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Anharmonicity-induced phonon hardening and anomalous thermal transport in ScZn
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Phonon anharmonicity plays a crucial role in the lattice dynamics and lattice thermal conductivity κL of solids.
Here, by combining first-principles calculations with the linearized Boltzmann transport equation, we unveil
that phonon anharmonicity can make an unexpected contribution to κL and thereby lead to anomalous thermal
transport behavior in the intermetallic compound ScZn, a recently theoretically predicted topological phonon
material. We explicitly consider phonon renormalization, four-phonon (4ph), and phonon-electron scattering to
predict the κL of ScZn. The results show that anharmonic phonon renormalization due to quartic anharmonicity
gives rise to significant phonon hardening, especially for heat-carrying acoustic phonons. We also reveal that
anharmonic effects largely decrease the fourth-order force constants, causing the dramatic suppression of 4ph
scattering on κL . The incorporation of renormalization-induced phonon hardening and the decrease of quartic
force constants makes a consequence of an almost twofold increase in the κL compared to the conventional
harmonic treatment, from 3.9 to 7.6 W/mK at room temperature. This is enabled by the suppressed phonon
scattering phase space and weakened fourth-order lattice anharmonicity due to the temperature-induced phonon
renormalization effect. Moreover, it is found that the electronic contribution κe always plays a dominating role
on the thermal conductivity; however, the lattice contribution is still considerable, leading to the substantial
deviation of Lorenz number from the Sommerfeld value. This work provides a fundamental understanding of
the thermal transport in ScZn and highlights the importance of anharmonic effects on the phonon energies and
thermal conductivity of metals.
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I. INTRODUCTION

Thermal transport is fundamentally important for a wide
range of applications including energy conversion, heat man-
agement, and thermal barrier coatings [1–4]. It was generally
believed that heat is mostly carried by phonons in nonmetallic
solids, while in metals electrons overwhelmingly dominate
the thermal conductivity (κ) and phonons have a negligi-
ble contribution. Recently, numerous transition intermetallic
compounds and group-VI metals [5–8] have been identified to
display an unusually high lattice (phonons) thermal conduc-
tivity (κL) at room temperature, comparable to or even larger
than their electronic counterpart (κe). Notably, theoretical
studies [9,10] predicted that the metallic compound TaN pos-
sesses an ultrahigh thermal conductivity primarily due to the
contribution of phonons, and under moderate pressures (20–
70 GPa), its κ can even surpass that of BAs, one of the best
heat conductors. These studies have stimulated the investiga-
tion of anomalous heat transport in metals. The anomalously
large κL in these metals is found to be highly associated
with the unique combination of phononic and electronic struc-
ture [9] such as large frequency gap between acoustic and
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optical branches, acoustic bunching, and the low electronic
density of states (DOS) near the Fermi level, which gives rise
to weak phonon-phonon and electron-phonon interactions. On
account of the considerable phononic contribution to κ , these
metals usually have a Lorentz number L = κ/σT , where T is
temperature and σ is the electrical conductivity, significantly
larger than the Sommerfeld value L0 = π2k2

B/3e2 = 2.445 ×
10−8 V2/deg2. Therefore, it is rather challenging to experi-
mentally separate the phononic and electronic contributions
to κ of these metals via the Wiedemann-Franz law (WFL)
using a presumed Lorenz number L0, although it works well
for many conventional metals. This difficulty in experiment
underscores the importance of establishing a theoretical un-
derstanding of the phononic and electronic thermal transport
of metals in this category.

In the last decade, significant advancements in theoret-
ical and computational efforts have been made to probe
phonon-phonon, phonon-impurity, and electron-phonon inter-
actions and their impact on various fundamental transport
phenomena. Until now, parameter-free first-principles calcu-
lations in conjunction with the Peierls-Boltzmann transport
equation (PBTE) have led to fundamental insights on ther-
mal transport in solids and enabled accurate prediction of
contributions to κ from both electrons and phonons [3,11–
13]. In metals, the intrinsic κL is determined by anharmonic
phonon-phonon scattering and phonon scattering by electrons
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(hereafter “phonon-electron scattering”), while the intrinsic
electronic contribution is limited by the scattering of electrons
by phonons, or “electron-phonon scattering.” Within the har-
monic approximation (HA) framework, the phonon linewidths
and κL of numerous materials have been predicted accurately
and understood reasonably when considering higher-order
four-phonon scattering in addition to the lowest order of
anharmonicity (three-phonon scattering) [14–18]. Moreover,
recent studies [19–26] have shown that anharmonic phonon
renormalization effect at finite temperatures plays a cru-
cial role in determining the phonon energy, linewidth, and
κL, especially for materials with strong anharmonicity or
at high temperatures. Although the research techniques of
accurately predicting thermal conductivity of metals are
gradually maturing, thermal transport properties of a large
number of metallic compounds with unique electronic or
phononic structures, such as topological materials, remain less
explored.

In this work, we conduct a comprehensive study of the
phononic and electrical thermal transport properties of ScZn
utilizing first-principles-based linearized PBTEs. ScZn, an
intermetallic compound with a B2 lattice structure, was re-
cently predicted to have coexisted nodal-line and nodal-ring
topological phonons (TPs) [27]. However, a thorough and
fundamental understanding of the intrinsic thermal transport
in ScZn, which may be closely connected to its rich TPs, has
yet to be established. By performing self-consistent phonon
(SCP) calculations that include effects from bubble and loop
diagrams, we show that anharmonic phonon renormalization
induces a significant phonon hardening of the phonon disper-
sion at elevated temperatures, due to the strong fourth-order
phonon anharmonicity. Employing the temperature-dependent
harmonic and anharmonic force constants, we predict the κL

of ScZn in the temperature range of 200–800 K, by con-
sidering three-phonon (3ph), four-phonon (4ph), isotope, and
ph-el scatterings. Notably, we find that incorporating the an-
harmonic effects induced by temperature leads to significant
enhancement in the κL, with a twofold increase of κL at
room temperature. This is due to the combined effects of
anharmonic phonon frequency renormalization and decreased
fourth-order force constants with temperature, which severely
suppress phonon scattering rates of heat-carrying acoustic
phonons by altering the scattering phase space and anhar-
monic interaction matrix elements. Furthermore, by solving
the electron PBTE, we also predict the phonon-limited elec-
trical conductivity σ and electronic thermal conductivity κe.
Our calculation shows that although κe always dominates the
thermal conductivity throughout the temperature range, the
lattice contribution is still significant, thereby leading to the
substantial deviation of Lorenz number from the Sommerfeld
value. Given that no experimental measurements of heat trans-
port of ScZn have been reported, our theoretical prediction
provides a basis for future experimental verification.

II. METHODOLOGY

A. First-principles calculations

The phonon frequencies and anharmonic interatomic force
constants (IFCs) are calculated by using density functional

theory (DFT) as implemented in the Vienna ab init io simu-
lation package (VASP) [28,29]. The exchange and correlation
function is treated by generalized gradient approximation with
the Perdew-Burke-Ernzerhof functional (PBE) [30], with the
plane-wave energy cutoff of 500 eV. The projector augmented
wave method [31] is used to treat the Sc (3p63d24s1) and Zn
(3d104s2) shells as valence states. The HA harmonic IFCs,
third-order IFCs, and fourth-order IFCs are obtained by the
finite-difference method with the supercell of 4 × 4×4, using
PHONOPY [32], THIRDORDER [33], and FOURTHORDER [34]
codes, respectively. The cutoff radii of 0.5 and 0.2 nm
are considered for third-order IFCs and fourth-order IFCs,
respectively. The electron energies are calculated within den-
sity functional perturbation theory (DFPT) by the QUANTUM

ESPRESSO package [35], where the interaction between the
ionic and the valence electrons is described by ultrasoft pseu-
dopotentials [36,37]. The cutoff energies for wave functions
and charge densities are set to 60 and 600 Ry, respectively.
The energy convergence threshold of 10−12 eV and a grid of
12 × 12 × 12 k points and 6 × 6 × 6 q points are used with
the Monkhorst-Pack scheme. The electron-phonon Wannier
(EPW) package [38] is employed to compute the electron-
phonon coupling matrix elements with the coarse grids of
6 × 6 × 6 for both k and q points, which are then inter-
polated into the dense 30 × 30 × 30 for the calculation of
phonon-electron (ph-el) scattering rates. Also, final grids of
65 × 65 × 65 for both k and q points are used to calculate the
electron-phonon (el-ph) scattering rates and κe via employing
the PERTURBO code [39].

B. Anharmonic phonon renormalization and
temperature-dependent force constants

The anharmonic renormalization effect on the phonon
energies is incorporated by using SCP approximation
method [40,41] as implemented in the ALAMODE pack-
age [41,42]. With only the first-order correction due to quartic
anharmonicity (i.e., the loop diagram) is included, the SCP
equation when neglecting the off-diagonal elements can be
expressed as

�2
q = ω2

q + 2�qIq, (1)

where ωq represents the harmonic phonon frequency at q,
and �q denotes the anharmonicity-renormalized phonon fre-
quency at finite temperatures. The term Iq is defined as

Iq = 1

8N

∑
q′

V (4)(q; −q; q′,−q′)
4�q�q′

[1 + 2n(�q′ )], (2)

where N , h̄, n, and V (4)(q; −q; q′; −q′) represent the number
of uniformly sampled q points, the reduced Planck con-
stant, the phonon occupation number that obeys Bose-Einstein
distribution, and the 4ph interaction strength, respectively.
To provide more accurate prediction for the renormalized
phonon frequencies, we further consider the off-diagonal
terms of the phonon loop self-energy for polarization mixing
(PM) [42], which were reported significant in certain crystal
systems [25,43]. In the SCP calculations, the q mesh is set to
4 × 4 × 4 and the inner q′ is set to 4 × 4 × 4. Recognizing
that first-order SCP calculations solely yield renormalized
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phonon energies originating from quartic anharmonicity, po-
tentially leading to overestimation in highly anharmonic
compounds [44,45], we also estimate additional negative fre-
quency shifts stemming from cubic anharmonicity, i.e., the
bubble diagram, within the quasiparticle approximation, uti-
lizing the following self-consistent equation [44]:

(
�B

q

)2 = �2
q − 2�qRe

B∑
q

[G, φ3]
(
�B

q

)
, (3)

where
∑B

q [G, φ3](�q) denotes the phonon frequency-
dependent bubble self-energy, with B representing the bubble
diagram, and φ3 denotes the third-order IFCs included in
the anharmonic self-energy calculation. Additionally, the
temperature-dependent (TD) IFCs were derived using the
finite-temperature effective potential method as implemented
in the TDEP package [46,47]. Specifically, we utilize an ef-
ficient stochastic method for TDEP, eliminating the need for
ab initio molecular dynamics [48]. Initially, we use the har-
monic IFCs calculated at the ground state as starting points to
generate snapshots of a 4 × 4 × 4 supercell of ScZn at a speci-
fied temperature, by employing the canonical_con f igurat ion
module of TDEP, which enables consideration of nuclear
quantum effects [48]. Subsequently, we conduct a series of
VASP forces and displacement calculations to extract the TD
IFCs. The TDEP code can iteratively generate new IFCs from
forces and displacements and new snapshots from IFCs until
achieving self-consistency. Eventually, TD harmonic and an-
harmonic IFCs are obtained.

C. Phonon thermal conductivity

In the framework of the linearized phonon PBTE, the lat-
tice thermal conductivity κL along the transport direction is
expressed as

κL =
∑

λ

Cλν
2
λτλ, (4)

where λ represents the phonon mode with the specific wave
vector q and frequency ω, and Cλ, νλ, and τλ are the
specific heat, phonon group velocity, and phonon lifetime,
respectively. Here, τλ is obtained by accurately solving the
PBTE with an iterative scheme starting with the relaxation
time approximation (RTA), as implemented in the modi-
fied SHENGBTE package [22,33,34]. Within the RTA, the
phonon scattering rate, inverse of τλ, is computed as the
summation of contributions from anharmonic three-phonon
(3ph, 1/τ

3ph
λ ), four-phonon (4ph, 1/τ

4ph
λ ), phonon-isotope

(ph-iso, 1/τ iso
λ ), and phonon-electron (ph-el, 1/τ

ph-el
λ ) scatter-

ing processes through the Mattiessen’s rule [49], expressed
as

1

τλ

= 1

τ
3ph
λ

+ 1

τ
4ph
λ

+ 1

τ iso
λ

+ 1

τ
ph-el
λ

. (5)

The phonon scattering terms resulting from 3ph, 4ph, ph-
iso, and ph-el scatterings are given by [11,33,50,51]

1

τ
3ph
λ

=
∑
λ′λ′′

{
1

2
(1 + nλ′ + nλ′′ )�− + (nλ′ − nλ′′ )�+

}
, (6)

1

τ
4ph
λ

=
∑

λ′λ′′λ′′′

{
1

6

nλ′nλ′′nλ′′

nλ

�−− + 1

2

(1 + nλ′ )nλ′′nλ′′′

nλ

×�+− + 1

2

(1 + nλ′ )(1 + nλ′′ )nλ′′′

nλ

�++

}
, (7)

1

τ iso
λ

=
∑
λ′

�iso, (8)

1

τ
ph-el
λ

= 2�′′
qν

h̄
, (9)

where �±, �±±, and �iso are the scattering probability ma-
trices for 3ph, 4ph, and ph-iso processes, respectively. �′′

qν

represents the imaginary part of phonon self-energy, and ν

signifies the phonon branches. These quantities are written as

�± = π h̄

4N
|V (3)

± |2
±
δ(ωλ ± ωλ′ − ωλ′′ )

ωλωλ′ωλ′′
, (10)

�±± = π h̄

4N

h̄

2N
|V (4)

±±|2
±±
δ(ωλ ± ωλ′ ± ωλ′′ − ωλ′′′ )

ωλωλ′ωλ′′ωλ′′′
, (11)

�iso = π

2N
ωλωλ′

∑
n
b

gb

∣∣eλ
beλ′∗

b

∣∣2
δ(ωλ − ωλ′ ), (12)

�′′
qν = 2π

∑
mn

∫
BZ

dk
�BZ

|gmn,ν (k, q)|2

× [
fnk(T ) − fmk+q(T )

]
δ(εmk+q − εnk − ω). (13)

In these expressions, 
 and δ ensure the momentum conser-
vation and energy conservation of scattering processes. For
3ph processes, + represents the absorption processes and −
the emission processes. As for 4ph processes, three types of
scattering channels are involved, i.e., recombination (++),
redistribution (+−), and splitting (−−) processes. Mass dis-
order can be quantified by gb = ∑

j f jb(1 − mjb/mb)2, where
j denotes the isotope types, f jb is the fraction of the isotope
j, and mb is the average atom mass of the basis b sites. fnk(T )
represents the electronic occupation at wave vector k and band
indices n, εnk are the associated eigenvalues, and gmn,v (k, q)
represents the electron-phonon matrix element. The transition
probability matrices V (3)

± and V (4)
±± are

V (3)
± =

∑
i jk

∑
αβγ

�
αβγ

i jk

eλ
α (i)e±λ′

β ( j)e−λ′′
γ (k)√

MiMjMk
e±iq′ ·r j e−iq′′ ·rk , (14)

V (4)
±± =

∑
i jkl

∑
αβγ θ

�
αβγ θ

i jk

eλ
α (i)e±λ′

β ( j)e±λ′′
γ (k)e−λ′′′

γ (l )√
MiMjMkMl

× e±iq′ ·r j e±iq′′ ·rk e−iq′′′ ·rl . (15)

Here, �αβγ

i jk and �
αβγ θ

i jkl are the third- and fourth-order IFCs. eλ
α

denotes the phonon eigenvector and r j is the position vector
of the jth unit cell. i, j, k, l denote the atom indices and
α, β, γ , θ denote the directions.

D. Electronic thermal conductivity and electrical conductivity

The determination of electrical thermal conductivity (κe)
and electrical conductivity (σ ) involves solving the linearized
electron PBTE. The electrical conductivity σ is defined as [11]

σ = 2e2

NkV kBT

∑
nk

f 0
nk

(
1 − f 0

nk

)
vnk ⊗ Fnk, (16)
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FIG. 1. (a) The crystal structure of ScZn (space group Pm3m 221). (b) Calculated temperature-dependent phonon dispersions from 200 to
800 K. The right panel gives the atom-decomposed partial phonon DOS at T = 0, 300, and 500 K. (c) The first Brillouin zone (BZ) and the
corresponding (001) surface BZ of ScZn. Calculated temperature-dependent squared phonon frequency of the lowest-lying acoustic phonon
branch at the M (d) and R (e) points, respectively.

where e is the elementary charge, f 0
nk is the equilibrium elec-

tron Fermi-Dirac distribution, and vnk is the electron group
velocity. Fnk is the electron mean-free path limited by el-
ph scattering processes, which is exactly resolved using an
iterative PBTE scheme [11,12]. The electronic thermal con-
ductivity κe is given by [11]

κe = 2

NkV kBT 2

∑
nk

f 0
nk

(
1 − f 0

nk

)
(Enk − E f )2vnk ⊗ Fnk

− T σS2, (17)

with

σS = 2e

NkV kBT 2

∑
nk

f 0
nk

(
1 − f 0

nk

)
(Enk − E f )vnk ⊗ Fnk,

(18)
where Enk and E f are the electronic energy and Fermi energy.
The convergence of κe and σ concerning q-points density is
carefully tested and displayed in Fig. S3 of the Supplemental
Material (SM) [52].

III. RESULTS AND DISCUSSION

A. Anharmonicity-induced phonon hardening

ScZn crystallizes in a body-centered-cubic (bcc) structure
with a space group of Pm3m (No. 221), where the Sc and
Zn atoms occupy the Wyckoff positions 1a (0, 0, 0) and
1b ( 1

2 , 1
2 , 1

2 ), respectively, as depicted in Fig. 1(a). We first
investigate the phonon dispersion of ScZn using different lev-
els of theory (HA and SCP calculations). The calculated HA
phonon dispersion is shown in Fig. S1 of the SM [52], which
is consistent with the literature [27] and does not exhibit any

imaginary frequencies in the whole BZ, indicating the dynam-
ical stability of ScZn at the ground state. The anharmonically
renormalized phonon dispersions from 200 to 800 K are dis-
played in Fig. 1(b). The overall phonon dispersion exhibits
a pronounced hardening as temperature increases, especially
for acoustic phonon modes in the frequency range of 2–4 THz
in the vicinity of the M point and along R-X and M-R high-
symmetry paths. These modes are primarily contributed by the
vibrations of Sc atoms, as revealed in the atom-decomposed
phonon DOS in the right panel of Fig. 1(b). In contrast, the
higher-frequency optical phonons that are dominated by the
vibrations of Zn atoms are slightly hardened with the increas-
ing temperature. Given that most materials typically tend to
exhibit phonon softening as the temperature increases [19,22],
the overall hardening of the phonon spectrum in ScZn is
unusual, which should be extremely important for the phonon
transport of ScZn since it can affect the phonon group velocity,
phonon scattering phase space, and consequently the κL.

Another thing worth mentioning is that a prior study [27]
has revealed the coexistence of nodal-ring TPs composed of
the band-crossing points near 4 THz and the nodal-line TPs
along the �X and the �R directions, as marked in the phonon
dispersion in Fig. 2(a). Since the topological properties are
determined by the harmonic IFCs, whether the harmonic IFCs
include anharmonic phonon renormalization could somehow
affect these TPs. As is evident from the phonon dispersions
at 0 and 300 K in Fig. 2(a), anharmonic phonon renormaliza-
tion obviously hardens the phonon branches at 300 K, which
causes the nodal-ring TPs to shift slightly towards higher
frequency while the nodal-line TPs are unaffected. To further
examine the influence of phonon renormalization effects on
the TPs, we also calculate the topological phonon surface
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FIG. 2. (a) Phonon spectra of ScZn at 0 and 300 K, respectively. The surface phononic spectra of the (001) surface of ScZn at (b) 0 K and
(c) 300 K, respectively.

states using the harmonic IFCs at 0 and 300 K, respectively.
As displayed in Figs. 2(b)–2(c), the surface states at 300 K are
similar to the case at 0 K except for an overall upward shift in
the phonon frequency, indicating that the phonon renormaliza-
tion effect enables the alteration of TPs in the energy space.

It is also important to note that both the third- and
fourth-order anharmonicities are responsible for the accu-
rate prediction of renormalized phonon frequencies, with
the former (bubble diagram) contributing negative phonon
frequency shifts whereas the latter (loop diagram) provid-
ing positive frequency shifts [21,23,25,26]. Hence, whether
the phonon mode eventually exhibits softening or hardening
should depend on the competition between the loop and bub-
ble diagrams. To clarify their relative importance, we calculate
the squared phonon frequency of the lowest-lying transverse
acoustic (TA) phonon mode at the M and R points as a
function of temperature, as shown in Figs. 1(d) and 1(e). It
is evident that compared with the results calculated solely
from the loop diagram, the resultant phonon frequency when
further consideration of the bubble diagram, although being
obviously suppressed, still shows a hardening behavior as
temperature increases, indicating the predominance of quartic
anharmonicity-induced phonon renormalization in determin-
ing the phonon frequency.

To understand the physics behind the anharmonicity-
induced phonon hardening, we further calculate the potential
energy surfaces (PESs) of the lowest-lying TA phonon mode
at the M and R points, as illustrated in Figs. 3(a) and 3(b).
It is clearly visible that both the TA modes show the U-

shaped PESs when atomic collective displacements increase
at elevated temperatures, which largely deviate from the HA-
contributed PESs. Notably, the U-shaped PESs of these modes
can be matched well with the fourth-order polynomial as seen
in the solid lines in Figs. 3(a) and 3(b), providing evidence
for the strong quartic anharmonicity at finite temperatures.
Besides, the strong anharmonic phonon hardening can also
manifest in the atomic mean-square displacements (MSDs).
From Fig. 3(c), we see that the calculated MSDs of both Sc
and Zn atoms in the HA are significantly larger than those
given by the SCP calculations at higher temperatures. This
implies that strong quartic anharmonicity hardens the atom
vibrations and thus suppresses the phonon population, leading
to the decreased MSDs.

B. Anharmonic phonon renormalization effects significantly
increases phonon thermal conductivity

We then examine the effect of anharmonic phonon renor-
malization on the lattice thermal conductivity κL of ScZn.
As shown in Fig. S2 [52], κL reaches convergence when the
q-point density is set to 12 × 12×12, and this setting will be
employed in the subsequent calculations. The κL values from
200 to 800 K are calculated using six levels of thermal trans-
port theory with accuracy from low to high, as illustrated in
Fig. 4(a). The lowest level of theory is the HA+3ph method,
namely, calculating κL with only 3ph scattering included using
all IFCs at the ground state, and the highest level of theory is
the SCP+3,4ph method, that incorporates both 4ph scattering

(a) (b) (c)

FIG. 3. Calculated potential energy surfaces (PESs) of the lowest-lying TA phonon mode at the M (a) and R (b) points. The insets denote
the corresponding vibration modes. (c) Calculated atomic mean-square displacements (MSDs) as a function of temperature. The dashed and
solid lines represent the results obtained from the HA and SCP calculations, respectively.
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κ
 

κ
κ 3

κ

(a) (b)

(c) (d)

FIG. 4. (a) A schematic illustrating the hierarchical ladder of
theories for calculating κL . The levels of theory with accuracy from
low to high are HA+3ph, SCP+3ph, SCP+3ph(TD), HA+3,4ph,
SCP+3,4ph, and SCP+3,4ph(TD), where the HA and SCP cor-
respond to phonon frequencies without and with renormalization
through the SCP theory, respectively, and 3/4ph denotes the calcu-
lated 3/4ph scattering rates using anharmonic IFCs at the ground
state (0 K), and 3/4ph(TD) for scattering rates calculated with the
TD anharmonic IFCs. (b) Temperature-dependent κL calculated at
different levels of theory. (c) The ratio of κ3,4ph to κ3ph as a function
of temperature, where κ3,4ph and κ3ph denote the κL values with and
without inclusion of four-phonon scattering, respectively. (d) The
branch contribution to κL at 300 K, predicted within the different
levels of theory.

processes and phonon renormalization effects on all harmonic
and anharmonic IFCs, while the other methods are a compro-
mise between the two. Specifically, the SCP+3ph means that
κL is calculated through 3ph scattering using the TD second-
order IFCs combined with the third-order IFCs at 0 K, while
the SCP + 3ph(TD) indicates that the κL is obtained using the
TD second- and third-order IFCs. Similarly, the SCP+3,4ph
represents the calculation when the 4ph scattering is included
using the TD second-order IFCs and the anharmonic IFCs
at 0 K. The calculated results are shown in Fig. 4(b), which
convey three important insights. First, anharmonic phonon
renormalization plays a crucial role in determining the κL as
temperature increases, which can significantly enhance the κL.
At room temperature, the predicted κL using the method III
is 8.3 W/mK, 18% larger than that given by the method I,
and as temperature rises to 800 K, the renormalization effect
increases the κL by 43%, from 2.7 to 4.7 W/mK. Second,
renormalization effects can greatly weaken the suppression of
4ph scattering on the κL. Specifically, at 300 K, including 4ph
scattering by the method IV reduces the κL from 7.6 W/mK
given by the method I to 3.9 W/mK, by 49%, and after con-
sideration of renormalization effect on the fourth-order IFCs,
4ph scattering only reduces κL by about 8% from 8.3 W/mK
given by the method III to 7.6 W/mK obtained from the
method VI. Third, consideration of full temperature effects on
anharmonic IFCs leads to remarkable improvement of κL. For
instance, the predicted κL using the method VI that captures

anharmonic effects on all IFCs is 7.6 W/mK at 300 K, which
is almost twice the one predicted by using ground-state all
IFCs, namely, the method IV.

To highlight the importance of phonon renormalization
effects and four-phonon scattering on the κL, Fig. 4(c) presents
the temperature-dependent ratio of κL calculated with and
without inclusion of four-phonon scattering, i.e., κ3,4ph/κ3ph,
using different levels of theory. When the renormalization
effects are not taken into account for all IFCs, four-phonon
scattering severely suppresses the κL at elevated temperatures,
e.g., by nearly 50% and 70% reduction at 300 and 800 K,
respectively. If we only consider the temperature-induced
renormalization effect on phonon dispersion, the suppression
of κL by four-phonon scattering is obviously weakened, e.g.,
including four-phonon scattering reduces κL by ∼40% at
300 K. This implies that phonon dispersion hardening ef-
fect reduces the number of allowed four-phonon scattering
processes, thus promoting an increase in κL. Remarkably, em-
ployment of renormalized all-harmonic and anharmonic IFCs
further greatly weakens the role of four-phonon scattering,
giving rise to a reduction of less than 10% in κL at room
temperature. That is, the renormalization effect significantly
weakens phonon anharmonicity and thus increases the κL. By
comparing the κ values obtained within the II and III levels of
theory, it is found that κL obviously decreases when renor-
malized third-order IFCs are employed, indicating that the
renormalization effect strengths the third-order anharmonic-
ity. This also suggests that the renormalization effects lead to
the strong weakening of fourth-order phonon anharmonicity,
which was also reported in other systems [22,53]. Hence,
combining the above results, it can be concluded that the
severe weakening effect of four-phonon scattering induced by
renormalization effects on κL is enabled by the synergistic
effect of phonon dispersion hardening and fourth-order anhar-
monicity softening, with the latter playing a leading role.

Further decomposing κL into different branches, we can
see in Fig. 4(d) that the phonon renormalization effects bring
about noticeable improvement of the contributions of each
branch to κL, especially for three acoustic branches. At 300 K,
when taking into account the renormalized phonon energies
only, the κL contributed from the two transverse acoustic
(TA) modes, denoted as TA1 and TA2, longitudinal acoustic
(LA) modes, and optical (OP) modes are increased from 1.2,
1.1, 0.8, and 0.8 W/mK to 1.7, 1.6, 1.3, and 1.2 W/mK,
by 41.7%, 45.4%, 62.5%, and 50%, respectively. With the
further consideration of renormalized anharmonic IFCs, the
contributions of TA1, TA2, LA, and OP modes to κL are
improved to 2.5, 1.8, 2.0, and 1.3 W/mK, by 47.1%, 12.5%,
53.8%, and 8.3% compared to the case given by the level V
of theory, respectively. Additionally, it is worth noting that the
TA phonons contribute more than 50% to the κL, and a consid-
erable number of TA modes are the nodal-line TPs along the
�X and the �R directions as illustrated in Fig. 2(a), indicating
that topological phonons have a significant contribution to κL.

For a clearer insight into the improvement of κL by the
temperature-induced phonon renormalization, we compare
the spectral thermal conductivities as a function of phonon
frequency at 300 and 500 K, respectively, calculated from
the different levels of theory. As seen in Fig. 5, the heat is
mainly carried by phonons below 4 THz, corresponding to the
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(a) (b)

(c) (d)

FIG. 5. (a) The cumulative and spectral κL of ScZn with respect
to the phonon frequency calculated within different levels of theory
at 300 K (a), (b), and 500 K (c), (d).

acoustic modes. With only the 3ph scattering included, the
renormalization effects obviously increase the contribution
of phonons above 4 THz to κL at 300 K and more so at
500 K, as proven in Figs. 5(a) and 5(c), indicating that phonon
renormalization mainly affects the three-phonon limited κL

contributed by high-frequency acoustic phonons and optical
phonons. After incorporating 4ph scattering, it is seen from

Figs. 5(b) and 5(d) that the κL contributed from phonons
throughout the frequency range is largely improved by renor-
malization effects, especially at 500 K, implying that the
renormalization effects can substantially weaken the suppres-
sion effect of 4ph scattering on the contribution of all phonon
modes to κL. These results further highlight the importance
of full consideration of anharmonic phonon renormalization
effects in determining the κL of ScZn.

C. Microscopic mechanisms governing the
anharmonicity-enhanced phonon thermal conductivity

We next investigate the effect of phonon renormalization
on the phonon transport properties of ScZn. Figure 6(a) gives
the comparison of phonon specific heat calculated with the
HA and SCP methods, which shows indistinguishable agree-
ment with each other over the whole temperature region.
Meanwhile, it is evident from Fig. 6(b) that consideration
of phonon renormalization effect leads to the slight decrease
in the group velocities of acoustic phonons (<4 THz), as
compared to the HA results. This is because renormalization
effect makes the acoustic branches flatter along certain high-
symmetric paths, e.g., �M and RX directions, resulting in
a slight decrease in the group velocities of certain acoustic
modes as illustrated in the inset of Fig. 6(b). To quantify
the influence of phonon renormalization on the harmonic
thermal transport, we calculate the small-grain-limit thermal
conductivity, defined as κSG = ∑

λ Cλνλ, which can measure

(a) (b) (c)

(d) (e) (f)

FIG. 6. (a) Temperature-dependent phonon specific heat with the SCP calculation in comparison with the HA results. (b) Modal phonon
group velocities with and without consideration of anharmonic phonon renormalization at 300 K, respectively. The inset denotes the group
velocities along M-� direction. The dotted lines denote the HA results and the solid lines denote the SCP results, in which the different colors
of green, orange, and blue lines correspond to the TA1, TA2, and LA branches. (c) The calculated κsg with HA and SCP calculation as a
function of temperature. (d) Three-phonon scattering rates and (e) four-phonon scattering rates calculated within different levels of theory at
300 K. (f) The calculated room-temperature κL from the mixed IFCs.
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the contribution of harmonic properties to κL. As is seen in
Fig. 6(c), when the temperature effect is taken into account,
the resulting κSG decreases slightly over the entire temperature
range, stemming from the decreased group velocity. The re-
sults suggest that renormalization effects at finite temperatures
have a rather weak impact on the harmonic phonon transport
properties. Hence, the prominent increase in κL due to the
renormalization effects should be attributed to the change in
the phonon lifetime, another key factor determining κL.

To this end, we plot the scattering rates of 3ph and 4ph
processes calculated at different theoretical levels in Figs. 6(d)
and 6(e). As expected, when the anharmonic correction to the
phonon dispersion is incorporated, the 3ph scattering rates of
all modes decrease obviously compared with the HA results.
Further considering the modification of renormalization ef-
fects to the third-order IFCs, the overall 3ph scattering rates
increase slightly, which is mainly due to the hardening of
third-order anharmonicity as mentioned above. For 4ph pro-
cesses, the renormalization effects are much stronger than for
3ph scattering, as clearly seen in Fig. 6(e). Similarly, includ-
ing anharmonic correction to the phonon dispersion results
in a noticeable decrease in the 4ph scattering rates of all
modes. Notably, with further consideration of TD fourth-order
IFCs, the 4ph scattering rates are decreased by almost an
order of magnitude, demonstrating that the fourth-order an-
harmonicity is dramatically weakened by the renormalization
effects. To quantify the effects of phonon renormalization on
the harmonic and anharmonic IFCs, we also calculate the
κL using the mixed IFCs. From Fig. 6(f), we notice that by
employing the SCP phonon dispersion combined with the
0-K anharmonic IFCs, namely, the SCP+3,4ph model, the
predicted κL at 300 K is increased from 3.9 W/mK given by
the HA+3,4ph method to 5.8 W/mK. If the TD third-order
IFCs are further used, i.e., the SCP+3ph(TD)+4ph model,
κL is slightly reduced to 5.3 W/mK, which is consistent with
the cubic anharmonicity hardening with increasing tempera-
ture. When full treatment of finite-temperature effects on all
IFCs [the SCP+3, 4ph(TD)] is employed, the predicted κL is
significantly increased to 7.6 W/mK, nearly twice as large
as the value given by the HA+3,4ph model, indicating the
predominance of the weakening quartic anharmonicity with
temperature over the phonon frequency hardening in enhanc-
ing the κL.

The above analyses explicitly show that the increase in
κL caused by the anharmonic effects originates from the de-
creased phonon scattering rates, particularly the 4ph scattering
rates. The phonon scattering rate relies on the phase space
and the transition probability matrix elements, both of which
can be affected by renormalization effects. Therefore, it is
necessary to elaborate on how the phonon renormalization
affects these two factors separately. Figures 7(a) and 7(b)
present the 3ph and 4ph scattering phase space contributed
from different types of processes, calculated with the HA
and SCP approaches. For 3ph scattering, the scattering rate
is contributed by the absorption (λ1 + λ2 → λ3) and emission
(λ1 → λ2 + λ3) processes. As is clearly evident in Fig. 7(a),
the 3ph scattering rates of heat-carrying acoustic phonons (<4
THz) are dominated by the absorption processes, and both
subprocesses are obviously suppressed by the anharmonic
phonon renormalization due to the limitations of energy

(a) (b)

(c) (d)

FIG. 7. (a) The weighted phase space (WPS) of 3ph scattering
with the HA and SCP calculations at 300 K. (b) The WPS of 4ph
scattering with the HA and SCP calculations at 300 K. (c) The tran-
sition probability matrix of 3ph processes |V (3)

± |2. (d) The transition
probability matrix of 4ph processes |V (4)

±±|2.

and momentum seletive rules. Four-phonon scattering in-
volves three sub-processes, i.e., recombination (λ1 + λ2 +
λ3 → λ4), redistribution (λ1 + λ2 → λ3 + λ4), and splitting
(λ1 → λ2 + λ3 + λ4) channels. It is seen in Fig. 7(b) that
the redistribution processes make a dominant contribution
to the 4ph scattering rates for all modes, as broadly seen
in other systems [15,54], and anharmonic corrections to the
phonon dispersion significantly reduce the scattering chan-
nels of all three subprocesses. These results demonstrate that
the decrease of phonon scattering rate by renormalization
effects is partly due to the reduced scattering phase space. We
then move on to the transition probability matrix elements,
which can be used to characterize the phonon anharmonicity.
Figure 7(c) shows the mode-resolved transition probability
matrix elements of 3ph scattering, and the minor enlarged
matrix elements after using the TD third-order IFCs provide
direct evidence for the slight hardening of third-order an-
harmonicity with temperature. More noticeably, it is seen in
Fig. 7(d) that treatment of anharmonicity correction to the
fourth-order IFCs markedly reduces the 4ph scattering matrix
elements, especially for low-frequency phonons below 2 THz,
further confirming the weakened fourth-order anharmonicity
with temperature. The above information conveys to us that
the increased κL due to the anharmonic renormalization ef-
fects is a result of the prolonged phonon lifetime, which is
enabled by the suppressed phonon scattering phase space and
weakened quartic anharmonicity.

D. Anomalous thermal transport and large Lorenz number

Figure 8(a) shows the calculated electronic band struc-
ture and projected electron DOS, which reflect the metallic
character of ScZn. For metals, the electron-phonon interac-
tion (EPI) usually plays a crucial role in both thermal and
electrical transport. To uncover the strength of EPI, we plot
the Eliashberg spectral function α2F (ω) and corresponding
el-ph coupling constant λ(ω) in Fig. 8(b). It is seen that
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(a) (b)
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FIG. 8. (a) The electronic band structures and projected elec-
tron DOS of ScZn. (b) The Eliashberg spectral function α2F (ω)
and electron-phonon coupling strength λ(ω). (c) The comparison
of 3ph, 4ph, ph-el, and isotope scattering rates at 300 K. (d) The
calculated temperature-dependent κL with and without inclusion of
ph-el scattering.

the α2F (ω), which is associated with the phonon (electron)
limited electron (phonon) scattering strength, is contributed
by phonons with frequencies in the ranges of 2–4 and 4–8
THz, corresponding to the high-frequency acoustic phonons
and all optical phonons, respectively. The saturated λ(ω) value
is 0.28, which is comparable to the value of many other met-
als [55], indicating that the ph-el scattering is not negligible
in determining the κL of ScZn. To see how the scattering
of phonon by electron is important to κL, we compare the
room-temperature ph-el scattering rates with the 3ph, 4ph, and
isotope scattering rates in Fig. 8(c). It is clearly evident that
the ph-el scattering rates are comparable to the 4ph scattering
rates over the whole frequency range, both of which are much
weaker than the 3ph counterparts. When including the ph-el
scattering, the eventual κL is slightly lower than that given by
the level VI of theory over the entire temperature regime, e.g.,
4% reduction at 300 K, which reveals that the EPI has a rather
weak effect on suppressing the κL.

In addition to κL, we also pay attention to the electronic
thermal conductivity κe of ScZn, which is generally consid-
ered to be the leading contributor to thermal conductivity in
metals. The calculated κe, the lattice component κL, and the to-
tal thermal conductivity κ = κL + κe in the temperature range
of 200–800 K are plotted in Fig. 9(b). As seen in the figure, the
phonon limited κe is nearly temperature independent and has a
value of 12.2 W/mK at 300 K. In analogy to common metals,
the κe contributes to the majority of thermal conductivity in
ScZn over the whole temperature range. Although the lattice
contribution to κ is secondary, its contribution to thermal
conductivity is still significant, especially at room temperature
and below. At 300 K, the calculated κL is 7.6 W/mK, which is
comparable to 60% of the electronic contribution, accounting
for ∼38% of κ .

We also study the electrical transport properties of ScZn.
From Fig. 9(a), it can be seen that the calculated electrical

(a)

(b)

(c)

FIG. 9. (a) The electrical conductivity, (b) the κL , κe, and total
thermal conductivity (κ = κL + κe), and (c) the Lorenz number as a
function of temperature.

conductivity σ shows the behavior of typical metal with a
decreasing trend as temperature increases. At room temper-
ature, the calculated σ is close to 0.2 ×107 S/m, which is
expected to be verified by experiments. Note that only the
el-ph scattering mechanism is considered in the σ calculation
here. In fact, any defects in the experiment sample, such as
impurities, could further reduce σ below the theoretical value
corresponding to the intrinsic upper limit, especially at low
temperatures. The electronic thermal conductivity is directly
related to electrical conductivity via the WFL, with the elec-
tronic Lorenz number Le = κe/σT . As shown in Fig. 9(c), the
calculated Le decreases slowly with increasing temperature,
and is smaller than the Sommerfeld value L0 by ∼10% within
the whole temperature range. Surprisingly, when adding the
lattice contribution κL to κ , the resulting Lorenz number L
shows a strong dependence on temperature, and is markedly
larger than the Sommerfeld value L0, especially at lower tem-
peratures. This abnormally large deviation of L from L0 is
entirely ascribed to the significant lattice contribution to κ

in ScZn. It enlightens us that extracting thermal conductivity
from the measured electrical conductivity σ by the WFL is
not reliable in metals, assuming their lattice contribution to be
negligible.
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IV. CONCLUSIONS

In summary, we have established a fundamental under-
standing of the thermal transport by phonons and electrons in
ScZn from first-principles calculations. Anharmonic phonon
renormalization is found crucial in determining the finite-
temperature phonon energies and κL, and results in noticeable
phonon hardening in the overall phonon spectrum. This is
attributable to the strong fourth-order phonon anharmonicity,
which manifests in the deep-flat U-shaped PESs and the in-
creased squared phonon frequency with temperature caused
by the loop self energy. By using the state-of-the-art computa-
tional formalism, we explore the phonon thermal transport in
ScZn, taking into account the phonon renormalization, 3ph,
4ph, isotope, and ph-el scatterings. Our calculation shows
that temperature-induced anharmonic effects substantially in-
crease the κL relative to the HA treatment, with a twofold
increase of κL at room temperature. This is a consequence
of the large reduction in phonon scattering rates, stemming
from the hardening of acoustic phonons and weakening of
fourth-order anharmonicity. Moreover, by comparing the elec-
tronic and lattice contributions to κ , we find that although the
calculated κL is secondary to the electronic contribution in the

entire temperature range, it still has a large contribution, close
to 60% of κe at 300 K. Consequently, the large κL results in the
abnormally large Lorenz number and its strong dependence on
temperature, substantially deviated from the expected Som-
merfeld constant. These findings highlight the significance of
treatment of full anharmonic effects in accurately predicting
the thermal transport properties of metals.
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