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The geometry of quantum states could offer indispensable insights for characterizing the topological prop-
erties, phase transitions, and entanglement nature of many-body systems. In this work, we reveal the quantum
geometry and the associated entanglement entropy (EE) of Floquet topological states in one-dimensional peri-
odically driven systems. The quantum metric tensors of Floquet states are found to show nonanalytic signatures
at topological phase transition points. Away from the transition points, the bipartite geometric EE of Floquet
states exhibits an area-law scaling vs the system size, which holds for a Floquet band at any filling fractions. For
a uniformly filled Floquet band, the EE further becomes purely quantum geometric. At phase transition points,
the geometric EE scales logarithmically with the system size and displays cusps in the nearby parameter ranges.
These discoveries are demonstrated by investigating typical Floquet models including periodically driven spin
chains, Floquet topological insulators, and superconductors. Our findings uncover the rich quantum geometries
of Floquet states, unveiling the geometric origin of EE for gapped Floquet topological phases, and introducing
information-theoretic means of depicting topological transitions in Floquet systems.
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I. INTRODUCTION

Floquet topological phases have attracted sustained re-
search interest over the last decades [1–9]. It was found that
periodic driving fields could endue a system with rich and
unique features that are absent or challenging to achieve in
static systems, such as Floquet phases with large topological
invariants and many topological edge states [10], dispersion-
less Floquet edge modes at quasienergy π [11], or anomalous
chiral edge modes encircling the quasienergy Brillouin zone
(BZ) [12], and exotic phenomena like Floquet-band holon-
omy [13] and integer quantum Hall effect from chaos [14].
Experimental realizations of these intriguing physics in both
solid-state materials and quantum simulators [15–30] brought
about their potential applications in topological photonic de-
vices [31–33], ultrafast electronics [4,8], and novel quantum
computing strategies [34,35].

In contrast with topological aspects, less attention was paid
to the geometric properties of Floquet states [36] and their
resulting entanglement characteristics [37]. The geometries of
quantum states, including the amplitude and phase distances
described, respectively, by the quantum metric and Berry cur-
vature tensors [38], have played pivotal roles in the study
of Bloch-electron dynamics [39], topological states of matter
[40], and quantum phase transitions [41–43]. For example,
the integration of Berry curvature over a two-dimensional BZ
yields the first Chern number of a Bloch band, which serves
as the topological origin of various transport phenomena
including the integer quantum Hall effect [44], quantum
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anomalous Hall effect [45], and quantized adiabatic charge
pumping [46]. The quantum metric tensor could instead ap-
pear in the high-order response coefficient of electrons to
external fields [47] and the superfluid weight of flat bands
[48], yielding important insights for the understanding of
nonlinear Hall effects [49] and flat-band superconductivity
in correlated materials [50]. In periodically driven systems,
the quantum geometry of Floquet bands may also offer es-
sential information about the topological and entanglement
features of the underlying nonequilibrium states. First, as
Floquet bands could weave around the first quasienergy BZ
E ∈ [−π, π ), they may develop level crossings at both the
quasienergies zero and π , yielding two possible flavors of
topological phase transitions [11]. Whether and how these
transitions would leave unique signals in the quantum geomet-
ric tensor of Floquet states then constitute interesting issues
to address. Second, driving fields could generate long-range
couplings in a system and allow Floquet bands to carry large
topological invariants [10]. Unveiling geometric aspects of
these quasienergy bands with large topological numbers may
help us to deepen our understanding of the quantum trans-
port in driven systems. Third, Floquet systems could possess
anomalous topological phases with unique edge states, such as
degenerate edge modes at the quasienergy π [12], which are
not reachable in static settings. Geometric signatures of these
anomalous Floquet topological phases deserve to be further
clarified. Resolving these issues thus forms an indispensable
part for our understanding of Floquet topological matter and
their entanglement properties.

In this paper, we uncover the quantum geometries of
Floquet-Bloch bands and their associated entanglement
nature in one-dimensional (1D) Floquet topological phases. In
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Sec. II, we outline the generic definitions of Abelian quantum
geometric tensor and geometric entanglement entropy (GEE)
of Floquet states, with further theoretical details presented in
Appendixes A–E. Based on these definitions, we obtain the
quantum metric tensor (QMT) and GEE of typical 1D Floquet
systems including periodically driven spin chains, Floquet
topological insulators, and superconductors in Secs. III–V.
Throughout these model studies, we reveal that the integrated
QMT of a filled Floquet band would show nonanalytic
signatures when the system undergoes a transition between
different Floquet topological phases. Moreover, away from
the transition point, the GEE always follow an area-law
scaling vs the system size irrespective of the filling fraction
of the considered Floquet band, and the bipartite EE becomes
purely geometric when the Floquet band is uniformly filled.
At the transition point between different Floquet topological
phases, the EE is also of geometric origin and further follows
a log-law scaling vs the system size, as expected in 1D critical
metallic phases. In Sec. VI, we summarize our results and
discuss potential directions of future research.

II. QUANTUM GEOMETRY AND GEOMETRIC
ENTANGLEMENT ENTROPY

In this section, we outline the definitions of key quantum
geometric objects and their related entanglement measures
that will be investigated in this study. Further derivation de-
tails of these quantities are given in the Appendixes A–E.

Consider a set of normalized quantum states {|ψ (k)〉},
which are defined in a continuous D-dimensional param-
eter space k = (k1, k2, . . . , kD). The infinitesimal distance
between any two nearby states in such a k space can be ex-
pressed as ds2 ≡ 1 − ||〈ψ (k)|ψ (k + dk)〉||2, which is equal
to one (zero) if the states |ψ (k)〉 and |ψ (k + dk)〉 are orthog-
onal (identical up to a phase factor). Retaining terms up to the
second order in dk, we can equivalently write ds2 as

ds2 = Re[Qαβ (k)]dkαdkβ = gαβ (k)dkαdkβ, (1)

where the indices α, β = 1, 2, . . . , D are summed over. The
quantity Qαβ (k), given by

Qαβ (k) = 〈∂kα
ψ (k)|[1 − |ψ (k)〉〈ψ (k)|]|∂kβ

ψ (k)〉, (2)

is usually referred to as the component of quantum geometric
tensor (QGT). The real part of QGT gives the QMT [51],
whose components are given by the gαβ (k) in Eq. (1). The
integration of QMT over k space may provide further diag-
noses for level crossings and quantum phase transitions in
the system [52]. The imaginary part of QGT yields the Berry
curvature F (k) [53], whose components are

Fαβ (k) = −2 Im[Qαβ (k)]. (3)

The Berry curvature of Bloch bands determines the anoma-
lous dynamics and quantized Hall response of electrons in
two-dimensional systems [39]. The integration of Fαβ (k) over
a closed and orientable two-dimensional k-space manifold
further yields the first Chern number, which is a key ingredient
in characterizing topological phases of matter [40]. The infor-
mation provided by gαβ (k) and Fαβ (k) thus offers a complete
description for the geometry of quantum states {|ψ (k)〉} in
k space. Note in passing that for a 1D k space, the Berry

curvature vanishes by definition and the QGT reduces to a
one-component QMT, i.e.,

gkk = 〈∂kψ (k)|[1 − |ψ (k)〉〈ψ (k)|]|∂kψ (k)〉. (4)

In Appendix B, the expressions of gkk for generic 1D
two-band models and for some representative examples are
worked out explicitly, with k being identified as the 1D quasi-
momentum defined in the first BZ [−π, π ). These expressions
will be used to characterize the quantum geometry of Floquet-
Bloch bands in later sections.

Quantum entanglement comprises the nonclassical corre-
lations among different constituents of a composite quantum
system. Related information-theoretic measures, such as the
entanglement spectrum and EE, have been regularly adopted
in depicting quantum phase transitions and topological phases
in many-body systems (for reviews see [54–64]). In a recent
study, it was found that the geometry of quantum states could
contribute a universal area-law component to the bipartite EE
of noninteracting fermions in static multiband models [65].
Such a geometric entanglement entropy may be defined as

SQG ≡ SA − SA0 , (5)

where SA is the (Rényi or von Neumann) EE between the
subsystem A and its complementary A in a bipartite system
A ∪ A with fermions populating a Bloch band. SA0 encom-
passes the bipartite EE of fermions sharing the same Fermi
surface with those in the system A ∪ A but with trivial Bloch
band geometries. The difference between SA and SA0 then
yields an entropic component originated from the inherent
quantum geometry of occupied Bloch states [65].

For electrons in a 1D periodic lattice with L unit cells,
the SA0 can be obtained rather generally from the spectrum
of overlap matrix OA0 among plane-wave basis {〈n|k〉 =
L−1/2eikn|n = 1, . . . , L}, whose matrix elements are given by

OA0
k,k′ = 1

L

∑
n∈A

e−i(k−k′ )n. (6)

Here L is the total number of unit cells in the composite
system A ∪ A, and the cell index n has been restricted to the
subsystem A. k and k′ are wave vectors running over all the
occupied single-particle eigenbases, so that OA0 is an N × N
matrix if there are N particles in the system A ∪ A. Denoting
the eigenvalues of OA0 by {η�0|� = 1, . . . , N}, we can obtain
the von Neumann EE SA0 in Eq. (5) as [66–68]

SA0 = −
N∑

�=1

[η�0 ln η�0 + (1 − η�0) ln(1 − η�0)], (7)

with further derivation details presented in Appendixes C–E.
Meanwhile, if {|ψk〉} constitutes the occupied eigenstates of a
Bloch band in the system A ∪ A, we can construct an overlap
matrix OA among the states in {|ψk〉}. Its matrix elements
(after being restricted to the subsystem A) are given by

OA
k,k′ = 1

L

∑
n∈A

e−i(k−k′ )n〈ψk|ψk′ 〉. (8)

With N particles in the system, OA is also N × N with N
eigenvalues {η�|� = 1, . . . , N}, from which the von Neumann
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bipartite EE in Eq. (5) can be obtained as [66–68]

SA = −
N∑

�=1

[η� ln η� + (1 − η�) ln(1 − η�)]. (9)

Further derivation details of SA can also be found in
Appendixes C–E. Note in passing that, formally speaking,
both the SA0 and SA in Eqs. (7) and (9) do not explicitly
depend on the size of subsystem A. Within a Bloch band,
all the nontrivial quantum geometries of the occupied states
{|ψk〉} are encoded in their overlaps 〈ψk|ψk′ 〉 with k �= k′. We
thus expect that the difference between SA and SA0 in Eq. (5)
could properly describe a quantum geometric component of
EE, as the trivial contribution SA0 (from a free-fermion gas in
a periodic lattice without onsite potentials) has been removed
(see Appendixes C–E from further discussions). It was also
revealed that for fermions filling a gapped Bloch band, both
SA and SA0 scale as LD−1

A ln LA vs the subsystem size LA up
to its leading order, with the same scaling coefficient in D
spatial dimensions [69]. Their difference should thus follow
an area-law scaling vs LA when the system is away from its
critical point. One may then identify quantum and topolog-
ical phase transitions from the change of finite-size scaling
behaviors in SQG.

A Floquet quantum system can be described by a Hamilto-
nian Ĥ (t ) = Ĥ (t + T ), which is periodic in time t with the
driving period T . If we are interested in the stroboscopic
dynamics of the system, we can focus on its Floquet op-
erator Û = T̂e−i

∫ t+T
t Ĥ (t ′ )dt ′

, which controls the evolution of
the system over a complete driving period (T̂ performs the

time ordering). The eigenvectors and eigenphases of Û are,
respectively, called the Floquet eigenstates and quasiener-
gies, which could be obtained by solving the eigenvalue
equation Û |ψ〉 = e−iE |ψ〉. The Floquet eigenstates form a
complete and orthonormal basis of the system. If Ĥ (t ) also
possesses some discrete spatial translational symmetries, Û
will hold the same symmetries. Its quasienergies could then
be grouped into bands confined in the first quasienergy BZ
E ∈ [−π, π ), which are called the Floquet-Bloch bands. In
this case, a Floquet eigenstate |ψ j (k)〉 in the quasienergy
band Ej (k) satisfies the equation Û |ψ j (k)〉 = e−iE j (k)|ψ j (k)〉,
with j the band index and k the quasimomentum. In Ap-
pendixes C–E, we demonstrate that for fermions filling the
Floquet-Bloch band of a 1D periodically driven system, the
formalism of QMT and GEE as outlined in this section are
also applicable after the replacement of each filled Bloch state
with a Floquet-Bloch eigenstate at a given quasienergy in
the related equations. This allows us to unveil the quantum
geometry and the associated EE of some representative 1D
periodically driven systems, including Floquet spin chains,
topological insulators, and superconductors in the following
sections.

III. HARMONICALLY DRIVEN SPIN
CHAIN: QMT AND GEE

We start with a “minimal” Floquet model, whose geo-
metric, topological, and entanglement properties could be
controlled by periodic driving fields. The model describes
a 1D spin chain subject to harmonic drivings [70], whose
Hamiltonian takes the form

Ĥ (t ) =
∑

n

{
δ1[1 − sin(ωt )]

4
σ̂ x

n σ̂ x
n+1 + δ1[1 + sin(ωt )]

4
σ̂ y

n σ̂
y
n+1

}
−
∑

n

δ1 cos(ωt )

4

(
σ̂ x

n σ̂
y
n+1 + σ̂ y

n σ̂ x
n+1

)− δ2

2

∑
n

σ̂ z
n . (10)

Here δ1 controls the driving amplitude and ω is the driving
frequency. δ2 describes the amplitude of magnetic field along
z axis. σ̂

x,y,z
n are Pauli matrices of quantum spin- 1

2 variables
on the nth lattice site. In a former work [70], this model
has been experimentally realized to study Floquet dynam-
ical quantum phase transitions and establish their relations
with Floquet topological phases. Performing Jordan-Wigner
and Fourier transformations sequentially under the periodic
boundary condition (PBC), we can express Ĥ (t ) in the Nambu
spinor representation as Ĥ (t ) =∑k �̂

†
k H (k, t )�̂k , where k ∈

[−π, π ) is the quasimomentum and [70]

H (k, t ) = dx(k)[cos(ωt )σx + sin(ωt )σy] + dz(k)σz. (11)

Here σx,y,z are Pauli matrices in their usual representations and

dx(k) = δ1 sin k

2
, dz(k) = δ1 cos k + δ2

2
. (12)

Applying a rotation |ψ (k, t )〉 = UR(t )|ϕ(k, t )〉 to the
evolving state in the Schrödinger equation i∂t |ψ (k, t )〉 =
H (k, t )|ψ (k, t )〉, we could describe the dynamics of rotated
state |ϕ(k, t )〉 by the equation i∂t |ϕ(k, t )〉 = H (k)|ϕ(k, t )〉
with a time-independent Floquet-Bloch effective Hamiltonian

H (k), where UR(t ) = diag(1, eiωt ) and

H (k) = h0σ0 + hx(k)σx + hz(k)σz, (13)

with h0 = ω/2,

hx(k) = dx(k), hz(k) = dz(k) − ω

2
, (14)

and σ0 denotes the 2 × 2 identity matrix. Due to the time
periodicity of UR(t ) = UR(t + T ) with T = 2π/ω, the stro-
boscopic dynamics of the system is fully governed by H (k),
whose quasienergy bands have the dispersions described by
Eq. (A2) with

E (k) =
√

h2
x (k) + h2

z (k) mod 2π. (15)

Note in passing that the term h0σ0 in Eq. (13) is generated by
the rotating-frame transformation UR(t ). As h0σ0 is propor-
tional to the identity and independent of k, it does not affect
the geometric and topological properties of Floquet states in
our system. In the meantime, if we go back to the original
time frame and consider a one-period evolution starting at
t = 0, the Floquet operator of the system becomes U (k) =
e−ih0T σ0 e−i(hxσx+hzσz )T = −e−i(hxσx+hzσz )T , which possesses the
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chiral symmetry σy as σyU (k)σy = U †(k) [70]. We also notice
that in the quasienergy dispersion E (k), hz(k) depends on the
driving frequency ω due to Eq. (14), making E (k) obviously
different from the energy spectrum of the static model. We
can now obtain the QMT and GEE of the system following
Appendixes A–E. Plugging Eqs. (12), (14), and (15) into (B7),
we find the QMT as

gkk = g±
kk = (1 + μ cos k)2

4(1 + μ2 + 2μ cos k)2
. (16)

Here we have set the driving amplitude δ1 as the unit of energy
and introduced the shorthand notation μ = (δ2 − ω)/δ1. Since
gkk � 0, we can find its integrated contribution G over the
whole BZ, i.e.,

G =
∫ π

−π

dk

2π
gkk =

{
1

8(μ2−1) , |μ| > 1
μ2−2

8(μ2−1) , |μ| < 1.
(17)

It is clear that the integrated QMT is divergent at |μ| = 1, i.e.,
at |δ2 − ω| = |δ1|, where we have E = 0 in Eq. (15) and the
two Floquet bands ω/2 ± E meet with each other at the the
quasienergy ω/2, which is the edge of the first quasienergy
BZ. Quantum phase transitions unique to Floquet systems
could then happen at μ = ±1, which are further associated
with transitions between different Floquet topological phases
[70]. The locations of these transition points are controlled by
the driving frequency ω. The divergence of G at μ = ±1 then
offers clear geometric signatures for the Floquet topological
phase transitions in our system.

Away from the transition points, we find the limiting be-
haviors of G as

lim
μ→0

G = 1
4 , lim

μ→∞ G = 0. (18)

In Ref. [70], it was found that the system belongs to a topo-
logically nontrivial (trivial) phase when |μ| < 1 (|μ| > 1).
Therefore, the integration of GMT shows different limiting
behaviors in the topological and trivial limits of the system,
offering another geometric probe to distinguish these different
Floquet phases. Approaching the transition point, we find

lim
μ→±1

G → 1
16 |μ ∓ 1|−ν, (19)

with the critical exponent ν = 1. In Fig. 1, we present the
integrated QMT for a typical set of system parameters, which
clearly demonstrates its critical properties around phase tran-
sition points (μ = ±1) and limiting behaviors in different
Floquet topological phases.

Next, to obtain the GEE, we combine Eqs. (12), (14), and
(15) into (A7), yielding the overlap of wave functions in the
Floquet band with dispersion ω/2 − E (k), i.e.,

〈ψk|ψk′ 〉 = hx(k)hx(k′) + [E (k) − hz(k)][E (k′) − hz(k′)]
2
√

E (k)E (k′)[E (k) − hz(k)][E (k′) − hz(k′)]
,

(20)

where k, k′ = 2π�/L and � = 1, . . . , N , with L being the
number of unit cells and N � L being the number of occu-
pied single-particle orbitals in the multiparticle Floquet state
|�〉 =∏k |ψk〉 of our system. For example, when N = L, the
lower Floquet band with quasienergy dispersion ω/2 − E (k)

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

FIG. 1. Integrated QMT G (solid line) and GEE SQG (dotted
line) of the harmonically driven spin chain. The numbers of unit
cells and filled single-particle states are L = N = 1000 (half-filling).
The subsystem size is LA = 500 (equal bipartition). The horizontal
dashed and dashed-dotted lines highlight the values of G and SQG in
the topological limit ω = δ2, respectively.

is uniformly filled by fermions, with one at each k in the first
BZ. Plugging Eq. (20) into (E4), diagonalizing the overlap
matrices OA and OA0 for a given subsystem size LA, and insert-
ing their spectrum into Eqs. (9) and (7), we finally arrive at the
von Neumann EE and GEE following Eq. (5). For any given
subsystem size LA � L and particle number N � L, we could
then analyze the scaling properties of EE and its behaviors
around phase transition points in our Floquet system.

In Fig. 2, we present typical scaling behaviors of EE and
GEE vs the size LA of subsystem A. First, we notice that in
either the topological (|μ| < 1) or trivial (|μ| > 1) phase, the
SQG will converge to a finite value that is independent of LA

for the system at half-filling [Fig. 2(a)] or other possible filling
fractions [Figs. 2(c) and 2(d)]. Therefore, the GEE tends to
follow an area-law scaling vs the subsystem size at any filling
fractions, so long as the two Floquet bands of the system are
well separated by quasienergy gaps. The quantum geometric
origin of GEE thus endows it with certain robustness to
the change of particle numbers in the system regarding its
scaling properties. Second, at the topological transition points
[μ = ±1 in Fig. 2(b)], we have SQG ∝ ln[sin(πLA/L)]. It
suggests that the GEE at half-filling scales logarithmically
versus the subsystem size in these situations (with gapless
quasienergy bands), which is expected for 1D critical metallic
phases. Third, in all the considered cases, we find SA0 = 0
when N = L. Therefore, the bipartite EE of our system at
half-filling is solely originated from the quantum geometry
of Floquet-Bloch states in k space. This conclusion should
hold in both Floquet and static systems. Finally, the saturation
value of SQG increases monotonically when the system
approaches its topological phase transition point from either
side of the parameter space [see Figs. 1 and 2(a)]. As will be
demonstrated below, the scaling laws and critical properties
of GEE found here are generic and not restricted to the driven
spin chain model considered in this section. Moreover, richer
patterns in QMT and GEE could be identified when the system
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FIG. 2. EE of the harmonically driven spin chain vs the subsystem size LA under PBC. (a) GEE at half-filling (N = L) vs LA, with different
values of μ = (δ2 − ω)/δ1 for different curves as shown in the figure legend. (b) GEE at half-filling (N = L) vs LA for μ = ±1. (c) The total
and nongeometric parts of EE, SA, and SA0 vs LA at different filling fractions N/L, with L = 1000 and μ = 0.9. (d) GEE vs LA at different
filling fractions N/L, with L = 1000 and μ = 0.9. The numbers of filled Floquet single-particle states N for different curves are shown in the
legends of (c) and (d).

possesses multiple Floquet topological phases and phase
transitions, as will be considered in the following sections.

IV. ON-RESONANCE DOUBLE KICKED
ROTOR: QMT AND GEE

In the last section, the driven spin chain we introduced
owns two Floquet phases with distinct topological properties.
In this section, we investigate the QMT and GEE of a 1D Flo-
quet insulator with richer topological phases and transitions
[71–73]. Following Ref. [71], we consider the lattice version
of an on-resonance double kicked rotor (ORDKR), which
forms a paradigmatic platform in the study of dynamical
localization, quantum chaos, and Floquet topological matter
[10]. The lattice Hamiltonian of such an ORDKR takes the
form [71]

Ĥ (t ) = V (t )
∑

n

n2ĉ†
nĉn + 1

2

∑
n

[J (t )ĉ†
nĉn+1 + H.c.]. (21)

Here n ∈ Z is the lattice index and ĉ†
n creates a fermion on the

lattice site n. The onsite potential V (t ) and nearest-neighbor
hopping amplitude J (t ) have the expressions

[V (t ), J (t )] =

⎧⎪⎪⎨
⎪⎪⎩

(0, iK1), t ∈ [�T, �T + T/4)
(V, 0), t ∈ [�T + T/4, �T + T/2)
(0, K2), t ∈ [�T + T/2, �T + 3T/4)
(−V, 0), t ∈ [�T + 3T/4, �T + T )

(22)

where K1, K2,V ∈ R, � ∈ Z, and T is the driving period. In
the following calculations, we choose 4h̄/T as the unit of
energy and set V = π/2 in order to obtain a two-band model.
It is clear that the Ĥ (t ) in Eq. (21) does not have any spatial
periodicity. However, the Floquet operator of the system that
governs its evolution over a complete driving period (e.g.,
from t = 5T/8 to T + 5T/8) takes the form

Û = e− i
4

∑
n K2(ĉ†

nĉn+1+H.c.)

× e− i
2 π
∑

n n2 ĉ†
nĉn e− i

2

∑
n iK1(ĉ†

nĉn+1−H.c.)

× e
i
2 π
∑

n n2 ĉ†
nĉn e− i

4

∑
n K2(ĉ†

nĉn+1+H.c.), (23)

which has the spatial periodicity under the translation over
two lattice sites (n → n + 2). Performing the Fourier trans-
formation from position to momentum representations, we
can express the Floquet operator of the system as Û =∑

k �̂
†
k U (k)�̂k , where �̂

†
k = (ĉ†

k,a, ĉ†
k,b) collects creation op-

erators on odd and even sites within each unit cell and k is the
quasimomentum. The Floquet matrix U (k) is given by [71]

U (k) = e− i
2 K2[cos(k/2)σx+sin(k/2)σy]

× e−iK1[sin(k/2)σx−cos(k/2)σy]

× e− i
2 K2[cos(k/2)σx+sin(k/2)σy], (24)

where

K1 ≡ K1 sin(k/2), K2 ≡ K2 cos(k/2), (25)
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and σx,y are Pauli matrices acting on sublattice degrees of
freedom. Applying the Taylor expansion to each exponential
term in U (k), we find

U (k) = cosK1 cosK2 − i(hxσx + hyσy), (26)

where

hx = cos
k

2
cosK1 sinK2 + sin

k

2
sinK1,

hy = sin
k

2
cosK1 sinK2 − cos

k

2
sinK1. (27)

The quasienergy spectrum of our system thus contains
two Floquet bands under the PBC with dispersion relations
E±(k) = ± arccos(cosK1 cosK2). These two bands could
touch with each other at the center or boundary of the first
quasienergy BZ E± ∈ [−π, π ), leading to the gap-closing
conditions cosK1 cosK2 = 1 and −1 at the zero and π

quasienergies, respectively. The boundary curves between dif-
ferent Floquet topological insulating phases can further be
found as [71]

ν2π2

K2
1

+ μ2π2

K2
2

= 1, ν, μ ∈ Z. (28)

When K1 or K2 is swept across a phase boundary, the topolog-
ical invariants of ORDKR will get quantized changes, which
are associated with the variation of degenerate Floquet zero
and π edge modes in the system under the open boundary
condition [71].

The Floquet eigenstates of U (k) are obtained by solving
the eigenvalue equation U (k)|ψ±(k)〉 = e−iE±(k)|ψ±(k)〉. As
U (k) and the term hxσx + hyσy in Eq. (26) commute, they
share the same eigenbasis. We could then focus on the eigen-
states of hxσx + hyσy in Eq. (26) in order to reveal the quantum
geometry and geometric EE of ORDKR.

To obtain the QMT of ORDKR, we plug Eqs. (25) and
(27) and E =

√
h2

x + h2
y into Eq. (B6). Integrating the result-

ing gkk = gxy
kk over the first BZ yields the integrated QMT

of a filled Floquet quasienergy band, i.e., G = ∫ π

−π
dk
2π

gkk .
In Fig. 3, we present G vs the kicking strength K1 with
K2 = 0.5π . According to Eq. (28), the quasienergy gap be-
tween two Floquet bands of the system closes when K1 = νπ

for ν ∈ Z in this case. We observe that the integrated QMT
becomes diverge at these transition points. This is true for
other combinations of system parameters satisfying Eq. (28).
Notably, the divergent behaviors in G appear when the Flo-
quet bands touch at either the quasienergy zero (with K1 =
2νπ ) or π [with K1 = (2ν − 1)π ]. Therefore, the QMT could
show nonanalytic signatures when the ORDKR undergoes
both normal and anomalous topological transitions between
different Floquet phases, offering a quantum geometric probe
to these nonequilibrium phase transitions. To find the GEE, we
first obtain the overlap between any two Floquet eigenstates
in the lower quasienergy band, i.e., Oxy

− (k, k′), according to

Eq. (A6), where E =
√

h2
x + h2

y and the hx, hy are given by
Eq. (27). Replacing the 〈ψk|ψk′ 〉 in Eq. (E4) by Oxy

− (k, k′) and
following the recipes in Appendixes C–E, we can obtain the
total EE together with its geometric and nongeometric parts
from the eigenspectrum of overlap matrix OA in k space.

0 1 2 3 4 5
0

2

4

6

8

FIG. 3. Integrated QMT G (solid line) and GEE SQG (dotted line)
of the on-resonance double kicked rotor. The kicking strength is
K2 = 0.5π . The numbers of unit cells and filled single-particle states
are L = N = 1000 (half-filling). The subsystem size is LA = 500
(equal bipartition). Topological phase transitions happen at K1 = νπ

[Eq. (28)] for ν ∈ Z.

The GEE versus K1 at half-filling and under equal bi-
partition for the ORDKR is shown in Fig. 3. We find that
around each topological transition point, the GEE shows a
cusp, with a discontinuous derivative vs K1 at different sides
of K1 = νπ . Away from the topological transition points, the
amount of GEE increases gradually with the increase of K1.
This is related to the raise of topological edge-state numbers
at zero and π quasienergies following the increase of kick-
ing strengths in ORDKR [71]. These Floquet edge modes
yield gradually increased contributions to GEE across the
entanglement cuts when a bipartition is taken in the bulk.
Putting together, thanks to the close integration among quan-
tum information, geometry, and topology, we could employ
the GEE as an additional probe to the phases and transitions
in 1D Floquet topological insulators with large topological
invariants.

To further decode the scaling laws of EE, we could first
decompose the system S into two complementary parts as
S = A ∪ A. The behaviors of EE vs the subsystem size LA

and the filling fraction N/L of a Floquet band can then be
worked out, with N the total number of particles and L =
LA + LA the system size. Results of EE for typical cases of
the ORDKR are shown in Fig. 4, which are obtained fol-
lowing the procedure in Appendixes C–E. First, we notice
that when the system at half-filling resides in gapped Flo-
quet topological insulator phases [the cases in Fig. 4(a)],
the GEE would always converge to an area-law scaling
vs the system size with the increase of LA. In contrast,
when the two Floquet bands meet at the quasienergy zero
or π [the cases in Fig. 4(b)], the system becomes critical
at half-filling and the GEE follows a log-law scaling vs LA.
These different scaling laws (area law and log law) of GEE
are generic when the ORDKR is prepared in other gapped and
gapless Floquet topological phases, respectively. A further
comparison between the results in Figs. 4(c) and 4(d) suggests
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FIG. 4. EE of the on-resonance double kicked rotor vs the subsystem size LA under PBC, with K2 = 0.5π for all panels. (a) GEE at
half-filling (N = L) vs LA, with different values of K1 for different curves as shown in the figure legend. (b) GEE at half-filling (N = L) vs
LA for K1 = π, 2π, 3π, 4π . (c) The total and nongeometric parts of EE, SA, and SA0 vs LA at different filling fractions N/L, with L = 1000
and K1 = 4.5π . (d) GEE vs LA at different filling fractions N/L, with L = 1000 and K1 = 4.5π . The numbers of filled Floquet single-particle
states N for different curves are shown in the legends of (c) and (d).

that the bipartite EE of ORDKR is fully quantum geometric if
the many-particle state of the system uniformly fills a Floquet
band. That is, the nongeometric EE SA0 vanishes and the
total EE SA becomes equal to SQG at half-filling [N/L = 1 in
Figs. 4(c) and 4(d)]. This observation clarifies the geometric
origin of EE in 1D Floquet topological insulators, i.e., the
bipartite EE of a filled Floquet band is uniquely determined
by the quantum geometry of the populated Floquet-Bloch
eigenstates. Finally, even though both the bipartite EE and its
nongeometric part could vary with the subsystem size LA, the
GEE always satisfies an area law versus the subsystem size.
This is true regardless of the filling fraction (N/L ∈ (0, 1]) of
the considered Floquet band, so long as it is gapped from the
other bands. The scaling behavior of GEE may thus be robust
to the variations of Floquet-band populations through certain
dynamical processes, which further highlights its geometric
origin.

In comparison with the driven spin chain studied in the
last section, the QMT and GEE found here show quantita-
tively richer patterns due to the underlying multiple Floquet
topological insulating phases and transitions within the OR-
DKR. Meanwhile, the generic scaling and critical properties
of QMT and EE in these two models are coincident. These
general relations will hold also in 1D Floquet topologi-
cal superconductors, as will be unveiled in the following
section.

V. PERIODICALLY QUENCHED KITAEV
CHAIN: QMT AND GEE

We now consider the quantum geometry and geometric
EE of Floquet states in a periodically quenched Kitaev chain
(PQKC) [74,75], whose time-dependent Hamiltonian takes
the form

Ĥ (t ) =

⎧⎪⎨
⎪⎩

Ĥ1, t ∈ [�T, �T + T/4)

Ĥ2, t ∈ [�T + T/4, �T + 3T/4)

Ĥ1, t ∈ [�T + 3T/4, �T + T ).

(29)

Here � ∈ Z counts the number of driving period T . The piece-
wise Hamiltonians

Ĥ1 = 1

2

∑
n

�(ĉnĉn+1 + H.c.), (30)

Ĥ2 = 1

2

∑
n

[μ(ĉ†
nĉn − 1/2) + Jĉ†

nĉn+1 + H.c.], (31)

where ĉ†
n creates a fermion on the lattice site n ∈ Z. � is the

superconducting pairing strength, μ is the chemical potential,
and J is the nearest-neighbor hopping amplitude. The Floquet
operator of the system, which leads its evolution over a com-
plete driving period (e.g., from t = �T + 0− to t = �T + T +
0−) takes the form of Û = e−i T

4h̄ Ĥ1 e−i T
2h̄ Ĥ2 e−i T

4h̄ Ĥ1 . Under the
PBC, we can transform Û from the position to momentum
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representations and express it in terms of the Nambu spinor
basis as Û =∑k �̂

†
kU (k)�̂k , where k is the Bloch quasimo-

mentum and �̂
†
k = (ĉ†

k , ĉ−k ). The Floquet operator U (k) in k
space reads as

U (k) = e− i
2 dyσy e−idzσz e− i

2 dyσy , (32)

where σy,z are Pauli matrices,

dy = � sin k, dz = μ + J cos k, (33)

and we have set 2h̄/T as the unit of energy. Applying the
Taylor expansion to each exponential term of U (k) and re-
combining the relevant terms, we find

U (k) = cos dy cos dz − i(hyσy + hzσz ), (34)

hy = sin dy cos dz, hz = sin dz. (35)

The Floquet operator U (k) has two quasienergy bands,
whose dispersions are E±(k) = ± arccos(cos dy cos dz ). The
quasienergy spectrum of U (k) then becomes gapless when
cos dy cos dz = ±1, yielding the borderlines between its dif-
ferent Floquet topological phases as [75]

κ2π2

�2
+ (νπ − μ)2

J2
= 1, κ, ν ∈ Z. (36)

Meanwhile, we notice that the matrix h(k) ≡ hyσy + hzσz in
Eq. (34) commutes with the Floquet operator U (k). They thus
share the same Floquet eigenstates. This allows us to deduce
the QMT and GEE of our PQKC model from the eigenbasis
of h(k).

Plugging Eqs. (33) and (35) into (B8), we can find the
QMT of our system analytically as

gkk = [J sin k sin dy + (�/2) cos k cos dy sin(2dz )]2

4(sin2 dy cos2 dz + sin2 dz )2
. (37)

The integrated contribution of gkk over the first BZ, i.e., G =∫ π

−π
dk
2π

gkk can be further obtained numerically. In Fig. 5, we
present G vs the hopping amplitude J for a typical set of sys-
tem parameters. We find that the QMT becomes divergent at
every topological phase transition point in the system, where
the gap between E±(k) closes at the quasienergy zero (with
J = 2νπ ± π/4 and ν ∈ Z) or π [with J = (2ν − 1)π ± π/4
and ν ∈ Z]. Therefore, both the normal and anomalous topo-
logical transitions between different Floquet superconducting
phases could yield nonanalytic signatures in the QMT of a
filled Floquet band. The latter could thus supply a quantum
geometric probe to the phase transitions in Floquet topological
superconductors.

To find out the GEE, we could first insert Eq. (35)
and E (k) =

√
h2

y + h2
z into Eq. (A8), yielding the overlap

Oyz
− (k, k′) between eigenstates in the lower Floquet band with

quasienergy dispersion E−(k). Replacing the term 〈ψk|ψk′ 〉
with Oyz

− (k, k′) in Eq. (E4) gives us the wave-function overlap
OA

k,k′ , from which the total, nongeometric and geometric parts
of EE could be deduced following Appendixes D and E. The
dotted line in Fig. 5 shows the change of GEE with respect to
J for the PQKC at half-filling and under equal bipartition. We
find that the amount of SQG gradually raises with the increase
of J , and at each topological transition point it exhibits a cusp
structure. The former is related to the fact that the topological
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FIG. 5. Integrated QMT G (solid line) and GEE SQG (dotted line)
of the periodically quenched Kitaev chain. Other system parameters
are � = π/2 and μ = π/4. The numbers of unit cells and filled
single-particle states are L = N = 1000 (half-filling). The subsystem
size is LA = 500 (equal bipartition). Topological phase transitions
happen at J = π/4 + νπ/2 for ν ∈ Z [Eq. (36)].

invariants of PQKC could increase monotonically following
a sequence of topological transitions triggered by the increase
of J , generating more and more Floquet Majorana edge modes
at zero and π quasienergies that could contribute to EE when
a bipartition is taken in the bulk [75]. This is in stark contrast
to the results shown in Fig. 1, where the system only possesses
two different topological phases. The observed cusps in SQG

further imply that one can use GEE as a detector for the topo-
logical transitions between distinct Floquet superconducting
phases from an integrated view of quantum geometry and
information.

To further decode the scaling properties of EE in our
PQKC, we present in Fig. 6 the total, geometric, and nongeo-
metric parts of EE vs the subsystem size LA for some typical
cases, both away from and at topological transition points. The
calculations of EE also follow the Appendixes D and E. In
Fig. 6(a), we observe that in gapped Floquet superconducting
phases, the SQG will finally converge to a value for each case
that is increasing with J but independent of LA. Therefore, the
SQG at half-filling follows an area-law scaling vs the system
size. A further comparison between Figs. 6(c) and 6(d) sug-
gests that this area-law scaling behavior is independent of the
filling fraction N/L of the considered Floquet band. Therefore,
in topological phases with gapped Floquet bands, the GEE of
PQKC follows an area law regardless of the filling fraction
of the band. This is consistent with our results in Secs. III
and IV for other Floquet models. Next, we notice that the
GEE follows subvolume log-law scalings at the critical points
between different Floquet superconducting phases, as shown
in Fig. 6(b). This is true regardless of whether the Floquet
bands close their respective gaps at the center (E = 0) or
boundary (E = π ) of the first quasienergy BZ. Referring to
the results in Figs. 2(b) and 4(b), we find that the log-law
scalings of GEE at topological transition points of 1D Flo-
quet phases can be satisfied in general. Third, away from the
half-filling, both the total and nongeometric parts of EE are
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FIG. 6. EE of the periodically quenched Kitaev chain vs the subsystem size LA under PBC. Other system parameters are � = π/2 and
μ = π/4 for all panels. (a) GEE at half-filling (N = L) vs LA, with different values of J for different curves as shown in the figure legend.
(b) GEE at half-filling (N = L) vs LA for J = 0.75π + νπ and ν = 0, 1, 2, 3, 4. (c) The total and nongeometric parts of EE, SA, and SA0 vs LA

at different filling fractions N/L, with L = 1000 and J = 5π . (d) GEE vs LA at different filling fractions N/L, with L = 1000 and J = 5π . The
numbers of filled Floquet single-particle states N for different curves are shown in the legends of (c) and (d).

sensitive to the change of subsystem size LA, as shown in
Fig. 6(c). However, at half-filling, the nongeometric EE SA0

vanishes, and the total EE becomes fully quantum geometric,
as observable from the curves with N = L in Figs. 6(c) and
6(d). This is also coincident with our results for the harmoni-
cally driven spin chain and double kicked rotor in the last two
sections. Therefore, the bipartite EE for states filling a gapped
quasienergy band tends out to be solely of quantum geometric
origin and satisfies an area-law scaling in 1D Floquet systems.
Physical properties associated with such GEE should then be
robust to certain dynamical variations of the system, yielding
auxiliary probes to the topological phase transitions in 1D
Floquet superconducting systems.

VI. SUMMARY AND DISCUSSION

In this work, we revealed the quantum geometry and ge-
ometric entanglement entropy of typical Floquet topological
phases in 1D systems. Based on the detailed calculations of
quantum geometric tensors, entanglement entropy and their
scaling behaviors for periodically driven spin chains, Floquet
topological insulators, and superconductors, we could arrive
at the following general conclusions.

First, for a uniformly filled Floquet quasienergy band, the
quantum metric tensor integrated over the occupied Floquet-
state manifold becomes divergent at the transition points
between different Floquet topological phases. The quantum

geometry of Floquet-Bloch states could thus offer an efficient
means to probe topological phase transitions in Floquet sys-
tems. Second, regardless of the filling fractions of a gapped
Floquet-Bloch band, the geometric EE as considered in this
study always follows an area-law scaling vs the system
size. This observation implies certain levels of robustness of
the geometric EE to the variation of Floquet band popula-
tions, which may find applications in the characterization of
quasienergy bands in particle-number nonconserved (or open-
system) situations. Third, for a Floquet band at unit filling,
the bipartite EE becomes purely quantum geometric. The EE
of Floquet systems at half-filling, as considered in previous
studies [37], could thus be viewed as geometric EE, which
might be insensitive to the changes of some dynamical details
of the system. Finally, the bipartite geometric EE of a filled
Floquet-Bloch band shows a critical log-law scaling versus
the system size at each topological phase transition point.
Close to the transition point, the geometric EE further exhibits
the shape of a cusp versus the transition-driven parameter of
the system. These observations suggest that the geometric EE
could provide us with an efficient probe to identify Floquet
topological phase transitions from a hybrid perspective of
quantum geometry and quantum information.

As an additional comment, for all the models we
considered, the two Floquet bands can be separated by two
gaps at both the quasienergies zero and π , instead of a single
gap around zero energy in nondriven two-band models. Both
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the zero and π Floquet gaps can be topologically nontrivial
and admit degenerate topological edge modes under the open
boundary condition [71,75]. The two Floquet bands could
further touch with each other at either the quasienergy zero
or π , causing two possible avenues of topological phase
transitions. When the Floquet bands meet and reseparate
at the quasienergy π , an anomalous phase transition that
cannot manifest in a static two-band system could happen,
whose signatures in quantum geometry and GEE are unique
to Floquet systems and are characterized in detail through our
model studies.

The conclusions as mentioned above are expected to be
generic and not restricted to the models considered in this
work. The verification (and possible extension) of these re-
sults for Floquet systems in other symmetry classes and in
higher spatial dimensions deserves further considerations. The
properties of Floquet quantum geometry, geometric EE, and
their robustness against more complicated effects such as
disorders and interactions constitute interesting directions of
future research. Besides, the experimental detection of quan-
tum metric tensor and geometric EE of Floquet states could
be within reach in various quantum simulators like nitrogen-
vacancy center in diamonds [76,77], superconducting qubits
[78,79], and ultracold atoms [80–82].
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APPENDIX A: WAVE-FUNCTION OVERLAP OF 1D,
TWO-BAND FLOQUET EFFECTIVE HAMILTONIANS

In this Appendix, we compute the overlap between eigen-
states within a single Floquet-Bloch band for 1D lattice

models. Under time-periodic drivings and spatial periodic
boundary conditions (PBCs), the Hamiltonian of such a lat-
tice model takes the form Ĥ (t ) =∑k |k〉H (k, t )〈k|, where
k ∈ [−π, π ) is the quasimomentum. The Floquet opera-
tor of the system then reads as Û =∑k |k〉U (k)〈k|, where

U (k) ≡ T̂e−i
∫ t+T

t H (k,t ′ )dt ′
with T being the driving period.

Formally, one can write U (k) as U (k) = e−iH (k), with the
effective Floquet-Bloch Hamiltonian H (k) defined by H (k) =
i ln U (k). For a generic 1D lattice with two internal degrees
of freedom (spins, sublattices, etc.) in each unit cell, one can
always express the Floquet effective Hamiltonian H (k) as

H (k) = h0(k)σ0 + hx(k)σx + hy(k)σy + hz(k)σz. (A1)

Here σ0 is the 2 × 2 identity matrix. σx, σy, and σz are Pauli
matrices. h0(k), hx(k), hy(k), and hz(k) can be real functions
of k. By definition, the H (k) here incorporates the all-around
information of the system’s stroboscopic dynamics over each
complete driving period. Its quasienergy spectrum could thus
be significantly different from and more complicated than the
nondriven counterpart of the system. By diagonalizing H (k),
the dispersion relations of its two Floquet bands (defined
modulus 2π and indexed by s) are found to be

Es(k) = h0(k) + sE (k), s = ± (A2)

where

E (k) =
√

h2
x (k) + h2

y (k) + h2
z (k). (A3)

The associated Floquet eigenstates of H (k) are further given
by

|ψs(k)〉 = 1√
2E (k)[E (k) + shz(k)]

(
hz(k) + sE (k)

hx(k) + ihy(k)

)
, (A4)

where s = ±. For any two eigenstates |ψs(k)〉 and |ψs(k′)〉 of
H (k) in the same Floquet band, their overlap reads as

Os(k, k′) ≡ 〈ψs(k)|ψs(k
′)〉 = [hx(k) − ihy(k)][hx(k′) + ihy(k′)] + [E (k) + shz(k)][E (k′) + shz(k′)]

2
√

E (k)E (k′)[E (k) + shz(k)][E (k′) + shz(k′)]
. (A5)

If H (k) has the chiral symmetry S = σz, such that σzH (k)σz =
−H (k), we would have h0(k) = hz(k) = 0 in Eq. (A1), and
the overlap Os(k, k′) in Eq. (A5) reduces to

Oxy
s (k, k′) = 1

2
+ [hx(k) − ihy(k)][hx(k′) + ihy(k′)]

2E (k)E (k′)
. (A6)

If H (k) has the chiral symmetry S = σy, such that
σyH (k)σy = −H (k), we would have h0(k) = hy(k) = 0 in
Eq. (A1), and the overlap Os(k, k′) in Eq. (A5) reduces to

Ozx
s (k, k′) = hx(k)hx(k′) + [E (k) + shz(k)][E (k′) + shz(k′)]

2
√

E (k)E (k′)[E (k) + shz(k)][E (k′) + shz(k′)]
.

(A7)

Finally, when H (k) has the chiral symmetry S = σx so
that σxH (k)σx = −H (k), we will have h0(k) = hx(k) = 0 in

Eq. (A1), and the overlap Os(k, k′) in Eq. (A5) becomes

Oyz
s (k, k′) = hy(k)hy(k′) + [E (k) + shz(k)][E (k′) + shz(k′)]

2
√

E (k)E (k′)[E (k) + shz(k)][E (k′) + shz(k′)]
.

(A8)

Equations (A6)–(A8) will be used in the calculations of
quantum metric tensor and geometric entanglement entropy
for our 1D Floquet systems in the main text.

APPENDIX B: QMT OF 1D, TWO-BAND HAMILTONIANS

In this Appendix, we deduce the quantum metric tensor
of Floquet-Bloch bands for 1D driven lattice models, with a
focus on two-band settings. For a 1D system described by the
Floquet-Bloch effective Hamiltonian in Eq. (A1), the quantum
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metric tensor [51] in k space has a single component, i.e.,

gs
kk = 〈∂kψs|∂kψs〉 − 〈∂kψs|ψs〉〈ψs|∂kψs〉

= 〈∂kψs|ψ−s〉〈ψ−s|∂kψs〉. (B1)

Here, |ψs〉 = |ψs(k)〉 is given by Eq. (A4) and s = ± label
the two Floquet bands. According to Eq. (A3), we could
obtain

∂kE (k) =
∑

w=x,y,z

hw(k)∂khw(k)

E (k)
(B2)

and

∂k
1

E (k)
= −

∑
w=x,y,z

hw(k)∂khw(k)

E3(k)
. (B3)

Using these relations together with Eq. (A4), we find after
straightforward calculations that

〈ψ−s|∂kψs〉 = s[hx(hz∂khx − hx∂khz ) − hy(hy∂khz − hz∂khy)] + iE (hx∂khy − hy∂khx )

2E2
√

(E + hz )(E − hz )
. (B4)

Therefore, according to Eq. (B1), the QMT reads as

gkk = gs
kk = [hx(hz∂khx − hx∂khz ) − hy(hy∂khz − hz∂khy)]2 + E2(hx∂khy − hy∂khx )2

4E4(E + hz )(E − hz )
. (B5)

It is clear that the gkk as obtained in Eq. (B5) is independent
of the Floquet band index s.

Referring to the Appendix A, we have hz(k) = 0 for a chi-
ral symmetric H (k) with S = σz. The related gkk then reduces
to

gxy
kk = [hx(k)∂khy(k) − hy(k)∂khx(k)]2

4E4(k)
. (B6)

Similarly, for a chiral symmetric H (k) with S = σy, we have
hy(k) = 0 and the gkk reduces

gzx
kk = [hz(k)∂khx(k) − hx(k)∂khz(k)]2

4E4(k)
. (B7)

Meanwhile, for an H (k) with the chiral symmetry S = σx, we
have hx(k) = 0 and the resulting QMT reads as

gyz
kk = [hy(k)∂khz(k) − hz(k)∂khy(k)]2

4E4(k)
. (B8)

Note in passing that in all the cases we have gkk � 0, as
expected. With the help of Eqs. (B6)–(B8), we could further
work out the integration of QMT for the different Floquet
models considered in the main text.

For 1D chiral symmetric models, a connection between the
QMT and the topological winding number could be identified.
Let us denote the effective Floquet-Bloch Hamiltonian of such
a system as Hab(k) = ha(k)σa + hb(k)σb, where a, b = x, y, z
and a �= b. The chiral symmetry operator of Hab(k) is thus the
Pauli matrix σc with c = x, y, z and c �= a, b. The topological
phases of the system described by Hab(k) can be characterized
by the integer winding number

w =
∫ π

−π

dk

2π
∂kφ

ab(k), (B9)

where the winding angle φab(k) ≡ arctan[hb(k)/ha(k)], and
thus

∂kφ
ab(k) = ha(k)∂khb(k) − hb(k)∂kha(k)

E2(k)
, (B10)

with E2(k) = h2
a(k) + h2

b(k). According to Eqs. (B6)–(B8),
the QMT of such a system reads as

gab
kk = [ha(k)∂khb(k) − hb(k)∂kha(k)]2

4E4(k)
. (B11)

We then arrive at the relation

gab
kk = 1

4 [∂kφ
ab(k)]2. (B12)

This equation allows us to obtain the QMT from the topologi-
cal winding angle for a two-band Floquet-Bloch Hamiltonian
with chiral symmetry in one dimension. It unveils an interest-
ing connection between the quantum geometry and topology
in 1D systems, which is different from the case reflected in the
Zak phase.

APPENDIX C: EE OF FLOQUET STATES

In this Appendix, we describe an approach to obtain the
bipartite von Neumann and Rényi EE for a many-particle state
of noninteracting fermions with an arbitrary filling fraction
over a Floquet band in 1D systems.

We start with the general relationship between the single-
particle correlation matrix and the reduced density matrix of
a bipartite system, which was well established for static-free
lattice models [57] and generalized also to Floquet models
recently [37]. Let us consider a noninteracting many-particle
system S prepared in the pure state |�〉 and a subsystem A be-
longing to S. We can obtain the reduced density matrix of A as
ρ̂A = TrA(ρ̂). Here ρ̂ = |�〉〈�| is the density matrix of whole
system S = A ∪ A. The trace TrA is taken over the degrees of
freedom belonging to the subsystem A complementing to A.
If |�〉 represents a Gaussian state, we could always write [57]

ρ̂A = 1

Z
e−ĤA , Z ≡ Tr(e−ĤA ), (C1)

where Z is a normalization factor and ĤA is usually called
the entanglement Hamiltonian [57]. Any single-particle cor-
relation function restricted to the subsystem A can now be
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evaluated as

CA
m,n = Tr(ĉ†

mĉnρ̂A) = Tr(ĉ†
mĉne−ĤA )

Tr(e−ĤA )
, (C2)

where {m, n} ∈ A and ĉ†
m (ĉn) creates (annihilates) a fermion

into (from) the single-particle state |m〉 (|n〉) inside the sub-
system A.

Let {|φ j〉| j ∈ A} be the complete and orthonormal eigenba-
sis of ĤA with the eigenvalues {ξ j}, such that the entanglement
Hamiltonian admits the spectral decomposition

ĤA =
∑
j∈A

ξ j φ̂
†
j φ̂ j . (C3)

Here the set {ξ j} is usually referred to as the entanglement
spectrum (ES) [83] of subsystem A. Since both {|n〉|n ∈ A}
and {|φ j〉| j ∈ A} form normalized bases of the subsystem A,
their corresponding creation and annihilation operators can be
related to each other by unitary transformations, i.e.,

ĉ†
n =

∑
j∈A

φ∗
n j φ̂

†
j , ĉn =

∑
j∈A

φn j φ̂ j, (C4)

where φn j = 〈n|φ j〉. Plugging Eqs. (C3) and (C4) into (C2)
and carrying out straightforward calculations, we could reex-
press the CA

m,n as [57]

CA
m,n =

∑
j∈A

〈n|φ j〉〈φ j |m〉
eξ j + 1

. (C5)

Therefore, the single-particle correlation matrix CA admits the
spectral decomposition

(CA)� =
∑
j∈A

ζ j |φ j〉〈φ j |, ζ j = 1

eξ j + 1
. (C6)

It is now clear that there is a one-to-one correspondence be-
tween the spectrum {ζ j} of CA and the ES {ξ j} of ĤA, i.e.,

ξ j = ln
(
ζ−1

j − 1
)
. (C7)

This relation allows us to deduce the ES, EE, and the re-
lated quantities such as mutual information of a bipartite
system from the spectrum of its single-particle correlation
matrix [57].

Next, we try to rewrite the reduced density matrix ρ̂A in
terms of CA, which allows us to obtain the EE directly from the
spectrum of correlation matrix. From Eqs. (C1), (C3), (C6),
and (C7), we find

1

Z
=
∏
j∈A

(1 − ζ j ) = det(IA − CA), (C8)

where IA is the identity matrix of subsystem A. Using the
inverse of the transformations between different bases in
Eq. (C4), i.e.,

φ̂
†
j =

∑
n∈A

φn j ĉ
†
n, φ̂ j =

∑
n∈A

φ∗
n j ĉn, (C9)

we could further obtain from Eqs. (C1), (C3), and (C6) that

e−ĤA = e−∑m,n ln[(CA )−1−IA]�m,nĉ†
mĉn . (C10)

Putting together, we find the expression of ρ̂A in terms of CA

as

ρ̂A = det(IA − CA)e−∑m,n∈A ln[(CA )−1−IA]�m,nĉ†
mĉn . (C11)

Equivalently, in terms of the eigenvalues of CA, we would have

ρ̂A =
⎡
⎣∏

j∈A

(1 − ζ j )

⎤
⎦e−∑ j∈A ln(ζ−1

j −1)φ̂†
j φ̂ j . (C12)

For a bipartite system S = A ∪ A, the λth Rényi EE and
von Neumann EE between A and A are defined as

S(λ)
A ≡ 1

1 − λ
ln Trρ̂λ

A, (C13)

SA ≡ −Tr(ρ̂A ln ρ̂A) = lim
λ→1

S(λ)
A . (C14)

Plugging Eq. (C12) into (C13) and (C14), we could directly
find

S(λ)
A = 1

1 − λ

∑
j∈A

ln[ζ λ
j + (1 − ζ j )

λ], (C15)

SA = −
∑
j∈A

[ζ j ln ζ j + (1 − ζ j ) ln(1 − ζ j )]. (C16)

Therefore, the spectrum {ζ j} of single-particle correlation
matrix CA could provide us with complete information about
the bipartite EE between the subsystem A and its complement
A for a given multiparticle Gaussian state |�〉 of the whole
system S. Note in passing that the relations in Eqs. (C15)
and (C16) are applicable to both static and Floquet systems
made up of noninteracting fermions in Gaussian states [37].
For a Floquet system with a one-period evolution (Floquet)
operator Û , one could start with the multiparticle state in
the form of |�〉 =∏�∈occ. ψ̂

†
� |∅〉 and the resulting density

operator ρ̂ = |�〉〈�|, where |∅〉 is the vacuum state and ψ̂
†
�

creates a fermion in the single-particle Floquet eigenbasis
|ψ�〉 of Û [37].

APPENDIX D: EE AND THE OVERLAP MATRIX

In this Appendix, we discuss an approach to obtain the
EE from the overlap matrix restricted to a given subsystem
[66–68], which encodes the quantum geometry of the latter
[65]. We start with the Fredholm determinant

DA(ζ ) ≡ det(ζIA − CA) =
∏
j∈A

(ζ − ζ j ). (D1)

Here the meanings of IA, CA, and {ζ j} for subsystem A are the
same as those introduced in Appendix C. Note in passing that
the correlation-matrix eigenvalue ζ j has the range [0,1] for any
j. In terms of the Fredholm determinant, we could express the
Rényi EE S(λ)

A in terms of a contour integration encircling the
segment [0,1] of the real axis, i.e.,

S(λ)
A =

∮
dζ

2π i

1

1 − λ
ln[ζ λ + (1 − ζ )λ]

d ln DA(ζ )

dζ
. (D2)

The related von Neumann EE can further be obtained by
taking the limit λ → 1.
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For any two occupied single-particle states |ψ�〉 and |ψ�′ 〉
in a composite system S = A ∪ A, their overlap within the
subsystem A can be defined as

OA
�,�′ =

∑
n∈A

〈ψ�|n〉〈n|ψ�′ 〉 =
∑
n∈A

ψ∗
n�ψn�′ . (D3)

If we have in total N such occupied states {|ψ�〉|� =
1, . . . , N}, all the quantum geometry of this state manifold

that are associated to the subsystem A should be captured
by the N × N overlap matrix OA with elements {OA

�,�′ |�, �′ =
1, . . . , N}, which are given by Eq. (D3).

We could now establish a connection between the spectra
of the overlap matrix OA and the single-particle correlation
matrix CA [Eq. (C2)] [66–68], which further allows us to
figure out the quantum-geometric component of EE. Let us
consider the qth power of OA, whose trace is given by

Tr[(OA)q] =
∑

n1,...,nq

∑
�1,...,�q

〈ψ�1 |n1〉〈n1|ψ�2〉〈ψ�2 |n2〉〈n2|ψ�3〉 . . . 〈ψ�q−1 |nq−1〉〈nq−1|ψ�q〉〈ψ�q |nq〉〈nq|ψ�1〉. (D4)

For the N-particle state |�〉 =∏N
�=1 ψ̂

†
� |∅〉 and for any � ∈

�1, . . . , �q, we have∑
�

〈ψ�|m〉〈n|ψ�〉 = 〈�|ĉ†
mĉn|�〉 = CA

m,n, (D5)

where m, n ∈ A and CA
m,n is the correlation-matrix element of

subsystem A [Eq. (C2)]. Inserting Eq. (D5) into (D4), we find
[after reorganizing the terms in Eq. (D4)] that

Tr[(OA)q] = Tr[(CA)q]. (D6)

Therefore, taking any power q ∈ N, the trace of the overlap
matrix OA and the correlation matrix CA restricted to the
subsystem A are identical. Such a connection would allow
us to express EE in terms of the eigenvalues of OA, within
which the quantum geometric properties of the occupied states
{|ψ�〉|� = 1, . . . , N} are encoded.

To proceed, we take the logarithm of the Fredholm deter-
minant in Eq. (D1), yielding [66–68]

ln[DA(ζ )] =
∑

j

ln(ζ − ζ j ) =
∑

j

⎛
⎝ln ζ −

∞∑
q=1

ζ
q
j

qζ q

⎞
⎠.

(D7)

Let {η�|� = 1, . . . , N} be the eigenvalues of the overlap ma-
trix OA, we obtain from Eq. (D6) that∑

�

η
q
� = Tr[(OA)q] = Tr[(CA)q] =

∑
j

ζ
q
j . (D8)

Combining Eqs. (D7) and (D8) into (D2) finally leads us to
another explicit expression for the Rényi bipartite EE S(λ)

A , i.e.,

S(λ)
A = 1

1 − λ

N∑
�=1

ln
[
ηλ

� + (1 − η�)λ
]
, (D9)

and also for the von Neumann EE

SA = −
N∑

�=1

[η� ln η� + (1 − η�) ln(1 − η�)]. (D10)

Note in passing that N here counts the total number of occu-
pied single-particle states, which is fixed regardless of the size
of subsystem A. In summary, for a given group of occupied
single-particle states {|ψ�〉|� = 1, . . . , N} within a noninter-
acting fermionic system, we can obtain the bipartite EE
through Eqs. (D9) and (D10) after getting the eigenspectrum

{η�|� = 1, . . . , N} of the overlap matrix OA [Eq. (D3)]. Since
OA encodes the quantum geometry of many-particle state
|�〉 =∏� |ψ�〉, we expect to identify geometric contributions
to EE from Eqs. (D9) and (D10) after removing possible
nongeometric components [65]. It deserves to mention that
the results developed here could be equally applicable to both
static and Floquet systems. For the latter case, we simply
regard {|ψ�〉|� = 1, . . . , N} as a set of occupied single-particle
Floquet eigenstates of a periodically driven quantum system.

APPENDIX E: GEE OF FLOQUET STATES

In this Appendix, we discuss a scheme of decomposing EE
into a geometric part (GEE) and a nongeometric contribution
following Ref. [65]. We restrict our attention to the quantum
geometry of 1D systems in wave-vector space. The formalism
discussed here is not hard to be generalized to higher spatial
dimensions and to other kinds of parameter spaces.

Let {|ϕk〉} be a set of eigenstates populating a single
Floquet-Bloch band (under PBC), the overlap matrix element
in Eq. (D3) can be expressed in this case as

OA
k,k′ =

∑
n∈A

〈ϕk|n〉〈n|ϕk′ 〉. (E1)

Assuming that there are L unit cells in the 1D lattice and each
unit cell has p internal degrees of freedom (spins, sublattices,
etc.), the wave-function overlap takes the form

〈n|ϕk〉 = 1√
L

eikn

⎛
⎜⎝

b1(k)
...

bp(k)

⎞
⎟⎠ ≡ 1√

L
eikn|ψk〉. (E2)

It allows us to reexpress the OA
k,k′ in Eq. (E1) as

OA
k,k′ = 1

L

∑
n∈A

e−i(k−k′ )n〈ψk|ψk′ 〉. (E3)

For a subsystem A with LA unit cells, the summation in
Eq. (E3) can be worked out, yielding

OA
k,k′ = OA0

k,k′ 〈ψk|ψk′ 〉, (E4)

where

OA0
k,k′ =

{
LA/L, k = k′

sin[(k−k′ )LA/2]
L sin[(k−k′ )/2] e

i
2 (k−k′ ), k �= k′.

(E5)
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The coefficient OA0
k,k′ is generic and it describes the overlap

matrix element of a single-band lattice model in one dimen-
sion, whose related quantum geometry is trivial in k space.
Therefore, if we remove the contributions from the spectrum
of OA0 to EE, we will be left with the part of EE that is
originated from the quantum geometry of a multiband system.
Based on this understanding, we may define the Rényi GEE
between two subsystems A and A as

S(λ)
QG = S(λ)

A − S(λ)
A0

, (E6)

where S(λ)
A and S(λ)

A0
are obtained by inserting the spectrum of

OA [Eq. (E4)] and OA0 [Eq. (E5)] into Eq. (D9), respectively.
The von Neumann EE then reads as

SQG = SA − SA0 . (E7)

Physically, the GEE defined here characterizes the EE due
to multiband quantum geometric effects [65]. It omits the
contribution from a set of fermions with the same population
as the multiband system but with trivial quantum geometries.
We will use Eq. (E7) to describe the GEE of different Floquet
models considered in the main text.
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