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Fractional positional jumps in stochastic systems with tilted periodic double-well potentials
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We present a theoretical investigation of the stochastic dynamics of a damped particle in a tilted periodic
potential with a double well per period. By applying the matrix continued fraction technique to the Fokker-Planck
equation in conjunction with the full counting statistics and master equation approaches, we determine the
rates of specific processes contributing to the system’s overall dynamics. At low temperatures, the system can
exhibit one running state and two distinct locked metastable states. We focus primarily on two aspects: the
dynamics of positional jumps, which are rare thermally induced particle jumps over potential maxima, and
their impact on the overall velocity noise; and the retrapping process, involving the transition from the running
to the locked metastable states. We demonstrate the existence of fractional (in units of 2π ) positional slips
that differ qualitatively from conventional 2π jumps observed in single-well systems. Fractional positional
slips significantly influence the system dynamics even in regimes dominated by dichotomous-like switching
between running and locked states. Furthermore, we introduce a simple master equation approach that proves
effective in analyzing various stages of the retrapping process. Interestingly, our analysis shows that even for a
system featuring a well-developed double-well periodic potential, there exists a broad parameter range where
the stochastic dynamics can be accurately described by an effective single-well periodic model. The techniques
introduced here allow for valuable insights into the complex behavior of the system, offering avenues for
understanding and controlling its steady-state and transient dynamics, which go beyond or can be complementary
to direct stochastic simulations.
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I. INTRODUCTION

The stochastic dynamic motion of a particle in tilted pe-
riodic potentials plays an important role in the studies of
various physical phenomena including Josephson junctions
(JJs) [1–5], microparticles confined in shaped laser beams
[6–13], dynamics of charge density waves [14], crystal sur-
face melting [15,16], ratchet and molecular motors [17–19],
cold atoms in optical lattices [20], and different biophysical
processes [21], as well as in investigations of phenomena
such as anomalous diffusion and memory effects [22–26]. A
well-paid effort has already been invested in the theoretical
analysis of such systems [27–30], yet there are still plenty
of open questions often inspired by the recent experimen-
tal realizations in different systems, e.g., Refs. [4,13,31,32].
Moreover, experimental progress in different fields called for
readdressing some old problems such as escape and retrapping
of the Brownian particle from or to potential minima [24,33–
37], the statistics of thermally activated jumps of the parti-
cle by integer multiples of 2π [35,38–40], and multistability
[24,41,42].

*Contact author: martin.zonda@matfyz.cuni.cz
†Contact author: tomas.novotny@matfyz.cuni.cz

In this respect, of special interest are systems where the
stochastic dynamics of the particle is affected by a biharmonic
potential containing two local minima per period

U (ϕ) = −ϕ ib + U0(ϕ),

U0(ϕ) = −α cos ϕ + 1
2 cos 2ϕ, (1)

where ib is a static external bias force, i.e., a potential tilt,
U0(ϕ) is the untilted periodic double-well potential, where the
coefficient α tunes the ratio of the first to the second harmonic
contribution, and ϕ is the dimensionless position. The poten-
tial (1) plays an important role in the theoretical description
of numerous physical systems, including JJs with substantial
second harmonic in the current phase relation (CPR) [4,43–
56] in particular in Josephson diodes [31,57–60] (where the
variable ϕ is the superconducting phase difference, i.e., the
Josephson phase), or various ratchet systems [61–63] and
molecular motors [64,65].

A careful analysis of the motion of the particle in the
tilted double-well potential has already led to some important
results. For example, it explained the existence of two critical
escape currents from the superconducting to the resistive state
observed experimentally for the JJs with doubly degenerate
ground state (i.e., ϕ junctions) [48], pointed to rather non-
trivial retrapping dependencies of the Josephson phase which
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can lead to a butterfly effect [50], and showed the existence
of chaotic Josephson phase trajectories in various generaliza-
tions of the famous RCSJ model [66,67]. The case α = 0,
where only the second harmonic is present in the potential,
plays an important role in the studies of unconventional junc-
tions which can undergo the so-called 0-π transition [54,68].
Moreover, a Brownian particle moving in the potential (1)
with additional harmonic terms, characterized by asymmetric
mobility considering the bias force, is an archetypal model of
the ratchet and diode systems [59–61,63].

A crucial component in all of the above phenomena is
noise. In combination with different dampings, a system
with potential (1) can show a wide variety of regimes, each
important for different physical realizations. Here, we pro-
vide a systematic analysis of a general case. We start with
the simple strong-damping parameter regime and proceed
to the more complicated intermediate- and weak-damping
regimes. We use velocity noise to identify three main dynamic
regimes [35]: the thermal-noise regime, the positional-jump
(PJ) regime, and the switching regime. In each, we focus
on the analysis of the dominant dynamics. In particular, we
investigate the statistics of the positional jumps and their
contribution to the overall velocity noise in the PJ regime
and the escape and retrapping processes in the switching one.
For this purpose, we combine the matrix continued-fraction
(MCF) method with other techniques. In particular, in Sec. II
we introduce a combination of the MCF technique [27] with
full counting statistics (FCS) [69–71] for the analysis of the
multiple PJs. Its biggest advantage over stochastic simulations
is the straightforward access to the steady state. As such, it
is suitable for the calculation of rates for rare events. There-
fore, in the relevant regime, this method allows decomposition
of the particle dynamics into independent elementary pro-
cesses [72–74], constituted by single or multiple positional
jumps. Using this method, we demonstrate the existence of
the so-called fractional PJs in Sec. III B 1. In Sec. III B 2 we
investigate retrapping processes in the switching regime. Here
we combine the MCF with an effective master equation ap-
proach describing the transition of the system between its
three metastable regimes. On top of the steady-state stud-
ies, we also discuss in Sec. III B 3 a dynamical retrapping
scenario.

There is a particular conclusion of our research that is
worth foreshadowing here. Namely, for a broad range of pa-
rameters, even a system with a well-developed double-well
potential can be faithfully described by a single-well model.

II. MODEL AND METHODS

A. Model and dynamical regimes

We consider a stochastic motion of a particle in a potential
U (ϕ) with α � 0 described by the dimensionless Langevin
equations

∂v(τ )

∂τ
= −γ v(τ ) − ∂U (ϕ)

∂ϕ
+ ζ (τ ),

v(τ ) = ∂ϕ/∂τ, (2)

where v is the dimensionless velocity of the particle, γ is
the friction coefficient, and ζ represents a Gaussian white

noise with the zero mean 〈ζ (τ )〉 = 0 and correlation function
〈ζ (τ1)ζ (τ2)〉 = 2γ	δ(τ1 − τ2), where 	 is the dimensionless
temperature. In what follows, we assume that the system is
in the classical regime. This means that 	 is much higher
than some critical 	c of the quantum-classical transition. This
critical temperature depends on details of the physical real-
ization of the system and is not part of the effective model
in Eq. (2), which already assumes 	 � 	c. This assumption
must be verified for each particular realization of the prob-
lem because quantum effects, such as macroscopic quantum
tunneling known from Josephson junctions [4,75–77], can
significantly alter the particle dynamics if this condition is not
fulfilled.

The associated Fokker-Planck equation [27] of Eqs. (2) for
the probability distribution function W (ϕ, v, τ ) in the case of
potential (1) reads

∂

∂τ
W (ϕ, v; τ ) = ∂

∂v
(γ v + α sin ϕ − sin 2ϕ − ib)W

− v
∂

∂ϕ
W + γ	

∂2

∂v2
W

≡ LFPW (ϕ, v; τ ). (3)

The derivation of the average velocity

〈v〉 =
∫ 2π

0
dϕ

∫ ∞

−∞
dvvWstat (ϕ, v) (4)

follows closely the standard MCF method (see Ref. [27],
Sec. 9 for a general introduction to MCF and Ref. [27],
Sec. 11.5 for the variant here used), and the derivation of
(zero-frequency) velocity noise

S =
∫ ∞

−∞
dτ [〈v(τ )v(0)〉 − 〈v(τ )〉〈v(0)〉] (5)

in the stationary state Wstat (ϕ, v) ≡ limτ→∞ W (ϕ, v; τ ) fol-
lows that of Ref. [35].

Figures 1(b) and 1(c) illustrate the system for zero and
finite bias force, and additional examples relevant for our
study are plotted in panels (d1)–(d6). The potential (1) has
for α < 2 and zero bias two types of minima marked as A and
B and two types of maxima marked as a and b. Consequently,
there are also two critical bias forces: icA where the minimum
A and maximum a disappear and icB where the minimum B
and maximum b disappear. The system can be in three distinct
stationary regimes. Namely, the particle can be running, i.e.,
at high bias force, or it can be locked in one of the potential
minima types. Consequently, for the noiseless case, the initial
position of the particle can, depending on the damping, play
an important role even for the steady state, as illustrated in
Fig. 1(a).

To explain this, let us consider two limiting cases, one
with a strong damping and the other with a weak damping. In
both cases, first slowly (compared to any other process) ramp
the bias force from ib = 0 to icB with the aim of observing
the escape of the particle from a potential well. Afterward,
we assume a backward ramping from ib � icB to ib = 0 with
the aim of observing the recapture (retrapping) of the running
particle in one of the wells.

For strong damping [γ = 5 in Fig. 1(a)] there is only a
single escape bias force and it is identical to the retrapping

054306-2



FRACTIONAL POSITIONAL JUMPS IN STOCHASTIC … PHYSICAL REVIEW B 110, 054306 (2024)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

α = 0.4

(a)

A

Bvγ

ib

γ = 0.2, Θ = 0.1
γ = 0.2, Θ = 0, v 0 ≥ ib /γ
γ = 0.2, Θ = 0, ϕ0 = -π
γ = 0.2, Θ = 0, ϕ0 = π
γ = 5.0, Θ = 0.1
γ = 5.0, Θ = 0

-2  0  2  4  6  8  10  12  14

2π

d

ΓA
-1

ΓA
1

ΓB
-1 ΓB

1

ΓB
2(c)

U
(ϕ

)

ϕ

Am Am+1Am-1 Bm-1 Bm Bm+1

(b)

am am+1am-1

bm-1 bm

U
(ϕ

)

-4
-2
0
2
4

-1 0 1
(d4)

α = 0.2

U
(ϕ

)

ϕ/π
-1 0 1

(d5)

α = 0.4

ϕ/π
-1 0 1

(d6)

α = 1.0

ϕ/π

-4
-2
0
2
4

   

ib  = 0
0.3
0.60.9(d1)

α = 0.02

U
(ϕ

)

   
(d2)

α = 0.06

   
(d3)

α = 0.1

FIG. 1. (a) Examples of v-ib characteristics representing the
strong-damping (γ = 5) and the weak-damping (γ = 0.2) regimes.
The solid thick lines show stationary solutions for temperature 	 =
0.1. The thin dashed lines show the deterministic (noise-free) solu-
tions. The weak-damping case is sensitive to the initial conditions.
The black dashed line shows a scenario in which we start with a
large force ib, and therefore finite velocity v, and then lower ib slowly
enough to reach steady state at each point. The opposite scenario,
where we start with ib = 0, is represented by a blue dashed line for
ϕ0 initially locked in the minimum A and red dashed line for the
minimum B. (b), (c) Illustrations of the potential Eq. (1) with �A

n and
�B

n being the rates of the forward/backward positional jumps over
n local maxima. (d1)–(d6) Potential profiles for values of α used in
the paper and four bias forces ib = 0, 0.3, 0.6, and 0.9. The vertical
gray lines at ϕ = ±π/2 are guides for the eyes that highlight that the
minima do not sit at these values and the minima distance d is not
necessarily equal to π .

force. Due to the strong damping, the initial position of the
trapped particle does not play a role in this regime. The
particle will start running only after the higher maximum b
disappears and, vice versa, will be retrapped at the minimal
bias force for which the maximum b appears. Therefore, both
the critical escape force and the retrapping force are equal to
icB (red dashed line).

In contrast, there are two possible escape tilts for weak
damping (γ = 0.2). If the particle initially is trapped at the
minimum A, it will obtain enough inertia to overcome the still
existing maximum b already at the first critical force icA. How-
ever, if it is initially trapped at the minimum B it will stay there
until the second critical force icB is reached. The retrapping
is also more complicated than in the strong-damping case. If
the particle is already running, then it has enough inertia to
overcome the local maxima existing below the critical force
icB or even icA up to the actual retrapping force ir [78] [black
dashed lines in Fig. 1(a)]. The retrapping force is determined
by the energy balance between the energy supply of the bias
force and the dissipation [27,50]. This means that there is
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FIG. 2. Top row: Separatrices (black lines) shown for different
dampings and bias forces that illustrate the complicated retrapping
dynamics of the noiseless case. Any particle within the white region
will keep running forever; particles within the blue and red regions
will get trapped following paths bounded by the regions of the same
color as their initial state (they cannot cross a separatrix). For exam-
ple, a motionless particle placed initially close to the top of the higher
potential maximum, but just right of the running-locked separatrix as
marked by the green empty circles (v = 0, ϕ = ϕb + δ), will end in
a minimum marked by the green filled circle. Bottom row: Examples
of the retrapping trajectories for initial conditions marked by the
empty circles and triangles. The blue lines mark the trajectories
bounded to the locked solution A and the red lines to the locked
solution B.

a region of coexistence of the running and the locked state
solutions.

The question of in which minimum the particle will be
trapped requires careful analysis because it is a parameter-
sensitive process. We illustrate this in Fig. 2 using three sets
of parameters for which all three solutions can be realized
depending on the initial conditions, with the force ib being
close to the retrapping one. The top row shows examples of
separatrix curves and the respective regions of initial condi-
tions that lead to running (white), locked A (blue), and locked
B (red) solutions. Separatrices are 2π periodic and become
more complex with decreasing γ and ib. As a consequence,
the retrapping trajectory of a particle can be very complicated.
This is illustrated in the bottom row of Fig. 2. The initial
conditions are marked by empty symbols (circles or triangles),
and the final state is marked by filled ones. The right column
illustrates a setting in which even a tiny monotonic change
in the initial position of the particle can lead to switching
between the two locked final states, that is, a deterministic
butterfly effect discussed in more detail, e.g., in Refs. [50,79].

The noise makes the dynamics even more complicated.
Additional processes, such as switching between running and
locked states or occasional jumps of the particle over the
neighboring maxima [see Fig. 1(c)], are possible for nonzero
temperature. These processes affect the stationary probability
distribution function and, therefore, also the relevant mean
values. The solid curves plotted in Fig. 1(a) represent the mean
stationary velocity of the particle for temperature 	 = 0.1. As
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FIG. 3. The two eigenvalues with the biggest real part plotted at
the Riemann surface (a) and their projections to the real (b) and the
imaginary (c) planes.

a consequence of the noise, the strong-damping case shows a
smooth and shallow crossover from the locked to the running
state, while the weak-damping case exhibits a much sharper
transition placed between the retrapping and the lower of the
escape bias forces.

There are three main components that contribute to the
overall velocity noise of this model [33,35]. The thermal
noise component dominates close to the equilibrium ib = 0.
The second component is the switching noise coming from
the switching between running and locked states, which is,
for low enough temperatures, an effective dichotomous-like
process. The third component is the shot noise (PJ regime)
related to rare jumps of the particle over single or multiple
maxima. The regimes where particular components prevail
can be identified from the Fano factor F ≡ S/(2π〈v〉) [35],
which is a normalized noise-to-signal ratio.

B. Full-counting statistics for the positional jump dynamics

The positional jumps are, for low enough temperature and
weak bias force, well-defined distinct (rare) events that sig-
nificantly influence the overall dynamics. To calculate the
rates of these events, we have adapted the full-counting statis-
tics technique previously used to study jump probabilities in
single-harmonic systems [35,69–71]. The double-well char-
acter of the potential (1) requires some generalizations of this
method which we present here.

In the first step we have approximated the solution of the
Fokker-Planck equation (3) for sufficiently low biases and
temperatures by a weighted sum of quasi-equilibrated sharp
(	 � 1) Gaussian distributions [71] around the two types of
local minima

W (ϕ, v; τ ) ≈
∑

m

PA
m (τ )w

(
ϕ − ϕA

m, v
)

+
∑

m

PB
m (τ )w

(
ϕ − ϕB

m, v
)
,

where w(ϕ, v) = exp(−ϕ2/2	) exp(−v2/2	)
2π	

. (6)

Here ϕA
m and ϕB

m are the positions of the mth potential minima
and PA

m (τ ) and PB
m (τ ) are the corresponding time-dependent

weights. These are assumed to satisfy the (Markovian) master
equations (MEs)

dPA
m

dτ
=

∑
j

(
�A

2 jP
A
m− j − �A

j PA
m + �B

2 j−1PB
m− j

)
, (7)

dPB
m

dτ
=

∑
j

(
�B

2 jP
B
m− j − �B

j PB
m + �A

2 j+1PA
m− j

)
, (8)

where �A
n is the rate of a positional jump from the potential

well A and �B
n from the well B over n potential local max-

ima to another local minimum. Rates with even n belong to
positional jumps between minima of the same kind (A → A,
B → B) and odd ones to positional jumps between minima of
different kinds (A → B, B → A). The negative n′s correspond
to the jump rates in the direction opposite the slope of the
bias (up the hill). Following the standard FCS methodology
[71], we can evaluate the k-dependent cumulant generating
function (where k is the counting field) for long times from
the MEs and equate it with the cumulant generating function
of the full model

F (k; τ → ∞) ≡ ln
∫ ∞

−∞
dϕeikϕ

∫ ∞

−∞
dvW (ϕ, v; τ → ∞),

(9)

calculated by MCF as explained in the Appendix of Ref. [35].
The approximate probability density following from the MEs
reads

exp[FPJ(k; τ )] = eikϕA
∑

m

PA
meik2πm + eikϕB

∑
m

PB
meik2πm

≡ PA(k, τ ) + PB(k, τ ). (10)

The probability densities must satisfy the matrix equation

d

dτ

(PA(k, τ )

PB(k, τ )

)
=

(
HPJ

11 HPJ
12

HPJ
21 HPJ

22

)(PA(k, τ )

PB(k, τ )

)
, (11)

where the matrix HPJ(k) reads

HPJ(k) =
(−∑

j �
A
j + �A

2 je
ik2π j

∑
j �

B
2 j−1eik(2π j−d )∑

j �
A
2 j+1eik(2π j+d ) −∑

j �
B
j + �B

2 je
ik2π j

)
.

(12)

The d factor in the exponents of the above equations is the
distance between the neighboring minima d = ϕB

m − ϕA
m [see

Fig. 1(c)] which depends on the potential parameters α and ib.
In contrast to even positional jumps, where the distance trav-
eled is always an integer multiple of 2π , odd jumps overcome
a distance of 2π j + d where in general d �= π ; therefore,
we call these jumps fractional. Note that we use the term
fractional in its general sense of something that is less than
a whole or less than a complete unit and we do not imply that
the jumps are necessary rational numbers in the units of π .

Analogously to the Appendix in Ref. [35] we use MCF
to calculate the two counting-field-dependent eigenvalues
λ0(k), λ1(k) with the largest real parts of the full problem
(3) with a modified boundary condition W (ϕ, v; τ→∞) =
ei2πkW (ϕ, v; τ→∞) and related eigenvectors u0(k, ϕ, v),
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u1(k, ϕ, v) [27], Sec. 9.3. The above two eigenvalues are in
the relevant regime well separated from all the others.

We construct two component vectors from the eigenvectors
by integration over the basins of attraction of the respective
nonequivalent local potential minima

Uj (k) =
⎛
⎝

∫ ∞
−∞ dv

∫ ϕa
m

ϕb
m−1

dϕu j (k, ϕ, v)∫ ∞
−∞ dv

∫ ϕb
m

ϕa
m

dϕu j (k, ϕ, v)

⎞
⎠. (13)

They can be used to reconstruct the matrix HPJ(k) =
U(k)LPJ(k)U−1(k) where

LPJ(k) =
(

λ0(k) 0

0 λ1(k)

)
(14)

and U(k) is the square matrix of vectors U0(k) and U1(k). Note
that due to the second harmonics in the potential and sim-
ilarly to other non-Hermitian Hamiltonian systems [80,81],
the eigenvalues (14) can have complicated topological prop-
erties, as shown in Fig. 3. The two eigenvalues can, for small
enough α, connect at kc = 1/2 + j, where j is an integer, and
smoothly continue each other on the Riemann surface; see
Fig. 3(a). Therefore, the real parts of these two eigenvalues,
plotted as functions of k, touch on kc [Fig. 3(b)], and there is
a discontinuity in the imaginary part of the eigenvalues at the
same points [Fig. 3(c)]. These discontinuities must be treated
with care in the numerical evaluation of the eigenvalues and
eigenvectors. Having the reconstructed matrix HPJ one can
evaluate the rates of the even positional jumps, i.e., jumps
between the same kind of minima with distance traveled
2π j = πn, using the transformations

�A
2 j =

∫ 1/2

−1/2
HPJ

11 e−ik2π jdk,

�B
2 j =

∫ 1/2

−1/2
HPJ

22 e−ik2π jdk, (15)

and the odd ones between the different minima types, with
distance traveled π (n ∓ 1) ± d , as

�A
2 j+1 =

∫ 1/2

−1/2
HPJ

21 e−ik(2π j+d )dk,

�B
2 j−1 =

∫ 1/2

−1/2
HPJ

12 e−ik(2π j−d )dk. (16)

This method also provides a simple tool to check its valid-
ity. The approximated mean velocity and velocity noise can be
calculated directly from the rates by evaluating the formulas

〈v〉 = lim
τ→∞ − i

τ

∂FPJ(k, τ )

∂k

∣∣∣∣
k=0

,

S = lim
τ→∞ − 1

τ

∂2FPJ(k, τ )

∂k2

∣∣∣∣
k=0

. (17)

These results can be compared with the mean velocity
and overall noise obtained directly from the MCF method
calculations [35].
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FIG. 4. (a) Examples of typical low-temperature Fano factor
F = S/(2π〈v〉) for strong damping plotted as a function of bias force
for different parameters α. The inset illustrates how the 0.5 Fano
factor plateau transits into Fano plateau with value 1 as α increase.
(b) A comparison of the α dependence of the single-positional-jump
rates evaluated numerically (solid lines) with the analytical Kramers
formula result for the overdamped case [71,82] (dashed lines). The
green bullets represent rates obtained via the simplified model where
only 2πn PJs were taken into account.

III. RESULTS

A. Strong damping

We start our analysis with the strong-damping case. The
main reason is that in this regime the dynamics is much
simpler than for the intermediate and weak damping. Never-
theless, it is still far from trivial.

Fano factor and positional jumps

In Fig. 4(a) we show the Fano factor in the strongly
damped regime represented by γ = 5 for three values of α

at temperature 	 = 0.08. The Fano factor exhibits a charac-
teristic divergence close to the equilibrium (ib = 0) due to
the finite thermal noise. For α = 0, it follows formula F =
1
2 coth(π ib/2	) [71], Eq. (28) for small ib and α = 0 with
a plateau at the Poissonian value of F = 0.5 (note that we
still normalize F to 2π ). This is in agreement with the dom-
inant contribution to the noise from the single PJ [illustrated
in Fig. 1(c)] over a distance d = π between the equivalent
neighboring minima. The situation for the finite α is more
complicated. The range in which single PJs are the dominant
source of the overall noise is not marked by a clear plateau.
Rather for 0 < α � 1 [α = 0.1 in Fig. 4(a)] we observe a
slight slope in the Fano factor. This reflects the fact that for
finite α the prevailing velocity noise contribution consists
of a nontrivial combination of the single positional jumps
forward over the distance of ϕB

m − ϕA
m = d and backward by

ϕA
m+1 − ϕB

m = 2π − d [see Fig. 1(c)], where d depends on
both α and ib. As already stated, because d �= π we refer to
these events as the fractional positional jumps.

With increasing α the Fano factor increases smoothly in
this region from 0.5 signaling only PJs over the distance π

to 1 suggesting a single PJ over 2π as shown in the inset
of Fig. 4(a). Interestingly, for 	 = 0.08 the Fano factor ap-
proaches 1 even for values of ib that are still well below
icA, therefore, in a regime where both minima still exist. For
example, the critical current icA is approximately 0.396 at
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α = 1, yet its Fano factor follows the analytical result F =
coth(π ib/	), valid for systems with only the first harmonic,
even below this value. Nevertheless, this can be understood as
a consequence of the large γ and can be explained using the
FCS method together with a simplified model of the elemen-
tary PJ processes.

Because only jumps over a single (uneven) maxima are
realized in the locked state of the strong-damping case the
overall dynamics of this regime can be described using just
four rates: �A

1 and �B
1 for the forward single jumps and

�A
−1 and �B

−1 for the backward single jumps. Moreover,
the backward rates can be neglected if the bias force is
strong enough. The typical dependencies of �A

1 and �B
1 on

α in this regime represented by the bias force ib = 0.3 and
the damping γ = 5 are plotted in Fig. 4(b) (solid lines).
Both �A

1 and �B
1 closely follow the Kramers formula for

escape across the adjacent barrier for the overdamped case
�X

1 = 1
2π

√
|U ′′(ϕx )|U ′′(ϕX )e−UX /	 [71,82] [where UX =

U (ϕx ) − U (ϕX ), and x = a, b; X = A, B] plotted with dashed
lines of the respective colors. Note that because of the increas-
ing difference UB − UA the ratio

�A
1 /�B

1 ∼ exp [(UB − UA)/	] (18)

increases exponentially with α. Consequently, for high
enough α and low enough 	 the average waiting time for
the escape from minimum A τA→B = 1/�A

1 is negligible com-
pared to the waiting time for the escape from minimum B
(τB→A = 1/�B

1 ). Therefore, in the long term, every single
positional jump Bm−1 → Am is immediately followed by a
single positional jump Am → Bm. The combination of these
two fractional PJs is effectively a complete 2π jump. This
is shown in Fig. 4(b) by the green bullets that were ob-
tained via a simplified model where only the 2πn jumps were
considered [35],

�D
n =

∫ 1/2

−1/2
λ0(k)e−2π ikndk. (19)

Their match with the �B
1 rate for high enough α is consistent

with the Fano-factor value of 1 in the inset of Fig. 4(a). This
has interesting physical consequences. If the temperature is
low enough, then, because 	 is in the denominator of the ex-
ponent of Eq. (18), any strongly damped ϕ junction or another
equivalent system describable by a double-harmonic potential
with a finite bias ib will in the steady state resemble a simple
single-harmonic system. As such, it can be described by the
analytical formulas derived for the single-harmonic potential.

B. Intermediate and weak damping

The stochastic dynamics of the particle in the tilted double-
well periodic potential in the regime of intermediate and weak
damping is significantly richer than in the strong-damping
case. For example, for weak bias force, there are positional
jumps over multiple maxima, and for stronger bias, a compli-
cated switching between running and locked solutions is the
prevailing source of the velocity noise. Even the retrapping
of a particle from the running to locked regime has complex
dynamics, as discussed below.
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FIG. 5. (a) Three examples of a typical low-temperature Fano
factor F = S/(2π〈v〉) dependence on the bias force for weak damp-
ing. The lines were calculated by the MCF method, and the bullets
show the ME results from Eq. (17). Vertical arrows mark the re-
lated noiseless retrapping forces. (b) An illustration of the stationary
distribution function W (v, ϕ) in the switching regime calculated for
γ = 0.2, α = 0.02, ib = 0.38, and 	 = 0.08. The arrows illustrate
the processes and their rates as used in Eq. (21). Namely, the red
arrows represent escape from the locked states to the running one,
the black arrows represent retrapping of the particle, and the blue
arrows are the positional jumps between the locked states A and B.
The gray dashed curves show the separatrices between the running
solution and the locked solution in the well A (solid line) and/or well
B (dashed line), respectively.

The dependencies F − ib for the underdamped case [plot-
ted in Fig. 5(a)] differ qualitatively from the strongly damped
case [Fig. 4(a)]. The dominant feature of the Fano factor
is a huge peak [note the logarithmic scale in Fig. 5(a)] for
finite ib. As was shown in our previous study of the RCSJ
model with single-harmonics CPR [35], this peak is a con-
sequence of the switching process between coexisting, but
well-separated, running and locked states in this range of ib.
This interpretation is also valid for the double-well potential,
where, however, there exist two locked states as illustrated in
Fig. 1.

We support this claim in Fig. 5(b) where an example of
the stationary distribution function W (v, ϕ) is plotted for the
parameters (see figure description) close to the maximum
of the peak. Here, the two distinct peaks at v ≈ 0 centered
around potential minima signal the two locked states. The
continuous ridge that spreads above them is the running state.
In this regime, the prevailing contribution to the overall ve-
locity noise comes from the switching between these three
well-separated metastable states.

When we lower ib to the regime in between the thermal
divergence at ib → 0 and the switching maximum, multiple
fractional positional jumps become the prevailing source of
the velocity noise. We now analyze the regimes of positional
jumps and switching separately and then show how they tran-
sition smoothly into each other.

1. Positional jumps

In Fig. 6 we show the rates of multiple positional jumps
for weak damping γ = 0.2, low temperature 	 = 0.1, and
different values of α and ib, where n is the number of max-
ima bridged by a single process. The blue columns represent
the rates of jumps from the minima A and the red ones
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FIG. 6. The rates of multiple fractional positional jumps (of order n) for different values of the bias force ib and ratio α. The inset in (a) is a
verification of the detailed balance condition. The blue columns describe jumps starting at minimum A, red at minimum B (a small horizontal
shift is introduced for visibility), and the green columns in panel (c) show the rates obtained via the simplified model where only 2πn PJs were
considered [analogously to Fig. 4(b)].

from the minima B. The n dependence of the PJ rates for
α = 0 shown in panel (a) is the same as that for the simple
single-harmonic potential [35] up to a redefinition of the jump
length. We use it as one of the tests of our extended FCS
method. In the inset of Fig. 6(a) we show the ratios �−n/�n

for n = 1, 2, 3 obtained numerically with FCS (bullets and
crosses) and analytically from the detailed balance condition
�−n/�n = exp(−πnib/	) with the potential drop of π ibn
along the positional jumps (lines). There is a perfect match
over seven orders of magnitude for each n = 1, 2, 3 proving
the reliability of the FCS plus MCF method.

The profile of the rates for potentials with finite α is more
complicated. The n dependencies of the PJ rates differ quali-
tatively between jumps starting in different minima, as well as
between odd and even n′s. We show this in Figs. 6(b) and 6(c).
The rates �A

n and �B
n differ by several orders of magnitude for

odd n′s [see α = 0.2 case in Fig. 6(c)], but are comparable
for even n′s. This can be rationalized by analyzing the “tra-
jectories” of the particular PJs following the illustrations in
Figs. 1(b) and 1(c).

The jumps Am → Am+n/2 and Bm → Bm+n/2, where n is an
even integer, are indeed comparable. Here, the particle had to
overcome the same number of maxima a as well as b, namely
n/2. In the idealized case, they traveled the same distance πn.
Therefore, also the related rates are equivalent. However, this
is not true for odd jumps representing fractional PJs between
minima of different kinds. In the case of an odd n the particle
overcomes (n + 1)/2 of the lower maxima but only (n − 1)/2
of the higher ones during a �A

n process. The opposite is true for
the �B

n process. Furthermore, travel distances differ by 2π −
2d . Consequently, the “odd” rates differ significantly (�A

n �
�B

n for positive n).
Taking into account this dynamics, the result that it is more

probable for a particle to travel over n + 1 maxima than just
over n [for example, �A

3 > �A
2 and �B

2 > �B
1 in Figs. 6(b) and

6(c)] seems rather paradoxical. However, this is a problem of
“retrapping” of a particle. Basically, if the particle has already
overcome the higher maximum b, it will also obtain enough
inertia in this regime to overcome the next lower maximum
a. This is a parameter-dependent process, and the retrapping
scenario can be rather complicated [50,79] as is also discussed
below in Sec. III B 3.

If the single-jump rate �A
1 (slip over single smaller max-

ima) is much larger than the rate of any other process, as
is typical for high α and high bias force [Fig. 6(c)], it is
again possible to capture the dynamics of the system using
the simplified model described by Eq. (19). This is shown in
Fig. 6(c), where the green columns represent the rates of the
jumps 2nπ , where the double-well character of the potential
is ignored. This model agrees well with the even rates, which
do not reflect the difference between the two kinds of minima.
The underlying reason is that the waiting time for an escape
from the minima of type A is negligible compared to other
timescales.

Before moving to the switching regime, it is worth stress-
ing that the FCS method works well up to surprisingly high
Fano factors (F ∼ 102). This is shown in Fig. 5(a) where the
bullets represent the Fano factor obtained directly from the
rates by Eq. (17). They are aligned with the curves obtained
by the full MCF method up to the values of ib that are higher
than the retrapping forces of the noiseless scenario [marked
with the arrows at the bottom of Fig. 5(a)]. The mathemat-
ical explanation of this agreement is that for ib between the
positional-jump regime and the switching regime, the first
two eigenvalues with the largest real parts are still sufficiently
separated from the next ones. In addition, the comparison
in Fig. 5(a) also shows that the multiple positional jumps
smoothly change into the running state as we enter the switch-
ing regime. Nevertheless, a different approach is needed to
investigate the dynamics in this regime.

2. Switching processes

The positional jumps within the double well play an im-
portant role even in the regime of larger bias forces, where
the switching between running and locked solutions takes
place. To show this and to evaluate the escape and retrapping
rates between locked and running metastable states, we again
introduce a simplified model. We divide the full probability
distribution function into three well-separated regions and
calculate the occupation probabilities for each of them. The
sharp borders between the regions are defined by separatri-
ces of the noiseless (	 = 0) dissipative steady-state solution.
In plain words, we determine the momentary regime of the
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particle by identifying the deterministic steady state in which
the particle would end with its current position and velocity
for the noiseless case.

A trivial example of such a division is plotted in Fig. 5(b).
There, the solid gray curve separates the A-valley locked
state with the associated time-dependent occupation proba-
bility PA(τ ), the dashed curve separates the B-valley locked
state with the associated occupation probability PB(τ ), and,
consequently, the rest of the area belongs to the running state
with occupation probability PR(τ ). The associated occupation
probabilities are assumed to satisfy the master equation

d

dτ

⎛
⎜⎝PR

PA

PB

⎞
⎟⎠ = MS

⎛
⎜⎝PR

PA

PB

⎞
⎟⎠, (20)

with the rate matrix

MS =

⎛
⎜⎝

−(�rA + �rB) �eA �eB

�rA −(�eA + �AB) �BA

�rB �AB −(�eB + �BA)

⎞
⎟⎠,

(21)

where �eA (�eB) is the escape rate from potential well A (B)
to the metastable running state; �rA and �rB are the retrapping
rates from metastable running state to the potential well A or
B, respectively, and �AB (�BA) is the total rate of the positional
jumps (of any length) from potential well A to B (B to A) as
illustrated in Fig. 5(b).

These rates can be obtained by reconstructing the switch-
ing matrix MS = PLSP−1, with the diagonal matrix

LS =
⎛
⎝λ0 0 0

0 λ1 0
0 0 λ2

⎞
⎠ (22)

containing the three eigenvalues with the largest real parts
of the full Fokker-Planck operator calculated via MCF [27].
They represent the stationary state λ0 = 0 and the first two
excited states λ1 and λ2. The matrix P is a square matrix of
the three related eigenvectors. The three components of each
eigenvector are obtained by integrating the full MCF eigen-
functions over the areas bounded by the separatrix curves of
particular solutions. The separatrices are 2π periodic and, as
illustrated in Fig. 2, can be quite complex when γ → 0. As a
consequence, dynamical processes, such as the retrapping of
the particle, can be very complicated [50].

A typical example of the rate dependencies on the bias
force and related stationary occupations of particular states
for α = 0.2 and α = 0.02 are plotted in Fig. 7. They represent
two different regimes.

In panel (a), where α = 0.2 and 	 = 0.1, the positional
jump from minimum A to minimum B has a rate �AB (solid
blue line) that is of the same order as the escape rate �eA (solid
red line) and much higher than the escape rate �eB (dashed red
line) at small bias. The rate of the opposite positional jump
from B to A (blue dashed line) is negligible. In addition, the
retrapping rate �rB (dashed black line) is almost two orders of
magnitude larger than retrapping rate �rA (solid black line) in
the entire plotted range. This means that the mean lifetime of
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FIG. 7. (a), (c) Dependencies of the escape, retrapping, and po-
sitional jump rates [illustrated in Fig. 5(b)] on the bias force within
the switching regime calculated using the simplified model (20). (b),
(d) Related steady-state occupation probabilities. Two qualitatively
different cases are presented: panels (a) and (b) show α = 0.2 where
in the steady state the system behaves effectively as a single well, and
panels (c) and (d) show α = 0.02 where the double-well character is
evident.

a particle trapped in the locked state A is negligible compared
to the mean lifetime of the two other states. Consequently, in
the steady state, the system exhibits bistable behavior rem-
iniscent of a system governed by a simple single-harmonic
potential. This is also evident in Fig. 7(b), where the stationary
occupation probabilities are plotted. For low bias forces, the
particle is predominantly trapped in the state B, while a sharp
transition to the running state is observed near the Fano factor
maximum (Fig. 5, blue curve). Throughout the range depicted
in the figure, the locked state A exhibits minimal influence on
the system dynamics.

The situation is qualitatively different for α = 0.02. In this
case, �AB and �BA are comparable and considerably smaller
than those of the escape and retrapping processes within the
range where switching occurs. However, this does not mean
that positional jumps between the two locked states are ir-
relevant. As we discuss later in detail, it only means that
their influence is apparent only on much longer timescales.
At shorter ones, the dynamics is governed by the escape
and retrapping processes. Due to the small α, the rates of
escape and retrapping processes are comparable (�rA ∼ �rB

and �eA ∼ �eB). Together, this leads to steady-state occupa-
tion probabilities where both locked states are relevant, as
illustrated in Fig. 7(d). Interestingly, even with the low value
of α = 0.02, there remains a significant difference between
the occupation probabilities of states A and B in the steady
state.

The results of the simplified model (20) can also be used
to test whether the peak in the Fano factor actually arises as a
result of switching between the running and locked states. In
the vicinity of the peak where F � 1 we can neglect the noise
contributions inherent to particular metastable states [35,83]
and calculate F from the average velocity (obtained here from
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FIG. 8. Comparison of the factor factor F = S/(2π〈v〉) depen-
dencies on the bias force where the black lines were calculated by the
MCF method, and the red circles show the ME results from Eq. (23).

MCF) and rates and probabilities from the ME (20) as [35]

FME = 〈v〉(vr − 〈v〉)

πvr�e
, (23)

where we approximate the velocity in the running state by
vr = ib/γ . The total escape rate �e is calculated as �e =
P̄A�eA + P̄B�eB where P̄A,B = PA,B/(PA + PB) reflect the prob-
abilities with which the already locked particle is placed in
minima A or B. We show in Fig. 8 a comparison of the
Fano factors obtained from Eq. (23) (red circles) with the
full MCF solution (black lines) for the same parameters as
used in Fig. 7. The Fano factors are in very good agreement
confirming both the origin of the peak from the switching
processes and the validity of the simplified model (20).

In addition to steady state, the simplified model (20) allows
us to easily investigate the time evolution and to understand
its particular time regimes. This can be useful not only by
itself but also as a supporting tool for full-scale Langevin
simulations. Let us illustrate this by investigating a retrapping
process after a parameter quench.

3. Retrapping

It is often difficult to reach the steady state in experi-
mental realizations or realistic Langevin simulations. This is
especially problematic for systems with low noise and weak
damping. However, once we have the rates of the most rele-
vant processes, we can investigate even long-time processes
via the master equation (20).

As an illustration, we analyze the scenario of a sudden
quench of the parameters. We employ the master equation (20)
as well as large-scale Langevin simulations. For the latter, we
used the modified Euler-Heun method LambaEulerHeun from
the Julia package DifferentialEquations.jl with adaptive inte-
gration step. In the simulations, we used ≈6.5 × 104 particles
and, as before, their immediate regime was identified via the
separatrices for the model parameters after the quench.

We focus on the case with the steady state illustrated in
Fig. 7(d), i.e., α = 0.02, γ = 0.2, and 	 = 0.1. We prepare
the system in a state where it is fully running, for example,
with a high bias force. For the simplified model, this means
setting PR(τ = 0) = 1 and PA(τ = 0) = PB(τ = 0) = 0. For
the Langevin simulation, the system was first thermalized at
ib = 0.5, which also gives PR(τ = 0) ≈ 1, as evident from
Fig. 1. In the next step, we abruptly change the bias force to
ib = 0.2, which is just below the actual retrapping force ir . For
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FIG. 9. Example of the time dependence of the occupation prob-
abilities of the three metastable states for ib = 0.2 with initial
condition PR = 1, PA = 0, and PB = 0. This models a sudden quench
of very large bias force to bias force just above the retrapping force
of the noiseless case. Solid lines are results of the simplified model
(20); dashed lines show full Langevin simulations for two different
initial conditions.

ib = 0.2 the system is already almost exclusively in the locked
steady state, yet the running state is still possible and can be
identified by its separatrix.

The calculated time dependencies of the occupation prob-
abilities are shown in Fig. 9 by the solid (master equation)
and dashed (Langevin dynamics) black (PR), blue (PA), and
red (PB) lines. The logarithmic timescale reveals several
metastable regimes. At short times, there are the largest dif-
ferences between the simplified model and the full simulation,
as expected. In particular, the change in initial occupations is
faster for the simplified model than in the simulation. This is
due to the details of the initial state, that is, the initial distribu-
tion of the particles. Full dynamics starts with a relatively high
mean velocity of the particles, and therefore it takes a while to
slow them down.

To illustrate that this is indeed the case, we also show a
simulation with different initial conditions. The dashed lines
in dark gray (PR), cyan (PA), and orange (PB) started in a steady
state with ib = 0.3 and 	 = 0.01 and, therefore, significantly
lower mean velocity. The short-time dynamics of this case
approaches that of the simplified model. Nevertheless, the
simplified model almost perfectly predicts, and, more im-
portantly, explains, the full dynamics of these simulations at
longer times.

First, particles are quickly caught in the minima around
τ ∼ 101, because the retrapping rates are �rA ∼ �rB ≈ 10−1.
The system is close to being completely trapped before τ ∼
102. However, although relatively stable, the occupation prob-
abilities of the locked states are far from their steady-state
values (horizontal dash-dotted lines) obtained by the MCF
method discussed above. This metastable state exists due to
the large separation of the retrapping rates from the escape
and positional jumps rates; see Fig. 7(c). Probabilities start
to approach the true steady state only for τ � 104 where first
the escape processes with rates �eA ∼ �eB ∼ 10−4 and then
positional jumps with �AB ∼ 0.5 × 10−4 start to be relevant.
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This difference of more than two orders of magnitude be-
tween the time of retrapping and reaching the steady state, as
well as the existence of the metastable region, is an important
observation. The long-lived metastable regime can be easily
mistaken for the steady state in experiments or simulations.
Furthermore, although not evident from the images presented,
the Langevin simulations are becoming unstable for τ ∼ 105

due to the accumulation of numerical errors. The simple
model does not suffer from this problem and has the benefit
of being directly interpretable.

IV. CONCLUSION

In conclusion, we have presented a theoretical study of the
stochastic dynamics of a particle in the periodic double-well
potential. A combination of the matrix continued fraction
technique applied to solve the Fokker-Planck equation com-
bined with the full counting statistics and simple master
equation models allowed us to determine the role of particular
processes in the overall dynamics.

For strong damping, analysis of the velocity Fano factor re-
vealed a region where single jumps, including fractional ones,
are the prevailing source of the velocity noise. We have shown
that with decreasing temperature, the steady-state properties
of the overdamped junction approach an effective single-well
system for any finite α.

In the intermediate- and weak-damping regime, the FCS
analysis showed complex dynamics related to the single and
multiple positional jumps. The revealed large differences be-
tween the rates of odd (fractional) and even positional jumps
can be explained by analyzing the particle trajectories. Even
in this regime, we have identified parameter ranges, for which
a single-harmonic analysis is sufficient for the description of
the main positional slip statistics.

In the analysis of the switching regime, we have presented
a simple master equation method to calculate the escape
and retrapping rates. We have focused on both the regime
where the double-well character plays an important role in
the steady-state statistics and the regime where it does not.
We have shown how this property is related to the retrap-
ping, escape, and positional jump rates. We have demonstrated
how these rates evolve with the bias force and determined
the probabilities of steady-state occupations. The important
observation is that retrapping, escape, and positional jumps
can have rates that differ by orders of magnitude. This sets
distinct timescales in realistic retrapping processes.

To illustrate this, we have investigated a quench, where
the system in the fully running steady state is quenched to
a bias force near the critical lower retrapping bias. We have
shown that the results of the simplified model are in agreement
with full Langevin simulations at longer times and that the
differences at the short times are due to the details of the initial
state used. The advantage of the simplified model is its stabil-
ity at long times and, more importantly, its straightforward
interpretability. Each time regime can be related to particular
rates. In this way, we have been able to identify a metastable
locked state, which can be easily mistaken for a steady state,
due to the low escape rates and low rates of the jumps between
the minima.

To wrap up, besides providing a simple technique for an-
alyzing the statistical properties of stochastic systems with
double-well periodic potentials and analyzing their proper-
ties, we have shown two rather general features of such
systems that can be crucial for the analysis of experimental
setups. First, for a broad range of parameters in a strong-
and intermediate-damping regime, the steady-state system can
be approached with a simple single-harmonic model. Con-
sequently, the two-well character of real potentials can be
hidden in the averaged data when the escape rate from one
of the minima significantly exceeds the other rates. This can
be true even for wells of similar depths at low noise.

On the other hand, the occupations of the two minima in
the fully locked steady state can be significantly different even
for nearly equal minima if the damping is low. In addition,
these occupations are highly parameter sensitive. What is also
important for analysis of experiments and numerical simula-
tions is the realization that the retrapping time and the time
when the steady-state occupation is finally reached can differ
by several orders of magnitude.
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