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Quantum scattering in one-dimensional periodic structures:
A Green’s function approach solved through continued fractions
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In the present contribution, we discuss quantum scattering in 1D periodic finite lattices of N localized
potentials by means of an exact Green’s function approach. By considering continued fraction techniques, we
solve the resulting recurrence relations, thus being able to derive the full structure reflections RN and transmission
TN amplitudes in a closed analytic form. The framework allows for dealing with extremely large arrays, in some
examples for N up to 1010 cells (or building blocks). For so great N’s, in practice the protocol can unveil most of
the basic features of the energy band structures of the corresponding infinite systems, demanding relatively little
computational effort. We further investigate general scattering properties of distinct lattices, e.g., when their cells
are spatially asymmetric or composed by two or more elementary shapes, each shape commonly modeled in the
literature in terms of Dirac’s delta, rectangular, trapezoidal, and triangular barriers. As concrete applications, we
address the problem of parameter optimization of heterostructures used to build solar cells and the identification
of some transmission resonance modes, relevant in the study of band-pass transmission in superlattices.
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I. INTRODUCTION

Scattering is a fundamental process in nature, consequently
a powerful tool for its understanding [1]. This is particu-
larly true when one seeks to unveil and explore the general
properties of periodic lattices (finite or infinite) through wave
scattering [2,3]. Actually, the number of applications made
possible through the development of scattering methods in
two and three dimensions is countless (for a glimpse see, e.g.,
Refs. [1,4–7]). Yet, many phenomena can be described simply
in terms of one spatial dimension (1D), so that 1D scattering
theory is likewise very useful to study a great diversity of
systems [8,9].

For instance, superlattices (e.g., made of graphene [10] or
of arbitrary semiconductor materials [11]), nanowires (e.g.,
made of a 10 nm wide and 500 nm long silicon piece [12])
and multijunctions (as solar cell devices formed by the jux-
taposition of thin arrays of distinct semiconductors [13]) are
commonly represented as a succession of a large number
of equally spaced rectangular barriers and can be generally
treated as a 1D quantum multiple scattering problem [14].
Shorter 1D systems can be handled in the same way. As
an example we cite topological edge modes in 1D pho-
tonic structures [15], arising in the interface between two
different finite crystals and investigated in terms of open sys-
tems scattering. Quantum dots can also be analyzed through
scattering approaches, like in metallic single-walled carbon
nanotubes [16].

We also should remark that propagation and diffraction of
acoustic waves in lattices may be viewed as a multiple scat-
tering problem. Indeed, Ref. [17] has studied trapped modes
and resonance transmission in a plate with notches by means
of a 1D quantum scattering model, obtaining good agree-
ment with laser Doppler vibrometry. Further, experiments
have confirmed 1D scattering predictions for the vibrational

behavior of a structure of Helmholtz resonators connected to
a tube [18].

A traditional and important protocol to investigate scatter-
ing in 1D periodic finite systems [19–21] is the transfer matrix
(TM) method; for two nice reviews see, e.g., Refs. [22,23].
But as usually the case for any interactive calculation scheme,
some few limitations may arise in the TM usual formulation
[24,25]. This includes issues related to numerical stability
[26] and long computational times [27]. Moreover, for su-
per periodic potentials—i.e., structures displaying multiple
periodicity, a common feature of superlattices—the TM can
display certain computational drawbacks related to size [28].
This has motivated improvements in the procedure (for in-
stance, those in Refs. [24,25,28–31]). However, even with
such advancements, the examination of lattices containing,
say, more than 103 scatters (barriers and/or wells), continues
to pose great challenges.

Surely, other mathematical techniques are also available
[8,32–35]. Among them, continued fractions (CF) solution
methods are rather powerful. In 3D, CF has been used to
address the Lippmann-Schwinger equation [36–38], allowing
to analyze the scattering of electrons and positrons by atoms
[39], electrons by linear molecules [40], and low-energy elec-
trons by hydrogen molecules [41]. In 1D, by discretizing
the Schrödinger equation one can compute the associated
transmission and reflection coefficients through CF-like recur-
rence relations [42,43]. Moreover, by expanding the Laplace
transform of time-correlation functions in terms of CF, we
can calculate generalized susceptibilities and transport coef-
ficients [44], in addition to relaxation memory functions [45],
in lattice structures. Beyond wave phenomena, CF has found
valuable usages to explain infinite resistor network puzzles
[46], determine the dielectric response of collisionless plasma
[47] and to resolve the renormalization group equations for
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a ferromagnetic Gaussian measure on Z+, yielding its time
decay rate [48].

A key common characteristic of the previous systems is
to be able to cast the equations governing the quantities of
interest in terms of recurrence relations. This allows to solve
these equations via CF-like constructions—details in the next
section. Complying with this prerequisite, it has been demon-
strated [49–53] that scattering in 1D lattices composed by
a series of N nonoverlapping localized (or more formally,
compact support) potentials V is particularly suitable to a
Green’s function G approach. Indeed, by adding a new V to a
structure already with N − 1 short-range barriers and/or wells
V ’s, the resulting scattering amplitudes can be obtained from
a recurrence relation derived directly from G.

In this work, we suppose a basic localized potential, which
we call a building block (BB), and whose reflection and
transmission coefficients are somehow known, either from
analytical or numerical methods. Then, for an equally spaced
1D array of N BBs, we show how to solve the recurrence
relations—derived from a Green’s function treatment—for the
resulting full RN and TN through CF techniques. The obtained
exact expressions are computationally very simple to imple-
ment. This enables one to calculate extremely large networks,
e.g., for N = 106 and even N = 1010, with a minimal numer-
ical cost. Relevant to mention that as already observed in the
literature [24,25,27,28], such huge N’s would be very hard to
deal with employing other protocols as the TM.

As a general development of our method, we exam-
ine various scenarios and lattice properties, such as energy
band structures and the implications (for transport) of spa-
tially asymmetric and/or composite BBs, employing as basic
shapes the Dirac delta, rectangular, trapezoidal and triangu-
lar barriers, all having closed expressions for the individual
scattering amplitudes. Along the way, we also discuss distinct
applications that our suggested framework might have in real-
world situations. In particular, we illustrate how to apply our
approach to optimize the spatial parameters of heterostruc-
tures considered in the fabrication of solar cells and how to
characterize Fabry-Pérot (FP) transmission resonance modes
in certain superlattices (intended for use as band-pass filters).

The paper is organized as the following. In Sec. II, we
briefly review how to obtain the exact recurrence relations for
the scattering coefficients of a collection of N compact sup-
port potentials through a Green’s function method. In Sec. III,
we show how to write these relations in terms of CF. This
leads to exact formulas for the associated TN and RN . We
also discuss the limit of N → ∞. In Sec. IV, we present
theoretical applications for our scheme, addressing general
scattering properties of lattices with various types of BBs.
In Sec. V, we analyze two concrete problems, optimization
of heterostructures for solar cells and the identification of FP
resonance modes in superlattices. Finally, in Sec. VI, we draw
our final remarks and conclusion.

II. EXACT GREEN’S FUNCTION AND RECURRENCE
RELATIONS FOR REFLECTION AND TRANSMISSION

COEFFICIENTS

Assume N nonoverlapping compact support potentials
V1,V2, . . . ,VN in 1D, illustrated in Fig. 1(a). We denote by rn

FIG. 1. (a) A collection of N nonoverlapping compact support
(localized) potentials Vn (n = 1, . . . , N ). In detail the schematics of
the usual reflection r (±)

n and transmission t (±)
n quantum amplitudes

for a single Vn in the case of a plane wave incoming from the left (+)
or from the right (−). [(b) and (c)] A part of the original system,
composed by the potentials Vl ,Vl+1, . . . ,Vn−1—forming the block
(shaded region) Vn−1,l , of coefficients R(±)

n−1,l and T (±)
n−1,l — and by Vn,

of coefficients R(±)
n and T (±)

n . It is also pictorially illustrated (arrows)
the resulting reflection R(±)

n,l and T (±)
n,l coefficients. For the relations of

R with r and of T with t see the main text.

and tn the usual quantum mechanics reflection and transmis-
sion amplitudes of Vn. Suppose now that Vn(x) [as highlighted
in Fig. 1(a)] is not null only for an < x < bn. Associated to
a plane wave + (–), of wave number k and incoming from
x < an (x > bn), we write r (±)

n (k) = exp[±2 i k c(∓)
n ] R(±)

n (k)
and t (±)

n (k) = exp[−i k (bn − an)] T (±)
n (k), with c(+)

n = bn and
c(−)

n = an. Thus the coefficients Rn and Tn are essentially the
scattering amplitudes rn and tn up to phases related to the Vn

ending points [49]. Obviously, to compute probabilities we
can use both expressions once |rn|2 = |Rn|2 and |tn|2 = |Tn|2.
For problems with the time-reversal symmetry—the situation
in all our examples in the next sections—we additionally have
T (±) = T .

For the system of Fig. 1(a), the correct Green’s func-
tion G(x f , xi; k), with x f , xi outside any potential Vn and
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E = h̄2k2/(2m), can be cast as an expression akin to a semi-
classical formula (for sake of simplicity in the derivations,
we suppose a same mass m everywhere, the case of distinct
effective masses in the different Vn’s will be addressed in
Sec. V). Indeed, for s.p. standing for “scattering path,” the
exact G reads [49]

G(x f , xi; k) = m

ih̄2k

∑
s.p.

Ws.p. exp

[
i

h̄
Ss.p.(x f , xi; k)

]
. (1)

Each s.p. represents a multiple scattering trajectory, where
the particle leaves from xi, suffers multiple transmissions and
reflections by the localized potentials and finally gets to x f .
For a given s.p., Ss.p. = k Ls.p.(x f , xi ) with Ls.p.(x f , xi ) the
path total length considering only the propagation outside
the Vn’s regions. By its turn, Ws.p.(k) is the product of the
successive coefficients Tn′ (k)’s and Rn′′ (k)’s “gained” along
the way, i.e., corresponding to the instances of transmissions
through the potentials Vn′ and reflections from the potentials
Vn′′ . The sum in Eq. (1) is performed over all the infinite many
possible s.p..

It might seem that the above sum, yielding G, is too
cumbersome to be carried on. Fortunately, this is not
the case. Through some hierarchical procedures (see, e.g.,
Refs. [49,53]) the s.p.’s can be identified and then organized
as geometric series. In this way, Eq. (1) can be summed up
exactly in a closed analytic form. Following this type of idea,
one can further derive recurrence relations [50–52] allowing
to obtain the Green’s function for N in terms of that for N − 1
potentials. This is the key result permitting one to study arrays
with very large number of Vn’s.

The aforementioned solution method for G [49] readily
gives the R1,N and T1,N coefficients of a collection of localized
potentials by recursively regrouping the Vn’s (n = 1, . . . , N)
into blocks. An example is given in Figs. 1(b) and 1(c), where
Vl ,Vl+1, . . . ,Vn−1 are viewed as an unique localized poten-
tial Vn−1,l . So, for R(±)

n−1,l , T (±)
n−1,l and R(±)

n , T (±)
n the reflection

and transmission coefficients, respectively, of Vn−1,l and Vn

[Figs. 1(b) and 1(c)], we have that

R(+)
n,l = R(+)

n−1,l + R(+)
n T (−)

n−1,l T (+)
n−1,l exp[2ikdn]

1 − R(−)
n−1,l R(+)

n exp[2ikdn]
,

R(−)
n,l = R(−)

n + R(−)
n−1,l T (−)

n T (+)
n exp[2ikdn]

1 − R(−)
n−1,l R(+)

n exp[2ikdn]
,

T (+)
n,l = T (+)

n−1,l T (+)
n exp[ikdn]

1 − R(−)
n−1,l R(+)

n exp[2ikdn]
, (2)

T (−)
n,l = T (−)

n−1,l T (−)
n exp[ikdn]

1 − R(−)
n−1,l R(+)

n exp[2ikdn]
.

For derivations refer to Refs. [51,53]. Here dn = an − bn−1.
The above relations will be fundamental for the

developments next.

FIG. 2. A (finite) periodic structure compound of N = n − l + 1
localized potentials. (a) Block-barrier case. (b) Barrier-block case.

III. SCATTERING COEFFICIENTS AND CONTINUED
FRACTIONS FOR PERIODIC STRUCTURES

We shall address long periodic lattices, so all the Rn’s and
Tn’s are the same, whereas the rn’s and tn’s differ only by
phases.

To establish a proper notation for our systems, let us re-
call basic facts about the scattering amplitudes r and t of
an arbitrary single potential. We have that generally t (+) =
t (−) = t and |r (±)|2 + |t |2 = 1 hence |r (+)|2 = |r (−)|2, more-
over r (±)∗ t + r (∓) t∗ = 0. So, in terms of our previous R and
T , T (±) = T , R(+) = R and R(−) = R exp[iφ], with φ = 0 for
spatially symmetric compact support potentials (like a rectan-
gular barrier, in opposition to a trapezoidal one, see later).

A. The recurrence relations for the reflection
and transmission coefficients

Suppose a periodic finite array as depicted in Fig. 2, for
which N = n − l + 1. By periodic we mean that the com-
pound structure is formed by equally spaced Vn = V (n =
1, . . . , N ), with arbitrarily large, but finite, N . The compact
support potential V is called the building block BB (or cell)
of the this long finite lattice. The free regions (no potential)
between the BBs correspond to bj < x < a j+1, with l � j �
n − 1.

To derive recurrence relations for the reflection and trans-
mission amplitudes of our full system, we particularize Eq. (2)
to the situation where all the Vn’s are equal to V with R(+) = R,
R(−) = R exp[i φ] and T . Also, for simplicity hereafter RM

and TM will refer to the scattering coefficients of a collection
of M potentials V . Supposing the block-barrier configura-
tion in Fig. 2(a), for the whole block of N − 1 potentials
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we write R(+)
N−1 = RN−1, R(−)

N−1 = RN−1 exp[i �N−1] and TN−1.
Thus, defining

gM (ϕ) = 1 − R RM exp[i (2 k L + ϕ)], (3)

we find for R(+)
N , R(−)

N and TN

RN = RN−1 + R T 2
N−1 exp[2 i k L]

gN−1(�N−1)
,

RN exp[i �N ] = R exp[i φ]

+T 2 RN−1 exp[i (2 k L + �N−1)]

gN−1(�N−1)
, (4)

TN = T TN−1 exp[i k L]

gN−1(�N−1)
.

Similarly, performing the computations for the barrier-block
configuration in Fig. 2(b), we get

RN = R + T 2 RN−1 exp[2 i k L]

gN−1(φ)
,

RN exp[i �N ] = RN−1 exp[i �N−1]

+R T 2
N−1 exp[i (2 k L + φ)]

gN−1(φ)
, (5)

TN = T TN−1 exp[i k L]

gN−1(φ)
.

Above, R0 = 0 and T0 = 1 since one can regard N = 0 as the
absence of V . For N = 1 we also should let L → 0.

Once the structures in Figs. 2(a) and 2(b) are exactly the
same, Eqs. (4) and (5) should agree pairwisely. Therefore, for
any N one finds by, respectively, comparing the last relations
in Eqs. (4) and (5) and substituting the last in the first relation
in Eq. (4), that

�N−1 = φ,

T 2
N = (RN − RN−1) T 2

R gN−1(φ)
. (6)

So, from a general formula for RN and gN we easily obtain
TN . By the same token, considering the definition of gN and
the second relation in Eq. (4), we get

gN (φ) = 1 − R2 exp[i (2 k L + φ)]

− (1 − gN−1(φ)) T 2 exp[2 i k L]

gN−1(φ)
, (7)

leading to RN from Eq. (3).

B. The exact continued fraction solution

We shall solve Eq. (7). Thus, setting

γ = 1 + (T 2 − R2 exp[i φ]) exp[2 i k L]

i T exp[i k L]
,

CM = gM (φ)

i T exp[i k L]
, (8)

we obtain for Eq. (7)

CN = γ + 1

CN−1
. (9)

Hence CN is the N-th term of a CF [54,55], or

CN = γ + 1

γ + 1

γ + 1
. . . γ + 1

C0

. (10)

Note that C0 = 1/(i T exp[i k L]). Now, based on certain gen-
eral properties of CF, as demonstrated in the Appendix A we
can cast CN as

CN = (1 + C0 �−) �N − (1 + C0 �+)

(C0 − �+) �N − (C0 − �−)
, (11)

with

�± = (γ ±
√

γ 2 + 4)/2, � = �−/�+. (12)

Importantly, Eq. (11) has no limitations regarding N .
Finally, as a function of the auxiliary quantity CN

RN = 1 − CN/C0

R exp[i (2 k L + φ)]
,

TN =
√

1 − CN/CN−1
T

R
exp[−i (k L + φ/2)]. (13)

We directly have RN and TN by inserting Eq. (11) into Eq. (13).
This allows to calculate the scattering by arrays of very large
N’s through an easy to handle formula.

Interestingly, resonance kres’s follow directly from the
above expressions, with kres meaning |TN (kres)|2 = 1 or
|TN (kres)|2 = 0. They are akin to RN (kres) = 0 or |RN (kres)|2 =
1, which from Eq. (13) yield CN (kres) = C0(kres) or |1 −
CN (kres)/C0(kres)|2 = |R(kres)|2. These global resonances can
emerge either trivially, for the BB coefficients |T (kres)|2 = 1
or T (kres) = 0, or from proper perfect constructive or de-
structive interference due to multiple scattering along the N
potentials V .

We end this section mentioning other CF approaches in
the literature, however aimed to obtain R and T of a single
localized potential. So, in a sense they are complementary to
our present results. Very popular is the one originally devel-
oped in Refs. [36–38], where the scattering amplitudes can be
written as CF. The calculations are performed interactively,
stopping after the scattering amplitudes reach, in practice,
a stationary condition. Another important procedure is that
in Refs. [42,43], based on numerical implementations for a
discretized Schrödinger equation, using CF for its solution. As
far as we know such schemes have not being applied to lattice
structures. Thence, in case one does not know the amplitudes
R and T for the BBs of interest, one could employ these CF
(or yet others, as TM) methods allied to the main expressions
above to study long periodic structures.

C. Energy bands for 1D crystals: the N = ∞ limit

In terms of the auxiliary function CN and the scattering co-
efficients of the BBs—R, R exp[i φ] and T —the transmission
and reflection probabilities for a lattice with N cells can be
written as [see Eq. (13)]

|TN |2 =
∣∣∣∣1 − CN

CN−1

∣∣∣∣ |T |2
|R|2 , |RN |2 =

∣∣∣∣1 − CN

C0

∣∣∣∣
2 1

|R|2 . (14)
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Setting F = (C0 − �−)/(C0 − �+), we have from Eq. (11)

∣∣∣∣1 − CN

CN−1

∣∣∣∣ =
∣∣∣∣ F (� − 1)2

(1 − F/�N )2 �

∣∣∣∣ 1

|�|N . (15)

For |�| � 1, the r.h.s of Eq. (15) goes to zero when N →
∞. In this way, there is no transport along the lattice once
then TN=∞ = 0. So, in the infinite case, i.e., a 1D crystal, the
allowed energy bands should follow from the complementary
condition, or |�| < 1.

From Eqs. (8) and (12), we get

� = f (k) − i
√

1 − f (k)2

f (k) + i
√

1 − f (k)2
,

f (k) = exp[−i k L]

2 T
+ (T 2 − R2 exp[i φ]) exp[i k L]

2 T
.

(16)

Thus |�| < 1 yields f (k) < 1, where k2 = 2 m E/h̄2. We now
set the parametrization cos[q (L + d )], with q the crystal mo-
mentum and d = bn − an the width of the BBs. Thence, the
energy bands read

cos[q (L + d )] = exp[−i k L]

2 T

+ (T 2 − R2 exp[i φ]) exp[i k L]

2 T
. (17)

The choice cos[q(L + d )] (instead, e.g., of sin[q(L + d )]) jus-
tifies from the special case R → 0 and |T | → 1, for which we
must have q equivalent to k. The exact Eq. (17) applies to
arbitrarily shaped localized BBs or cells, thus expanding the
standard expression for spatially symmetric BBs, for instance,
as given in Ref. [56].

We should remark that for mathematical simplicity, so
far in this contribution we have considered the one parti-
cle (energy domain) propagator in the free space of the BB
potential array rather than a single particle propagator in
the many-body medium. A traditional way to incorporate the
latter situation in the band theory of solids is to assume the
effective mass approximation [56]. In our construction, this
can be directly implemented by supposing a distinct constant
me f f = mn within each localized Vn. This causes changes in
the individual potentials coefficients T and R and thus in TN

and RN of the whole structure. In the applications in Sec. IV
below, the goal is to further develop the framework. Hence, to
keep the analysis as straightforward as possible we maintain
the free space assumption. Nonetheless, to make concrete
comparisons with experimental results, we discuss how to
introduce effective masses in our formulas in Sec. V.

Lastly, for particular heterostructures setups and materials,
specially in low dimensions (for an overview and examples
see, e.g., Refs. [57–59]), a high carriers density in the system
may demand the Coulomb and other interactions to be taken
into account. These contexts are of course outside the scope
of the current approach.

FIG. 3. Some single BBs: (a) Dirac delta, (b) rectangular, and
(c) trapezoidal, potentials. For their strengths, here β, V0 and Va, Vb,
positive (negative) values correspond to barriers (wells). The method
properly works in both cases—Appendix C. (d) The transmission
probability as a function of the incident (dimensionless) wavenumber
k for four potentials. The (dimensionless) parameters for, respec-
tively, δ, rectangular, trapezoidal and triangular barriers, are β =
2.5, w = 3 and V0 = 12, w = 3 and Va = 8, Vb = 16, and Va = 0,
Vb = 24. With the obvious exception of the delta, the parameters have
been chosen so to lead to equal areas for all the other three barriers,
thus yielding akin k ranges of variation for |T |2. The β for the delta
has also being set with such purpose.

IV. DISTINCT LATTICE STRUCTURE FEATURES
AND THEIR SCATTERING PROPERTIES

In this section, we shall discuss very general scattering
properties arising from different configurations for the BBs
of a lattice. With such aim, specific values of parameters are
not important, so here we consider dimensionless quantities,
more convenient to make comparisons.

Thence, suppose Ẽ the energy, m̃ the mass and 
̃ a proper
characteristic size of the system. For q̃ (q) generally denoting
a dimensional (dimensionless) physical variable, in our analy-
ses we will consider: the wave number k̃ =

√
2 m̃ Ẽ/h̄ = k/
̃,

the potentials strengths Ṽs = (h̄2/(2 m̃ 
̃2))Vs and the BB and
lattice relevant lengths L̃ = 
̃ L, w̃ = 
̃ w, d̃ = 
̃ d (so that
generally x̃ = 
̃ x). In this way, for most of the plots we as-
sume k, Vs, L, w, d and x.

A. Single building blocks (BBs)

To illustrate the method, we start considering the following
single (in opposition to composed, see below) BBs: the Dirac
delta, rectangular and trapezoidal potentials, Figs. 3(a)–3(c).
The first two are symmetric, thus with φ = 0, whereas the
last is asymmetric if Va �= Vb. The scattering coefficients for
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FIG. 4. Transmission probability as a function of k for finite structures formed by N = 2, 3, 4, 5 BBs, whose separation is always L = 2.
The (a) Dirac delta, (b) rectangular, (c) trapezoidal, and (d) triangular barriers, with the same parameters of Fig. 3.

the delta and rectangular cases are readily found in text-
books. For arbitrary (dimensionless) wave number k, they read
(with κ =

√
V0 − k2)

Rδ = β

2 i k − β
, Tδ = 2 i k

2 i k − β
,

Rrect = − i (κ2 + k2) sinh[κ w]

2 κ k cosh[κ w] + i (κ2 − k2) sinh[κ w]
,

Trect = 2 κ k

2 κ k cosh[κ w] + i (κ2 − k2) sinh[κ w]
. (18)

For the trapezoidal potential, Fig. 3(c), the exact coefficients
are derived in Appendix B (refer also to Refs. [60,61]), so that

R(±)
trap(k) = D(±)(k)

C(k)
, Ttrap(k) = − 2 η(k)

π C(k)
. (19)

The functions D(±)(k), C(k) and η(k) are given in Ap-
pendix B, involving Airy functions and their derivatives. Note
that the rectangular (right triangular) potential corresponds to
Va = Vb (either Va = 0 or Vb = 0).

Profiles of the transmission probabilities |T |2 as a func-
tion of k (of course |R|2 = 1 − |T |2) for the four BBs are
depicted in Fig. 3(d). The parameters have been chosen so
to facilitate qualitative comparisons between the potentials
(with all the |T |2, including the delta, being close to 1 around
the same k intervals). First, the delta with the triangular and
the rectangular with the trapezoidal tend to be more similar.
Second, the delta presents the fastest raising (from k = 0) for
the transmission probability, a consequence of its null width.
Lastly, the trapezoidal mismatch of Va and Vb can generate
“local motifs,” as the shoulder seen for k ∼ 2.5 in Fig. 3.

Although idealized potentials, we should recall the use-
fulness of such single BBs, justifying their choice here. For
instance, Dirac delta barriers have long being employed to

model diverse quantum phenomena [62,63]. More recently,
delta interactions have even found novel applications, like in
the study of topological effects in 1D lattices [64] and the
production of entanglement by the scattering of distinguish-
able [65] and free fermions [66] particles in 1D structures.
The same is obviously true for rectangular barriers, specially
in the effective description of materials [67]. As illustrations,
rectangular barrier networks have been used to simulate gal-
lium arsenide semiconductor superlattices [68], as well as
to investigate conductance in multi-junction solar cells and
in layered graphene [10,13]. Trapezoidal and triangular bar-
riers have also been considered to analyze charge transport
in oxides [69–71], as in the case of thin aluminum oxides
films and ultra-thin gate dielectrics [69,70]. Also, these po-
tential have been employed to explain scanning tunneling
microscope (STM) data related to materials surface properties
[72]. Furthermore, a good agreement between experiments
and simulations of perovskite ferroelectric tunnel junctions
(based on trapezoidal potentials) have been reported [73].

Supposing the above four BB potentials—delta, rectangle,
trapezoid and right triangle—we discuss some finite lattices.
As a first illustration, we present examples with N = 2, 3, 4, 5
cells assuming the same parameters values of Fig. 3. The
resulting |TN |2 as a function of k are shown in Fig. 4. Few gen-
eral trends can be identified. For instance, consider k > 1, k >

2.5, k > 2.5 and k > 3, respectively, in Figs. 4(a)–4(d). Then
in these k intervals, qualitatively the triangular, Fig. 4(d), is
closer to the delta, Fig. 4(a), than to the trapezoidal, Fig. 4(c),
case. Intuitively, we can understand this by observing that
the delta and triangular barriers have both “pointed” shapes
and consequently—as previously mentioned — fairly overall
similar behavior (although not for the transmission initial
increasing onset) for the individual R’s and T ’s, see the cor-
responding plots in Fig. 3. Also, a certain resemblance exists
between the rectangular, Fig. 4(b), and trapezoidal, Fig. 4(c),

054303-6



QUANTUM SCATTERING IN ONE-DIMENSIONAL … PHYSICAL REVIEW B 110, 054303 (2024)

FIG. 5. The same than in Fig. 4, but with N = 1010 for the (a) delta and N = 106 for the (b) rectangular, (c) trapezoidal, and (d) triangular
barriers. The dashed curves refer to the case of N = 1 (|T |2 for just a single potential).

cases, specially for greater k’s, when the height difference
between Vb and Va for the latter becomes less relevant.

We remember our method is exact. Hence, in principle
there is no need to discuss numerical accuracy issues.
Nonetheless, few comparisons with the literature would be
instructive. They are presented in Appendix C, where we
consider some previous works addressing up to N = 100
BBs. However, with our framework we can calculate lattices
with orders of magnitude greater N’s. This is exemplified in
Fig. 5, where N = 1010 for the delta and N = 106 for the
other three types of BBs. Again, the parameters are the same
than in Fig. 3. We remark the computations for each case took
less than 5 minutes in a very simple personal computer—with
a i5 processor—by implementing an extremely fine (not really
necessary and done just for benchmark purposes) variation
of k, roughly 700 000 (delta) and 493 000 (other potentials)
values in the numerical interval 0 � k � 7. As expected,
for so large N’s we already identify band structures, which
for many practical purpose are those of the actual infinite
lattices. For instance, as we have checked the allowed band
widths and edges agree with Eq. (17), results not shown.
Also, contrasting Figs. 4 and 5, we see that the forbidden
bands (the k ranges in which TN = 0) become very well
defined. Moreover, general trends discussed in the literature
(e.g., refer to Ref. [19]) are likewise observed here. Indeed,
the corresponding single BB |T (k)|2 curve tends to touch the
center points of all the allowed bands [19], Figs. 5(a)–5(d).
On the other hand, the BB transmission probability |T (k)|2
clearly plays the role of an envelope for the mentioned points
only for the sharping delta, Fig. 5(a), and triangular, Fig. 5(d),
barriers. Lastly, using as a guide the allowed bands seen
in Fig. 5, Fig. 4 illustrates that within any of these band
regions we have N − 1 k’s for which |TN |2 = 1. Although
this can be understood from the formal derivations in [19], a

more intuitive explanation relates to the system quasibound
states (characterized by |TN |2 = 1). Given that for N BBs the
resulting large but finite array can be thought of as formed by
N − 1 no confining wells, we get groups of N − 1 quasibound
states in certain ranges of k, exactly those corresponding to
the allowed bands. As we have checked numerically, this is
also the case for the very narrow peaks in the region k < 2.5
in Figs. 4(b)–4(d). As an example, for N = 5 trapezoidal
barriers, we have |T5(k)|2 = 1 for k equals to 1.09255,
1.09295, 1.09344, 1.09383, and 2.07026, 2.07524, 2.08166,
2.08710, associated, respectively, to the first and second sets
of extremely closed together peaks in Fig. 4(c).

A more complete analysis of the bands formation as N
increases in the particular case of delta barriers [for the same
parameters values of Fig. 4(a)] is presented in Fig. 6. First, we
remark that for an actual crystal, in the k forbidden regions
the transmission probability would be zero, abruptly changing
to one at the allowed bands onsets. For N finite but large
enough, we would have |TN |2 ≈ 0 in certain k ranges and
then |TN |2 sharply raising in the mentioned bands edges (for
a nice discussion about the involved |TN |2 behavior as one
go further into the k allowed regions when 1 � N < ∞, see
[19]). Thus the variation of |TN |2 from 0 to 1 should become
sharper and sharper as N grows. This is indeed observed in
Fig. 6(a), where we show how the bands emerge as N gets
larger. Also as expected, a rapid transition from 0 to 1 of
|TN |2 tends to demand greater N’s for higher k’s. For instance,
for N = 10 in Fig. 6(a), we observe a very steep slope for
|T10|2 about k = 1, nonetheless a relatively smoother slope
about k = 5. Extra details are given in Figs. 6(b)–6(e), which
magnify the ending or beginning of a forbidden band, taking
place for k around, respectively, 0.93075 (ending), 2.10638
(ending), 3.14159 (beginning), 6.28318 (beginning). Notice
that Fig. 6(b) displays the ending of the first forbidden band
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FIG. 6. The transmission probability as a function of k for arrays of N equally spaced delta barriers of parameters as in Fig. 4(a). For
distinct N’s, in (a) plots highlighting only the k ranges where |TN |2 is rather small, so in the limit of N large comprising the system forbidden
bands. For different N’s, graphs of |TN (k)|2 in short k intervals corresponding to the ending or beginning of a forbidden band at (b) k ≈ 0.93075
(ending), (c) k ≈ 2.10638 (ending), (d) k ≈ 3.14159 (beginning), and (e) k ≈ 6.28318 (beginning).

at around k = 0.93075, so a low k value. In this case, the
transmission probabilities curves for N = 10 and 1010 differ
by a factor of only 10−3. On the other hand, in Figs. 6(c) and
6(d), for the ending and starting of the second and third forbid-
den bands, such difference is of ∼3 × 10−2 and ∼6 × 10−2.
Moreover, in Fig. 6(e), the curve for N = 10 is not even
present, since for such N the fifth forbidden band has not been
properly formed yet.

As a last comment, we notice that the starting of the for-
bidden bands are always at k∗ = l π/L, with l = 1, 2, . . . This
agrees with exact results obtained from the dispersion relation
formula for the Dirac comb model (see, e.g., Refs. [19,21]).
As demonstrated in the Appendix D, from the present method
one likewise can obtain analytically such onsets for the zero
transmission regions.

B. Composed building blocks (CBBs)

Next we consider lattices whose BBs are compositions
of more than one localized potential, from now on referred

as CBBs. As workable examples we suppose CBBs formed
by our previous four basic barriers, organized in a specified
order (from left to right) V1,V2, . . . ,Vp. We furthermore set
the separation between V1 and V2 as d12 = a2 − b1, between
V3 and V2 as d23 = a3 − b2 and so on. The exact reflection
R(±)

CBB and transmission TCBB coefficients for a given CBB are
derived directly from the general Eqs. (2). Once we determine
the actual expressions for R(±)

CBB and TCBB, we just follow the
protocol in Sec. III to solve the lattices formed by such CBBs.

We start addressing few aspects concerning nonsymmet-
ric CBBs, arising when they are constructed from the same
group of V ’s, but in different dispositions. For so, we assume
just two, rectangular and trapezoidal, potentials arranged in
the two distinct ways depicted in the inset of Fig. 7(a).
The nomenclature CBB-rt (CBB-tr) refers to the case where
the rectangular (trapezoidal) potential comes first. Although
we set an unique d12 = d for both CBBs as well as the same
parameter values for the individual rectangular and trape-
zoidal barriers, clearly CBB-rt and CBB-tr are not specular
images of each other. The contrast between the two is easily
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FIG. 7. Transmission probability for an unique (i.e., N = 1) CBB-rt and CBB-tr in (a) and for finite lattices formed by distinct number N
of these CBBs in (b)–(e). In all cases, d = 1 and L = 0.5. For the rectangular and trapezoidal barriers the parameters are, respectively, V0 = 12
and w = 2, and Va = 10, Vb = 4, and w = 3.

observed from the plots of |TCBB|2 = |TN=1|2 for CBB-rt and
CBB-tr shown in Fig. 7(a). Note, e.g., the distinct positions
and heights of the first peak in their transmission probabilities.
Phenomenologically, this relates to a dissimilar “internal” re-
gion, namely, that between the two barriers. Indeed, for the
CBB-rt the higher side of the trapezoidal is spatially turned
to the rectangular potential, whereas for the CBB-tr it is
the lower side which faces the rectangular potential. Conse-
quently, the interference patterns build up from the multiple
scattering between the two localized V ’s — as calculated from
the Green’s function method—result in distinct transmission
and reflections profiles for CBB-rt and CBB-tr.

By considering an arrangement of N equally spaced (by
L) CBB-rt and CBB-tr, we plot in Figs. 7(b)–7(e) the corre-
sponding |TN |2 as function of k in the cases of N = 2, N = 5,
N = 20 and N = 106. In such plots L = d/2. As in Sec. IV A,
for the very large N = 106, we observe band-like structures.
Furthermore, regardless the N’s, overall the transmission pro-
files of CBB-rt and CBB-tr are not equal. But for N = 106

(and in a lesser extent, for N = 20), we see that in the present
k interval, the difference between CBB-rt and CBB-tr tends to
decrease as k increases. All these traits are not just artifacts

of special values of d and L. This is illustrated in Fig. 8, con-
sidering |TN=106 |2 for L = 10 d with d = 1 and for d = 10 L
with L = 1. Again, the transmission patterns are distinct for
CBB-rt and CBB-tr.

It is worth remarking that modifications in band struc-
tures due to distinct arrangements of spatially asymmetric
barriers, as above, have long ago been observed in processes
like electronic scattering from ions with localized magnetic
moments under an applied magnetic field [74]. More recently,
it has been pointed out that technologically significant (for
the development of various devices) physical effects such
as, filters, diodes, one-way mirrors, and even more exotic
Maxwell demons and invisibility cloaks, can be achieved from
scattering asymmetries [75].

Another possible usage for CBBs is to build “compact”
localized symmetric potentials, whose particular shapes may
be of potential interest in different contexts (see below). For
instance, two equal right-triangular barriers when specularly
juxtaposed (i.e., the right angle sides facing each other without
any spacing between them) creates an isosceles-triangular bar-
rier, as depicted in the inset of Fig. 9(a). Likewise, the juxta-
position of a right-triangular barrier, a rectangular barrier and
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FIG. 8. The same than in Fig. 7, but only for N = 106 and (a)
L = 10 d with d = 1 and (b) d = 10 L with L = 1.

then an akin (but flipped) right-triangular barrier—all having
the correct proportions—produces an isosceles-trapezoidal
barrier, represented in the inset of Fig. 9(b). In all these cases
the exact TCBB and RCBB are derived from our previous Eq. (2),

FIG. 9. Transmission probabilities for an unique (dashed curves)
and arrays with N = 106 (continuous curves) CBBs shown in the
insets. For the lattices, the spacing is L = 1. Also, in both cases
the maximum height is 8

√
3. (a) For the isosceles-triangular barrier,

the base length is 4, whereas (b) for the isosceles-trapezoidal barrier,
the bases lengths are 8, top, and 12, bottom. In detail in (a) the good
fitting of a sigmoid function to |TCBB|2 (see main text).

setting the dn n+1’s to zero. The corresponding transmission
probabilities are shown in Fig. 9. Similar to the delta and
triangular barriers, |TCBB|2 for the isosceles-triangle increases
monotonically with k, consequence of its edged format. In
particular, it can be approximated by a sigmoid function
(1 + exp[−ν (k − ξ )])−1, which for the parameters values in
Fig. 9(a) lead to ν ≈ 11.56 and ξ ≈ 2.54—the resulting good
fit is shown in the inset of Fig. 9(a). In Fig. 9, we also show
periodic arrays with N = 106 of these compact composite
potentials, assuming a separation of L = 1 between the CBBs.
The band structure of the isosceles-triangular barriers array
resembles that of the right-triangular system in Fig. 5(d). For
other works analyzing sharped barriers in setups similar to
ours, we mention [61,76] (the former considering the action
of a constant electric field). By its turn, the band structure for
the isosceles-trapezoid does not follow the exact same fea-
tures of either the rectangular or the right-trapezoidal layouts,
respectively, in Figs. 5(b) and 5(c).

The localized potentials in Fig. 9 have been considered in
the investigation of heterostructures formed by GaAs quan-
tum wells and AlxGa1−xAs barriers [77], but in arrays with
only N = 10 building blocks. Moreover, such work supposes
BenDaniel-Duke boundary conditions and the effective mass
approximation. The calculations were performed using the
TM method. Despite these differences, the qualitative re-
sults are fairly similar to the ones here. We observe that
presently we are working on extensions of our protocol to
include arbitrary boundary conditions within the effective
mass approximation. Hopefully, such generalizations will be
reported in the near future. We also should mention that spe-
cial profiles for the diffracting elements in optical gratings,
as triangular-like shapes, can give rise to rich phenomena
[78]. Conceivably, this also could be the case for electrons
in lattices formed by isosceles-triangular barriers (see, e.g.,
Ref. [61]).

V. TWO CONCRETE APPLICATIONS

Typically, a certain number of semiconductors materials
are used to build the successive layers in heterostructures.
Thus, for an electron propagating in a given slab, one should
consider the corresponding bulk properties, in special the
constant effective mass and the conduction band edge, whose
offsets between adjacent layers define the relative heights
of the barriers interfaces. In this way, we can associate the
material with the lowest conduction band edge in an actual
heterostructure to the “background medium”—the one for
which V = 0—of our periodic structures in Sec. II (refer to
Fig. 2). The remaining materials are therefore related to the
localized potentials forming the BBs.

The above are simply introduced into our previous for-
mulation through straightforward re-scaling of the individual
localized potentials transmission and reflection amplitudes
forming the BBs. All the other expressions remain the
same. So, suppose R and T the scattering coefficients for
an arbitrary potential V (x), non-null only in the interval
I : a < x < b and for the mass, m, being the same everywhere.
Now, if we have an energy profile such that the minimum
onset is not 0 but V0 and outside I the effective mass is
m0, then we can use akin formulas for R and T , but instead
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of E , k(0) and κ (x) =
√

2mV (x)/h̄2 − k(0)2, with k(U ) =√
2m(E − U )/h̄2, we take E ′, k′, and κ ′ where E ′ = E − V0,

k′ = √
m/m0 k(V0) and κ ′(x) =

√
2mV (x)/h̄2 − k(V0)2. As

an example, useful in the applications below, for a rectangular
barrier the particular expressions for R and T in Eq. (18)
should be changed exactly in this way, setting m = mj and
V (x) = Vj for the layer j.

A. Optimizing transport in heterostructures
for solar cells applications

The transport properties in multijunction semiconductor
compounds—so displaying different band-gaps—is a key as-
pect in the functioning of distinct purpose devices. In the
particular case of solar cells, this type of structure has been
largely studied due to its low-cost of fabrication and the
promising conversion efficiencies, expected to exceed 50%
[79,80]. However, such a high performance depends, among
other factors, on the semiconductors crystal quality and a
proper combination of the employed materials parameter
values.

For instance, in Ref. [13] it has been proposed that a strain-
balanced GaAsSb/GaAsN superlattice is a suitable system for
solar cell applications. The geometry is depicted in Fig. 10(a),
where one has successive layers made of GaAsSb, the “barri-
ers” and GaAsN, the “background medium” (or “wells”). For
these materials, the effective masses [81] are m∗

1 = 0.067 me

(for GaAsSb0.0325) and m∗
0 = 0.098 me (for GaAsN0.012), with

me the electron rest mass (these are the actual concentrations
used in Ref. [13]). Further, the barrier heights are around
V1 ∼ 1.41 eV and V0 ∼ 1.13 eV [82,83]. The widths, d and
L, are then the free parameters which could be optimized,
seeking to enhance the transport properties. Indeed, the ex-
perimental results in [13] show that solar cells with smaller
d + L periods (tested for samples with d = L) tend to present
higher efficiencies. Calculations using the TM technique for
N = 12 cells in the case of d = L corroborated these findings
[13]. The analysis in Ref. [13] considered the approximation
of a same effective mass in both materials (set to 0.146 me)
and a relative barrier height of 250 meV (so, a bit distinct from
the value we employ here, of �V = V1 − V0 = 280 meV, see
Fig. 10).

Using our present method for the structure in Fig. 10(a), in
Fig. 10(b) we display the computed transmission probability
as function of d and L for a 200 nm thick heterostructure
(the samples sizes in Ref. [13]), associated to a network with
N ≈ 200 nm/(d + L) BBs (for instance, for d = 3 nm and
L = 2 nm, N = 40). As the incident energy we set E = �V/2.
Notice there is a considerable transmission for smaller d’s, but
not necessarily for smaller L’s. From the plots one clearly sees
that for greater transport one should have the GaAsSb layers
with d � 3 nm, but the GaAsN slabs may be thicker, e.g., for
the L’s multiples of 5 nm, Fig. 10(b). In addition, to set d = L
[the solid line in Fig. 10(b)] might constitute a restrictive con-
dition in certain applications. However, Fig. 10(b) indicates
that devices with d < L can likewise display good efficiency,
in agreement with [81].

These structures energy bandgaps as a function of the pe-
riod d + L are presented in Fig. 10(c), for d = L. The square

FIG. 10. (a) Schematics of the successive GaAsSb/GaAsN lay-
ers forming a rectangular superlattice (aimed for solar cell devices).
(b) Transmission probability, calculated from the present approach,
as a function of d and L for a 200 nm thick sample, so with a num-
ber N of BBs or cells given by N ≈ 200/(d + L). Here E = (V1 −
V0 )/2 = �V/2, see main text. (c) The superlattice energy bandgap
as a function of the period (d + L) obtained from the experiments
(exp) and simulations (sim) in [13] and from the Green’s function
procedure (GF).

(triangular) symbols correspond to the experimental data
(simulations) in Ref. [13], obtained through photoreflectance
measurements (finite difference method). As expected, as the
period d + L increases, the bandgap decreases. The continu-
ous curve represents our Green’s function framework [whose
computations are exactly as those described in Sec. IV,
here for the structure in Fig. 10(a)], which closely repro-
duces the experiments. Comparing the GF results and the
corresponding four data points, we obtain the following per-
centage errors: 1.01%, 0.80%, 0.29%, and 1.25%, listed
from the lowest to the highest period considered in the
experiments. By calculating the number of cells N as pre-
viously described, the actual structures yield approximately
63.57, 31.31, 15.83, and 10.46. When the noninteger part of
these values is close to 0.5, it indicates that in the sample there
is an additional barrier [GaAsSb layer, first half of the period
d + L, see Fig. 10(a)] in the structure. Conversely, when the
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noninteger part approaches 0 or 1, there is a more balanced
distribution of “barriers” (GaAsSb) and “wells” (GaAsN).
This observation partially explains the distinct percentage
errors, which are higher in the extreme period values, reflect-
ing a greater imbalance between the barriers and wells.

We end this section mentioning we have tested much
longer structures, for N’s around thousands (graphs not
shown). Qualitatively, all the results obtained are essentially
the same than the ones in Fig. 10.

B. Band-pass transmission by mode coupling:
The case of asymmetric barriers

A band-pass filter (BPF) is a long known effect in un-
dulatory processes. More than two decades ago pioneer
works have studied such phenomenon for electrons in finite
semiconductor heterostructures [84–86]. Recently, band-pass
electronic transmission have been considered, e.g., to max-
imize the conversion efficiency in thermoelectric generators
[87]. Certain realizations are based on nanowire quantum
dots [88], theoretically modeled as rectangular superlattices
[89,90]. General features of these BPFs are greatly determined
by the networks unitary cells properties. For example, an
interesting mechanism responsible for the creation of BPFs,
unveiled in Ref. [29], relates to the coupling of resonant
modes, with a good fraction of them being associated to the
lattice BBs. Hence, to characterize these types of BPFs one
needs to properly identify and classify the distinct resonances
in heterostructure [29].

As mentioned in Sec. III B, our present method allows to
analytically single out transmission resonances, even when
the BBs are formed by various materials, something harder
to achieve from other protocols. So, motivated by the above
discussion, here we shall address a key resonant mode dis-
cussed in Ref. [29], that linked to the compound unitary cell
in the Fabry-Pérot condition.

Thus let us assume a single semiconductor rectangular
barrier of relative height Vj − V0, effective mass mj and width
d j = w (outside the slab, we suppose the effective mass being
m0 everywhere). From Eq. (18), we can write

Tj = 1/Aj, Rj = −Bj/Aj,

Aj = cosh[κ ′
j w] + i

2

(κ ′
j

k′ − k′

κ ′
j

)
sinh[κ ′

j w],

Bj = i

2

(κ ′
j

k′ + k′

κ ′
j

)
sinh[κ ′

j w]. (20)

The above expressions show that for specific energies, full
transmission is achieved when (n = 1, 2, . . . )

κ ′
j,res w = i n π. (21)

Equation (21) represents the Fabry-Pérot (FP) resonance con-
dition for an isolated barrier. One gets a 100% transmission
along a whole heterostructure if its cells meet the FP condition
at particular resonance energies.

Now, we examine a lattice whose CBB is formed by two
rectangular semiconductor layers, labeled as 1 and 2, and
spaced by a “background medium” (another semiconductor
material) of width 
, see Fig. 11(a). From Eq. (2) their com-

FIG. 11. (a) Schematics of a CBB formed by three semiconduc-
tor layers, the middle one representing the “background medium,”
and their respective parameters. (b) A InAlAs/InGaAs/X superlat-
tice, whose barriers composing the unitary cell (BB) have widths d1,

, and d2. The BB spacing is L.

bined transmission T and reflection R coefficients read

T = 1/A, R(±) = −B(±)/A,

A = A1 A2 exp[−i k′ 
] + B1 B2 exp[i k′ 
],

B(+) = A2 B1 exp[−i k′ 
] + B2

A1

(
1 − B2

1

)
exp[i k′ 
],

B(−) = A1 B2 exp[−i k′ 
] + B1

A2

(
1 − B2

2

)
exp[i k′ 
].

(22)

For this problem, we can have three different situations. The
trivial one is that for which materials 1 and 2 are the same and
the widths d1 = d2 = w. Then, in fact the lattice is formed by
a simple BB, a rectangular barrier, and the FP resonance for
the full structure is given directly by Eq. (21).

The second is when the materials are again the same
(say, material 1), but d1 �= d2. This is the case investigated
in Ref. [29]. If we choose the barriers thicknesses such that
d1 = n1 w and d2 = n2 w, for n1 and n2 positive integers,
we find that for energies satisfying Eq. (21) (with j = 1), it
follows from Eq. (22) that

|T (κ ′
1,res)|2 = 1, R(±)(κ ′

1,res) = 0. (23)

Thence, the CBB—consequently the entire heterostructure—
obeys a FP transmission resonance condition akin to that of
its isolated rectangular barriers, regardless the values of 
 and
L. This is one the results obtained in [29], but here derived in
a rather straightforward way.

Finally, for materials 1 and 2 distinct—as far as we know
a context for FP resonances not addressed before in the
literature—the analysis is as the following. We must have
E (κ ′

1,res) = E (κ ′
2,res) if 
 must not have a role in the reso-

nances — remember that quasi-states-like modes for the CBB
will depend on the “well” size 
, Fig. 11(a). We can write
d2 = α d1 and for sake of definiteness to set V1 > V2. Then,
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TABLE I. The bulk parameters of the materials forming the
InAlAs/InGaAs/X heterostructure, with X = GaAsSb or X = InP
[91]. The reference potential height V0 refers to InGaAs.

Material Index j mj/me Vj − V0 (meV)

InGaAs 0 0.041 0
InAlAs 1 0.078 520
InP 2 0.079 180
GaAsSb 2 0.040 360

using E (κ ′
1,res) = E (κ ′

2,res ) together with Eq. (21), we get

d1 = π h̄√
2 (V1 − V2)

√
1

α2

n2
2

m2
− n2

1

m1
. (24)

In this way, given the materials 1 and 2 parameters, by
choosing the integers n1 and n2 and a value for α such that
n2

2/(n2
1 α2) > m2/m1, a FP resonance is obtained provided the

two semiconductor layers of the CBB have widths d1 and α d1,
with d1 satisfying Eq. (24).

To illustrate the above, consider InAlAs/InGaAs/X het-
erostructures, with X = GaAsSb or X = InP, Fig. 11(b). The
due material parameters are depicted in Table I. In Fig. 12
we show the transmission probabilities for: the whole het-
erostructures (with N = 10 cells or BBs), the single CBBs
and the corresponding individual InAlAs and X barriers. In
all instances n1 = 1, n2/α = 1.5 and 
 = L = (d1 + d2)/2,
with d1 observing Eq. (24). As it should be, we always have
a full transmission both for the heterostructures and the CBBs
at an energy corresponding to the n1th and n2th transmis-

sion resonances of the InAlAs and X barriers. Another fairly
general trend is that the transmission probability for a single
CBB tends more closely to accompanying that for the high-
est barrier, in the present case the InAlAs (with V1 − V0 =
520 meV, Table I). Nonetheless, the oscillations of |T |2 ver-
sus E of the lower CBB barrier, X, somehow better comply
with the overall quasibands profile of the finite lattice. This
pinpoints the influence of these more “transparent” barriers
to establish the heterostructure global transport properties (in
particular, see the right panels in Fig. 12). We finally observe
that in Fig. 12(a) there is a very narrow peak at E ≈ 0.074 eV,
corresponding to a quasistate resonance of the CBB. As usual,
this kind of resonance is relatively off the individual barriers
FP modes.

VI. FINAL REMARKS AND CONCLUSION

In the present work, we have proposed a novel protocol to
study quantum scattering in finite 1D periodic lattices formed
by N equally spaced cells (or building blocks, BB). For so, one
assumes that the R(k) and T (k) amplitudes of the BB forming
the finite (but arbitrarily large) structure are known either
analytically or numerically. The key idea is then to calculate
the system Green’s function G explicitly from the underlying
multiple scattering processes. From such a G, one can obtain
the reflections RN and transmission TN coefficients of the full
array written in terms of recurrence relations. Perhaps a bit
surprising, these relations can be solved exactly in a closed
analytic form by means of continued fractions methods.

As examples of BBs, we have assumed the simple but
extremely common in applications delta, triangular, rectan-
gular and trapezoidal barriers, whose R’s and T ’s can be

FIG. 12. The transmission probabilities for the full heterostructure (with N = 10 CBBs), the single CBB, and the two individual barriers,
InAlAs and X , forming the CBBs. Here X = InP in (a) and (b) and X = GaAsSb in (c) and (d). The parameters are n2 = 3, α = 2 and d1 = 2
in (a) and (c) and n2 = 9, α = 6 and d2 = 6 in (b) and (d). In all cases n1 = 1. When X = InP (X = GaAsSb), the resonance energies are
E (κ ′

1,res ) = E (κ ′
2,res ) ≈ 0.80 eV (E (κ ′

1,res ) = E (κ ′
2,res ) ≈ 0.57 eV). These values are indicated by a black dot in the graphs.
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determined exactly. Nonetheless, we should remark that if for
any localized V (x) taken as a BB one can determine R(k)
and T (k), say numerically, from any particular technique, one
could combine this with our present scheme to solve long
arrays of such V (x)’s. For the aforementioned four essential
shapes, we have discussed distinct properties of lattices with
N ranging from 106 to 109, as far as we know sizes previously
not addressed in the literature. In particular, for so large N’s
the profiles of |TN (k)|2 are basically those of the energy bands
of the corresponding infinite cases.

Furthermore, we have applied our method to arbitrary sit-
uations where the localized cells are themselves compositions
of two or more basic BBs, generating which we have called
CBBs. We have analyzed different CBBs, including spatially
asymmetric ones. For them, our results helped to shed ex-
tra light into the comprehension of certain aspects of band
structures of lattices constituted by asymmetric barriers. We
remark that the unveiled general features here have previously
been explored in specific instances, e.g., in Refs. [74,75].

Lastly, we have considered two concrete problems, namely,
to search for spatial parameters optimizing the transport prop-
erties in heterostructures and to determine FP resonant modes
in superlattices. The first (second) system has interest in the
building of solar cells (band-pass filters). For so, we have
addressed specific materials commonly discussed in the lit-
erature with such purposes. We have shown that our approach
allows to easily test a broad range of parameters and situations
through straightforward simulations, e.g., refer to Figs. 10(b)
and 12. In particular, for the first problem our results have
very adequately fitted the experimental results obtained in
Ref. [13], Fig. 10(c).

We conclude this work by mentioning few possible ex-
tensions for our framework. An important effect in electron
transmission through semiconductor superlattices is the so-
called Rashba’s, or, in brief, a spin-induced splitting of the
energy bands (refer, e.g., to Refs. [91–93]). It is usually in-
vestigated for small arrays. Appropriate adaptations in our
main equations to include the effect (presently an ongoing
work) would allow us to consider much larger structures. For
large lattices with the same basic BB, periodic replacement
of BB by another BB’, say after every M repetitions of BB,
could give rise to distinct phenomena such as those related
to conductance and transmittance in multi-junction solar cells
[13], graphene layers [10,94], conjugated polymers [95,96],
and organic semiconductors [97]. Ours is a very appropriate
tool to calculate the properties of such types of systems. We fi-
nally observe that the TM is the common computation method
to address processes in acoustics [98–102], optics [23,103],
nanophotonics [104], organic thin films [105], many-body
systems [106], and even in the microbiology, characterizing
bacteria [107]. A great fraction of such works does consider
only relatively small N’s. All these instances could likewise
be treated with the present approach, however, permitting us
to handle considerably greater N’s.
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APPENDIX A: DEDUCTION OF THE EXPRESSION FOR CN

Suppose two infinite sets of complex numbers b0, b1, . . .

and a1, a2, . . . �= 0. From the continued fractions theory
[54,55], for

f = b0 + a1

b1 + a2

b2 + a3

. . .

, (A1)

one defines the n-th approximant of f as (n = 1, 2, . . .)

fn = b0 + a1

b1 + a2

b2 + a3

. . . bn−1 + an
bn

. (A2)

For instance, f1 = b0 + a1/b1, f2 = b0 + a1/(b1 + a2/b2)
and so on. Then, there is a sequence of complex numbers {Xn}
and {Yn} satisfying

Xn = bn Xn−1 + an Xn−2,

Yn = bn Yn−1 + an Yn−2, (A3)

such that for each n, it reads (exactly) fn = Xn/Yn. Above,
X−1 = 1, X0 = b0, Y−1 = 0 and Y0 = 1. The quantities Xn and
Yn are called, respectively, the n-th numerator and denomina-
tor of the associated continued fraction [54,108].

Now, for our CN in Eq. (10), we have that bN = C0, b0 =
b1 = · · · = bN−1 = γ and an = 1 for any n. In this way, CN =
XN/YN , where

XN = C0 XN−1 + XN−2,

YN = C0 YN−1 + YN−2, (A4)

and for any n � N − 1

Xn = γ Xn−1 + Xn−2,

Yn = γ Yn−1 + Yn−2. (A5)

The above equations are easily solved through recurrence
methods, see, e.g., Refs. [109,110]. Indeed, both relations in
Eq. (A5) are associated to the characteristic equation �2 −
γ � − 1 = 0, whose roots are

�± = γ ±
√

γ 2 + 4

2
. (A6)

Thus, the solutions for Eq. (A5) are [109,110]

Xn = c+ �n
+ + c− �n

−, Yn = c̃+ �n
+ + c̃− �n

−, (A7)

where the constants c± and c̃± obey

γ = c+ + c−, 1 = c̃+ + c̃−,

1 = c+/�+ + c−/�−, 0 = c̃+/�+ + c̃−/�−, (A8)
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resulting in

c± = ± �2
±√

γ 2 + 4
, c̃± = ± �±√

γ 2 + 4
. (A9)

Finally, using Eqs. (A7) and (A9) in Eq. (A4), we get

CN = C0 [�N+1
+ − �N+1

− ] + [�N
+ − �N

−]

C0 [�N+ − �N−] + [�N−1
+ − �N−1

− ]
, (A10)

which after some simplifications yields Eq. (11).

APPENDIX B: DERIVATION OF THE SCATTERING
AMPLITUDES FOR A TRAPEZOIDAL POTENTIAL

The trapezoid barrier is well discussed in the literature,
with their exact reflection and transmission amplitudes used
in many distinct contexts (see main text). However, it is very
hard to find a comprehensive derivation of the corresponding
Rtrap and Ttrap. So, our aim here is to fulfill such gap.

Thus suppose a 1D quantum particle of mass m subject to
the localized potential

V (x) = (Vb − Va) x + (Va b − Vb a)

(b − a)
, a � x � b,

V (x) = 0, otherwise, (B1)

notice that V (a) = Va and V (b) = Vb, see Fig. 3(c).

We have a free Schrödinger equation for x < a and x > b,
whereas for a � x � b, we get(

− α− 2
3

d2

dx2
+

(
− x + (α̃ − k2)

α

)
α

1
3

)
ψ (x) = 0, (B2)

for α = (2m/h̄2)(Va − Vb)/(b − a), α̃ = (2m/h̄2)(Va b −
Vb a)/(b − a) and k2 = (2mE )/h̄2. Further, setting
y = [−x + (α̃ − k2)/α] α1/3, it is easy to see that
d2/dy2 = α− 2

3 d2/dx2, with Eq. (B2) reducing to(
− d2

dy2
+ y

)
ψ (y) = 0. (B3)

The above is the Airy equation, such that in the y interval
corresponding to a � x � b

ψ (y) = AAi(y) + B Bi(y), (B4)

with Ai(y) and Bi(y) the Airy functions of first and second
kind, respectively [111].

For the cases of an incoming wave either from the left (+)
or from the right (−), we write (c(+) = a, c(−) = b)

ψ (x) =

⎧⎪⎨
⎪⎩

exp[±i k x] + r (±) exp[∓i k x], x ≶ c(±)

A(±) Ai(y(x)) + B(±) Bi(y(x)), a < x < b

t (±) exp[±i k x], x ≷ c(∓)

,

(B5)

subjected to the continuity of ψ and of dψ/dx at x = a and
x = b. Therefore (with f ′(z) = df (x)/dx|x=z and yz = y(x =
z))

0 = A(±) Ai(yc(±) ) + B(±) Bi(yc(±) ) − exp[±i k c(±)] − r (±) exp[∓i k c(±)],

0 = A(±) Ai(yc(∓) ) + B(±) Bi(yc(±) ) − t (±) exp[±i k c(∓)],

0 = (A(±) Ai′(yc(±) ) + B(±) Bi′(yc(±) )) α
1
3 ± i k (exp[±i k c(±)] − r (±) exp[∓i k c(±)]),

0 = (A(±) Ai′(yc(∓) ) + B(±) Bi′(yc(∓) )) α
1
3 ± i k t (+) exp[±i k c(∓)]. (B6)

Solving such a system, we obtain

R(±)(k) = D(±)(k)

C(k)
, T (k) = − 2η(k)

πC(k)
, (B7)

with (η(k) = i α
1
3 /k)

D(±)(k) = [Ai(ya) ∓ η(k) Ai′(ya)] [Bi(yb) ∓ η(k) Bi′(yb)] − [Ai(yb) ∓ η(k) Ai′(yb)] [Bi(ya) ∓ η(k) Bi′(ya)],

C(k) = [Ai(ya) + η(k) Ai′(ya)] [Bi(yb) − η(k) Bi′(yb)] − [Ai(yb) − η(k) Ai′(yb)] [Bi(ya) + η(k) Bi′(ya)]. (B8)

Recall that r (±)(k) = exp[±2 i k c(±)] R(±)(k) and that
t (±)(k) = exp[−i k (b − a)] T (±)(k).

APPENDIX C: FEW COMPARISONS
WITH THE LITERATURE

We shall recall that our method is exact. In this way,
there is no need to confront ours with other calculations in
the literature, at least for accuracy. Nonetheless, few checks
would be in order. So, we mention that in different papers,
e.g., Refs. [19–21,112–115], distinct methods have been used
to obtain |TN |2 for arrays formed by equally spaced delta

functions, considering N never superior to one hundred. Al-
though not explicitly shown here (but see below), as it should
be we have been able to exactly and extremely rapid reproduce
the |TN |2 plots of all these works. Likewise, we have easily
generated the same |TN |2 of Refs. [19,28,31,116,117] for
periodic systems composed by few rectangular barriers. Un-
fortunately, we have not found studies of finite 1D lattices
whose BBs are either trapezoidal or triangular potentials.

However, for explicit comparisons, in Fig. 13, we confront
ours (indicated as Green Function, GF) with the results from
two pioneers works of 1992 and 1993 [19,20], in which the
transfer matrix (TM) method was employed for N = 100
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FIG. 13. Transmission probability as a function of (a) k for N =
100 delta barriers with β = 4, L = 1 and of (b) (k/k0 )2 for N = 51
rectangular barriers with V0 = 2, w = L = π/8 (k2

0 = V0). The cal-
culations from TM—digitalized from Refs. [19,20], respectively, in
(a) and (b)—are compared with the present method, here labeled as
GF (Green’s function method).

deltas and N = 51 rectangular barriers. The curves in Fig. 13
for the TM have been electronic digitalized directly from
such references, whose original print quality has not the
present-day resolution. Nevertheless, taken this into account,
one sees that our approach reproduces perfectly well these
previous computations. Finally, in Fig. 14, we present |T10|2
curves for systems with ten attractive delta potentials (β < 0)
[113]—solved by means of the Lippmann–Schwinger (LS)
equation—and ten rectangular barriers [117], calculated from
the TM method. Our method is indicated as GF. We again
observe fully agreement between the curves. Also important
to mention that in Fig. 14(a), we have delta wells instead of
barriers. This illustrates that our protocol is not restricted to
repulsive potentials.

APPENDIX D: THE FORBIDDEN BANDS ONSETS:
THE CASE OF AN ARBITRARY LONG DIRAC COMB

Here we determine analytically the onsets of forbidden
(quasi)bands in a Dirac comb of arbitrary N . Although this
result has already been derived in the literature (see, e.g.,
Refs. [19,21]), our current Green’s function approach makes
it easier to grasp why such onsets are the same regardless
of N .

If for a given k the periodic structure is transparent,
or |TN (k)|2 = 1 (so |RN (k)|2 = 0), the Eq. (14) implies
that CN/C0 = 1. Conversely, if there is no transmission
thought the lattice for a certain k, i.e., |TN (k)|2 = 0 (so
|RN (k)|2 = 1), the Eq. (14) implies that CN/CN−1 = 1. In
particular, for a forbidden band starting at k∗, we should
have TN (k∗ + ε) = 0 for 0 � ε < �k, with �k the bandwidth.

FIG. 14. Transmission probability versus k for finite structures
formed by N = 10 (a) delta wells, with β = −2, L = 3 and (b) rect-
angular barriers, with V0 = 18, w = L = 1. The results from the
present exact approach (GF) are compared with those from the
Lippmann-Schwinger (LS) equation [113] (for the deltas) and from
the transfer matrix (TM) method [117] (for the rectangular barriers).
The curves from LS and TM have been digitalized from the corre-
sponding references [113,117].

Moreover, limε→0+ |TN (k∗ − ε)| > 0 (but regarding this re-
quirement there are some subtleties, see below).

By defining

A = (1 + C0 �−)

(1 + C0 �+)
= B �, B = (C0 − �+)

(C0 − �−)
, (D1)

from the Eq. (11), we can write

CN

CN−1
= (A �N − 1)

(A �N − �)

(B �N − �)

(B �N − 1)

= 1 − B �N

�

(
� − 1

B �N − 1

)2

. (D2)

Note that for any k such that �(k) = 1—or equivalently
γ (k)2 + 4 = 0, refer to Eq. (12) — from Eq. (D2) we find
that CN (k)/CN−1(k) = 1 and thus TN (k) = 0. However, to
determine whether or not k = k∗, we must perform the afore-
mentioned analyzes, i.e., to study TN around k.

Thus suppose N equally spaced delta potentials. For Rδ and
Tδ in Eq. (18) (for which φ = 0) and γ in Eq. (8), one has
γ (k) = −2 i (cos[k L] + β sin[k L]/(2 k)). Thence, for k L =
l π (l = 1, 2, . . .) it readily follows γ (l π )2 + 4 = 0. Next,
considering k L = l π + ε with ε very small, in first order in ε

we get

γ ≈ −2 i (−1)l

(
1 + βL

2 l π
ε

)
. (D3)
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Also, for �± and � in Eq. (12) and C0 as defined in Sec. III B,
in first order in ε

�± ≈ −i (−1)l

(
1 + βL

2 l π
ε

)
± i

√
βL

l π
ε,

� ≈ 1 + 2 βL

l π
ε + 2 (−1)l

√
βL

l π
ε,

C0 ≈ −i (−1)l

{(
1 + i

β L

2 l π

)
− i

(
1 + i

β L

2 l π

)
ε

− i
β L

2 l π

1

l π
ε

}
. (D4)

To infer the behavior of TN just to the left and just to the
right of k L = l π , we can take only the terms up to

√
ε in

Eq. (D4) and split the analysis into two case: ε either positive
or negative.

Writing � = 1 + ξ for ξ = 2 (−1)l
√

βL
l π

ε — so |ξ | is
small—we have A ≈ (1 + ξ ) B, CN/CN−1 ≈ 1 − DN and

DN = B

(1 + ξ )N+1

ξ 2

(B − (1 + ξ )−N )2
. (D5)

We also set B ≈ 1 − 2 i (l π/(β L)) ξ . Further simplifica-
tions for DN depends on the small ξ being real or
imaginary (ε positive or negative). Indeed, for ξ real ob-
viously 1/(1 + ξ )M is likewise real (with M any integer)
and a fairly good approximation is 1/(1 + ξ )M ≈ 1 − M ξ .
But if ξ is imaginary, 1/(1 + ξ )M is a complex number.
Therefore a more suitable approximation is 1/(1 + ξ )M ≈
exp[−i M |ξ |] = cos[M |ξ |] − i sin[M |ξ |].

For the former situation

DN ≈ 1 − (N + 1 + i 2 l π/(β L)) ξ

(N − i 2 l π/(β L))2
, (D6)

so that DN is rather small for N � |ξ |−1, yielding |TN (l π +
|ε|)|2 ≈ 0. On the other hand, for the latter

DN ≈ −B exp[−i (N + 1) |ξ |]
(B − exp[−i N |ξ |])2

|ξ |2. (D7)

Due to the oscillatory character of exp[−i N |ξ |], DN can
vary, assuming smaller or larger values depending on N and
ε. Consequently, this is also true for |TN (l π − |ε|)|2, a well
known phenomenon within the allowed quasibands in a peri-
odic array as one increases the number N of its barriers [19].

In this way, we can conclude that k∗ = l π is in fact the
onset of the forbidden bands in the Dirac comb model.

[1] R. G. Newton, Scattering Theory of Waves and Particles
(Springer Science and Business Media, Berlin, 2013).

[2] L. Brillouin, Wave Propagation in Periodic Structures (Dover
Publications, Mineola, 2003).

[3] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic
Analysis for Periodic Structures (American Mathematical So-
ciety, Ann Arbor, 2011).

[4] D. G. Truhlar and B. Simon, Multiparticle Quantum Scat-
tering with Applications to Nuclear, Atomic and Molecular
Physics (Springer Science and Business Media, New York,
1997).

[5] B. J. Berne and R. Pecora, Dynamic Light Scattering: With
Applications to Chemistry, Biology, and Physics (Dover Publi-
cations, Mineola, 2000).

[6] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic
Scattering Theory (Springer Berlin, Heidelberg, 2019).

[7] P. A. Martin, Time-Domain Scattering (Cambridge University
Press, Cambridge, 2021).

[8] Z. Cao and C. Yin, Advances in One-Dimensional Wave Me-
chanics: Towards a Unified Classical View (Springer Berlin,
Heidelberg, 2014).

[9] E. Sakr, A. El-Nadi, and I. Eshrah, Spatial Modulation of One-
Dimensional Periodic Structures: Analysis and Applications
(LAP LAMBERT Academic Publishing, Saarbrücken, 2012).

[10] L. G. Wang and S. Y. Zhu, Electronic band gaps and transport
properties in graphene superlattices with one-dimensional pe-
riodic potentials of square barriers, Phys. Rev. B 81, 205444
(2010).

[11] X. Fang, Y. Bando, U. K. Gautam, T. Zhai, S. Gradečak,
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