
PHYSICAL REVIEW B 110, 054308 (2024)
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We theoretically study the topology of the phase diagram of a family of quantum models inspired by the
classical Bernoulli map under stochastic control. The quantum models inherit a control-induced phase transition
from the classical model and also manifest an entanglement phase transition intrinsic to the quantum setting.
This measurement-induced phase transition has been shown in various settings to either coincide or split off
from the control transition, but a systematic understanding of the necessary and sufficient conditions for the
two transitions to coincide in this case has so far been lacking. In this work, we generalize the control map
to allow for either local or global control action. While this does not affect the classical aspects of the control
transition that is described by a random walk, it significantly influences the quantum dynamics, leading to the
universality class of the measurement-induced transition being dependent on the locality of the control operation.
In the presence of a global control map, the two transitions coincide and the control-induced phase transition
dominates the measurement-induced phase transition. Contrarily, the two transitions split in the presence of the
local control map or additional projective measurements and generically take on distinct universality classes. For
local control, the measurement-induced phase transition recovers the Haar logarithmic conformal field theory
universality class found in feedback-free models. However, for global control, a novel universality class with
correlation length exponent ν ≈ 0.7 emerges from the interplay of control and projective measurements. This
work provides a more refined understanding of the relationship between the control- and measurement-induced
phase transitions.
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I. INTRODUCTION

The dynamics of a quantum many-body system under lo-
cal unitary evolution leads to a volume-law entangled steady
state where the entanglement between a subsystem and its
complement scales with the subsystem volume [1]. Adding
local projective measurements tends to remove entanglement
from the system and can drive a transition to an area-law
entangled steady state, where the entanglement scales with the
subsystem boundary. This measurement-induced phase transi-
tion (MIPT) [2–7] between volume- and area-law entangled
steady states can be probed by higher moments of observ-
ables [4] or by entanglement measures, such as the tripartite
mutual information [8]. However, these quantities are not
easily accessible in experiments because they are not linear in
the density matrix and therefore only take nontrivial average
values upon resolving individual quantum trajectories corre-
sponding to different measurement histories. This overhead,
exponential in the number of intermediate measurements,
results in the so-called “postselection problem” to observe
the MIPT.

Recent experimental efforts to directly observe the MIPT
have utilized Clifford gates with a classical decoder [9] as
well as resolving the measurement histories by brute force,
which is not scalable [10,11]. Theoretical proposals to observe
the MIPT aim to circumvent the postselection problem using
different approaches to “linearize” the calculation, such as
the cross-entropy benchmark [12] and quantum estimators
like shadow tomography [13–16]. However, these proposals
require access to a reference dynamics run on a classical
simulator, which then limits the observability of the MIPT to
settings like Clifford circuits where classical simulations are
scalable.

Motivated in part by this challenge, recent works have
considered introducing feedback operations conditioned on
the measurement outcomes [17–22]. The quantum channel
comprised of measurements and feedback can be viewed
as a “control map” that attempts to steer the system’s dy-
namics onto a preselected steady state. This can lead to a
control-induced phase transition (CIPT, also known as an
absorbing-state phase transition) above which the system
reaches the target state regardless of the initial condition.
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While these CIPTs manifest in local order parameters and
correlation functions, and therefore are experimentally ob-
servable, they generally occur separately from the MIPT even
when measurements are only applied in concert with feedback
[18,20]. It is therefore desirable to understand whether and
when the MIPT and CIPT can coincide, so that the latter can
serve as an experimentally accessible indicator for the former.

In this paper, we study this question from a vantage point
grounded in the theory of classical dynamical systems, where
CIPTs arise in the so-called probabilistic control of chaos
[23–25]. In this setup, a (classical) chaotic map is stochasti-
cally interleaved with a control map that attempts to stabilize
an unstable trajectory of the chaotic dynamics. At each time
step, the control is applied with probability pctrl, and otherwise
the chaotic dynamics is applied; the CIPT occurs above a crit-
ical value pc

ctrl. Inspired by this protocol, Ref. [17] considered
a quantum circuit model inspired by the classically chaotic
Bernoulli map [26], where the simplest classical example of
a CIPT occurs [23,25]. There, it was shown that the classical
CIPT persists in the quantum model and coincides with an
MIPT. However, Ref. [27] developed a Clifford version of
this model and found that the MIPT and CIPT separate, with
the former preceding the latter. Aside from the restriction to
Clifford circuits, one key difference between Refs. [27] and
[17] is that the former used a local control map while the
latter used a long-range one. While this change was origi-
nally implemented for technical reasons, it may have profound
implications for the relationship between measurement- and
control-induced criticality. For example, Ref. [22] demon-
strated using Clifford-circuit simulations that a long-ranged
control map tends to align the MIPT with the CIPT, while
a short-ranged control map results in two distinct phase
transitions.

Motivated by this observation, in this paper, we undertake
a systematic study of the impact of the control map’s structure
on the interplay of the MIPT and CIPT in the Bernoulli circuit
model of Ref. [17]. We find that the structure of the control
map does not influence the CIPT, but strongly influences the
MIPT. We confirm that, while a globally acting control map
can push the MIPT and CIPT together, a locally acting one can
pull them apart, forcing the MIPT into a different universality
class while leaving the CIPT unchanged. We also find that
incorporating additional projective measurements into the dy-
namics can allow the two transitions to be tuned continuously.
Our numerical results show that the MIPT for the local con-
trol map manifests a Haar logarithmic conformal field theory
(log-CFT) universality class [28]. Whereas, in the limit of the
zeroth Renyi entropy (that is equivalent to taking the onsite
Hilbert space d to infinity [2,29,30]) our numerical results are
consistent with the recent findings from an effective statistical
mechanics model in the d → ∞ for much larger system sizes
[31]. The latter effective model, which applies in the limit of
infinite onsite Hilbert space dimension, finds that the CIPT
and MIPT always coincide even for a local control map. This
feature manifests itself in our finite-d model of qubits in the
behavior of the zeroth Rényi entropy.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the Bernoulli map and its quantum
analog, outline the six different types of local and nonlocal
control operations we will consider, and define the metrics

used to detect the CIPT and MIPT. In Sec. III, we focus on
the scenario where the two transitions coincide. In Sec. IV,
we split the transitions, either by modifying the structure of
the control map (Sec. IV A) or by adding projective measure-
ments without additional control (Sec. IV B). We also provide
evidence in Sec. IV C that, in the infinite-d limit with local
control, the MIPT and CIPT coincide again. In Sec. IV D,
we discuss the distinctive topology of the phase diagram after
incorporating these two modifications. In Sec. V, we discuss
the crucial factors that determine the topology of the phase
diagram. We conclude in Sec. VI. In Appendix A we present
the details of the data collapse, and in Appendix B we summa-
rize the Kraus-operator representations of the various types of
control we consider.

II. MODELS AND APPROACH

A. Probabilistic control of a classical Bernoulli map

We start with a model of quantum dynamics [17] where
one stochastically applies one of two competing operations: a
quantum circuit analog of the Bernoulli map B (with proba-
bility 1 − pctrl) and the control map C (with probability pctrl).

This model originates from the field of classical dynamical
systems, where the chaotic dynamics of the classical Bernoulli
map were stochastically controlled by the introduction of a
control map [23]. The Bernoulli map B is defined by the
operation

B : x �→ 2x mod 1, (1)

where x ∈ [0, 1). Any rational number x ∈ [0, 1) undergoes
a finite-length periodic orbit under this map. However, for
irrational x, the dynamics are chaotic; thus, since any rational
x is arbitrarily close to an irrational number, these periodic
orbits are unstable. The control map C aims to stabilize these
unstable orbits.

Suppose we want to target an orbit consisting of the
points xF = {x(1)

f , x(2)
f , . . . }. Then the control map acts on

x ∈ [0, 1) as

C : x �→ (1 − a)x f + ax, (2)

where x f ∈ xF is the point on the orbit that is closest to x and
a sets the strength of the control. Iterating C on x leads to
the fixed point x f for any |a| < 1; in other words, the control
map has fixed points corresponding to each point on the target
orbit. The control map tends to counteract the chaotic dy-
namics generated by B and, if applied sufficiently frequently,
leads to a controlled phase where the target orbit is reached
from any initial condition. We set a = 1

2 to have a CIPT at
pc

ctrl = 0.5 [24,25], below which the system is in the chaotic
phase, and above which the system is in the controlled phase.
As discussed in Ref. [17], this phase transition is described by
an unbiased random walk with dynamical exponent z = 2 and
correlation length critical exponent ν = 1.

B. Quantum analog of the Bernoulli map

In the quantum model, we first digitize any real number
x ∈ [0, 1) into a binary representation by truncating it to L
bits, and encoding the resulting bit string into a computational
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FIG. 1. (a) The Bernoulli map B is composed of a left-shift operator T followed by a Haar random unitary operator U acting on the last
two qubits [see Eq. (5)]. (b) The global control map for the period-two AFM orbit CAFM

global is composed of a reset R on the last qubit followed
by a right-shift operator T −1 and an adder A [see Eq. (11)]. (c) The local control map for the FM fixed point CFM

local removes the adder A
[see Eq. (12)]. (d) The local control map for the AFM orbit CAFM

local uses a two-qubit projector in the reset [see Eq. (14)]. Bottom panels show
examples of stochastic quantum circuits for (e) the global control map with AFM fixed points, (f) the local control map with FM fixed points,
(g) the local control map with AFM fixed points, (h) the global control map with AFM fixed points and additional projective measurements,
(i) the local control map with FM fixed points and additional projective measurements, and (j) the interpolation between the local and global
control map with AFM fixed points. Kraus operators for the various control maps are given in Table I of Appendix B.

basis (CB) of L qubits:

(x)10 = (0.b1b2 . . . bL )2 = |b1b2 . . . bL〉. (3)

To simulate the Bernoulli map B in this quantum system,
we apply a cyclic leftward shift operator T to implement
multiplication by 2, i.e.,

T |b1b2 . . . bL〉 = |b2 . . . bLb1〉. (4)

Since T shifts the leftmost qubit into the rightmost position,
it generates an orbit of length at most L for any x. To recover
the chaotic phase, we apply a unitary scrambling operation
U to qubits L − 1 and L after each application of T . This
scrambling operation is what produces nontrivial quantum
dynamics in the model; in this work, we take it to be a ran-
dom unitary drawn from the Haar measure on U(4). The full
Bernoulli circuit is then implemented by the unitary operator
[see Fig. 1(a)]

B = UT . (5)

C. Control map

The control map C in the quantum model is implemented
in two steps: The first step is to halve x, which can be realized
by the right-shift operator T −1. However, since the rightmost
qubit will be shifted to the leftmost position after applying
T −1, we need to ensure that the leftmost qubit will always be
in the state |0〉. This is achieved by resetting the last qubit to
zero before applying T −1. This reset R is implemented by first
measuring the qubit

MPm
i
|ψ〉 = Pm

i |ψ 〉
‖Pm

i |ψ〉‖ , (6)

where

Pm
i = |m〉〈m|i (7)

(we always normalize the state after projective measure-
ments) with m = 0, 1 and then applying a Pauli X gate if its
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measurement outcome m = 1 [see Fig. 1(c)]:

RL = (XL )mPm
L , (8)

where (XL )m is the mth power of the Pauli matrix X acting on
the Lth qubit.

The second step of the control is to add a fixed value
determined by the fixed points xF . Namely, we have an adder
operator

A =
∑

x∈�x f

∑
x f ∈xF

|x + x f /2〉〈x|. (9)

Here, �x f is a neighborhood of the fixed point x f consisting of
all points that will be attracted to x f under the control, chosen
such that ∪x f ∈xF �x f = R ∩ [0, 1).

In this paper, we consider three types of adders that steer
the dynamics to two sets of different fixed points: (i) the
global adder with xF = { 1

3 , 2
3 } as shown in Fig. 1(b), (ii)

the local adder with xF = {0} as shown in Fig. 1(c), and (iii)
the local adder with xF = { 1

3 , 2
3 } as shown in Fig. 1(d). The

global adder has a support scaling with the system size L,
while the local adders have a fixed support that is indepen-
dent of the system size. Intuitively, in the limit L → ∞, the
global adder adds a number whose binary expansion contains
infinitely repeating bits, while the local adder adds a number
with a binary expansion of finite length. We now describe the
three adder circuits in detail below.

1. Global control with xF = { 1
3 , 2

3 }
For the orbit xF = { 1

3 , 2
3 } [17], the adder operator A is

A =
∑

x<1/4

|x + 1/6〉〈x| +
∑

x�1/4

|x + 1/3〉〈x|, (10)

which means that we add 1
6 for any x < 1

4 and 1
3 for any

x � 1
4 . (Note that x is only defined within [0, 1

2 ) after halving
T −1.) In the binary representation, these two fixed points
are ( 1

6 )10 = (0.001)2 and ( 1
3 )10 = (0.01)2, so it is a global

adder as the unstable fixed points require an infinite bit-string
representation that spans the full system size when truncated.

Combining this adder operator with T −1 yields a global
control map, which maps the fixed points xF = { 1

3 , 2
3 } to

themselves. In the CB, these two fixed points take the form
of the two antiferromagnetic (AFM) Néel states: |01〉⊗L/2 and
|10〉⊗L/2 (assuming L ∈ 2Z+). We denote this control map as
(up to the wave-function normalization)

CAFM
global = AT −1RL = AT −1(XL )mPm

L (11)

as shown in Fig. 1(b). An example stochastic quantum circuit
in which this control map competes with the Bernoulli circuit
is shown in Fig. 1(e).

2. Local control with xF = {0}
The two other types of control maps we consider use a

local adder. The simplest version is the identity operator,
which effectively adds 0 (i.e., |x〉 �→ |x ⊕ 0〉 = |x〉), and leads
to a single fixed point xF = {0}, which is a ferromagnetic
(FM) state (|0〉⊗L) in the CB representation. This essentially
removes the adder from the control map (as its support is
trivially zero, independent of the system size), i.e.,

CFM
local = 1T −1RL = T −1(XL )mPm

L , (12)

as shown in Fig. 1(c). An example stochastic quantum circuit
pitting this local adder against the Bernoulli circuit is shown
in Fig. 1(f). In Sec. IV, we will show that the MIPT can be
separated from the CIPT by replacing the global control map
with this local control map.

3. Local control with xF = { 1
3 , 2

3 }
Finally, we propose a local adder that can control onto

the same orbit as the global adder, xF = { 1
3 , 2

3 }, as shown
in Fig. 1(d). Here, we replace the reset R in Eq. (11) with
a different conditional operation acting on two qubits in-
stead of one. Namely, for a chain with even L, we perform
Born-rule projections on both the first and last qubits. The
new conditional feedback operation flips the last qubit if the
measurement outcomes for the first and last qubits are the
same, i.e.,

R1,L = (XL )m1+mL+1Pm1
1 PmL

L (13)

up to a normalization factor after the projection, where mi =
{0, 1} is the measurement outcome for qubit i. It is easy to
verify that this conditional operation removes the need for
a global adder, controlling onto the same fixed points as the
global adder. We denote the full control map by (up to the
wave-function normalization)

CAFM
local = 1T −1R1,L = T −1(XL )m1+mL+1Pm1

1 PmL
L . (14)

The corresponding stochastic quantum circuit is shown in
Fig. 1(j). Note that, unlike CAFM

global, this control operation does

not have fixed points at 1
3 and 2

3 , but rather cycles through the
orbit 1

3 ↔ 2
3 through the two maps x �→ x/2 + 1

2 for x < 1
2

and x �→ x/2 for x � 1
2 . In Sec. V B, we will show that this

local control map also splits the MIPT from the CIPT. Finally,
we note that this control protocol can be generalized to target
other orbits consisting of CB states with repeating patterns of
bits.

D. Adding projective measurements

Another way to split the MIPT and CIPT is to introduce
projective measurements without feedback, i.e., Eqs. (6) and
(7). Here, projective measurements are stochastically applied
to qubits L − 1 and L with probability pproj after the unitary
U , as represented by the purple dots in Fig. 1(h) for global
control map, and Fig. 1(i) for local control map. We stress
that these feedback-free projective measurements are part of
the chaotic map and that the tuning parameters pctrl and pproj

are independent.

E. Interpolation between the global and local adders

Since the global control CAFM
global and the local control

CAFM
global both target the same orbit xF = { 1

3 , 2
3 }, we can ran-

domly choose between them at each control step as shown
in Fig. 1(j), where the global control map is applied with
probability pglobal, and the local control map with probability
1 − pglobal. This provides a smooth interpolation between the
global and local adders to study the effect of the degree of
locality of the control map.

To summarize, we have six different types of stochas-
tic quantum circuits [Figs. 1(e)–1(j)], distinguished by the
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FIG. 2. Top panels: The order parameter [see Eqs. (15) and (16)] as a function of pctrl for (a) a global adder with xF = { 1
3 , 2

3 }; (b) a
local adder with xF = {0}; (c) a global adder with xF = { 1

3 , 2
3 } at the projective measurement rate of pproj = 0.3. The insets show the data

collapse near the critical point at (a) pctrl = 0.488(1), (b) pctrl = 0.497(1), and (c) pctrl = 0.485(2) for L � 12. Bottom panels: The tripartite

mutual information I (1)
3 [see Eq. (17)] as a function of pctrl for (d) a global adder with xF = { 1

3 , 2
3 }; (e) a local adder with xF = {0}; (f) a

global adder with xF = { 1
3 , 2

3 } at the projective measurement rate of pproj = 0.3. The insets show the data collapse near the critical point at
(d) pctrl = 0.485(3); (e) pctrl = 0.297(2); (f) pctrl = 0.416(2). The geometry of the tripartite mutual information is shown in the inset of (d).
The system size is a multiple of 4 from L = 8 to 24 and the ensemble size is 2000.

different types of control map summarized above. We define
these control operations using the language of Kraus operators
in Table I of Appendix B.

F. Metrics to probe the CIPT and MIPT

1. Order parameters for CIPT

To probe the CIPT, we use a macroscopic observable as an
order parameter, defined such that it approaches its maximal
value of 1 in the controlled phase and zero in the chaotic phase
as system size L → ∞. The critical point is then determined
by the finite-size crossing of the order parameter as it interpo-
lates between these two behaviors.

For the period-2 orbit xF = { 1
3 , 2

3 }, we adopt the classical
Néel order parameter

OAFM = − 1

L

L∑
i=1

ZiZi+1, (15)

which detects the AFM order manifested by the CB repre-
sentation of the states on the orbit. Here, we impose periodic
boundary conditions (i.e., ZL+1 ≡ Z1) and denote by Zi the
Pauli z matrix (σz) acting on the ith qubit (i.e., Zi|bi〉 =
(−1)bi |bi〉 for bi ∈ {0, 1}).

For the FM fixed point xF = {0}, we use the order parame-
ter

OFM = 1

L

L∑
i=1

Zi, (16)

which is maximized by the CB state |0〉⊗L.
We compute the order parameter OAFM/FM for each quan-

tum trajectory to obtain the quantum expectation value

〈OAFM/FM〉. Each quantum trajectory is described by a pure
state ρ �m = |ψ �m〉〈ψ �m|, where �m denotes the full record of all
measurement outcomes obtained during the course of the
evolution (including both conditional feedback operations and
any additional feedback-free projective measurements). We
also take each quantum trajectory to have its own realization
of the stochastic circuit. We then average over all quantum
trajectories �m to obtain 〈OAFM/FM〉 = tr(OAFM/FMρ̄), where
ρ̄ = ∑

�m ρ �m is the average density matrix. Note that these
averages commute because the observables are linear in the
density matrix.

2. Tripartite mutual information for MIPT

To probe the MIPT, we use the tripartite mutual infor-
mation [8,32]. We divide the system into four subregions
with equal lengths: A = [1, L/4], B = [L/4 + 1, L/2], C =
[L/2 + 1, 3L/4], and D = [3L/4 + 1, L] [see schematic in the
inset of Fig. 2(d)]. We ensure that the system size L is a
multiple of 4 to avoid boundary effects. The tripartite mutual
information I (n)

3 is then defined as

I (n)
3 = S(n)

A + S(n)
B + S(n)

C − S(n)
A∪B − S(n)

B∪C − S(n)
A∪C + S(n)

A∪B∪C,

(17)

where S(n)
i is nth Rényi entropy of the reduced density matrix

of the subregion i, i.e.,

S(n)
i = 1

1 − n
log tr

(
ρn

i

)
. (18)
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In the limit n → 1 we recover the von Neumann entanglement
entropy

S(1)
i = −tr(ρi log ρi ), (19)

while for n = 0 we recover the Hartley entropy

S(0)
i = log tr

(
ρ0

i

)
. (20)

Importantly for qubits, the zeroth Renyi entropy is equiva-
lent to taking the onsite Hilbert space d → ∞ [2,29,30] and
therefore the Hartley entropy S(0)

i allows us to make contact
with recent results on a statistical mechanics model in this
limit [31].

We use I (1)
3 to detect the MIPT, and I (0)

3 to detect the
percolation transition in Sec. IV C. We compute them for each
quantum trajectory and then average over trajectories (note
that these averages do not commute because I (n)

3 is not linear
in the density matrix). I (n)

3 < 0 [8] should scale as the system
size L in the volume-law phase, and saturate to a constant in
the area-law phase. The MIPT critical point is thus indicated
by a finite-size crossing in I (n)

3 .
In the following, we will first revisit the model with fixed

points xF = { 1
3 , 2

3 }, where the CIPT and MIPT coincide, in
Sec. III. In Sec. IV we will then separate the CIPT and MIPT
by either modifying the locality of the adder A or introducing
feedback-free projective measurements.

III. GLOBAL CONTROL MAP WITH AFM FIXED POINTS

In this section, we demonstrate the scenario where the
CIPT and MIPT overlap using a global control map with
fixed points xF = { 1

3 , 2
3 } as shown in Fig. 1(e). We evolve

the circuit of Fig. 1(e) for 2L2 steps to ensure that it enters
the steady state. Figure 2(a) shows the trajectory-averaged
order parameter 〈OAFM〉. We find that the CIPT happens at
pctrl ≈ 0.5, in agreement with the classical result and with
Ref. [17] in the quantum limit.

To detect the MIPT, we plot in Fig. 2(d) the trajectory-

averaged tripartite mutual information I (1)
3 as a function of pctrl

for different system sizes and find that the critical control rate
is also at pctrl ≈ 0.5. This demonstrates the idea of using the
CIPT (witnessed by an observable linear in the density matrix)
to herald the MIPT.

In addition, we perform data collapse (see Appendix A
for more details) and find that the correlation length crit-
ical exponent of the MIPT shows a value of ν = 0.90(5)
[as shown in the inset of Fig. 2(d)] as opposed to the Haar
log-CFT universality class with ν ≈ 1.3 [8], which is in good
agreement with Ref. [17] (as expected) but the present results
extend the study now to system sizes of L = 24. This critical
exponent is consistent with the CIPT [as shown in the inset
of Fig. 2(a)], indicating that the random-walk criticality of the
CIPT dominates over that of the MIPT [17,31]. However, this
random-walk criticality with ν ≈ 1 is not robust to perturba-
tions that split the two transitions: when the CIPT is separated
from the MIPT, the critical exponent of the MIPT returns
to the Haar log-CFT universality class with ν ≈ 1.3. In the
following sections, we will discuss the scenarios where the
two transitions are split.

IV. SPLITTING THE TRANSITIONS: LOCAL CONTROL
AND PROJECTIVE MEASUREMENTS

In this section, we demonstrate two ways to split CIPT
and MIPT: replacing the global adder with a local adder, and
introducing feedback-free projective measurements. We also
investigate signatures of the CIPT and MIPT in the tripartite
mutual information based on the zeroth Rényi entropy, which
is sensitive to the behavior in the limit of infinite onsite Hilbert
space dimension. We then present a thorough exploration of
the full phase diagrams for global and local control with and
without projective measurements.

A. Local adder with xF = {0}
Replacing the global adder with the local adder separates

the MIPT from the CIPT. Figure 2(b) shows that the CIPT
remains at pctrl = 0.498(1) with the same random-walk uni-
versality class showing a critical exponent of ν = 0.96(3).
However, for the MIPT, we plot the tripartite mutual infor-
mation as shown in Fig. 2(e) and find that the critical control
rate now decreases to a lower value of pc

ctrl = 0.297(2) with a
larger critical exponent of ν = 1.36(4) [as shown in the inset
of Fig. 2(e)], which recovers the Haar log-CFT universality
class [8]. This implies that the nature of the adder (global
versus local) plays a crucial role in determining the splitting of
the CIPT and MIPT, affecting critical properties of the MIPT.
Before we delve into the fundamental reasons for this change,
we propose another way to split the two transitions, i.e., by
introducing feedback-free projective measurements.

B. Feedback-free projective measurements

The second way to split CIPT and MIPT is to introduce
feedback-free projective measurements with probability pproj

into the chaotic map as described in Sec. II D. In the limit
pctrl → 0, this should recover the usual Haar log-CFT transi-
tion [2,4] as a function of pproj with the only difference being
that the unitary gates are applied in a staircase fashion rather
than a bricklayer fashion. In the limit of zero measurement
rate, pproj = 0, the CIPT and MIPT coincide at pctrl ≈ 0.5,
as shown in Fig. 2(a). In the intermediate regime between
pproj = 0 and pctrl = 0, we expect the critical point of the
MIPT to shift away from the CIPT.

We present numerical results at a finite measurement rate
pproj = 0.3 in Figs. 2(c) and 2(f). In Fig. 2(c), we find that the
CIPT remains at pctrl = 0.486(1) with the same random-walk
universality class displaying a critical exponent ν = 0.92(3).
This indicates that the finite measurement rate does not affect
the CIPT at all. In Fig. 2(f), we plot the tripartite mutual
information as a function of pctrl at pproj = 0.3, and find that
there are now two critical points. As pctrl increases from 0, the
system undergoes a transition from area-law to volume-law
scaling at pctrl ≈ 0.05, and then returns to the area-law phase
at pc

ctrl = 0.416(2), which is smaller than the previous critical
control rate of pc

ctrl = 0.485(2). The initial area-law scaling
arises because the projective measurements at pproj = 0.3 are
sufficiently strong that the system is above the MIPT into the
area-law phase already. The MIPT also manifests a different
critical exponent around ν = 0.70(3). We will discuss this
universality later in Sec. IV D.
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FIG. 3. The tripartite mutual information I (0)
3 [see Eq. (17)] with

zeroth Rényi entropy as a function of pctrl for (a) pproj = 0, and
(b) pproj = 0.36. The insets show the data collapse near the critical
point (a) pctrl = 0.453(2) and (b) pctrl = 0.364(4) with criticality
consistent with random walk and percolation universality, respec-
tively. The model is the local control with xF = {0} as shown in
Fig. 1(f). The ensemble size is 2000, and the cutoff of zero is set
to be 10−15.

C. Zeroth Rényi entropy

The zeroth Rényi entropy (also known as the Hartley en-
tropy) tracks physics not captured with previous measures; in
monitored random circuits without feedback, it is controlled
by a different phase transition entirely: percolation [1,2]. For
a subset of qubits in these models, this is precisely related to
the bond dimension and is thereby mapped onto a percolation
transition for the (1 + 1)-dimensional circuit. It also happens
to be the only MIPT obtained in the limit of infinite onsite
Hilbert space with Haar gates [29], whereas in the stabilizer
limit it depends on how the large-d limit is taken [33]. Similar
to I (1)

3 , a finite-size crossing of I (0)
3 indicates the percolation

transition in bond dimension in monitored random circuits.
This transition occurs generically after the area-law phase
but indicates that entanglement is compactly localized, we,
therefore, call it “compact area-law.” Due to the intimate
connection to percolation, this measure can be benchmarked
with much larger numerics which simulate infinite onsite
dimension [31].

Figure 3 shows I (0)
3 as a function of pctrl for various sys-

tem sizes in the model of local control map with FM fixed
point xF = {0}. In Fig. 3(a), we find that the crossing of I (0)

3
occurs at a critical control rate of pctrl = 0.453(2), substan-
tially larger than the value of 0.297(2) extracted from I (1)

3
in Fig. 2(e). It is notable that the finite-size collapse satu-
rates to a value pctrl = 0.453(2) < 0.5, the expected value for
control. These transitions do coincide despite this numeric
discrepancy, but in the full quantum numerics, we are limited
by numerical precision [as was already seen in Ref. [8] (see
Appendix D for a discussion)]. Further evidence that these
transitions coincide lies in the universal data: the correlation
length critical exponent ν = 1.10(6) is consistent with the
random-walk universality of the CIPT.

Figure 3(b) plots the same quantities but with a finite
projective measurement rate pproj = 0.36. We find that the
critical control rate for I (0)

3 now becomes pc
ctrl = 0.364(4),

which is separated from the CIPT at pctrl ≈ 0.5. Furthermore,
I (0)
3 is consistent with the percolation universality class with a

critical exponent of ν ≈ 1.25(9) (ν = 4
3 for percolation).

The zeroth Reńyi entropy exhibits a transition that coin-
cides with the CIPT, both in its location and its universality,
irrespective of the locality of the adder. However, adding
projective measurements still splits this entanglement transi-
tion from the CIPT. These results are consistent with those
obtained in Ref. [31] for an effective statistical mechanics
model in the limit of infinite onsite Hilbert space dimension,
providing a helpful cross-check.

D. Topology of the phase diagram

The results of the previous sections motivate a thorough
exploration of the full phase diagram as a function of the
control rate and the rate of projective measurements. In Fig. 4
we sweep both parameters, pctrl and pproj, to map out these
phase diagrams for both the global adder with AFM fixed
points xF = { 1

3 , 2
3 } [Fig. 1(h)] and the local adder with FM

fixed point xF = {0} [Fig. 1(i)]. Each data point on each
phase diagram boundary represents a critical point extracted
by collapsing a particular data set (see Appendix A for details
on our collapse methodology). The different colors represent
different quantities used to detect the transitions, and whether
the critical point was extracted from a vertical or horizontal
sweep (i.e., of pproj or pctrl, respectively). The light blue dots
correspond to the order parameters 〈OAFM〉 and 〈OFM〉. The
light green and dark green triangular markers represent the
tripartite mutual information I (1)

3 , extracted from vertical and
horizontal sweeps, respectively. Similarly, the red and orange
square markers indicate I (0)

3 , extracted from vertical and hor-
izontal sweeps, respectively. The solid lines are schematic
phase boundaries obtained from interpolating between the
extracted critical points, with an extrapolation to the thermo-
dynamic limit. The black solid line represents the CIPT, the
magenta solid line represents the MIPT, and the orange solid
line indicates the percolation transition witnessed by I (0)

3 . We
explain the two phase diagrams in more detail below.

1. Global adder with xF = { 1
3 , 2

3 }
The phase diagram for the global adder [Fig. 4(a)] shows

the coincidence of the CIPT (light blue dots) and MIPT (dark
green triangles) at pproj = 0 to within our numerical accuracy.
As pproj increases, the CIPT is not affected by the projec-
tive measurement, showing the same critical exponent ν ≈ 1
extracted from the order parameter 〈OAFM〉 (cyan dots, right
subpanel).

However, the MIPT is gradually split from the CIPT, flow-
ing to a lower critical control rate pc

ctrl. For larger projection
rates pproj � 0.18, the MIPT critical line assumes a dome
shape, such that the area-law phase shows a reentrance at
small pctrl [see also Fig. 2(f)]. This unusual feature of an
area-to-volume-law transition as pctrl increases from 0 reflects
the fact that the global adder can also contribute to generating
entanglement entropy. This unveils a nontrivial influence of
the global adder. Namely, although the adder arises purely
from a classical operation in the sense that it does not generate
a quantum superposition when acting on a classical product
state, it can generate entanglement entropy when applied to a
quantum superposition. We also find that the critical exponent
of the MIPT changes from the Haar log-CFT universality class
with ν ≈ 1.3 at pctrl = 0, to the random walk universality
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FIG. 4. Phase diagram of the model for (a) the global adder with fixed points xF = { 1
3 , 2

3 } [see Fig. 1(h)]; and (b) the local adder with a
fixed point xF = {0} [see Fig. 1(i)]. The markers indicate the critical points and exponents extracted from the data collapse, while the solid
lines are for the schematic interpolation in the thermodynamic limit. The two types of tripartite mutual information I (0)

3 and I (1)
3 indicate their

orthogonal directions in the data collapse. The “compact area law” refers to the phase where all Rényi entropies n � 0 obey the area law.

class with ν ≈ 1 as it approaches the CIPT near pproj = 0
(see bottom subpanel). Interestingly, along the bulk of the
MIPT critical line separating volume- and area-law phases,
the critical exponent ν exhibits a unique universality class of
approximately ν ≈ 0.7.

This universality class is intriguing and can also be ob-
served in the percolation transition indicated by I (0)

3 (red and
orange data squares corresponding to vertical and horizontal
line cuts, respectively). We find that the percolation transition
coincides with CIPT (the orange squares representing I (0)

3
are invisible as they essentially overlap with the light blue
dots representing 〈OAFM〉) in a large range of pproj ∈ [0, 0.5].
Beyond pproj � 0.5, the percolation transition (red squares)
starts to split from the CIPT and also manifests a dome shape,
consistent with the MIPT critical line. The critical expo-
nent also changes from the percolation log-CFT universality
class with ν ≈ 1.3 at pctrl = 0 to this novel universality class
with ν ≈ 0.7 along the percolation critical line (see bottom
subpanel). However, one difference lies in the fact that I (0)

3
(orange squares) does not manifest the random walk univer-
sality class with ν = 1 even when overlapping with the CIPT.

Having now identified this universality class in the phase
diagram, we can now search for its signature in the absence of
additional projective measurements. Therefore, using this as
an initial guess we can perform a separate data collapse near
(pctrl, pproj ) = (0.5, 0) that yields a different critical control
rate of pctrl = 0.480(1) and critical exponent of ν = 0.76(3)
(see Appendix C). These two critical control rates are too
close to give an unbiased conclusion within the numerical
accuracy of our simulations, leaving the possibility of a small
area-law phase lying between CIPT and MIPT critical points.
We think that this second critical point at zero measure-

ment rate could be reminiscent of the universality class with
ν ≈ 0.7 at a finite measurement rate, which could contaminate
the zero measurement rate case given the small system sizes
restricted by the Haar random unitary circuit.

We believe that this universality class with ν ≈ 0.7 results
from the global adder’s nontrivial contribution to entangle-
ment dynamics, as manifested in both I (0)

3 and I (1)
3 . To further

characterize this novel universality class, we study its dy-
namical exponent. In Fig. 5, we plot the trajectory-averaged
half-cut entanglement entropy SL/2 as a function of time for
the global control map with xF = { 1

3 , 2
3 }. We fix (pctrl, pproj ) =

(0.42, 0.3), where I (1)
3 displays ν ≈ 0.7. In the early-time

regime t � L, we find that the growth of the half-cut entan-
glement entropy collapses to a single curve as S ∼ f (t/L1.49),
indicating the dynamical exponent z ≈ 1.49(2). This dynam-
ical exponent is distinct from the CIPT with z = 2 [17] [see
Fig. 5(a)], and from the Lorentz-invariant value z = 1 charac-
terizing the Haar MIPT [8] [see Fig. 5(b)]. We will leave more
detailed studies of this exotic universality class with ν ≈ 0.7
and z ≈ 1.49 for future work.

2. Local adder with xF = {0}
For the local adder [Fig. 4(b)], the MIPT and CIPT corre-

spond to two separate critical points, even at pproj = 0. The
CIPT (light blue dots) remains at pc

ctrl ≈ 0.5 with critical
exponent ν ≈ 1 (see right subpanel). However, as the pro-
jective measurement rate pproj increases, the MIPT phase
boundary flows to smaller values of pc

ctrl until it reaches zero
control rate. The critical point at pctrl = 0, pc

proj ≈ 0.18, is
consistent with that found for the global adder at zero control
rate [Fig. 4(a)]. Unlike with the global adder, the MIPT critical
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FIG. 5. The half-cut entanglement entropy SL/2 as a function of time for a global control map with xF = {1/3, 2/3} near (a) (pctrl, pproj ) =
(0.5, 0.0) when ν ≈ 1; (b) (pctrl, pproj ) = (0, 0.19) when ν ≈ 1.3 (here the control rate is zero so it applies to regardless of the nature of control
map); (c) (pctrl, pproj ) = (0.42, 0.3) when ν ≈ 0.7. The dynamical exponents are (a) z = 2.08(3); (b) z = 1.01(2); z ≈ 1.49(2).

line for the local adder consistently displays Haar log-CFT
universality with ν ≈ 1.3 [see triangles in bottom subpanel in
Fig. 4(b)] and z = 1 [see Fig. 5(b)].

The percolation transition witnessed by I (0)
3 overlaps with

the CIPT at pproj = 0 and also flows to smaller pc
ctrl as pproj

is increased [see the squares in Fig. 4(b)]. At pctrl = 0, the
value pc

proj ≈ 0.5 is consistent with the percolation transition
in the standard Haar MIPT [2]. The critical exponent ν also
changes from ν ≈ 1 at pproj = 0 to the percolation log-CFT
universality class with ν ≈ 1.3 as pproj increases [see squares
in bottom subpanel in Fig. 4(b)]. This phase boundary agrees
with that found in Ref. [31] with the effective statistical me-
chanics model in the infinite onsite Hilbert space dimension
limit.

V. INTERPLAY OF LOCAL AND GLOBAL CONTROL

A. Entanglement effect of the adder

In this section, we aim to understand how the locality of
the adder affects the topology of the phase diagram. Although
the adder originates from a classical operation that does not
generate quantum superpositions, it can create entanglement
when acting on a superposition state. This occurs because the
adder permutes wave-function components among CB states.
When applied to a CB state, this simply produces another
CB state and does not produce entanglement. However, when
applied to a superposition state, it permutes multiple nonzero
amplitudes, which generically affects the entanglement struc-
ture. For example, an adder which merely advances each CB
state by 1 (i.e., A = ∑

x |x ⊕ 1〉〈x|) turns a disentangled state
1√
2
(|00〉 + |01〉) into an entangled Bell state 1√

2
(|01〉 + |10〉).

In the chaotic phase, because of the extensive application of
Haar random gates in the Bernoulli circuit, the system will
typically be in a superposition state just before the adder is
applied. Another key distinction is that a local adder only
affects an O(1) number of qubits and therefore can only affect
entanglement properties in a bounded region. For this reason,
we expect all models incorporating a local adder to be equiv-
alent as they pertain to MIPTs, i.e., they should exhibit the
same critical control rate pc

ctrl and critical exponent ν in the
thermodynamic limit. In contrast, the global adder can gen-
erate entanglement between disjoint subregions of the chain
even with a single application. Thus, we expect the global

adder to have nontrivial implications for the entanglement
dynamics, as we saw in the previous section where it leads to
a universality class of MIPT when projective measurements
are added.

To make this argument concrete, we consider in Sec. V B
a local adder that controls onto the same AFM fixed points
xF = { 1

3 , 2
3 } as the global adder. We then move on to study the

interplay of the local and global adders in Sec. V C.

B. Local adder with xF = { 1
3 , 2

3 }
We now consider the effect on the MIPT and CIPT of

the local control map with xF = { 1
3 , 2

3 } defined in Sec. V B
and illustrated in Fig. 1(g). Figures 6(a) and 6(c) show the

FIG. 6. (a), (c) The order parameter [Eq. (15)] and tripartite

mutual information I (1)
3 [Eq. (17)] for the model using the local

adder with xF = { 1
3 , 2

3 } (i.e., pglobal = 0) [see Fig. 1(g)]. The insets
show the data collapse near the critical point at (a) pctrl = 0.489(2)
and (c) pctrl = 0.185(2) for L � 12. (b), (d) The interpolation be-
tween the local [Eq. (14)] and global adder [Eq. (11)] with xF =
{ 1

3 , 2
3 }. The probability of the global adder is pglobal = 0.15 [see

Fig. 1(j)]. The insets show the data collapse near the critical point at
(b) pctrl = 0.486(2) and (d) pctrl = 0.327(2) for L � 12. The system
sizes here range from L = 8 to 24 and the ensemble size is 2000.

054308-9



HAINING PAN et al. PHYSICAL REVIEW B 110, 054308 (2024)

AFM order parameter and tripartite mutual information as
functions of pctrl for this model featuring local control onto
the AFM states. Here, the two transitions split again, with
the CIPT remaining at pc

ctrl ≈ 0.5 and the MIPT happening
at a lower value pc

ctrl = 0.185(2), closer to its location in the
bricklayer Haar model [8]. We note that this value is sub-
stantially smaller than the critical control rate pc

ctrl = 0.297(2)
obtained in Figs. 2(b) and 2(e) for local control onto the FM
state. This is because the local AFM control map involves an
extra projective measurement on the first qubit [Fig. 1(d)].
This effectively increases the measurement rate by a factor
of 2, and indeed the MIPT occurs at about half the value
of pc

ctrl obtained for the local FM control. The CIPT retains
its original universality with ν = 0.98(4), while the MIPT is
again consistent with the Haar log-CFT with ν ≈ 1.3.

C. Interpolation between the local and global adders

Since the global adder [Figs. 2(a) and 2(d)] and the local
adder [Figs. 6(a) and 6(c)] have the same fixed points xF =
{ 1

3 , 2
3 }, we can randomly choose between the two adders to

interpolate between them. We now modify the control proto-
col such that, at each control step, we apply the global control
map with probability pglobal and the local control map with
probability 1 − pglobal. Example order parameter and tripartite
mutual information sweeps for pglobal = 0.15 are shown in
Figs. 6(b) and 6(d). We find that, while the CIPT remains
at pc

ctrl ≈ 0.5 with the same critical exponent, the MIPT oc-
curs at pc

ctrl = 0.327(4), higher than the value pc
ctrl0.185(2)

observed at pglobal = 0 [Figs. 6(a) and 6(c)]. Moreover, the
MIPT acquires a critical exponent ν = 1.046(7), in contrast
to the value obtained for pglobal = 0 (that was consistent with
Haar log-CFT universality). Thus, the two transitions remain
split at finite pglobal, but they appear to manifest the same
critical exponents. This suggests that the universality of the
MIPT becomes more similar to that obtained for the global
adder as pglobal increases.

To further characterize the interplay between the local and
global adders, we sweep pglobal to map out the phase diagram
as shown in Fig. 7. The critical line for the CIPT (black solid
line) is obtained by collapsing the order parameter 〈OAFM〉,
and the critical line for the MIPT (magenta solid line) is
obtained by collapsing the tripartite mutual information I (1)

3 .
We find that the critical control rate pc

ctrl changes from 0.18
at pglobal = 0 to 0.5 at pglobal = 1, directly demonstrating that
the global adder indeed drives the MIPT and CIPT together.
There is also a kink in pc

ctrl near pglobal = 0.15, beyond which
the change in pc

ctrl becomes gradual. In the right subpanel, we
also present in Fig. 7(b) the extracted critical exponents for
both transitions as a function of pglobal. As pglobal increases, the
MIPT critical exponent ν ≈ 1.3 merges into that of the CIPT
with ν ≈ 1, which implies a change in the universality class
from the Haar log-CFT to the random walk. The most drastic
change happens near pglobal = 0.15, which is also consistent
with the kink in the pc as shown in Fig. 7(a). This trend of two
critical exponents coalescing as the global adder is applied
more frequently demonstrates that the universal features of
the CIPT begin to overwhelm those of the MIPT as the two
transitions draw closer to one another.

FIG. 7. (a) The phase diagram of the model with the fixed points
as xF = { 1

3 , 2
3 } interpolated between the local (1 − pglobal) and global

adder (pglobal). (b) The corresponding critical exponents ν for CIPT
(cyan) and MIPT (magenta) as a function of pglobal.

VI. CONCLUSION

In this work, we have performed a detailed study of
control- and measurement-induced criticality in the quantum
Bernoulli circuit, motivated by the general question of when
the CIPT can herald the MIPT. We find that the necessary
condition for the MIPT and CIPT to coincide is to have a
global control map that acts on the entire system, consistent
with the results obtained in Ref. [22] for Clifford circuits.
To do this, we first revisited the model of Ref. [17], which
features a global adder that controls onto the fixed points of
xF = { 1

3 , 2
3 }. In this model, the CIPT and MIPT coincide at

pctrl ≈ 0.5, and the MIPT inherits the universality class of the
CIPT, which is described by a random walk with ν = 1 and
z = 2. This demonstrates the possibility of using an observ-
able in the CIPT to witness the MIPT.

We then showed that the CIPT and MIPT can be pulled
apart by either replacing the global adder with a local adder
or by introducing feedback-free projective measurements. In
either case, the MIPT is pushed to a lower value of pctrl,
and we find that the MIPT critical exponent ν reverts to the
Haar log-CFT universality class of ν ≈ 1.3 and z = 1; the
CIPT remains fixed at pc

ctrl = 0.5. Adding the feedback-free
projective measurements to the global-adder model allows us
to smoothly track how the transitions split. In this case, we
find that the MIPT exhibits a universality class with ν ≈ 0.7
and dynamical exponent z ≈ 1.49(2) (with similar results in
the zeroth Renyi entropy limit). Thus, it appears that the inter-
play of nonlocal control and projective measurements strongly
modifies the nature of the MIPT from the Haar log-CFT
universality class observed in this work and elsewhere in the
literature.

To demonstrate the effect of the locality of the adder on the
topology of the phase diagram, we first proposed a model with
the same fixed points of xF = { 1

3 , 2
3 } but with a local adder,

and found that this change also makes the two transitions split.
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We then constructed a model that interpolates between the
local and global adders by applying them randomly with a
tunable bias. As the control is biased towards the global adder,
the two criticalities come into closer proximity, and the critical
properties of the MIPT become overwhelmed by those of the
CIPT.

Several directions for future work present themselves. It
would be interesting to more thoroughly characterize the
MIPT universality class uncovered in this work that occurs in
the presence of global control and projective measurements.
This could be done, e.g., using purification measures like
those introduced in Ref. [34]. Moreover, it is worth inves-
tigating whether the difference in critical universality class
relative to the standard Haar log-CFT can be traced back to
properties of the area- and volume-law phases separated by
the critical line, e.g., by studying subleading corrections to the
entanglement entropy in the volume-law phase. Finally, while
this work has focused on the quantum aspects of the MIPT,
the quantum nature of the CIPT has yet to be thoroughly
investigated. We expect quantum features of the CIPT to be
most pronounced in the absence of projective measurements
(see Fig. 4), where the CIPT separates a dynamical phase
with finite entanglement in the steady state from one that is
completely disentangled.

Experimentally, it will be exciting to try and witness each
of these transitions separately and concomitantly by adjusting
the nature of the feedback operations. Several experimental
challenges remain, however, e.g., related to time delays of the
reset operation in conjunction with midcircuit measurements.
Nonetheless, our work shows when the entanglement transi-
tion can be heralded by a linear-in-density-matrix observable
and when nonlinear quantities are necessary.
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APPENDIX A: DATA COLLAPSE

1. Estimation of critical parameters

We perform the data collapse of a set of (pi, yi, Li ) to
extract the critical point pc and critical exponent ν of the
CIPT and MIPT. Here, yi = 1

Nα

∑
α y(α)

i is the average of the

actual metrics y(α)
i (e.g., 〈OAFM/FM〉 or I (n)

3 ) for each quantum
trajectory, Nα is the number of different trajectories α. pi is
the control rate (pctrl) or projection rate (pproj ), and Li is the
system size, which both are fixed given a specific data point.

In the vicinity of the critical point, we expect all data points
to fall on a single curve following the scaling form of yi =

f [(pi − pc)Li
1/ν], where f is some unknown universal scaling

function.
Therefore, we define xi = (p − pc)L1/ν

i and sort xi in as-
cending order, to define the following loss function (reduced
χ2

ν ) for the data collapse as

χ2
ν = 1

N − 2

N∑
i=1

(
yi − y′

i

σi

)2

. (A1)

Here, N is the total number of data points with different
(pi, Li ) (not to confuse with the total ensemble size Nα),
and N − 2 is the total degrees of freedom given two fitting
parameters (pc, ν). y′

i is the linear interpolation between yi−1

and yi+1, i.e.,

y′
i = yi−1 + yi+1 − yi−1

xi+1 − xi−1
(xi − xi−1). (A2)

(For the two end points, we just use one-side interpolation.)
The estimated standard error of the mean σi is

σ 2
i = σ 2

yi
+

(
xi+1 − xi

xi+1 − xi−1
σyi−1

)2

+
(

xi−1 − xi

xi+1 − xi−1
σyi+1

)2

,

(A3)

where σ 2
yi

is the standard error of the mean of yi, and the rest
terms are propagated from the error due to the interpolation
between yi−1 and yi+1.

We minimize the loss function using the Levenberg-
Marquardt algorithm [35,36] to find the best fit of pc and ν

with the Python package LMFIT [37] such that the reduced
χ2

ν ≈ 1. If χ2
ν � 1, it indicates underfitting, which is an in-

dication of a bad choice of initial points of (pc, ν) or the
data set itself has too much variance (probably due to the
insufficient Nα); however, if χ2

ν � 1, it indicates overfitting
of the variance of the data.

2. Error estimation

The error bars of the critical point pc and critical exponent
ν can be estimated directly from the square root of the diag-
onal element of the inverse of the Hessian matrix of the loss
function at the optimum.

However, one assumption using reduced χ2
ν is the normal-

ity of error [i.e., y(α)
i −yi

σyi
∼ N (0, 1)], which may not be true for

all metrics. In such case, one might need to normalize the data
points of {yα

i } through the Box-Cox transformation, however,
it requires another level of choosing the parameter which
could complicate the process of data collapse. Therefore, we
use a simple while powerful technique that is insensitive to the
underlying distribution of {yα

i }: bootstrapping.
For each point (pi, Li ), we will have a raw data set of {yα

i }
corresponding to different quantum trajectories α. We then
resample {yα

i } with replacement to obtain a new set of {yα̃
i }

for each (pi, Li ). We perform the data collapse from Eq. (A1)
to (A3) again to obtain a new estimate of p̃c and ν̃.

We will repeat the process of resampling and refitting
multiple times (practically, we find that 100 times suffice
to converge) to obtain a set of {( p̃c, ν̃ ), . . . }. The error bar
can be then estimated from the standard deviation of all
the {( p̃c, ν̃ ), . . . }. Finally, we combine the two error bars
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FIG. 8. The profile of the reduced χ 2
ν in the logarithm scale as a

function of pctrl and ν for the data collapse in Fig. 2(c). The range
of the color bar only focuses on [0, e2], beyond which is saturated
to e2. Here, the error bar (black solid line) is estimated from the
bootstrapping method.

from both the inverse Hessian method in Appendix A 1 and
bootstrapping, and choose the larger value as a conservative
estimate for the error bar of the critical point and critical
exponent.

We find that the bootstrapping method is more numerically
stable than the inverse Hessian method alone. For example,
in Fig. 2(c), the inverse Hessian will give a very small error
bar of σpctrl = 4×10−4 and σν = 8×10−3. However, from the
profile of the reduced χ2

ν as a function of pctrl and ν as
shown in Fig. 8, we notice a broad region near the mini-
mum. This ill-conditioned inverse Hessian can be remedied
by the bootstrapping method, which gives an error bar of
σpctrl = 2×10−3 and σν = 3×10−2.

FIG. 9. The data collapse of the tripartite mutual information
for the global control map with xF = { 1

3 , 2
3 } at zero projection rate.

The fitted critical control rate pctrl = 0.482(1) and ν = 0.76(3) are
different from the one in Fig. 2(d). The reduced χ 2

ν in Eq. (A1) is
1.86, which is not statistically different from the χ2

ν ≈ 1.83 in the
data collapse as shown in Fig. 2(d). The system sizes here range from
L = 8 to 24 and the ensemble size is 2000.

APPENDIX B: KRAUS OPERATORS DESCRIPTION
OF ALL MODELS

The Kraus operators for all six types of quantum circuits
using the language of Kraus operators are shown in Table I.

APPENDIX C: DATA COLLAPSE OF THE GLOBAL
CONTROL MAP AT ZERO PROJECTION RATE

WITH ANOTHER UNIVERSALITY

In Fig. 9, we show that numerically the data collapses
well for the global control map at zero projection rate with
a modified universality class of ν ≈ 0.7, which is close to the
universality class found in the finite projection rate case.

TABLE I. The Kraus operators for all six types of quantum circuits in Figs. 1(e)–(j).

Quantum circuit Fig. 1(e) Fig. 1(f) Fig. 1(g) Fig. 1(h) Fig. 1(i) Fig. 1(j)

Locality Global Local Local Global Local Interpolated

Fixed points AFM FM AFM AFM FM AFM

Projection × × × � � ×

Kraus operators

√
1 − pctrlUT

√
pctrlAT −1 P0

L√
pctrlAT −1 P1

L

√
1 − pctrlUT

√
pctrlT −1 P0

L√
pctrlT −1 P1

L

√
1 − pctrlUT

√
pctrlT −1XLP0

1 P0
L√

pctrlT −1P0
1 P1

L√
pctrlT −1P1

1 P0
L√

pctrlT −1XLP1
1 P1

L

√
(1 − pctrl )(1 − pproj )2UT√

(1 − pctrl )(1 − pproj )pproj P0
LUT√

(1 − pctrl )(1 − pproj )pproj P1
LUT√

(1 − pctrl )(1 − pproj )pproj P0
L−1UT√

(1 − pctrl )(1 − pproj )pproj P1
L−1UT√

(1 − pctrl )p2
projP

0
L−1 P0

LUT√
(1 − pctrl )p2

projP
0
L−1 P1

LUT√
(1 − pctrl )p2

projP
1
L−1 P0

LUT√
(1 − pctrl )p2

projP
1
L−1 P1

LUT
√

pctrlAT −1 P0
L√

pctrlAT −1 P1
L

√
(1 − pctrl )(1 − pproj )2UT√

(1 − pctrl )(1 − pproj )pproj P0
LUT√

(1 − pctrl )(1 − pproj )pproj P1
LUT√

(1 − pctrl )(1 − pproj )pproj P0
L−1UT√

(1 − pctrl )(1 − pproj )pproj P1
L−1UT√

(1 − pctrl )p2
proj P0

L−1 P0
LUT√

(1 − pctrl )p2
proj P0

L−1 P1
LUT√

(1 − pctrl )p2
proj P1

L−1 P0
LUT√

(1 − pctrl )p2
proj P1

L−1 P1
LUT

√
pctrlT −1 P0

L√
pctrlT −1 P1

L

√
1 − pctrlUT

√
pglobal pctrlAT −1 P0

L
√

pglobal pctrlAT −1 P1
L√

(1 − pglobal )pctrlT −1XLP0
1 P0

L√
(1 − pglobal )pctrlT −1 P0

1 P1
L√

(1 − pglobal )pctrlT −1 P1
1 P0

L√
(1 − pglobal )pctrlT −1XLP1

1 P1
L
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FIG. 10. Top row: The data collapse of the tripartite mutual information using zeroth Rényi entropy for the local adder at zero projection
rate [same as Fig. 3(a)] with (1) the threshold of 10−7 and (b) 10−11. (c) The fitted critical control rate (blue, left axis) and critical exponent
(red, right axis) as a function of the threshold. Bottom row: Same type of data, with a small ensemble size of (d) 500 and (e) 1000, using
bootstrapping in Appendix A 2. (d) The fitted critical control rate (blue, left axis) and critical exponent (red, right axis) as a function of the
ensemble size.

APPENDIX D: DATA COLLAPSE FOR THE
ZEROTH RÉNYI ENTROPY

In this section, we show a more systematic analysis of the
data collapse for the zeroth Rényi entropy for the local adder
at zero projection rate, corresponding to Fig. 3(a).

Since the zeroth Rényi entropy is very sensitive to the
numerical threshold of zero (as it is the sum of all nonzero
singular values in the Schmidt decomposition), in Figs. 10(a)
and 10(b), we decrease the threshold from 10−7 to 10−11

to show that the drift of the critical control rate towards a
higher value. The critical exponent also becomes closer to
ν ≈ 1 of the random walk universality as we use a more
stringent threshold. Curiously, the critical exponent for lower
thresholds is closer to the percolation value: hinting that
our threshold is discarding truly nonzero eigenvalues of the
reduced density matrix. In Fig. 10(c), we present the two
fitting parameters, pc

ctrl and ν, as a function of the threshold,

which manifests a clear trend of critical control rate increasing
and critical exponent decreasing as the threshold decreases.
Despite the trend, there is not an asymptote to the control
value of pctrl = 0.5; this is consistent with earlier work where
similarly sized discrepancies were seen in the Hartley entropy
as computed with thresholds in the full quantum dynamics
[8]. A less error-prone method would be to exactly keep track
of bond dimensions such as within a matrix-product state.
Indeed, we speculate that such methods could be crucial for
distinguishing the fate of I (0)

3 in the nonlocal adder case.
In Figs. 10(d) and 10(e), we show the dependence of the en-

semble size, which corresponds to the Monte Carlo sampling
error. Here, with a bootstrapping resampling, we increase the
ensemble size from 500 to 1000, and find that the critical con-
trol rate and exponent do not change significantly. However,
their error bars decrease as the ensemble size increases, as
shown in Fig. 10(f).
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