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Disorder free many-body localization (MBL) can occur in interacting systems that can dynamically generate
their own disorder. We address the thermal-MBL phase transition of two isotropic Heisenberg spin chains that
are quasiperiodically coupled to each other. The spin chains are incommensurate and are coupled through a
short-range exchange interaction of the XXZ type that decays exponentially with the distance. Using exact
diagonalization, matrix product states, and a density matrix renormalization group, we calculate the time evolu-
tion of the entanglement entropy at long times and extract the inverse participation ratio in the thermodynamic
limit. We show that this system has a robust MBL phase. We establish the phase diagram with the onset of
MBL as a function of the interchain exchange coupling and of the incommensuration between the spin chains.
The Ising limit of the interchain interaction optimizes the stability of the MBL phase over a broad range of
incommensurations above a given critical exchange coupling. Incorporation of interchain spin flips significantly
enhances entanglement between the spin chains and produces delocalization, favoring a prethermal phase whose
entanglement entropy grows logarithmically with time.

DOI: 10.1103/PhysRevB.110.054207

I. INTRODUCTION

Many-body localization (MBL) describes a dynamical
phase of an interacting quantum system that cannot reach
thermal equilibrium in the thermodynamic limit [1–10]. The
growth of entanglement with time within an isolated system
is inhibited in the MBL phase, resulting in nonergodic time
evolution and area law scaling of the entanglement entropy.
A thermal phase in contrast follows ergordic time evolution,
developing full entanglement in the Hilbert space and volume
law scaling of entanglement entropy. Thus, a hallmark of the
MBL phase is the onset of very slow dynamics that preserves
information of the initial quantum state [11–15]. MBL states
have been experimentally observed in optical lattices with
cold atoms systems [15,16], where the entanglement entropy
can be directly measured [17], and also in circuits with super-
conducting qubits [18,19]. Those states are of technological
importance in the development of quantum memory [20–23]
and also of fundamental interest to subjects ranging from
quantum information, time crystals and quantum thermaliza-
tion in closed systems [24–28].

Disorder and interactions are identified as key controlling
parameters driving a thermal system towards a MBL phase.
In the absence of interactions, a quantum system subjected to
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arbitrarily weak disorder potential would be Anderson
localized [1,29,30] in one dimension. Many-body localiza-
tion occurs in one-dimensional (1D) interacting systems in
the presence of externally applied random disorder fields
[10–14,31–36]. A system can exhibit a thermal-MBL phase
transition when the magnitude of the disorder strength (h) is
greater than a critical value, h > hc. Usually, this transition
occurs through a marginally localized intermediate regime,
which may depend on the system size, disorder strength, and
the interactions [14,35,37].

MBL has been theoretically proposed in the presence of
quasiperiodic static potentials described by the Aubry-Andre
model in one dimension [15,38–41]. The onset of thermal-
MBL phase transition in this model has been found to be
at the critical value hc = 2 (in units of the “kinetic” energy)
and followed by a broad marginally localized precursor to the
MBL regime [35,38,39]. Recent numerical studies of two-leg
ladder model provide signatures of the thermal-MBL transi-
tion for both random disorder and the Aubry-Andre model
under an externally applied critical field strength in the range
8 < hc < 10 [41,42].

Disorder free MBL arises in systems that can dynami-
cally generate their own disorder in the absence of externally
applied fields. Proposals in 1D lattices include of out-of-
equilibrium bosons [43] or spins [44], or families of models
with fermions effectively coupled to spins [45,46]. A two-leg
ladder compass model, with discrete translational symmetry
and imposed topological constraints on the Hilbert space due
to conservation laws, identified a prethermal phase with loga-
rithmic growth of the entanglement entropy in time [47]. It has
been shown that the presence of a linearly varying potential
in spin chains may disentangle the Hilbert space in discrete

2469-9950/2024/110(5)/054207(10) 054207-1 Published by the American Physical Society

https://orcid.org/0000-0001-9743-1605
https://orcid.org/0000-0002-9443-5050
https://ror.org/033jvzr14
https://ror.org/02aqsxs83
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.054207&domain=pdf&date_stamp=2024-08-28
https://doi.org/10.1103/PhysRevB.110.054207
https://creativecommons.org/licenses/by/4.0/


K. G. S. H. GUNAWARDANA AND BRUNO UCHOA PHYSICAL REVIEW B 110, 054207 (2024)

FIG. 1. Schematic of the two isotropic Heisenberg spin chains
having lattice parameters a and b. The isotropic spin interaction
within each chain is described by JA and JB. The short-range NN
exchange coupling between chains at direction ν, U ν

〈nm〉, is guided by
the black dashed line. The dotted curved line represents a bipartite cut
employed to calculate the time evolution of the entanglement entropy
between left and right parts of the system.

sectors, resulting in nonergordic MBL-like dynamics [21,48–
53]. In another proposal, two coupled fermionic chains with
full translational symmetry, each chain having a different
species with either heavy or light masses, were found to have
early time evolution indications of MBL [54–58]. Translation-
ally invariant systems, nevertheless, show strong finite-size
effects and are expected to delocalize in the thermodynamic
limit at long times [57,58]. Moreover, implementation of some
of the other proposals requires the preparation of specifically
ordered states in finely tuned Hamiltonians.

In this work we address the question of whether the
quasiperiodic coupling between two isotropic spin chains,
each one with discrete translational symmetry, can produce
a robust MBL phase. We show that the answer is affirmative.
We propose a model consisting of two isotropic spin chains
coupled to each other by an anisotropic short-range exchange
interaction of the XXZ type that decays exponentially with
distance. The two spin chains have different incommensurate
lattice parameters a and b. The ratio between lattice parame-
ters is irrational,

b − a

a
≡ γ δ, (1)

where δ > 0 is a real number and γ is some irrational number
whose value is chosen to be γ = (1 − π2/10), with 0 � γ δ <

1. This construction results in two coupled spin chains with
incommensurate lattice constants. Because their exchange
coupling decays exponentially with the distance between spin
sites, the two chains are quasiperiodically coupled to each
other, as indicated in Fig. 1.

In the Ising limit of the XXZ exchange between the chains,
we show that this system enters a MBL phase above a critical
value of the quasiperiodic interchain exchange coupling. Such
critical value is strongly dependent on the incommensura-
tion. We provide numerical evidence that the MBL phase is
optimized for 0.176 < γδ < 0.712 and is suppressed in the
commensurate limit γ δ → 0. In the optimal regime, the MBL
phase emerges when the interchain exchange coupling in the z
spin axis U z

0 /J > 9, with J the isotropic intrachain Heisenberg
exchange coupling, while a prethermal phase appears between
6 < U z

0 /J < 9. In the latter, the entanglement entropy grows
logarithmically with time. Below U z

0 /J < 6 the system is in
the thermal phase for most incommensuration values.

We find that restoration of the interchain exchange cou-
pling in the x and y spin directions, U xy

0 , significantly enhances
entanglement between the chains and produces delocalization.
In the isotropic limit U xy

0 = U z
0 , the system is always in the

thermal phase. For strong but finite anisotropy, the MBL phase
is stabilized at U z

0 /J > 30 for U x,y
0 /J = 1 near the optimal

incommensuration γ δ ≈ 0.391. In this regime thermalization
occurs at U z

0 /J < 9, with a broad prethermal region in be-
tween.

The structure of the paper is as follows: in Sec. II we de-
scribe the Hamiltonian of the system and proceed to calculate
the time evolution of the bipartite entanglement entropy S in
Sec. III. In the Ising limit of the XXZ interchain exchange, we
show that the entanglement entropy follows a transition from
volume law to area law scaling at finite incommensuration,
as the exchange coupling between the chains is increased.
Next, using exact diagonalization at zero magnetization, we
calculate the averaged inverse participation ratio (IPR) for
finite system sizes as a function of the incommensuration
and the exchange coupling. We extrapolate the IPR to the
thermodynamic limit and construct the phase diagram sepa-
rating the thermal and MBL phases. To check for the stability
of the MBL phase in the Ising limit of the XXZ exchange
between the chains, we restore the interchain exchange inter-
action along the x and y spin directions. We examine the time
evolution of the entanglement entropy to show that the MBL
phase remains stable, although at a much larger interchain
critical coupling U z

0 . We also calculate the IPR of the ground
state for very large system sizes using density matrix renor-
malization group (DMRG) to gain insight into the behavior of
the system in the γ δ → 0 limit. Finally, in Sec. IV we present
our conclusions.

II. COUPLED SPIN CHAIN MODEL

We consider two isotropic spin- 1
2 Heisenberg chains with

Hamiltonian

Hα = Jα

Nα∑

i=1

Si · Si+1, (2)

where α = A, B labels each chain, and Jα > 0 is the intrachain
nearest-neighbor (NN) exchange coupling. Nα is the number
of spins on chain α and S = (Sx, Sy, Sz ) is the spin operator
Sν = h̄

2 σ ν , with ν = x, y, z labeling the standard Pauli matri-
ces. The spin chains are coupled to each other through the
XXZ exchange

HAB =
∑

ν=x,y,z

∑

n∈A,m∈B

U ν
nmSν

n Sν
m, (3)

where U x
nm = U y

nm ≡ U xy
nm and U z

nm are the interchain exchange
couplings for spins oriented in the x, y, z directions. The
interchain exchange decays exponentially with the distance
between sites,

U ν
nm = U ν

0 eρ

(
1−

√
1+r2

nm

)
, (4)

where rnm = |RA
n − RB

m|/d is the horizontal distance between
sites normalized by the distance between the two chains d ,
and ρ sets the range of the interaction. Rν

n is the position of
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FIG. 2. Evolution of the interchain interaction profile for NN sites, U ν
〈nm〉/J vs the site position n in the spin ladder for different values of

incommensuration γ δ, with γ = (1 − π 2/10) an irrational number. n sites below to chain A and m sites to chain B. The legends represent the
approximate value of γ δ for each potential profile. δ = e0.2, e1.2, e2.6, e3.4, e3.6, and e4 for γ δ ≈ 0.016, 0.043, 0.176, 0.391, 0.477, and 0.712,
respectively.

the spins along the chains,

RA
n = an − rA

0 , RB
m = bm − rB

0 , (5)

with a and b the lattice parameters of spin chains A and B,
respectively, and rα

0 is the origin of each chain.
The primary focus of this work is to investigate the effect

of interchain exchange coupling in the onset of the MBL
transition. We finely tune JA = JB = J so that in the limit
U ν

0 → 0 the system decouples into two identical isotropic
Heisenberg spin chains, which are ergodic. The exchange
coupling between chains U ν

〈nm〉 given in Eq. (3) is truncated
to the two NN spin sites, as shown in Fig. 1. The solid lines
connecting spin sites in each chain represent the isotropic
interactions between spins in each chain. The dashed line
running between spin sites is a guide to the eye representing
the short-range exchange coupling between chains. Thus, each
spin in a chain couples through J with two NNs in the same
chain and through U ν

〈nm〉 with up to two nearest spins in the
opposite chain. We set ρ = 10 in Eq. (4). Our conclusions
do not depend on the choice of ρ, which will at most rescale
the localization length at finite system sizes, but not in the
thermodynamic limit.

We consider the regime where the incommensuration is in
the range 0 � γ δ < 1, in which the lattice parameters satisfy
b ∈ [a, 2a]. For large incommensurations γ δ 	 1, the linear
bond density between chains is reduced, as spin chain B be-
comes sparse, and the two spin chains effectively decouple.
The evolution of the profile of the interchain interaction be-
tween NN spins U ν

〈nm〉 with the incommensuration is shown in
Fig. 2.

III. METHODS AND RESULTS

The many-body quantum states of the total Hamiltonian

H = HA + HB + HAB (6)

can be described using 2N basis vectors spanning the Hilbert
space, with N = NA + NB the total number of sites in the spin
ladder. The basis vectors are constructed with product states
|s1〉 ⊗ · · · ⊗ |sN 〉, where |si〉 = | ↑〉, | ↓〉 are the eigenstates of
Sz

i on site i. By convention, the product states are arranged

from left to right in ascending order as guided by the dashed
line in Fig. 1. We use the above ordered set of basis vectors
to calculate the matrix elements of H and construct the matrix
product state (MPS) in our numerical calculations.

We numerically calculate the time evolution of an initial
product state following a global quantum quench using the
unitary transformation, |ψ (t )〉 = e−iHt |ψ0〉. The initial state
is chosen so that the spins in each chain are arranged in
a Néel state. For instance, at low incommensuration (γ δ ≈
0) the initial product state is given by |ψ0〉 = | ↑,↑,↓,↓
, . . . ,↑,↑〉. We use MPS to represent the quantum many body
system and study the dynamics following the time-evolving
block decimation (TEBD) method. In TEBD method, the time
evolution operator e−iHτ is decomposed into the product of
locally interacting pair of spins using a second-order Trotter
decomposition and contracted with the MPS to obtain the
updated quantum state after time τ (see the Appendix). This
process is repeated t/τ time steps to obtain the quantum state
of the system after time t . The maximum time step used is
τ = 0.05J−1. The internal bond dimension of the MPS can be
truncated in low-entangled systems to improve computational
efficiency. In this work, we use a weight cutoff of 10−7 in the
MPS of the thermal phase. In the MBL phase we used a MPS
bond dimension of 50.

A. Entanglement entropy

The spin ladder is bipartitioned with a vertical cut into
two spin ladders with N/2 of spins, as shown in Fig. 1. We
study the development of entanglement between the left and
the right half of the system with time. The reduced density
matrix of the left half of the system (ρL ) is calculated by
tracing out the quantum degrees of freedom of right half. This
quantity is a probabilistic measure of the entanglement devel-
oped through 2N/2 bonds between the left and the right halves
of the system. Thus, the von Neumann bipartite entanglement
entropy is calculated as S = −trL[ρL ln(ρL )].

Volume law versus area law. We investigate the role of
the exchange coupling between chains and the amount of
incommensuration in the MBL transition. We first turn off
the spin flip exchange interaction between two chains by
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FIG. 3. Time evolution of the bipartite entanglement entropy S(t ) following a quantum quench from an initial product state for different
system sizes. (a) Thermal phase at δ = 1.0 (γ δ ∼ 0.013), U z

0 /J = 1 and U xy
0 = 0 for N = 6,10, 14, 18, and 22. The entropy saturates due to

the finite-size effects. The saturated entropy follows the volume law of entanglement. Inset: Plot of the saturated entropy S(∞) vs number of
ladder spins N in the thermal phase. The slope of the straight line is 0.3305. MBL phase at δ = 15.0 (γ δ ∼ 0.196), U z

0 /J = 25 and U xy
0 = 0 for

(b) rA
0 = Na/2 + 0.5 and rB

0 = Nb/2 + 0.6 and (c) rA
0 = Na/2 and rB

0 = Nb/2 + 0.3. Different curves correspond to different system sizes.
The relative placement of the two chains is adjusted to keep bond strength at the bipartite cut independent of the system size. In either case,
the curves collapse on top of each other, consistently with area law entanglement (see text).

setting U xy
0 = 0. Choosing the relative position of the two

spin chains to be rA
0 = rB

0 = 0, we show in Fig. 3 that the
bipartite entanglement entropy S follows a transition from
volume law entanglement to area law as a function of U z

0
and γ δ. Figure 3(a) shows the time evolution of S for δ = 1.0
(γ δ ≈ 0.013) and U z

0 /J = 1 at different system sizes. As time
elapses, S initially grows quickly and eventually saturates
close to the maximum possible value of entanglement entropy
for half system, N ln(2)/2 ≈ 0.3466N . The saturated entropy
S(∞) scales linearly with the size of the system N [see inset
of Fig. 3(a)] with a slope of 0.3305. Thus, the system is in
the thermal phase and follows a volume law of entanglement.
Those results are independent of the choices of rA

0 and rB
0 .

At higher values of U z
0 and incommensuration the system

has area law entanglement across the left and right partitions.
In Figs. 3(b) and 3(c), we plot the time evolution of S for
δ = 15.0 (γ δ ≈ 0.196) and U z

0 /J = 25 in four different sys-
tem sizes: N = 14, 18, 22, and 30. We adjust the relative
placement of the chains through rA

0 and rB
0 to ensure that the

bond strength U z
〈n̄m̄〉 at the bipartite cut (n̄ = N/2) is indepen-

dent of the chain size. Figure 3(b) depicts the evolution of
the S(t ) curves for rA

0 = Na/2 + 0.5 and rB
0 = Nb/2 + 0.6,

where the bond strength at the partition is U z
〈n̄m̄〉 = 0.46 for

all N . Figure 3(c) depicts the behavior of S(t ) for a different
choice of relative placement of the chains, rA

0 = Na/2 and
rB

0 = Nb/2 + 0.3, where the bond strength at the bipartite cut
is U z

〈n̄,m̄〉 = 1.2. In both cases, S(t ) is independent of N . The
different curves for several chain sizes collapse into a single
curve. The system has thus area law entanglement and is
many-body localized up to the longest timescales t ∼ 103J−1

observed in our simulations.

B. MBL phase diagram

To quantify the MBL transition over a broader range
of parameters and extract the thermal-MBL phase diagram,
we calculate the mean inverse participation ratio (IPR) of
the full energy spectrum at infinite temperature using exact

diagonalization. We impose that the system has zero net mag-
netization and restrict the size of the Hilbert space by picking
only the N!/(N/2)!)2 basis vectors that have the same total
number of | ↑〉 and | ↓〉 states. The Hamiltonian matrix of
Eq. (6) is diagonalized to obtain the full eigenspectrum of the
system. The IPR is calculated through the average

〈I〉 = 1

D

D∑

λ=1

4

N

N∑

i

〈φλ|Sz
i |φλ〉2, (7)

where |φλ〉 is the λth eigenvector and D is the number of
eigenvectors in the system. For a maximally localized (ther-
malized) phase, 〈φλ|Sz

i |φλ〉 = ± 1
2 (0) at each spin site, and

hence 〈I〉 takes the value 1 (0). We calculate the IPR for
each value of U z

0 /J and incommensuration γ δ in five system
sizes, N = 8, 10, 12, 14, 16, and then extrapolate to the ther-
modynamic limit (N → ∞), 〈I〉∞. Following the procedure
described in Ref. [35], we adopt the ansatz

〈I〉
1 − 〈I〉 ∝ Nα, (8)

from which we extract the scaling exponent α. In ideally
thermalized states, where the system is entirely delocalized
and ergodic, α < −1 with 〈I〉∞ ∼ 0. On the other hand, in the
MBL phase, one expects α > 0 with 〈I〉∞ ∼ 1.

Phase diagram. The thermal-MBL phase diagram is drawn
in the left panel of Fig. 4, where we plot 〈I〉∞ against the
interchain coupling U z

0 and the incommensuration γ δ. The
black solid line, drawn at 〈I〉∞ = 0.1, separates the thermal
phase (dark red) from the marginally localized and MBL
phases (light red and bright yellow, respectively). The system
is in the thermal phase for all values of U z

0 /J below the the
critical exchange coupling at the phase separation line (solid
black). This phase separation approximately corresponds to
the boundary of the region in the right panel of Fig. 4 where
the scaling exponent α < −1. The system is in the thermal
phase when U z

0 /J � 6 for all values of γ δ < 0.8.
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FIG. 4. Numerical phase diagram between thermal and MBL phases. (a) Color plot of the mean inverse participation ratio extrapolated
to the thermodynamic limit 〈I〉∞ vs incommensuration γ δ and strength of exchange coupling between the chains U z

0 /J . (b) Color plot of
the exponent α extracted in the extrapolation of 〈I〉 to the thermodynamic limit versus γ δ and U z

0 /J . The onset of the thermal-MBL phase
separation (black solid line) is drawn at 〈I〉∞ = 0.1. The thermal region (dark red) to the left of the line corresponds approximately to the region
where scaling exponent α < −1.0 in panel (b). The black dashed line is drawn at 〈I〉∞ = 0.5. The solid white line is at 〈I〉∞ = 0.9, and the
region to its right in bright yellow is in the MBL phase. This region approximately matches the light blue region in panel (b), where α > 0.5.
The intermediate region between the solid black and solid white lines is marginally localized (0.1 < 〈I〉∞ < 0.9). This region corresponds to
the range of scaling exponents −1 < α < 0.5 in panel (b).

The region where U z
0 /J is larger than the critical value set

by the solid white line is identified as fully many-body local-
ized (yellow region), where 〈I〉∞ > 0.9. It correlates with the
region shown in light blue in the right panel, where α > 0.5.
The black dashed line is drawn at 〈I〉∞ = 0.5 and approxi-
mates the boundary where α = 0 in the right panel. It is clear
that the onset of the MBL phase has a strong dependence
on the incommensuration. In the analysis of both 〈I〉∞ and
the scaling exponent α, the optimal incommensuration for the
onset of MBL is in the range 0.176 < γδ < 0.712, where the
critical exchange coupling is U z

0 /J ∼ 10. At low incommen-
surations, γ δ � 0.1, the MBL phase is strongly suppressed. In
particular, in the limit γ δ → 0, where the coupling between
the spin chains becomes periodic, we observe no MBL. In the
opposite limit, γ δ → 1, the bond density between the chains
decreases as the lattice constant of one chain becomes nearly
twice as the constant of the other chain. In this regime the
critical coupling needed for MBL increases.

The light red region in the left panel of Fig. 4 corresponds
to an intermediate phase with 0.1 < 〈I〉∞ < 0.5 where the
states are marginally localized. The entanglement entropy in
this prethermal phase scales logarithmically with time, in con-
trast with the scaling in the MBL and thermal phases shown
in Fig. 3. This region approximately matches the midregion
in the right panel, where −1 < α < 0. The width of this
region is very broad at low incommensuration, reflecting the
suppression of MBL, but narrows down at γ δ � 0.176. This

appears to be due to the development of rapid oscillations
in the profile of the exchange interaction between the chains
U z

〈nm〉 at γ δ ≈ 0.176, as shown in Fig. 2. The boundaries
separating the prethermal phase from the thermal and MBL
phases are consistent in both panels, although not smooth. The
roughness indicates the presence of numerical errors induced
by the extrapolation to the thermodynamic limit. We estimate
the error bar in the inverse participation ratio 〈I〉∞ and in the
scaling exponent α to be around 10%.

The extrapolation of 〈I〉 to the thermodynamic limit in
small system sizes is meaningful for interaction potentials that
oscillate rapidly compared to the system size. The extrapo-
lated results appear to be fairly accurate in the region γ δ >

0.2. The extrapolation becomes less accurate in the opposite
regime, at low incommensuration. In any case, we note that
this procedure correctly captures the expected suppression of
MBL in the low incommensuration limit γ δ → 0.

C. Delocalization due to spin flips between chains

We now turn on the exchange interaction between the spin
chains U xy

0 , which produces spin flips. Spin flips between
chains map through the standard Jordan-Wigner transfor-
mation into interchain hopping in the fermionic language,
which could lead to delocalization. We numerically observe
that this term drastically lowers 〈I〉 in the finite-size systems
we simulated (N � 18). Observation of MBL through IPR
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FIG. 5. Time evolution of the bipartite entanglement entropy S
at U xy

0 /J = 1 for different incommensurations: (a) γ δ ≈ 0.176, (b)
γ δ ≈ 0.391, (c) γ δ ≈ 0.712, and (d) γ δ ≈ 0.870. Top to bottom
curves in each panel correspond to ascending values of U z

0 /J indi-
cated on the left of the curves. (e) Slope of the entanglement entropy
C extracted from the logarithmic fit of the curves in panels (a) to (d).
The system enters in the MBL phase when C = 0.

over the whole energy spectrum would hence require much
larger system sizes in order to properly extrapolate the data
to the thermodynamic limit. This can be challenging given
the exponential growth in computational cost in exact diag-
onalization methods. To gain insight, we resort to calculate
the time evolution of the entanglement entropy S(t ) through
MPS. Even though MPS is relatively efficient, interchain spin
flip processes considerably increase the entanglement of the
states, requiring a much larger bond dimension for the MPS
compared to the U xy

0 = 0 case.
In Figs. 5(a)–5(d) we show the time evolution of the bi-

partite entanglement entropy calculated from the initial state
| ↑,↓,↑,↓, . . . 〉 for U xy

0 /J = 1 at four different incommen-
surations, δ = e2.6 for N = 18 and e3.4, e4.0, and e4.2 for
N = 14 (γ δ ≈ 0.176, 0.391, 0.712, and 0.870, respectively).
Each panel shows six curves ordered from top to bottom with

FIG. 6. DMRG calculation of the ground state inverse participa-
tion ratio IG for U z

0 /J = 7.39 and U xy
0 /J = 0 (blue curves), U xy

0 /J =
1 (purple), and U xy

0 = U z
0 (green). (Left) IG vs inverse of the system

size 1/L for γ δ ≈ 0.016 (squares) and γ δ ≈ 0.26 (circles). (Right)
Thermodynamic limit of the ground state inverse participation ratio
IG(∞) for L → ∞ vs incommensuration γ δ.

increasing values of U z
0 /J ranging from 7 to 36. We observe

logarithmic growth of S at long times before reaching the
saturation, a characteristic signature of a precursor to the MBL
phase in the parameter space. At sufficiently long times, this
phase is expected to thermalize.

In order to characterize the MBL transition, we fit the
curves with the form S(t ) = Clog(Jt ) + D and extract the
slope C. In Fig. 5(e) we plot the slope of the curves as a
function of U z

0 . We average over two different initial product
states, | ↑,↓,↑,↓, . . . 〉 and | ↑,↑,↓,↓, . . . 〉, and different
initial times. The values of C for different system sizes are
scaled to N = 14. The behavior of C with U z

0 shows a broad
peak followed by a monotonic decrease with increasing U z

0
starting at U z

0 /J = 9.2 for all incommensurations inside the
previously identified optimal range 0.176 < γδ < 0.712. The
broad peak corresponds to a thermal phase that saturates early
due to finite size effects. The point at which the slope starts to
decrease monotonically with increasing U z

0 can be identified
as the onset of the thermal-MBL transition, with marginally
localized states. The rate of decrease of the slope C varies
with the incommensuration. The system enters in the MBL
phase only when C → 0. We note that this is the case at
γ δ ≈ 0.391 for U z

0 /J ≈ 30 where C = 0.001. The slope nev-
ertheless decreases much slower for other incommensuration
values, indicating the broadening in size of the marginally
localized region as the boundary to the MBL phase retreats.
This picture is qualitatively consistent with an overall shift
of the MBL phase separation line (white) to the right in
Fig. 4, combined with the emergence of a narrower range of
optimal incommensuration for the MBL phase that is centered
around γ δ ≈ 0.391. To develop more insight on the effect
of delocalization in the limit of γ δ → 0, we use DMRG to
calculate the inverse participation ratio of the ground state
IG [59]. This quantity is calculated for system sizes ranging
from N = 24 to 1100, with L ∼ N

2 . DMRG results are useful
predictors for thermal phases. Even though the presence of
localization in the ground state does not inform about the
behavior of the system at infinite temperature, where it can
delocalize, delocalization in the ground state can conclusively
rule out the emergence of MBL in the thermodynamic limit.

Figure 6(a) shows the variation of IG with the inverse of the
size of the chains 1/L at U z

0 /J = 7.39 for U xy
0 /J = 0, 1 and
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U xy
0 = U z

0 (blue, purple, and green curves, respectively). The
thermodynamic limit of IG at L → ∞ [IG(∞)] for U xy

0 /J = 0
(blue curves) indicates localization of the ground state ir-
respective of the incommensuration (γ δ ≈ 0.016 and 0.26).
This behavior is consistent with the fact that the ground
state of the isotropic antiferromagnetic Heisenberg model for
a single spin chain has gapped spinon excitations [60,61].
Those gapped excitations remain stable in the presence of an
Ising exchange coupling with another chain (U xy

0 = 0) in the
γ δ → 0 limit. This is confirmed in Fig. 6(b), where we plot
IG(∞) as a function of the incommensuration γ δ. The blue
curve shows that IG(∞) ≈ 0.79 at γ δ ≈ 0. For the chosen
set of couplings, the phase diagram in Fig. 4 reveals that the
system will eventually delocalize in the infinite temperature
regime through a prethermal phase.

For finite anisotropy in the XXZ exchange between the
chains, we observe a significant reduction of IG(0) with
increasing U xy

0 /J . For U z
0 /J = 7.39 and U xy

0 /J = 1 (purple
solid line) IG(∞) peaks at γ δ ≈ 0.391, where it has a kink.
This is qualitatively consistent with MPS results for the time
evolution of the entanglement entropy shown in Fig. 5, which
optimizes MBL at the same incommensuration. At smaller
values of γ δ, IG(∞) decreases rapidly and goes to zero in the
γ δ → 0 limit. This suggests that the whole energy spectrum is
delocalized in the commensurate limit. In the isotropic limit of
the XXZ exchange between the chains, U xy

0 = U z
0 , IG(∞) �

1 for all incommensurations (green curves in Fig. 6), consis-
tent with a thermal phase.

IV. CONCLUSION

We showed that robust MBL emerges from two quasiperi-
odically coupled Heisenberg spin chains. Using a combination
of different numerical methods, we derived the thermal-MBL
phase diagram of this problem as a function of the interchain
exchange coupling and the incommensuration. We show that
the MBL phase is optimal in the Ising limit of the XXZ
interchain exchange interaction, over a whole range of in-
commensurations 0.176 < γδ < 0.712. Spin flip processes
between chains produce a significant amount of entanglement
and favor a prethermal phase. MBL is generically present at
finite incommensuration above a critical exchange coupling
U z

0 in the anisotropic regime U xy
0 /U z

0 � 1, and is entirely
suppressed in the isotropic limit of the XXZ exchange interac-
tion. This proposal does not require finely tuned Hamiltonians
and could be implemented in spin chains constructed in the
absence of externally applied potentials.
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APPENDIX: NUMERICAL CALCULATION
OF THE TIME EVOLUTION OF STATE |ψ〉

In this Appendix, we provide numerical details of the
time evolving block decimation (TEBD) method adopted to
describe the time evolution of states according to Hamiltonian

FIG. 7. Diagrammatic notation of the Matrix Product State
(MPS) tensor train.

(6). We provide a comparison of the numerical results of the
bipartite entanglement entropy S(t ) against exact diagonaliza-
tion.

A many-body quantum state can be described by the linear
superposition of 2N basis vectors

|ψ〉 =
∑

si

cs1s2...sN |s1s2 . . . sN 〉, (A1)

where |si〉 are the eigenstates of Sz
i with | ↑〉 or | ↓〉 spin states.

The quantum state (A1) can be represented in the form of a
matrix product state (MPS) as

|ψ〉 =
∑

si

u1
s1l1 u2

l1s2l2 u3
l2s3l3 . . . uN−1

lN−1sN−1lN
uN

lN sN

× |s1s2 . . . sN 〉, (A2)

where up
i jl are tensors of rank 3 at spin site p. These are asso-

ciated with the basis vectors generated by the tensor product
|s1〉 ⊗ · · · ⊗ |sN 〉 and can be represented by the diagrammatic
notation shown in Fig. 7.

The time evolution of a quantum state |ψ〉 is described
by the unitary operator, U (τ ) = e−iHτ , where H is the time-
independent Hamiltonian. The state at time τ + t0, |ψ (τ +
t0)〉 can be given by applying the time evolution operator U (τ )
to the initial state |ψ (t0)〉

|ψ (τ + t0)〉 = e−iHτ |ψ (t0)〉. (A3)

Hamiltonian (6) can be written as the sum of locally interact-
ing pairs of spins. We decompose the Hamiltonian into two
parts: interactions within isotropic chains H0 = HA + HB ≡∑

i, j hi j , where the pairs i, j are interacting NN spins in
the same chain, and interchain interactions HAB ≡ ∑

n,m gnm,
with the pairs n, m denoting interacting NN spins in opposite
chains. The locally interacting pairs of spins hi j and gmn are
called gates. The basis states are arranged in ascending order
as shown in Fig. 1. Thus, at low values of incommensuration
(γ δ � 1), j = i + 2 and m = n + 1.

The time evolution operator can be written as

U (τ ) = e−i(H0+HAB )τ . (A4)

We now write Eq. (A4) as a product of gates hi j and
gnm, so that the operator U (τ ) can be contracted with the
MPS in Eq. (A2) to numerically evaluate |ψ (τ + t0)〉. Since
[H0,HAB] �= 0, we adopt a second-order Trotter decomposi-
tion

e−i(H0+HAB )τ ≈ e−iHABτ/2e−iH0τ/2e−iH0τ/2e−iHABτ/2

+ O(τ 3). (A5)
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FIG. 8. Diagrammatic notation of the time evolution algorithm
(for time step τ ) following the second-order Trotter decomposition.
The algorithm is shown only for a system of N = 6. The two rect-
angles connected by a thin horizontal line represent the operators hi j

and gnm. The solid circles represent the MPS at initial time t0, |ψ (t0)〉.

Similarly, we can expand the decomposition to individual
gates. Equation (A3) can be implemented numerically as
shown in the diagrammatic notation in Fig. 8.

FIG. 9. Plot of time evolution of the entanglement entropy of the
system shown in Fig. 1 for γ δ = 0.013, U z

0 /J = 1, and U xy
0 /J = 0.

The solid lines represent the results of numerical calculation using
the algorithm shown in Fig. 8. The time step used is τ = 0.05J−1.
A weight cutoff 10−7 is employed in Julia code truncating the MPS.
The open symbols represent the results from exact diagonalization
(ED) for N = 10 and N = 14.

We calculate the time evolution of the bipartite entan-
glement entropy with the numerical time evolution of the
quantum state calculated using the algorithm represented in
Fig. 8. We compare the time evolution of the entanglement
entropy (S) calculated using the above numerical time inte-
gration procedure with the results from exact diagonalization
(ED) in Fig. 9 for N = 10 and N = 14. The two methods
agree and give the same numerical results.
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