polymorphic
ferroelectric phase transitions influence χ

(2)
111. Second, the zero

P0
2 component in such an anisotropically strained film allows

for excluding the contribution of χ
(1)
2i (i = 1,2,3) to χ

(2)
111 [see

Eq. (7)], thereby simplifying the analysis. Third, the three

strain-stabilized polar phases (T1, O13, and T3) have all been
experimentally observed in BaTiO3, where the O13 phase is
also defined as a monoclinic MC phase if |P0

3 | > |P0
1 | [42,43].

The variation of χ
(2),dc
111 with εmis

11 , as shown in Fig. 3(b),
can be understood by analyzing the strain modulation of the
local curvature and asymmetry of the energy landscape. For
the tetragonal T1 and T3 phases, one can analogously derive

that χ
(2),dc
111 = −κ2

0C111χ
(1),dc
11

3
. In the T3 phase, C111 = 0 since

the local energy landscape is symmetric with respect to �P1;
thus, χ

(2),dc
111 = 0. In the T1 phase, χ

(2),dc
111 decreases as εmis

11 in-
creases, which is attributed to the decreasing χ

(1),dc
11 , as shown

in Fig. 3(c). For the O13 phase:

χ
(2),dc
111 = − κ2

0

[
C111χ

(1),dc
11

3 + 3C113χ
(1),dc
11

2
χ

(1),dc
13

+ 3C133χ
(1),dc
11 χ

(1),dc
13

2 + C333χ
(1),dc
13

3]
. (12)

As shown in Fig. 3(c), the diagonal component χ
(1),dc
11 is much

larger than χ
(1),dc
13 in the MC phase, especially near the O13/T3

phase boundary. Thus, the significant increase in χ
(2),dc
111 of

the MC phase is mainly caused by the associated increase
in χ

(1),dc
11 .

Let us now discuss the frequency dependence of |χ (2)
111| for

the O13 and T1 phases under different strain εmis
xx , noting that

|χ (2)
111| = 0 in the T1 phase. The χ

(2)
111 of the tetragonal T1 phase
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FIG. 3. Strain-dependent (a) equilibrium polarization state P0, (b) dc nonlinear susceptibility absolute value |χ (2),dc
111 |, and (c) dc nonlinear

susceptibility χ
(1),dc
11 and χ

(1),dc
13 in a coherently strained (001)pc BaTiO3 film. εmis

22 is fixed at 1%. The shade indicates the monoclinic MC phase,
which belongs to the O13 phase but with |P0

3 | > |P0
1 |. Frequency-dependent (d) |χ (2)

111| and (e) χ
(1),Im
11 under different mismatch strains εmis

11 . The
temperature is 298 K.

is given by

χ
(2)
111 = −κ2

0C111χ
(1)
11 (2ω)χ (1)

11 (ω)2. (13)

Notably, Eq. (13) above is also approximately applicable to
the O13 phase since it is reasonable to consider χ

(1)
i3 = χ

(1)
3i ≈

0 because the large dynamical depolarization field tends to
suppress the magnitude of the out-of-plane polarization vari-
ation [i.e., |�P3(t )| is much smaller than |�P1(t )|]. Based
on Eq. (13), there should be two peaks at ω1, ω1/2, in the
frequency spectrum of |χ (2)

xxx|, consistent with the results in
Fig. 3(d). The locations of ω1 can be seen more clearly at
the peaks in the frequency spectrum of χ

(1),Im
11 , as shown in

Fig. 3(e).
As the strain εmis

11 becomes less compressive (e.g., from
−0.05 to −0.008%) in the O13 phase, K11 decreases [see
Fig. 3(c)], leading to a smaller ω1 = √

K11/μ. As a result,
the discrepancy between ω1 and ω1/2 also decreases. Since
the peaks of ω1, ω1/2 both have a finite linewidth due to the
nonzero damping, these two peaks can partially overlap when
they are close. This explains why |χ (2)

111| at ω1/2 is larger than
its value at ω1/2 at εmis

11 = −0.008 %. Together, Figs. 3(d)
and 3(e) demonstrate the effectiveness of using strain to en-
hance |χ (2)

111| yet keeping χ
(1),Im
11 (dielectric loss) at a relatively

low value. Specifically, at εmis
11 = −0.008 %, |χ (2)

111| reaches
a value of ∼2.54 × 10−3 m/V at 0.45 THz, yet χ (1),Im

xx is
∼636.5 (one order of magnitude smaller than its peak value).
This value of |χ (2)

111| is one order of magnitude larger than
|χ (2)

eff | (∼10−4 m/V) reported in the superconducting NbN thin
film [44].

The above analyses indicate that a significant enhance-
ment in χ

(2)
111 simultaneously requires a vanishing curvature

(in other words, a large dielectric susceptibility) and a non-
vanishing asymmetry (C111 �= 0) of the energy landscape,
which can be achieved in BaTiO3 with a monoclinic MC

phase, occurring near the strain-driven second-order O13 − T3

ferroelectric phase transition in coherently strained BaTiO3

film. With this understanding, we further evaluate χ
(2)
111 near

the second-order ferroelectric-to-paraelectric transition in an
equixially strained (001)pc SrTiO3 film with εmis

11 = εmis
22 =

1 %. As shown in Fig. 4(a), the calculated equilibrium po-
larization P0 is (P0

1 ,0,0), which is consistent with the recent
experimental observation in a coherently SrTiO3 film grown
on (110)o DyScO3 substrate with a largely single polarization
domain after in-plane electric poling [31]. As the temperature
T approaches the Curie point Tc, P0

1 gradually decreases to

zero [Fig. 4(a)]; χ
(2),dc
111 = −κ2

0C111χ
(1),dc
11

3
increases dramat-

ically and then drops to zero in the paraelectric phase, as
shown in Fig. 4(b). Likewise, this is mainly because χ

(1),dc
11 is

enhanced significantly at near Tc [see Fig. 4(c)] and because
C111 is zero in the cubic paraelectric phase.

The frequency spectrum of |χ (2)
111| of the in-plane tetragonal

SrTiO3 film should likewise only display two peaks at ω1/2
and ω1, which are tens of GHz due to the reduced soft mode
frequency near Tc [45]. Furthermore, at close to Tc, the two
peaks of the |χ (2)

xxx| spectrum at ω1/2 and ω1 can merge into
one; see, for example, the cases of 243.7 and 243.5 K in
Fig. 4(d). Importantly, these features allow for identifying
the frequency of the incident THz/GHz wave for obtaining
significantly enhanced |χ (2)

111| together with a relatively low
χ

(1),Im
11 . For example, at T = 242 K, |χ (2)

111| has a value of
0.466 m/V, yet χ

(1),Im
11 is ∼56.46 at 1 GHz; at T = 242 K,

|χ (2)
111| has a value of 0.611 m/V at 16 GHz, yet χ

(1),Im
11 is

054311-6



THEORY OF NONLINEAR TERAHERTZ SUSCEPTIBILITY … PHYSICAL REVIEW B 110, 054311 (2024)

FIG. 4. Temperature-dependent (a) equilibrium polarization state P0, (b) dc nonlinear susceptibility absolute value |χ (2),dc
111 |, and (c) dc linear

susceptibility χ
(1),dc
11 in a coherently strained (001)pc SrTiO3 film at εmis

11 = εmis
22 = 1 %. Frequency-dependent (d) |χ (2)

111| and (e) χ
(1),Im
11 under

different temperature at εmis
11 = εmis

22 = 1 %. The structural order parameter q1 = q2 = q3 = 0 under these strain and temperature conditions.

∼985. These values of |χ (2)
111| are three orders of magnitude

larger than |χ (2)
eff | (∼10−4 m/V) reported in the supercon-

ducting NbN thin film [44]. Such a high |χ (2)|, along with
manageable dielectric loss, suggests an exciting prospect of
using coherently strained SrTiO3 film as a structurally simple,
source-current-free (and hence ultralow power dissipation)
frequency doubler operating in the GHz/millimeter-wave
band for high-data-rate wireless communication.

IV. CONCLUSIONS

We have developed an analytical theory for predicting the
dynamic nonlinear dielectric susceptibility of monodomain
ferroelectric crystals as a function of frequency, temperature,
and in the case of strained thin films, the epitaxial strain.
Our theory reveals the important role of the strain-polarization
coupling in ferroelectrics, which has been ignored in existing
theoretical works [20–24], in determining the nonlinear di-
electric susceptibility through the modulation of the curvature
and asymmetry of the local energy landscape.

Based on the well-established LGD thermodynamic en-
ergy density function and the kinetic parameters of different
ferroelectric materials, the theory predicts a route to enhanc-
ing the modulus of the second-harmonic susceptibility χ

(2)
111

and simultaneously maintaining the dielectric loss at a low
level in a (001)pc BaTiO3 film with strain-stabilized mono-
clinic MC phase and a strained (001)pc SrTiO3 film near its
temperature-driven second-order ferroelectric-to-paraelectric
phase transition. These results reveal the critical importance

of stabilizing the MC phase in enhancing χ
(2)
111 of BaTiO3

and similar ferroelectric systems, which is analogous to the
critical role of the MC phase in enhancing the nonlinear opti-
cal and piezoelectric property coefficients of BaTiO3 [42,43].
In addition to χ

(2)
111 which is relevant to the THz SHG, the

analytical formulae of other second-order χ
(2)
i jk ’s, including

THz SFG/DFG and THz wave rectification (dc shift), are also
derived (see Appendix C). By comparing the predicted χ

(2)
i jk to

experimental measurements (e.g., THz SHG), one can refine
the LGD coefficients [e.g., here, we refine the coefficients of
LiTaO3, as shown in Fig. 1(a)] and the kinetic parameters
such as the mass and damping coefficients of a wide range of
ferroelectric materials. The procedures of derivations can be
readily extended to calculate the higher-order susceptibilities
[e.g., χ

(3)
i jkl ] as well.

Overall, in this paper, we provide a theoretical basis for
studying the nonlinear interaction between a THz (typical
frequency range: 0.1–10 THz) or lower-frequency elec-
tromagnetic (EM) wave and a ferroelectric material. The
analytically calculated nonlinear susceptibility of the ferro-
electric polarization Pion (soft mode) is obtained by finding
the steady-state solution to the equation of motion for Pion,
thus only applicable to continuous THz wave or multicycle
narrowband THz pulse. However, the theoretical framework
can be readily generalized to calculate the nonlinear suscepti-
bility of ferroelectric polarization to single-cycle broadband
THz pulse, as used in many experiments [46–50], by find-
ing the transient-state solution to the equation of motion
for Pion.

054311-7



YUJIE ZHU et al. PHYSICAL REVIEW B 110, 054311 (2024)

Moreover, by (i) extending the LGD potential (a polyno-
mial of Pion) to incorporate the coupling between Pion and
the ionic polarization associated with the higher-frequency in-
frared (IR) active phonons (denoted as Pion,IR), and (ii) solving
the coupled equations of motion for both Pion and Pion,IR, it is
possible to analytically calculate the nonlinear susceptibility
of Pion to a mid-IR (frequency: ∼20 THz) pulse, as has been
studied in many computational [51–53] and experimental
[14,54–56] studies (a.k.a. the nonlinear phononics approach).
Furthermore, by introducing a nonlinear coupling between
Pion and the electric field of a near-IR pulse (frequency: tens
of THz) in the framework of impulsive stimulated Raman
scattering (ISRS) into the equation of motion for Pion (like
Refs. [57–60]), it is possible to analytically calculate the non-
linear susceptibility of Pion to a near-IR pulse via the ISRS.

More broadly, the theory in this paper can also be extended
to calculate susceptibilities of the ferroelectric polarization
under the excitation of a circularly polarized THz wave
which can enable emergent phenomena from the dynamic
multiferroicity [15,61,62], to ferroelectrics under mechanical
boundary conditions such as an uniaxially stretched ferroelec-
tric membrane [63], and to other polar materials that have
a spontaneous ionic polarization such as wurtzite III-nitride
semiconductors [64].
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APPENDIX A: DERIVATION OF THE EQUATION
OF MOTION FOR THE IONIC POLARIZATION

(SOFT MODE) IN FERROELECTRICS

We begin by writing the equation of motion for the soft
mode, which has a coordinate Qp (Qp

i , i = 1,2,3, with units of
m) based on the Newton’s second law, i.e.,

Fext + Frestoring + Ff = ρ∗ d2Qp

dt2
, (A1)

where ρ∗ is the effective mass density of the soft mode (unit:
kg/m3). Here, Fext is the volumetric coulombic force (unit:

N/m3), given by

F ext
i = Z∗

P

(
Ei + Ed

i + E rad
i

)
, (A2)

where Ei, Ed
i , and E rad

i are the electric field of the incident
THz EM wave, the depolarization electric field, and the ra-
diation electric field inside the ferroelectric, respectively, as
mentioned in the main text. The subscript i = x, y, z indicates
that these electric fields are typically defined in the lab coor-
dinate system, with x ≡ 1, y ≡ 2, and z ≡ 3 for the case of the
(001)pc strained BaTiO3 film and the (001)pc strained SrTiO3

film [see Figs. 1(c) and 1(d)]. The Born effective charge Z∗
P

describes the charge density associated with the soft mode. It
has units of C/m3 and relates Qp and ferroelectric polarization
Pion (or simply P hereafter) via Qp

i = Pi/Z∗
P , as mentioned in

the introduction.
The volumetric restoring force F restoring

i , which is analo-
gous to the restoring force that drives the electron back to
its equilibrium position in nonlinear optical phenomena [26],
is related to the local slope of the potential energy density
landscape of the soft mode with contribution from both the
Landau free energy density and elastic energy density. When
P is spatially uniform and oscillates in-phase in the ferroelec-
tric (as is the case in the thin slab limit), F restoring

i is expressed
as

F restoring
i = −∂ ( f Landau + f Elast )

∂Qp
i

= −Z∗
P

∂ ( f Landau + f Elast )

∂Pi

= Z∗
P

(
ELandau

i + EElast
i

)
, (A3)

where the expressions of f Landau and f Elast are provided in
Appendix B. Furthermore, the volumetric frictional force is
assumed to be linearly proportional to the velocity of the soft
mode, given by

F f
i = −γ ∗

i j

dQp
j

dt
= −γ ∗

i j

Z∗
P

dPj

dt
. (A4)

Substituting Eqs. (A2)–(A4) into Eq. (A1) and using Pi as
the variable, one has, after some rearrangement,

ρ∗

Z∗
P

2

d2Pi

dt2
+ γ ∗

i j

Z∗
P

2

dPj

dt
= Ei + Ed

i + E rad
i + ELandau

i + EElast
i .

(A5)

By letting μ = ρ∗

Z∗
P

2 , γi j = γ ∗
i j

Z∗
P

2 , and using a total effective

electric field E eff
i to represent the summation of all the fields

on the right-hand side of Eq. (A5), the latter can be rewritten
into a concise form, i.e.,

μ
d2Pi

dt2
+ γi j

dPj

dt
= E eff

i , (A6)

which is equivalent to Eq. (3) because Pi = P0
i + �Pi and

E eff
i = �E eff

i , as discussed in the main text. Equation (3) can
alternatively be derived based on an Euler-Lagrange approach
by generalizing the procedures in Ref. [65] to consider the
complete set of driving forces mentioned above.
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APPENDIX B: DETAILED EXPRESSIONS OF f Landau AND f Elast FOR BaTiO3, PbTiO3, SrTiO3, LiTaO3, AND LiNbO3

AND THE ASSOCIATED MATERIALS PARAMETERS

Eighth-, sixth-, and fourth-order f Landau’s are used for BaTiO3, PbTiO3, and SrTiO3, respectively, given as [66]

f Landau = α1
(
P2

1 + P2
2 + P2

3

) + α11
(
P4

1 + P4
2 + P4

3

) + α12
(
P2

1 P2
2 + P2

2 P2
3 + P2

1 P2
3

) + α111
(
P6

1 + P6
2 + P6

3

)
+ α112

[
P2

1

(
P4

2 + P4
3

) + P2
2

(
P4

1 + P4
3

) + P2
3

(
P4

1 + P4
2

)] + α123P2
1 P2

2 P2
3 + α1111

(
P8

1 + P8
2 + P8

3

)
+ α1112

[
P6

1

(
P2

2 + P2
3

) + P6
2

(
P2

1 + P2
3

) + P6
3

(
P2

1 + P2
2

)] + α1122
(
P4

1 P4
2 + P4

2 P4
3 + P4

1 P4
3

)
+ α1123

(
P4

1 P2
2 P2

3 + P4
2 P2

1 P2
3 + P4

3 P2
2 P2

1

)
, (B1)

f Landau = α1
(
P2

1 + P2
2 + P2

3

) + α11
(
P4

1 + P4
2 + P4

3

) + α12
(
P2

1 P2
2 + P2

2 P2
3 + P2

1 P2
3

) + α111
(
P6

1 + P6
2 + P6

3

)
+ α112

[
P2

1

(
P4

2 + P4
3

) + P2
2

(
P4

1 + P4
3

) + P2
3

(
P4

1 + P4
2

)] + α123P2
1 P2

2 P2
3 , (B2)

f Landau = α1
(
P2

1 + P2
2 + P2

3

) + α11
(
P4

1 + P4
2 + P4

3

) + α12
(
P2

1 P2
2 + P2

2 P2
3 + P2

1 P2
3

) + β1
(
q2

1 + q2
2 + q2

3

) + β11
(
q4

1 + q4
2 + q4

3

)
+ β12

(
q2

1q2
2 + q2

2q2
3 + q2

1q2
3

) − t11
(
P2

1 q2
1 + P2

2 q2
2 + P2

3 q2
3

) − t12
(
P2

1

(
q2

2 + q2
3

) + P2
2

(
q2

1 + q2
3

) + P2
3

(
q2

1 + q2
2

))
− t44(P1P2q1q2 + P2P3q2q3 + P1P3q1q3). (B3)

Note that f Landau of SrTiO3 also includes the terms that describe the coupling between the polarization Pi and the structural
order parameter qi (i = 1,2,3), which represents the linear oxygen displacement associated with oxygen octahedra rotation [67].

The elastic free energy density is given as f Elast = 1
2 ci jkl ekl ei j , where ei j and ekl are the elastic strains, and ci jkl is the elastic

stiffness tensor at constant electric field E and temperature T and can be related to the density of the electrical Helmholtz free
energy f (see its definition in Appendix D) via the relation ci jkl = ( ∂σi j

∂ekl
)
T,E

= ( ∂2 f
∂ekl ∂ei j

)
T,E

. For the pseudocubic BaTiO3, PbTiO3,

and SrTiO3 films, f Elast is expanded as

f Elast = 1
2 c11

(
e2

11 + e2
22 + e2

33

) + c12(e11e22 + e11e33 + e22e33) + 2c44
(
e2

12 + e2
13 + e2

23

)
, (B4)

where c11, c12, and c44 are the independent components of the 6 × 6 elastic stiffness matrix cmn (m, n = 1,2, …6), which
represents the elastic stiffness tensor ci jkl following the convention described in Ref. [68]. The ei j = εi j − ε0

i j (i,j = 1,2) is the
elastic strain, where εi j is the total strain, and ε0

i j is the stress-free (eigen)strain. For BaTiO3 and PbTiO3, one has

ε0
11 = Q11P2

1 + Q12
(
P2

2 + P2
3

)
, ε0

22 = Q11P2
2 + Q12

(
P2

1 + P2
3

)
, ε0

33 = Q11P2
3 + Q12

(
P2

1 + P2
2

)
; (B5a)

ε0
23 = Q44P2P3, ε0

13 = Q44P1P3, ε0
12 = Q44P1P2, (B5b)

where Q11, Q12, and Q44 are the electrostrictive coefficients. For SrTiO3, one has

ε0
11 = Q11P2

1 + Q12
(
P2

2 + P2
3

) + �11q2
1 + �12

(
q2

2 + q2
3

)
, (B6a)

ε0
22 = Q11P2

2 + Q12
(
P2

1 + P2
3

) + �11q2
2 + �12

(
q2

1 + q2
3

)
, (B6b)

ε0
33 = Q11P2

3 + Q12
(
P2

1 + P2
2

) + �11q2
3 + �12

(
q2

1 + q2
2

)
, (B6c)

ε0
23 = Q44P2P3 + �44q2q3, ε0

13 = Q44P1P3 + �44q1q3, ε0
12 = Q44P1P2 + �44q1q2, (B6d)

where �11, �12, and �44 are the linear quadratic coupling coefficient between the strain and structural order parameter. At
the initial equilibrium state, the total strain εi j is determined based on the mechanical boundary condition. In monodomain
(Pi and qi are spatially homogeneous), stress-free bulk crystals, εi j = ε0

i j . In biaxially strained films, as indicated in Sec. II,
ε11 = εmis

11 , ε22 = εmis
22 , ε33 = − c12

c11
(εmis

11 + εmis
22 − ε0

11−ε0
22) + ε0

33, and ε23 = ε0
23, ε13 = ε0

13, ε12 = 0.
For trigonal crystals LiTaO3 and LiNbO3 that are uniaxial ferroelectrics, the Landau free energy density is written as [40]

f Landau = −α1

2
P2

3 + α2

4
P4

3 + α3

2

(
P2

1 + P2
2

)
. (B7)

Following Ref. [40], the elastic energy density f Elas of LiTaO3 and LiNbO3 is written, in contrast with Eqs. (B4)–(B6), using
Voigt notation, i.e.,

f Elas = β1ε
2
3 + β2(ε1 + ε2)2 + β3

[
(ε1 − ε2)2 + ε2

6

] + β4ε3(ε1 + ε2) + β5
(
ε2

4 + ε2
5

) + β6[(ε1 − ε2)ε4 + ε5ε6]

+ γ1(ε1 + ε2)P2
3 + γ2ε3P2

3 + γ3[(ε1 − ε2)P2P3 + ε6P1P3] + γ4(ε5P1P3 + ε4P2P3) + γ5(ε1 + ε2)
(
P2

1 + P2
2

)
+ γ6ε3

(
P2

1 + P2
2

) + γ7
[
(ε1 − ε2)

(
P2

1 − P2
2

) + 2ε6P1P2
] + γ8

[
ε4

(
P2

1 − P2
2

) + 2ε5P1P2
]
, (B8)

054311-9



YUJIE ZHU et al. PHYSICAL REVIEW B 110, 054311 (2024)

TABLE I. List of the coefficients in the Landau and elastic free energy densities of BaTiO3, PbTiO3, and SrTiO3. The temperature is in
units of °C for BaTiO3 and PbTiO3 and K for SrTiO3.

Coefficients BaTiO3 PbTiO3 SrTiO3

α1 (N m2 C−2) 4.124 × 105(T −115) [69] 3.8 × 105(T −479) [70] 4.05 × 107[coth( 54
T ) − coth( 54

30 )] [71]
α11 (N m6 C−4) −2.097 × 108 [69] −0.73 × 108 [70] 2.899 × 109 [31]
α12 (N m6 C−4) 7.974 × 108 [69] 7.5 × 108 [70] 7.766 × 109 [67]
α111 (N m10 C−6) 1.294 × 109 [69] 2.6 × 109 [70] 0
α112 (N m10 C−6) −1.950 × 109 [69] 6.1 × 108 [70] 0
α123 (N m10 C−6) −2.500 × 109 [69] −37 × 108 [70] 0
α1111 (N m14 C−8) 3.863 × 1010 [69] 0 0
α1112 (N m14 C−8) 2.529 × 1010 [69] 0 0
α1122 (N m14 C−8) 1.637 × 1010 [69] 0 0
α1123 (N m14 C−8) 1.367 × 1010 [69] 0 0
β1 (N m−6) 0 0 1.32 × 1029[coth( 145

T ) − coth( 145
105 )] [71]

β11 (N m−6) 0 0 1.688 × 1050 [71]
β12 (N m−6) 0 0 3.879 × 1050 [71]
t11 (N m2 C−2) 0 0 −1.902 × 1029 [31]
t12 (N m2 C−2) 0 0 −1.014 × 1029 [71]
t44 (N m2 C−2) 0 0 5.865 × 1029 [71]
c11 (GPa) 178 [69] 174.6 [70] 336 [71]
c12 (GPa) 96.4 [69] 79.37 [70] 107 [71]
c44 (GPa) 122 [69] 111 [70] 127 [71]
Q11 (m4 C−2) 0.1 [69] 0.089 [70] 0.0536 [71]
Q12 (m4 C−2) −0.034 [69] −0.026 [70] −0.0154 [71]
Q44 (m4 C−2) 0.029 [69] 0.03375 [70] 0.00472 [71]
�11 (N C−2) 0 0 8.820 × 1018 [71]
�12 (N C−2) 0 0 −7.774 × 1018 [71]
�44 (N C−2) 0 0 −4.528 × 1018 [71]

where the εi’s here are the total strain. For monodomain, stress-free bulk crystals, εi can be obtained by solving the mechanical
boundary condition σ j = ∂ f Elas/∂ε j = 0, j = 1,2,3,4,5,6, given by

ε1 = �1P2
1 + �2P2

2 + �3P2
3 + �4P2P3, ε2 = �2P2

1 + �1P2
2 + �3P2

3 − �4P2P3, (B9a)

ε3 = �5P2
1 + �5P2

2 + �6P2
3 , ε4 = �7P2

1 − �7P2
2 + �8P2P3, (B9b)

ε5 = �8P1P3 + 2�7P1P2, ε6 = 2�4P1P3 + �9P1P2, (B9c)

Here, the coefficients �i are �1 = β1(−8β3β5γ5+2β2
6 γ5−8β2β5γ7+4β2β6γ8 )+β4(4β3β5γ6−β2

6 γ6+2β4β5γ7−β4β6γ8 )
2(4β1β2−β2

4 )(4β3β5−β2
6 )

, �2 =
β1(−8β3β5γ5+2β2

6 γ5+8β2β5γ7−4β2β6γ8 )+β4(4β3β5γ6−β2
6 γ6−2β4β5γ7+β4β6γ8 )

2(4β1β2−β2
4 )(4β3β5−β2

6 )
, �3 = −2β1γ1+β4γ2

2(4β1β2−β2
4 )

, �4 = −2β5γ3+β6γ4

2(4β3β5−β2
6 )

, �5 = β4γ5−2β2γ6

4β1β2−β2
4

, �6 =
β4γ1−2β2γ2

4β1β2−β2
4

, �7 = β6γ7−2β3γ8

4β3β5−β2
6

, �8 = β6γ3−2β3γ4

4β3β5−β2
6

, and �9 = 2β6γ8−4β5γ7

4β3β5−β2
6

.
Tables I and II list the coefficients in the Landau and elastic free energy densities of the four ferroelectric materials. The

mass coefficient μ = 1.35 × 10−18 J m s2 C−2 for BaTiO3 [29], μ = 1.59 × 10−18 J m s2 C−2 for PbTiO3 [29], μ = 22 × 10−18

J m s2 C−2 for SrTiO3 [72], and μ = 1.81 × 10−18 J m s2 C−2 for LiNbO3 [29]. The μ value of LiTaO3, which is not yet available
in literature to our knowledge, is set to be the same as LiNbO3.

APPENDIX C: LINEAR AND NONLINEAR SUSCEPTIBILITY DERIVATION BY PERTURBATION METHOD

Given that ELandau
i (t ) = ELandau

i (P0
i ) + �ELandau

i (t ), EElast
i (t ) = EElast

i (P0
i ) + �EElast

i (t ), Ed
i = Ed

i (P0
i ) + �Ed

i (t ), and that
ELandau

i (P0
i ) + EElast

i (P0
i ) + Ed

i (P0
i ) = 0 in the initial equilibrium state (Pi = P0

i ), the equation of motion for polarization [Eq. (3)]
can be rewritten as

μ
∂2�Pi

∂t2
+γi j

∂�Pj

∂t
= �ELandau

i + �EElast
i + �Ed

i + Ei + E rad
i , (C1)

where �ELandau
i and �EElast

i can be expanded through Taylor series expansion, i.e., �ELandau
i = Ai j�Pj + 1

2 Ai jk�Pj�Pk + . . .,
�EElast

i = Bi j�Pj + 1
2 Bi jk�Pj�Pk + . . ., where the expressions of Ai j , Ai jk , Bi j , and Bi jk are provided in Sec. II, with i, j =

1,2,3; �Ed
i = (0, 0, − 1

κ0κb
�Pz ) and E rad

i = (− d0
2κ0c

∂Px
∂t , − d0

2κ0c
∂Py

∂t , 0) are often expressed in the x-y-z lab coordinate system,
with x ≡ 1, y ≡ 2, and z ≡ 3. Moreover, we assume that only the diagonal components of the 3 × 3 matrix γi j are nonzero.
This assumption is also adopted in the derivation of the nonlinear susceptibility of electronic polarization to optical light waves
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TABLE II. List of the coefficients in the Landau and elastic free energy densities of LiTaO3 and LiNbO3 at room temperature (298 K).

Coefficients LiTaO3 LiNbO3

α1 (N m2 C−2) 1.25 × 109(fitted from [39]) 2.012 × 109 [40]
α2 (N m2 C−2) 6 × 108 (fitted from [39]) 3.608 × 109 [40]
α3 (N m2 C−2) 1.3 × 109 (fitted from [39]) 1.345 × 109 [40]
β1 (N m−2) 13.55 × 1010 [40] 12.25 × 1010 [40]
β2 (N m−2) 6.475 × 1010 [40] 6.4 × 1010 [40]
β3 (N m−2) 4.925 × 1010 [40] 3.75 × 1010 [40]
β4 (N m−2) 7.4 × 1010 [40] 7.5 × 1010 [40]
β5 (N m−2) 4.8 × 1010 [40] 3 × 1010 [40]
β6 (N m−2) −1.2 × 1010 [40] 0.9 × 1010 [40]
γ1 (N m2 C−2) −0.202 × 109 [40] 0.216 × 109 [40]
γ2 (N m2 C−2) 1.317 × 109 [40] 1.848 × 109 [40]
γ3 (N m2 C−2) −2.824 × 109 [40] −0.33 × 109 [40]
γ4 (N m2 C−2) 4.992 × 109 [40] 3.9 × 109 [40]

[26]. The values of γ11, γ22, and γ33 determine the linewidth of a peak in the frequency spectra of both the linear and nonlinear
susceptibilities and therefore can be calibrated by comparing the theoretically predicted and experimentally measured linewidth.
If only keeping the first two terms in the expanded expressions of �ELandau

i and �EElast
i , Eq. (C1) can be expanded into the

following equations:

μ
∂2�P1

∂t2
+

(
γ11 + d0

2κ0c

)
∂�P1

∂t
− (A11+B11)�P1 − (A12+B12)�P2 − (A13+B13)�P3 − 1

2
(A111+B111)�P2

1

−1

2
(A122+B122)�P2

1 − 1

2
(A133+B133)�P2

1 − (A123+B123)�P2�P3 − (A113+B113)�P1�P3 − (A112+B112)�P1�P2 = E1,

(C2a)

μ
∂2�P2

∂t2
+

(
γ22+ d0

2κ0c

)
∂�P2

∂t
− (A21+B21)�P1 − (A22+B22)�P2 − (A23+B23)�P3 − 1

2
(A211+B211)�P2

1

−1

2
(A222+B222)�P2

1 − 1

2
(A233+B133)�P2

1 − (A223+B223)�P2�P3 − (A213+B213)�P1�P3 − (A212+B212)�P1�P2 = E2,

(C2b)

μ
∂2�P3

∂t2
+γ33

∂�P3

∂t
− (A31+B31)�P1 − (A32+B32)�P2 −

(
A33+B33 − 1

κ0κb

)
�P3 − 1

2
(A311+B311)�P2

1

−1

2
(A322+B322)�P2

1 − 1

2
(A333+B333)�P2

1 − (A323+B323)�P2�P3 − (A313+B313)�P1�P3 − (A312+B312)�P1�P2 = E3.

(C2c)

Equations (C2a)–(C2c) can be written into a matrix form as shown by Eq. (4), reproduced below:

μ
∂2�P
∂t2

+ γeff ∂�P
∂t

+ K�P + C�PII = E, (C3)

where the expanded expressions of the matrices �P, E, �PII, and γeff as well as the tensors K and C are provided in the main
paper, as shown by Eqs. (4), 6(a), 6(b), and the related text. To solve Eq. (C3) by the perturbation method, we begin by replacing
E with λE, where λ is a parameter that characterizes the strength of the perturbation and ranges continuously between 0 and 1
and will be set equal to 1 at the end of calculation. In the framework of the perturbation method, the solution of Eq. (C3) can
be written as �P = λ�P(1) + λ2�P(2) + λ3�P(3) + . . ., where �P(1) is the lowest-order (linear) contribution to �P, calculated
as �P(1) = �PLinear

i = κ0χ
(1)
i j E j ; �P(2) is the second-order nonlinear term of nonlinear polarization oscillation, calculated as

�P(2) = κ0χ
(2)
i jk E jEk; and so forth.

It is worth emphasizing that the premise of the perturbation theory in the present application is that the center of polarization
oscillation is always at Pi = P0

i , which is only valid when the amplitude of E inc
i is not too large. Under strong excitation,

the dc polarization shift �P(2)
i (0), as discussed in the text after Eqs. (6a) and (6b), would be large and therefore shifts the

center of polarization oscillation from P0
i to P0

i + �P(2)
i (0). Alternatively, the polarization dynamics under strong excitation can
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be obtained by numerical solutions from a dynamical phase-field model with coupled strain-polarization-EM wave dynamics
[18,25]. With this in mind, we proceed by writing the term �PII as

�PII =
{[

2∑
i=1

λi�P(i)
1

]
,

[
2∑

i=1

λi�P(i)
2

]2

,

[
2∑

i=1

λi�P(i)
3

]2

,

2

[
2∑

i=1

λi�P(i)
2

][
2∑

i=1

λi�P(i)
3

]
, 2

[
2∑

i=1

λi�P(i)
1

][
2∑

i=1

λi�P(i)
3

]
, 2

[
2∑

i=1

λi�P(i)
1

][
2∑

i=1

λi�P(i)
2

]}T

= λ2[�P(1)
1

2
,�P(1)

2
2
,�P(1)

3
2
, 2�P(1)

2 �P(1)
3 , 2�P(1)

1 �P(1)
3 , 2�P(1)

1 �P(1)
2

]T

+ λ3
[
2�P(1)

1 �P(2)
1 , 2�P(1)

2 �P(2)
2 , 2�P(1)

3 �P(2)
3 ,

2�P(1)
2 �P(2)

3 + 2�P(1)
3 �P(2)

2 , 2�P(1)
1 �P(2)

3 + 2�P(1)
3 �P(2)

1 , 2�P(1)
1 �P(2)

2 + 2�P(1)
2 �P(2)

1

]T + . . .

= λ2�P(1)
II + λ3�P(1,2)

II + . . . . (C4)

Plugging in the expression �P = λ�P(1) + λ2�P(2) + λ3�P(3) + . . . and Eq. (C4) into Eq. (C3), Eq. (C3) can be rewritten
into a form given by λ(Eq.u1)+ λ2(Eq.u2) + λ3(Eq.u3) + . . . = λ Einc. The solution to this equation requires that Eq.u1 = Einc

and that Eq.un = 0 (n = 2,3,4, …), which can be expanded into a series of linear equations as follows:

μ
∂2�P(1)

∂t2
+γeff ∂�P(1)

∂t
+ K�P(1) = Einc, (C5a)

μ
∂2�P(2)

∂t2
+γeff ∂�P(2)

∂t
+ K�P(2) + C�P(1)

II = 0, (C5b)

μ
∂2�P(3)

∂t2
+γeff ∂�P(3)

∂t
+ K�P(3) + C�P(1,2)

II = 0. (C5c)

Under a single-frequency continuous incident THz wave in the thin slab limit E inc
i (t ) = E inc,0

i exp(−iωt ), one can write
�P(1) = �P0exp[i(−ωt + ϕ)] as a steady-state solution, where ϕ is the phase difference between the incident THz wave and
the excited polarization wave. Accordingly, Eq. (C5a) can be rewritten as

−μω2�P(1) − iγeffω�P(1) + K�P(1) = Einc. (C6)

Rearranging Eq. (C6), one has �P(1) = (K − μω2 − iγeffω)−1Einc = κ0χ
(1)
i j E inc

j , from which the expression of χ
(1)
i j can be

derived, as shown by Eq. (4) in Sec. II.
Substituting the steady-state solution of �P(1) into Eq. (C5b) allows for deriving the steady-state solution of �P(2) and

therefore χ
(2)
i jk . To do this, we first expand the terms that are contained in the expression �P(1)

II as follows:

�P(1)
j (ω)�P(1)

k (ω) = κ2
0 |χ jm|E inc,0

m cos(ωt + ϕ jm)|χkn|E inc,0
n cos(ωt + ϕkn)

= κ2
0

(∣∣χ jm

∣∣E inc,0
m

)(|χkn|E inc,0
n

)[1

2
cos(ϕ jm − ϕkn) + 1

2
cos(2ωt + ϕ jm + ϕkn)

]

≡ κ2
0

2
χ

(1)
jm χ

(1),∗
kn E inc,0

m E inc,0
n + κ2

0

2
χ

(1)
jm χ

(1)
kn E inc,0

m E inc,0
n exp(−i2ωt ) = �P(2)(0) + �P(2)(2ω), (C7)

which therefore contains both a dc shift �P(2)(0) and a second-order harmonic component �P(2)(2ω). Here, ϕ jm refers to the
phase difference between the oscillatory polarization component �P(1)

j (t ) and the excitation electric field component E inc
m , and

so forth, for ϕkn. Also, χ
(1),∗
kn = χ

(1),Re
kn − iχ (1),Im

kn is the conjugation of the complex susceptibility of χ
(1)
kn = χ

(1),Re
kn + iχ (1),Im

kn .
Plugging both the steady-state solution of �P(1) and Eq. (C7) into Eq. (C5b), and if only considering �P(2)(2ω), Eq. (C5b) can
be rewritten as

−μ4ω2�P(2) − iγ eff
ii 2ω�P(2) + K�P(2) = −κ2

0

2

∑
j,k=1,2,3

Ci jk

⎡
⎣ ∑

j,m=1,2,3

χ
(1)
jm E inc,0

m

⎤
⎦

⎡
⎣ ∑

k,n=1,2,3

χ
(1)
kn E inc,0

n

⎤
⎦. (C8)
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Thus, the SHG susceptibility χ
(2)
i jk (2ω) can be expanded as

χ
(2)
i jk (2ω,ω,ω) = −κ2

0

∑
α,β,γ=1,2,3

Cαβγ χ
(1)
iα (2ω)χ (1)

β j (ω)χ (1)
γ k (ω)

=

⎡
⎢⎢⎣

χ
(2)
111 χ

(2)
122 χ

(2)
133 χ

(2)
123 χ

(2)
113 χ

(2)
112

χ
(2)
211 χ

(2)
222 χ

(2)
233 χ

(2)
223 χ

(2)
213 χ

(2)
212

χ
(2)
311 χ

(2)
322 χ

(2)
333 χ

(2)
323 χ

(2)
313 χ

(2)
312

⎤
⎥⎥⎦

= −κ2
0

⎡
⎢⎢⎣

χ
(1)
11 (2ω) χ

(1)
12 (2ω) χ

(1)
13 (2ω)

χ
(1)
21 (2ω) χ

(1)
22 (2ω) χ

(1)
23 (2ω)

χ
(1)
31 (2ω) χ

(1)
32 (2ω) χ

(1)
33 (2ω)

⎤
⎥⎥⎦.

⎡
⎢⎣

C111 C122 C133 C123 C113 C112

C211 C222 C233 C223 C213 C212

C311 C322 C333 C323 C313 C312

⎤
⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ
(1)
11

2
(ω) χ

(1)
12

2
(ω) χ

(1)
13

2
(ω) 2χ

(1)
12 (ω)χ (1)

13 (ω)

χ
(1)
21

2
(ω) χ

(1)
22

2
(ω) χ

(1)
23

2
(ω) 2χ

(1)
22 (ω)χ (1)

23 (ω)

χ
(1)
31

2
(ω) χ

(1)
32

2
(ω) χ

(1)
33

2
(ω) 2χ

(1)
32 (ω)χ (1)

33 (ω)

2χ
(1)
21 (ω)χ (1)

31 (ω) 2χ
(1)
22 (ω)χ (1)

32 (ω) 2χ
(1)
23 (ω)χ (1)

33 (ω) 2χ
(1)
22 (ω)χ (1)

33 (ω) + 2χ
(1)
23 (ω)χ (1)

32 (ω)

2χ
(1)
11 (ω)χ (1)

31 (ω) 2χ
(1)
12 (ω)χ (1)

32 (ω) 2χ
(1)
13 (ω)χ (1)

33 (ω) 2χ
(1)
12 (ω)χ (1)

33 (ω) + 2χ
(1)
13 (ω)χ (1)

32 (ω)

2χ
(1)
11 (ω)χ (1)

21 (ω) 2χ
(1)
12 (ω)χ (1)

22 (ω) 2χ
(1)
13 (ω)χ (1)

23 (ω) 2χ
(1)
12 (ω)χ (1)

23 (ω) + 2χ
(1)
13 (ω)χ (1)

22 (ω)

2χ
(1)
11 (ω)χ (1)

13 (ω) 2χ
(1)
11 (ω)χ (1)

12 (ω)

2χ
(1)
21 (ω)χ (1)

23 (ω) 2χ
(1)
21 (ω)χ (1)

22 (ω)

2χ
(1)
31 (ω)χ (1)

33 (ω) 2χ
(1)
31 (ω)χ (1)

32 (ω)

2χ
(1)
21 (ω)χ (1)

33 (ω) + 2χ
(1)
23 (ω)χ (1)

31 (ω) 2χ
(1)
21 (ω)χ (1)

32 (ω) + 2χ
(1)
22 (ω)χ (1)

31 (ω)

2χ
(1)
11 (ω)χ (1)

33 (ω) + 2χ
(1)
13 (ω)χ (1)

31 (ω) 2χ
(1)
11 (ω)χ (1)

32 (ω) + 2χ
(1)
12 (ω)χ (1)

31 (ω)

2χ
(1)
11 (ω)χ (1)

23 (ω) + 2χ
(1)
13 (ω)χ (1)

21 (ω) 2χ
(1)
11 (ω)χ (1)

22 (ω) + 2χ
(1)
12 (ω)χ (1)

21 (ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i, j, k = 1, 2, 3 (C9)

The dc shift component �P(2)(0) can be derived from the following equation:

K�P(2)(0) = −κ2
0

2

∑
j,k=1,2,3

Ci jk

⎡
⎣ ∑

j,m=1,2,3

χ
(1)
jm E inc,0

m

⎤
⎦

⎡
⎣ ∑

k,n=1,2,3

χ
(1),∗
kn E inc,0

n

⎤
⎦. (C10)

Accordingly, the nonlinear electric susceptibility χ
(2)
i jk (0) can be derived as

χ
(2)
i jk (0, ω,−ω) = −κ2

0

∑
α,β,γ=1,2,3

Cαβγ χ
(1)
iα (0)χ (1)

β j (ω)χ (1),∗
γ k (ω)

=

⎡
⎢⎢⎣

χ
(2)
111 χ

(2)
122 χ

(2)
133 χ

(2)
123 χ

(2)
113 χ

(2)
112

χ
(2)
211 χ

(2)
222 χ

(2)
233 χ

(2)
223 χ

(2)
213 χ

(2)
212

χ
(2)
311 χ

(2)
322 χ

(2)
333 χ

(2)
323 χ

(2)
313 χ

(2)
312

⎤
⎥⎥⎦

= −κ2
0

⎡
⎢⎢⎣

χ
(1)
11 (0) χ

(1)
12 (0) χ

(1)
13 (0)

χ
(1)
21 (0) χ

(1)
22 (0) χ

(1)
23 (0)

χ
(1)
31 (0) χ

(1)
32 (0) χ

(1)
33 (0)

⎤
⎥⎥⎦

⎡
⎢⎣

C111 C122 C133 C123 C113 C112

C211 C222 C233 C223 C213 C212

C311 C322 C333 C323 C313 C312

⎤
⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣χ (1)
11 (ω)

∣∣2 ∣∣χ (1)
12 (ω)

∣∣2 ∣∣χ (1)
13 (ω)

∣∣2
2χ

(1)
12 (ω)χ (1),∗

13 (ω)∣∣χ (1)
21 (ω)

∣∣2 ∣∣χ (1)
22 (ω)

∣∣2 ∣∣χ (1)
23 (ω)

∣∣2
2χ

(1)
22 (ω)χ (1),∗

23 (ω)∣∣χ (1)
31 (ω)

∣∣2 ∣∣χ (1)
32 (ω)

∣∣2 ∣∣χ (1)
33 (ω)

∣∣2
2χ

(1)
32 (ω)χ (1),∗

33 (ω)

2χ
(1)
21 (ω)χ (1),∗

31 (ω) 2χ
(1)
22 (ω)χ (1),∗

32 (ω) 2χ
(1)
23 (ω)χ (1),∗

33 (ω) 2χ
(1)
22 (ω)χ (1),∗

33 (ω) + 2χ
(1)
23 (ω)χ (1),∗

32 (ω)

2χ
(1)
11 (ω)χ (1),∗

31 (ω) 2χ
(1)
12 (ω)χ (1),∗

32 (ω) 2χ
(1)
13 (ω)χ (1),∗

33 (ω) 2χ
(1)
12 (ω)χ (1),∗

33 (ω) + 2χ
(1)
13 (ω)χ (1),∗

32 (ω)

2χ
(1)
11 (ω)χ (1),∗

21 (ω) 2χ
(1)
12 (ω)χ (1),∗

22 (ω) 2χ
(1)
13 (ω)χ (1),∗

23 (ω) 2χ
(1)
12 (ω)χ (1),∗

23 (ω) + 2χ
(1)
13 (ω)χ (1),∗

22 (ω)

2χ
(1)
11 (ω)χ (1),∗

13 (ω) 2χ
(1)
11 (ω)χ (1),∗

12 (ω)

2χ
(1)
21 (ω)χ (1),∗

23 (ω) 2χ
(1)
21 (ω)χ (1),∗

22 (ω)

2χ
(1)
31 (ω)χ (1),∗

33 (ω) 2χ
(1)
31 (ω)χ (1),∗

32 (ω)

2χ
(1)
21 (ω)χ (1),∗

33 (ω) + 2χ
(1)
23 (ω)χ (1),∗

31 (ω) 2χ
(1)
21 (ω)χ (1),∗

32 (ω) + 2χ
(1)
22 (ω)χ (1),∗

31 (ω)

2χ
(1)
11 (ω)χ (1),∗

33 (ω) + 2χ
(1)
13 (ω)χ (1),∗

31 (ω) 2χ
(1)
11 (ω)χ (1),∗

32 (ω) + 2χ
(1)
12 (ω)χ (1),∗

31 (ω)

2χ
(1)
11 (ω)χ (1),∗

23 (ω) + 2χ
(1)
13 (ω)χ (1),∗

21 (ω) 2χ
(1)
11 (ω)χ (1),∗

22 (ω) + 2χ
(1)
12 (ω)χ (1),∗

21 (ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i, j, k = 1, 2, 3.

(C11)

It is noteworthy that χ
(2)
i jk (0, ω,−ω) in Eq. (C11), which describes the rectification of two THz waves with the frequencies

ω and −ω, is conceptually different from the second-order dc nonlinear susceptibility χ
(2),dc
i jk . The latter can be obtained by

letting ω = 0 in Eq. (C9). Like the expression of χ
(2)
i jk (2ω,ω,ω) in Eq. (C9), the expression of χ

(2)
i jk (0, ω,−ω) is only valid when

the amplitude of E inc
i is not too large. On one hand, the derivation of χ

(2)
i jk (0, ω,−ω) assumes that the center of polarization

oscillation is always at Pi = P0
i as the premise of the perturbation theory. On the other hand, the resulting dc shift component

�P(2)(0, ω,−ω) describes a shift of the oscillation center away from P0
i , which would cause sizable change in the coefficient

matrices K and C if the magnitude of �P(2)(0, ω,−ω) is sufficiently large.
If the incident electrical field contains two frequencies ωn and ωm (ωn > ωm), the linear polarization oscillation �P(1) =

�P(1)(ωn) + �P(1)(ωm). Substituting the steady-state different-frequencies solutions �P(1)(ωn) and �P(1)(ωm) into Eq. (C5b)
allows for deriving the steady-state solution of �P(2)(ωn ± ωm) and therefore χ

(2)
i jk (ωn ± ωm, ωn, ωm). To do this, we likewise

expand the terms that are contained in the expression �P(1)
II into the following expression:

�P(1)
j (ωn)�P(1)

k (ωm) = κ2
0 |χ jm|E inc,0

m cos(ωnt + ϕ jm)|χkn|E inc,0
n cos(ωmt + ϕkn)

= κ2
0

(|χ jm|E inc,0
m

)(|χkn|E inc,0
n

){1

2
cos[(ωn − ωm)t + ϕ jm − ϕkn] + 1

2
cos[(ωn + ωm)t + ϕ jm + ϕkn]

}

≡ κ2
0

2
χ

(1)
jm χ

(1),∗
kn E inc,0

m E inc,0
n exp[−i(ωn − ωm)t] + κ2

0

2
χ

(1)
jm χ

(1)
kn E inc,0

m E inc,0
n exp[−i(ωn + ωm)t]

= �P(2)(ωn − ωm) + �P(2)(ωn + ωm), (C12)

Following similar procedures as the derivation of χ
(2)
i jk (2ω) and χ

(2)
i jk (0), we can derive that

χ
(2)
i jk (ωn + ωm, ωn, ωm) = −κ2

0

∑
α,β,γ=1,2,3

Cαβγ χ
(1)
iα (ωn + ωm)

[
χ

(1)
β j (ωn)χ (1)

γ k (ωm) + χ
(1)
β j (ωm)χ (1)

γ k (ωn)
]
, (C13)

χ
(2)
i jk (ωn − ωm, ωn, ωm) = −κ2

0

∑
α,β,γ=1,2,3

Cαβγ χ
(1)
iα (ωn − ωm)

[
χ

(1)
β j (ωn)χ (1),∗

γ k (ωm) + χ
(1),∗
β j (ωm)χ (1)

γ k (ωn)
]
. (C14)

APPENDIX D: THERMODYNAMIC VALIDATION AND SYMMETRY VALIDATION

1. Thermodynamic validation

Let us first show that the dc nonlinear susceptibility χ
(2),dc
i jk , which can be obtained by letting ω = 0 in Eq. (C9), can

equivalently be obtained from thermodynamic analyses. To this end, we consider a monodomain ferroelectric material, which
has an electric Helmholtz free energy density given as

f (T, Pi, Ei, εi j ) = g0(T ) + f Landau(T, Pi ) − 1
2κ0κbEiE j − EiPi + f Elast (εi j, Pi ), (D1)

where g0(T ) is the Gibbs free energy density of the initial nonequilibrium state with zero spontaneous polarization; the Landau
free energy density f Landau(T, Pi ) is a function of temperature and ionic polarization; and the elastic energy density f Elast (εi j, Pi )
is a function of the total strain εi j and ionic polarization, where the total strain εi j depends on the mechanical boundary condition
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of the system. If omitting the depolarization field, the total electric field Ei (Ej) in Eq. (D1) is the same as the applied electric
field. Minimizing f (T, Pi, Ei, εi j ) with respect to Pi under a constant electric field Ej yields a relationship between Pi and Ei,
that is,

Ei =
[
∂ ( f Landau + f Elast )

∂Pi

]
T,Ei,εi j

. (D2)

Performing Taylor expansion for Eq. (D2), one has

Ei =
∑

j=1,2,3

(
∂2 f Landau

∂Pi∂Pj
+ ∂2 f Elast

∂Pi∂Pj

)
�Pj + 1

2

∑
j,k=1,2,3

(
∂3 f Landau

∂Pi∂Pj∂Pk
+ ∂3 f Elast

∂Pi∂Pj∂Pk

)
�Pj�Pk + . . . . (D3)

Equation (D3) can be rewritten in the matrix form, i.e., E = K�P + C�PII (see Sec. II for the definitions of the coefficient
matrices K and C), or in its expanded form:

⎡
⎣E1

E2

E3

⎤
⎦ =

⎡
⎣K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤
⎦

⎡
⎣�P1

�P2

�P3

⎤
⎦ +

⎡
⎣C111 C122 C133 C123 C113 C112

C211 C222 C233 C223 C213 C212

C311 C322 C333 C323 C313 C312

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�P2
1

�P2
2

�P2
3

2�P2�P3

2�P1�P3

2�P1�P2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D4)

Since Eqs. (D2)–(D4) are derived for the thermodynamic equilibrium state of polarization under an applied dc electric field,
the polarization does not change with time. Therefore, the time derivatives of the polarization are zero, i.e., ∂n�P/∂t n = 0,
n = 1,2. Under this condition, Eq. (D4) is equivalent to Eq. (3). Accordingly, χ

(1),dc
i j derived from Eq. (D4), with χ(1),dc = K−1

is equivalent to the solution shown in Eq. (4) under ω = 0. Likewise, the solution of χ
(2),dc
i jk derived from Eq. (D4) via the

perturbation method is equivalent to the solution shown in Eq. (C9) under ω = 0, as listed below (where the superscript dc is
omitted for brevity):⎡

⎢⎢⎣
χ

(2)
111 χ

(2)
122 χ

(2)
133 χ

(2)
123 χ

(2)
113 χ

(2)
112

χ
(2)
211 χ

(2)
222 χ

(2)
233 χ

(2)
223 χ

(2)
213 χ

(2)
212

χ
(2)
311 χ

(2)
322 χ

(2)
333 χ

(2)
323 χ

(2)
313 χ

(2)
312

⎤
⎥⎥⎦

= −κ2
0

⎡
⎢⎢⎣

χ
(1)
11 χ

(1)
12 χ

(1)
13

χ
(1)
21 χ

(1)
22 χ

(1)
23

χ
(1)
31 χ

(1)
32 χ

(1)
33

⎤
⎥⎥⎦

⎡
⎢⎣

C111 C122 C133 C123 C113 C112

C211 C222 C233 C223 C213 C212

C311 C322 C333 C323 C313 C312

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ
(1)
11

2
χ

(1)
12

2
χ

(1)
13

2
2χ

(1)
12 χ

(1)
13 2χ

(1)
11 χ

(1)
13 2χ

(1)
11 χ

(1)
12

χ
(1)
21

2
χ

(1)
22

2
χ

(1)
23

2
2χ

(1)
22 χ

(1)
23 2χ

(1)
21 χ

(1)
23 2χ

(1)
21 χ

(1)
22

χ
(1)
31

2
χ

(1)
32

2
χ

(1)
33

2
2χ

(1)
32 χ

(1)
33 2χ

(1)
31 χ

(1)
33 2χ

(1)
31 χ

(1)
32

2χ
(1)
21 χ

(1)
31 2χ

(1)
22 χ

(1)
32 2χ

(1)
23 χ

(1)
33 2χ

(1)
22 χ

(1)
33 + 2χ

(1)
23 χ

(1)
32 2χ

(1)
21 χ

(1)
33 + 2χ

(1)
23 χ

(1)
31 2χ

(1)
21 χ

(1)
32 + 2χ

(1)
22 χ

(1)
31

2χ
(1)
11 χ

(1)
31 2χ

(1)
12 χ

(1)
32 2χ

(1)
13 χ

(1)
33 2χ

(1)
12 χ

(1)
33 + 2χ

(1)
13 χ

(1)
32 2χ

(1)
11 χ

(1)
33 + 2χ

(1)
13 χ

(1)
31 2χ

(1)
11 χ

(1)
32 + 2χ

(1)
12 χ

(1)
31

2χ
(1)
11 χ

(1)
21 2χ

(1)
12 χ

(1)
22 2χ

(1)
13 χ

(1)
23 2χ

(1)
12 χ

(1)
23 + 2χ

(1)
13 χ

(1)
22 2χ

(1)
11 χ

(1)
23 + 2χ

(1)
13 χ

(1)
21 2χ

(1)
11 χ

(1)
22 + 2χ

(1)
12 χ

(1)
21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(D5)

To demonstrate Eq. (D5) is valid, we consider a tetragonal BaTiO3 single crystal with a spontaneous polarization P0 =
(0, 0, P0

3 ) under zero electric field (Edc
3 = 0), as shown in Fig. 1(a). The χ

(2),dc
333 calculated via Eq. (D5) is −1.573 × 10−6

m/V, while χ
(1),dc
33 calculated by setting ω = 0 in Eq. (7) is 125.55. In parallel, we evaluate the value of P3 under different

bias electric fields Edc
3 at thermodynamic equilibrium by numerically minimizing (via the random search method) the cor-

responding electric Helmholtz free energy density f (T, Pi, Ei, εi j ) in the Mathematica software and obtain a static P3 − Edc
3

curve, as shown in Fig. 5. Next, we fit this static curve using the equation P3 = P0
3 + κ0[χ (1),dc

33 Edc
3 + χ

(2),dc
333 Edc

3
2], through

which we determine that χ
(1),dc
33 = 125.2 and χ

(2),dc
333 = −1.576 × 10−6 m/V, which agree well with the analytically calculated

values.
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FIG. 5. P3 as a function of an applied dc electric field E dc
3 ob-

tained by thermodynamic analysis in a bulk tetragonal BaTiO3 single
crystal [shown in Fig. 1(a)] at 25 °C, and its nonlinear fitting as
explained in Appendix C.

2. Symmetry validation

The numbers of nonzero and independent elements of both
χ

(1),dc
i j and χ

(2),dc
i jk can be mathematically evaluated based on

Eq. (D5), which depends on the coefficient tensors C and K
(in other words, the symmetry of f Landau and f Elast with re-
spect to the equilibrium polarization state and the mechanical
boundary condition of the system). As an example, consider-
ing a stress-free boundary condition, the numbers of nonzero
(independent) elements of χ

(1),dc
i j for cubic, P4mm, Amm2,

and R3m BaTiO3 bulk crystals are determined to be 3(1), 3(2),
5(3), and 9(2), respectively, in the cubic coordinate system.
The numbers of nonzero (independent) elements of χ

(2),dc
i jk for

cubic, P4mm, Amm2, and R3m BaTiO3 bulk crystals are 0(0),
5(2), 10(3), and 18(3), respectively, in the cubic coordinate
system. By transforming χ

(1),dc
i j and χ

(2),dc
i jk tensors from the

cubic to principal coordinate system (PCS), one can diago-
nalize the χ

(1),dc
i j tensor and simplify the matrix for the χ

(2),dc
i jk

tensor. We perform this transformation by first transforming
the polarization Pj in the Landau free energy from the cubic
coordinate system (indicated as the x1-x2-x3 coordinates in Ta-
ble III) to P′

i in the PCS (indicated as the x′
1-x′

2-x′
3 coordinates

in Table III) via P′
i = Ti jPj , and then calculating the χ

′(1),dc
i j

and χ
′(2),dc
i jk tensors in the PCS based on Eqs. (D4) and (D5).

The transformation matrix Ti j is calculated as

T =

⎡
⎢⎣

cos ϕ1 − sin ϕ1 0

sin ϕ1 cos ϕ1 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 cos � − sin �

0 sin � cos �

⎤
⎥⎦

×

⎡
⎢⎣

cos ϕ2 − sin ϕ2 0

sin ϕ2 cos ϕ2 0

0 0 1

⎤
⎥⎦, (D6)

where the Euler angles ϕ1, �, and ϕ2 (also illustrated in
Table III) describe the sequence of rotating x1-x2-x3 (cubic) to
x′

1-x′
2-x′

3 (PCS). Specifically, the rotation starts with an initial
rotation ϕ1 about the x3 axis, followed by a rotation � about
the x1 axis, and then a final rotation ϕ2 about the x3 axis again.

As shown in Table III, the numbers of nonzero (indepen-
dent) elements of χ

′(2),dc
i jk for cubic, P4mm, Amm2, and R3m

BaTiO3 bulk crystals are 0(0), 5(2), 5(3), and 8(3), respec-
tively, in the PCS. The obtained number of independent and
nonzero elements for χ

′(2),dc
i jk are consistent with Ref. [26].

APPENDIX E: EVALUATING |χ(2)
333|(2ω) AND χ

(1),Im
33 (ω)

FROM DYNAMICAL PHASE-FIELD SIMULATIONS

A dynamical phase-field model with coupled dynamics of
strain, polarization, and EM waves [18,25] was used to simu-
late the excitation of polarization oscillation in a freestanding
tetragonal BaTiO3 slab by a monochromatic continuous THz
wave with an angular frequency ω. The BaTiO3 slab has
an initial equilibrium polarization (P0

1 , P0
2 , P0

3 ) = (0, 0,
0.26 C/m2) at 298 K. The slab thickness is set to be 10 nm
(which is far smaller than the THz wavelength) to ensure
that the excited polarization is spatially uniform along the
thickness direction and in-phase. A sinusoidal source current
Jx = J0

x sin(ωt ) was injected to generate a continuous incident
THz wave with an electric field component that is spatially
uniform in the thin BaTiO3 slab, i.e., Ex(t ) = E0

x exp(−iωt ),
with x ≡ 3 [see Fig. 1(a)]. We consider 36 different ω’s in total
near the two peaks of the analytically calculated |χ (2)

333|(2ω),
shown in Fig. 2(a), and performed 36 groups of simulations to
extract |χ (2)

333|(2ω) at each ω. In all simulations, we set J0
x =

2 × 1012 A/m2, leading to E inc,0
x of 376 730 V/m. Under this

electric field, the BaTiO3 slab will be driven into the anhar-
monic regime, but the magnitude of the dc polarization shift
�P(2)

3 (0) arising from χ
(2)
333(0, ω,−ω), see Eq. (C11), remains

relatively small. For such a weakly nonlinear oscillation, one
can expect that the numerical simulation results would agree

FIG. 6. (a) Steady-state evolution of the dynamically excited po-
larization �P3(t ) = P3(t ) − P0

3 in a thin freestanding (100) BaTiO3

slab under a continuous terahertz (THz) wave with ω = 2π ×
2.0542 THz at 298 K. (b) Frequency spectrum of �P3(t ) for the
duration of t = 5 − 33 ps. (c) Reconstructed temporal profiles of
�P(1)

3 and �P(2)
3 as well as the profile of the incident THz electric

field E3(t ) obtained from a reference simulation without the (100)
BaTiO3 slab. t = 0 ps is the moment the source current is injected.
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TABLE III. List of elements in χ
(1),dc
i j and χ

(2),dc
i jk of a stress-free BaTiO3 bulk crystal.
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well with the results calculated analytically based on the
perturbation theory because a negligibly small �P(2)

i (0) is
the premise of the present analytical model, as discussed in
Appendix C [see the paragraph before Eq. (C4)]. Details of the
dynamical phase-field model and the setup of the numerical
simulations are provided in Ref. [25].

As an example, Fig. 6(a) shows the steady-state evolution
of �P3(t ) in the middle layer of the BaTiO3 slab (note that
�P3 is spatially uniform in the slab) under a continuous
THz wave excitation with ω = 0.5ω3 = 2π × 2.0542 THz,
corresponding to the first peak of |χ (2)

333|(2ω) in Fig. 1(a).
Figure 6(b) shows the frequency spectrum of �P3(t ),
which display two prominent peaks. The first peak at
ω/2π = 2.0542 THz is related to the linear polarization
oscillation �P(1)

3 (t ) = �P(1),0
3 exp{i[−ωt + ϕ(1)]} that

has the same frequency as the incident THz wave.
The second peak at ω/2π = 4.1084 THz corresponds
to the second-harmonic component of the polarization

oscillation, given by �P(2)
3 (t ) = �P(2),0

3 exp{i[−2ωt + ϕ(2)]}.
Performing the inverse Fourier transform for the second
peak allows for reconstructing the temporal profile
of �P(2)

3 (t ), as shown in Fig. 6(c), from which both
the amplitude �P(2),0

3 (=0.027762 mC/m2) and phase
ϕ(2) (=1.48140 rad) (84.878°) can be extracted. Thus,
|χ (2)

333(2ω)| = 2�P(2),0
3 /κ0(E inc,0

3 )
2

is calculated to be
4.454 × 10−5 m/V, which agrees well with the analytically
calculated value of 4.67 × 10−5 m/V. Likewise, performing
the inverse Fourier transform for the first peak enables
the reconstruction of �P(1)

x (t ), from which we obtain
�P(1),0

3 = 0.569 mC/m2 and ϕ(1) = 0.0515 rad (2.951°).
Therefore, |χ (1)

33 (ω)| = �P(1),0
3 /κ0E inc,0

3 = 170.5995. Given
that χ

(1)
33 = |χ (1)

33 |exp[iϕ(1)] = χ
(1),Re
33 + iχ (1),Im

33 , one has
χ

(1),Im
33 = |χ (1)

33 |sinϕ(1) = 8.651, which agrees well with the
analytically calculated χ

(1),Im
33 of 7.259 at ω = 2π × 2.0542

THz.
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