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Theory of local Z2 topological markers for finite and periodic two-dimensional systems

Nicolas Baù 1,* and Antimo Marrazzo 1,2,†

1Dipartimento di Fisica, Università di Trieste, I-34151 Trieste, Italy
2Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy

(Received 5 April 2024; accepted 7 August 2024; published 19 August 2024)

The topological phases of two-dimensional time-reversal symmetric insulators are classified by a Z2 topolog-
ical invariant. Usually, the invariant is introduced and calculated by exploiting the way time-reversal symmetry
acts in reciprocal space, hence implicitly assuming periodicity and homogeneity. Here, we introduce two
space-resolved Z2 topological markers that are able to probe the local topology of the ground-state electronic
structure also in the case of inhomogeneous and finite systems. The first approach leads to a generalized local
spin-Chern marker, that usually remains well-defined also when the perpendicular component of the spin, Sz,
is not conserved. The second marker is solely based on time-reversal symmetry, hence being more general.
We validate our markers on the Kane-Mele model both in periodic and open boundary conditions, also in the
presence of disorder and including topological/trivial heterojunctions.
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I. INTRODUCTION

The topological phases of insulators are characterized by
a bulk topological invariant, whose nontrivial character is
manifested by gapless boundary modes. In the framework
of two-dimensional systems, two main classes of topological
insulators (TI) can be identified: The quantum anomalous
Hall (also known as Chern) insulators (QAHI) [1] and the
time-reversal (TR) symmetric TIs, also known as quantum
spin Hall insulators (QSHI) [2–4]. The topological phases of
QAHIs are classified according to the Chern number C ∈ Z,
which signals the presence of chiral edge states protected
by the nontrivial topology. As for QSHIs, TR symmetry is
required and the symmetry-protected topological phase [2]
is classified by an index ν ∈ Z2. QSHIs display an odd
number of helical edge states and edge currents that are spin-
momentum locked.

Within periodic boundary conditions (PBC), the presence
of a nonzero topological invariant is related to the impossibil-
ity of constructing a smooth gauge in the whole Brillouin zone
(BZ) [5,6] and represents a topological obstruction. Topolog-
ical invariants are usually defined as global quantities of the
system, and in general they cannot be evaluated as the expec-
tation value of some operator. The task further complicates
when considering symmetry-protected topological phases, as
it becomes necessary to include the protecting symmetries
in the definition of the topological invariant. Examples for
TR-symmetric insulators include the concept of TR polariza-
tion [7], the parity of TR invariant momenta [8], or the flow
of hybrid Wannier functions centers [6,9,10]. For electronic
structure simulations of solids PBCs are usually chosen, and
symmetries are typically directly incorporated in reciprocal
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space [7,8], rather than real space. However, by construction,
these global formulations target homogeneous and periodic
systems. In the case of periodic and disordered systems a
number of strategies have been developed to compute the
global topological invariant, such as the single-point sampling
of the BZ in the large supercell framework [11,12], the Bott
index [13,14], the structural spillage [15], and methods based
on the scattering matrix [16,17] or on the noncommutative
index theorem [18–20].

When dealing with finite or inhomogeneous systems,
global invariants are of no avail, and one must adopt a space-
resolved approach, as done for instance in Refs. [21–26].
The ability to sample these quantities locally in real space
can be particularly useful when dealing, for instance, with
amorphous systems [27]. The long-range order—that usu-
ally allows calculating the topological invariant via reciprocal
space formulations—is lost, and only on the local scale the
system appears to retain an ordered arrangement. Since the
topological invariant is related to the organization of elec-
trons in the ground state, in principle it does not require the
existence of long-range order or translational invariance. As
the ground-state electronic structure is “nearsighted” [28], it
should be possible to probe the local topology of a region
just with the knowledge of its neighborhood in real space. A
simple and relevant scenario is a heterostructure composed of
two regions with different topology, such as an insulator in a
topological phase at the interface with a trivial insulator (or
vacuum). There, the meaning of a global invariant is ambigu-
ous, since a single invariant cannot capture the individual bulk
topology of the two regions and the presence of metallic edge
states at the interface between them.

In this work, we develop space-resolved formulas for
the Z2 topological invariant that can be used to probe the
local topology of inhomogeneous and noncrystalline two-
dimensional systems. Over the past years, a number of local
markers have been developed to investigate the presence of
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topological phases in different systems. Examples include
the local Chern marker [21], that has been used to study
also QSHIs [29], the mirror-Chern marker [22], a spin-Chern
marker based on the spin-Berry curvature [30], a definition of
the local Z2 invariant based on a flux-insertion-induced spec-
tral flow [31], a local marker to identify crystalline topological
phases [32], and a layer-resolved spin-Chern marker for 3D
TIs [33]. Recently, a marker to investigate higher-order topo-
logical phases has also been proposed [34]. In particular, the
archetypal case of a local Chern marker for two-dimensional
QAHIs has been investigated in Ref. [21] within open bound-
ary conditions (OBCs) and in Ref. [35] within PBCs. The
local Chern marker [21] can also be accessed experimentally
by measuring local circular dichroism [27,36,37]. Moreover,
a generalization of the concept of local marker in odd di-
mensions D has been introduced in Ref. [38] for both Z
(local Chiral marker) and Z2 (local Chern-Simons marker)
phases. That is done by introducing a (D + 1)-dimensional
local Chern marker, extending the one by Bianco-Resta [21]
to higher dimensions, together with a family of parametrized
projectors (where the parameter acts as the additional dimen-
sion) that have to be integrated in order to get a local marker
when D is odd. In particular, the invariant is Z-valued if the
single-particle density matrix obeys a chiral constraint, and
Z2 otherwise [39]. Recently, a universal topological marker,
valid in any dimension and symmetry class, has been pro-
posed in Ref. [40]. This marker has been successfully tested
on various systems belonging to different symmetry classes,
but in the most general case (of interest for this work) of
two-dimensional class AII systems with Rashba spin-orbit
coupling (SOC), such as the Kane-Mele model [3], a gen-
eral and practical formulation of the local Z2 marker that
can always be applied is still missing. Indeed, Rashba SOC
(that can be intrinsic or induced, for instance, by an electric
field perpendicular to the system) violates Sz conservation,
so one can no longer consider spins to be “up” or “down”,
and must resort to a different strategy to calculate the Z2

invariant.
There are many available methods to compute the global

topological invariant of QSHIs by making explicit use of
TR symmetry [7,8]. For our purposes, two particularly note-
worthy approaches are the spin-Chern number [41] and the
calculation of hybrid Wannier charge centers [10,42]. The
underlying common strategy between these two methods is
to split the Hilbert space spanned by the occupied states as
a sum of subspaces such that the individual Chern number
associated to each subspace is an integer [10,42]. That can be
done in an arbitrary way, but the individual Chern numbers
are meaningful only when such splitting is realized accord-
ing to the symmetries protecting the topological phase. In
QSHIs, for instance, one can use the projected spin operator
[41] or the TR symmetry [43]: The two subspaces obtained
individually break TR symmetry and can host a nonzero
Chern number. Hence, calculating the Z2 topological invariant
translates to the problem of identifying a suitable partitioning
of the occupied Hilbert space where it is possible to com-
pute integer individual Chern numbers. However, performing
such partitioning might be rather nontrivial in practice. In-
deed, it has been discussed [41,44,45] that an exponentially
localized projector commuting with lattice translations is a

sufficient condition to yield integer individual Chern numbers
that are invariant with respect to small perturbations of the
system.

Here, we propose two formulations for local Z2 invari-
ants: The first leverages the spin-Chern number introduced by
Prodan [41], while the second is based solely on TR sym-
metry, in the spirit of the work by Soluyanov and Vanderbilt
[43,46]. These two strategies are used to define markers for
finite samples in OBCs as well as for large supercells in PBCs
(where the BZ can be effectively sampled by a single point,
typically �). Our approach is particularly useful when dealing
with nonhomogeneous systems, such as disordered samples
and heterostructures, giving the possibility of inspecting the
topology locally in real space.

The paper is organized as follows. In Sec. II, we recap on
some relevant results from the literature, namely the OBC and
PBC local Chern markers developed for QAHIs. In Sec. III,
we first discuss the local spin-Chern marker and then in-
troduce the local Z2 marker based on TR symmetry within
OBCs, that we further generalize to PBCs in Sec. IV. Then, in
Sec. V we discuss the tight-binding models used to benchmark
our markers and introduce a generalized smearing, which
is particularly useful when dealing with heterostructures. In
Sec. VI, we present numerical results and compare the dif-
ferent methods introduced. Finally, we summarize our results
and conclusions in Sec. VII.

II. LOCAL CHERN MARKERS

In this section we review the OBC and PBC formulations
of the LCM introduced in Refs. [21,35]. Let us consider a
QAHI with Nocc occupied bands, and let |unk〉 = e−ik·r|ψnk〉
be the periodic part of Bloch functions. The Hamiltonian of
a QAHI breaks TR symmetry, and its topological invariant is
the Chern number:

C = − 1

π
Im

Nocc∑
n=1

∫
BZ

dk〈∂kx unk|∂ky unk〉. (1)

Since the Chern number is defined in the primitive cell, it
represents a global quantity meaningful only for pristine and
homogeneous systems within PBCs. Bianco and Resta [21]
showed that, starting from Eq. (1), it is possible to derive a
local Chern marker (LCM):

C(r) = −4π Im〈r|Px(I − P )y|r〉 (2)

= 4π Im〈r|P[x,P][y,P]|r〉 (3)

such that its macroscopic average over a small region in
real space describes the local topology. In a pristine system,
that reduces to the trace per unit area TrA in the region of
interest, and results in the local Chern number of the system.
In Eqs. (2) and (3), x and y are the Cartesian components
of the position operator r, and P = ∑Nocc

n=1 |un〉〈un| is the
ground-state projector. The key feature of this formulation
is that, by being expressed as a trace, the Chern number can
be evaluated locally in real space, that makes it particularly
suited to study disordered and inhomogeneous systems.
The LCM defined in Eq. (3) is also related to the geometrical
intrinsic contribution to the local anomalous Hall conductivity
in metals [47,48]. So defined, the LCM of Eq. (3) could, in
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principle, be applied in both PBCs and OBCs, since the
operators [rα,P] are well-defined in both cases, despite r
being an illegitimate operator within PBCs [49]. However,
when dealing with numerical simulations, the operators
[rα,P] are not directly accessible and the usual way to
construct them is to multiply the “standard” position operator
r with P , thus limiting this method to the OBC case only
[35]. Equation (3) shows very clearly that a finite system is
always globally trivial in a certain sense, as its Chern number
is always zero [21] being the trace over the whole sample of
commutators of matrices with finite dimensions.

We can recover the local topology also within PBCs [35],
by leveraging the single-point formulation of the Chern num-
ber in the large supercell limit [11]:

C(asym) = − 1

π
Im

Nocc∑
n=1

〈
ũnb1

∣∣ũnb2

〉
, (4)

where b1,2 are the reciprocal lattice vectors and |ũnb j 〉 are the
“dual” vectors of |un�〉, the latter are the periodic part of the
Hamiltonian eigenstates at �. The dual states are defined as

∣∣ũnb j

〉 =
Nocc∑
m=1

S−1
mn (b j )e

−ib j ·r|um�〉, (5)

where Smn(b j ) = 〈um�|e−ib j ·r|un�〉 is the overlap matrix be-
tween the states at � and the ones at b j once the periodic
gauge is imposed. The dual vectors satisfy 〈ũnb j |um�〉 = δnm

and represent, in the limit of a large supercell, the vectors
obtained from a parallel-transport procedure from � to b j

[12,50]. The single-point formulation is based on a discretiza-
tion of the covariant derivative, and depending on whether
this is approximated by forward or symmetric finite differ-
ences, the asymmetric formula [Eq. (4)] or the symmetric one
[Eq. (6)] can be obtained, respectively:

C(sym) = − 1

4π
Im

Nocc∑
n=1

(〈ũnb1 | − 〈ũn−b1 |
)

× (∣∣ũnb2

〉 − ∣∣ũn−b2

〉)
. (6)

As shown in Ref. [35], from Eqs. (4) and (6) the corresponding
PBC LCMs can be defined as

C (asym)(r) = − 1

2π
Im〈r|[Pb1 ,Pb2

]
P�|r〉 (7)

and

C (sym)(r) = − 1

8π
Im〈r|([Pb1 ,Pb2

] + [
P−b1 ,P−b2

]
− [

P−b1 ,Pb2

] − [
Pb1 ,P−b2

])
P�|r〉, (8)

where Pb j = ∑Nocc
n=1 |ũnb j 〉〈ũnb j | and P� = ∑Nocc

n=1 |un�〉〈un�|
are ground-state projectors. In particular, Eq. (7) derives
from the asymmetric single-point formulation [Eq. (4)], while
Eq. (8) derives from the symmetric one [Eq. (6)]. As discussed
for the OBC case, also in PBCs the local topology is described
by the macroscopic average of the LCM over a small region in
real space. A key feature of this formulation is that the position
operator appears only through the exponential e−ib j ·r, thus
resulting in a legitimate operator also within PBCs. The PBC
LCM offers a simple picture of the topological obstruction in

noncrystalline systems. In the trivial (C = 0) case, one can
always have [Pb1,Pb2 ] = 0 due to the existence of a smooth
gauge in the whole BZ. In the topological case, however,
this construction is impossible, and a nonzero (local) Chern
number arises from the fact that Pb1 and Pb2 (locally) do not
commute, also in inhomogeneous systems. If one considers
the case of a finite sample inside a much larger supercell
with PBCs, the LCM of Eq. (7) can be expanded in powers
of the linear dimension of the supercell L: In the limit of
L → ∞, the expansion converges to the LCM of Eq. (3).
In addition, while the OBC LCM [Eq. (3)] vanishes upon
tracing over the entire system, the PBC LCM [Eqs. (7) and
(8)] results in the single-point Chern number [11], even in
the disordered case. Both the OBC and PBC formulations
of the LCM can be applied to study the local topology of
disordered and amorphous materials, as well as inhomoge-
neous systems such as trivial/topological heterojunctions and
superlattices.

III. LOCAL Z2 MARKERS FOR FINITE SYSTEMS

As mentioned in Sec. I, there are many equivalent methods
available to compute the global topological Z2 invariant of a
QSHI. However, in general, it is not a trivial task to remove
the notion of reciprocal space in their definition, as they often
rely on some symmetries of the BZ under the TR operator 	.
Moreover, 	 is antiunitary, so unlike other unitary symmetries
protecting topological phases (like the mirror operator [51]),
it cannot be diagonalized to get two Chern subspaces with
well-defined symmetry labels, and other strategies have to be
developed.

Because of Kramers’ theorem, each eigenvalue of a TR
symmetric Hamiltonian is at least doubly degenerate. Hence,
only half of the occupied states is really needed to compute
the topological invariant, since the other half can be obtained
by symmetry. One can then split the occupied Hilbert space
into two Chern subspaces and obtain two set of states (built
in general as linear combination of the occupied eigenstates
of the Hamiltonian) that are mapped onto each other by TR
symmetry. For instance, one can split the Kramers-degenerate
eigenstates of the Hamiltonian such that, for each vector as-
signed to a subspace, its TR partner is assigned to the other.
By doing so, in each subspace TR symmetry is broken by
construction, so it is possible and meaningful to compute its
individual Chern number [10,42]. Moreover, since TR sym-
metry forces C = 0, the two subspaces must be characterized
by opposite individual Chern numbers. Here we promote the
individual Chern number to a local individual Chern marker,
and use Eq. (3) on the states belonging to just one of the
two subspaces. Obtaining a decomposition of the occupied
Hilbert space that leads to an integer individual Chern number,
however, is not a trivial task. In fact, for the individual Chern
numbers to be well-defined, we need exponentially local-
ized projectors onto their corresponding subspaces [41,44,45].
Here, we propose two different methods to realize the splitting
of the occupied states into two Chern subspaces characterized
by exponentially localized projectors, first via the projected
spin operator PSzP and then by using the TR symmetry
operator 	, leading to two distinct local markers of the Z2

topology.
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A. Local OBC spin-Chern marker

We start by considering a Hamiltonian H for which
[H, Sz] = 0, where Sz is the spin operator along the
z-direction. Since H commutes with Sz, it can be decoupled
into spin sectors that are mapped onto each other by TR sym-
metry. Such splitting allows the definition of two individual
Chern numbers C↑,↓, physically related to the quantized spin
Hall conductivity [52], from which the Z2 invariant of the
system can be computed as

ν = C↑ − C↓
2

mod 2, (9)

where the two individual Chern numbers can be obtained
by integrating the Berry curvature of the relative spin-up or
spin-down subspace. The states composing the two spin sec-
tors can be selected by computing the ground-state projector
P (k) and diagonalizing P (k)SzP (k), whose spectrum has
eigenvalues ± 1

2 . Remarkably, Prodan [41] proved that this
strategy holds even if [H, Sz] 	= 0 as long as the operator
P (k)SzP (k) displays a gap in its spectrum. In this case, if
one diagonalize P (k)SzP (k), its eigenvalues sλ will spread
symmetrically around zero in the interval [− 1

2 , 1
2 ], and the

projectors onto the positive (σ = +) and negative (σ = −)
eigenvalues can be defined:

Pσ (k) =
∑

λ:sign(sλ )=σ

|φλk〉〈φλk|, (10)

where |φλk〉 are the eigenstates of P (k)SzP (k) with eigen-
value sλ. The existence of a spectral gap in the projected spin
operator allows retaining exponentially localized projectors
Pσ (k), so that an integer individual Chern number can still be
defined. Moreover, the splitting of the eigenstates according
to the projected spin operator satisfy:

P (k) = Pσ (k) + P−σ (k) = Pσ (k) + 	Pσ (−k)	−1 (11)

so, due to TR symmetry, it must hold that C+ = −C−, and
the Z2 invariant can be computed as a spin-Chern number, as
in Eq. (9), by substituting C↑ → C+ and C↓ → C−. It should
be noted that other definitions of the spin-Chern number ex-
ists, for instance as the integral of the spin-Berry curvature
[30]. However, while Prodan’s spin-Chern number [41] is
quantized, the integral of the spin-Berry curvature is only an
approximate indicator of the topology of the system, although
experimentally relevant since related to the spin-resolved local
circular dichroism [30].

Within OBCs the BZ does not exist: a local spin-Chern
marker (LSCM) can then be obtained by applying the LCM
formula [Eq. (3)] to each of the individual Chern numbers
appearing in Eq. (9). By doing so, two individual local Chern
markers can be computed:

Cσ (r) = 4π Im〈r|Pσ [x,Pσ ][y,Pσ ]|r〉, (12)

which, substituted into Eq. (9), results in a LSCM defined as

ν(r) = C+(r) − C−(r)

2
mod 2, (13)

whose macroscopic average is a local Z2 invariant. Being
expressed as a trace, the LSCM can be evaluated in real space
as for the OBC LCM. A similar strategy can also be used

to define a layer-resolved spin-Chern marker in 3D systems
[33]. We stress again that such formulation is useful mostly
within OBCs, as the general way to calculate the operators
[rα,Pσ ] requires the explicit evaluation of the terms rαPσ and
Pσ rα , which are ill-defined within PBCs. We will discuss how
to generalize these local markers to the PBC framework in
Sec. IV. As stated before, the LSCM remains well-defined
whenever the projected spin operator displays a spectral gap,
possibly also for systems breaking TR symmetry. However,
in general, the existence of a gap in PSzP is not guaranteed,
as it is not a fundamental property of QSHIs. Hence, the
LSCM is a valid approach but not, in principle, a truly general
formulation of the Z2 invariant.

B. Local OBC Z2 marker based on time-reversal symmetry

QSHIs are characterized by the TR symmetry 	, which
forces the Chern number of the system to vanish, and the
classification of topological phases to be Z2, resulting in
a symmetry-protected topological phase. Hence, it seems
reasonable that a general definition of the Z2 topological
invariant should exploit TR symmetry explicitly, similarly
to what has been done, for instance, for the mirror-Chern
number [51,53]. However, the TR operator 	 is antiunitary
and it cannot be diagonalized to define a topological invariant.
Nonetheless, we can still split the occupied states into two
Chern subspaces using 	 thanks to Kramers’ theorem. A
similar strategy was proven to be successful in computing
the global invariant of a homogeneous and periodic QSHI
with only two occupied bands [43]. The calculation of the
topological invariant, in this case, is achieved by enforcing
the parallel-transport gauge in almost all the BZ: if one insists
in having a periodic and TR-symmetric gauge, this cannot be
smooth due to the topological obstruction arising in the topo-
logical phase. To evaluate the Z2 invariant one can impose a
TR symmetric gauge that is smooth on the BZ cylinder (but
not on the BZ torus, i.e., a nonperiodic gauge), disentangling
the occupied bands into two Chern manifolds, each character-
ized by its own integer individual Chern number [43].

Within OBCs, the parallel transport procedure becomes
irrelevant, and the only meaningful step is the TR constraint.
Numerical diagonalizations carry random global phases for
each eigenvector, so to impose a TR symmetric gauge we need
to select an initial state in the degenerate subspace and explic-
itly evaluate its TR partner. If the dimension of the degenerate
subspace is greater than two, then an orthonormalization pro-
cedure is needed. This procedure can be repeated until the
number of vectors is equal to the dimension of the degenerate
subspace. By doing so, the eigenstates of the Hamiltonian are
split in two orthogonal subsets (identified by the projectors P1

and P2) that individually break TR, and that can be mapped
onto each other by symmetry. That allows us to evaluate the
individual local Chern numbers of the two subsets, and obtain
a local Z2 marker. However, this construction in general does
not result in exponentially localized projectors P1,2, and their
decay properties in the bulk depend on the choice of the
eigenstates assigned to each subspace.

One way to obtain exponentially localized projectors is to
build the maximally localized Wannier functions (MLWF) of
the system [54,55] (also known as Boys orbitals in OBCs
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[56]). TR symmetric systems are characterized by a vanishing
Chern number, which in principle should allow computing
exponentially localized Wannier functions (WF). In practice,
however, the simplest method to compute them is via a projec-
tion procedure [55], which is ensured to fail in the topological
phase if the trial states are TR symmetric [57]. This is a
consequence of the topological obstruction, that forbids the
existence of a smooth and TR-symmetric gauge in the topo-
logical phase [43]. Within OBCs, a set of trial functions gn(r)
can be chosen based on chemical intuition. Then, these are
used to project the J occupied orbitals:

|φn〉 =
J∑

m=1

|ψm〉〈ψm|gn〉. (14)

The trial orbitals |φn〉 are then rotated by using the overlap
matrix Smn = 〈φm|φn〉, obtaining “projected” WFs:

|w̃n〉 =
J∑

m=1

|φm〉S−1
mn . (15)

If MLWFs are sought, one needs to find the unitary rotation U
such that |wm〉 = ∑

n Unm|w̃n〉 are the WFs that minimize the
quadratic spread


 =
∑

n

[〈wn|r2|wn〉 − |〈wn|r|wn〉|2]. (16)

MLWFs can then be split in two sets by using TR symmetry
as explained above. This procedure allows us to define a local
Z2 marker (LZ2M) that is uniquely based on TR symmetry as

�(r) = C1(r) − C2(r)

2
mod 2, (17)

where C1(r) and C2(r) are computed via Eq. (3) with the
projectors P1 and P2 respectively. It is worth noting that, as
the LZ2M is based entirely on TR symmetry, its formulation
does not rely on the existence of a spectral gap in any operator
(but the Hamiltonian), thus being more general with respect
to the LSCM. However, the validity of the LZ2M strongly
depends on the choice of the trial functions |gn〉 introduced
in Eq. (14). Specifically, as explained in Sec. VI A, in order
to avoid the topological obstruction, the trial functions |gn〉
should not be related by TR symmetry. This condition, in turn,
implies that P 	= P1 + 	P1	

−1. However, since we want to
split the occupied Hilbert space into two subsets that repre-
sents the whole space and are related by TR symmetry (to
compute the Z2 invariant from Chern numbers), we need the
two projectors P and P	 = P1 + 	P1	

−1 to be as close as
possible [10]. For this reason, we require that the choice of the
trial projection, discussed in Sec. VI A, should also minimize
the spillage between the projectors P and P	, defined as [58]

γ = 1

2Nocc
Tr[(P − P	)2]. (18)

That allows approximating the manifold of occupied states
as the sum of two “Chern subspaces” in which we can eval-
uate individual Chern numbers. Note that we can exchange
the states from one subspace to the other without changing
the Z2 topological invariant. In fact, as long as the states are
mapped onto each other by TR symmetry, they carry opposite
contributions and the Z2 invariant does not change [10].

We also observe that the steepest descent procedure to
compute MLWFs does not particularly improve the value of
the topological marker, and projections-only WFs are suffi-
cient to obtain an accurate map of the local topology. To be
more precise, in this case one should not refer to the states
obtained after the projection procedure as WFs, since the
minimization of the spillage (which translates to a require-
ment of minimal TR symmetry breaking in the gauge) does
not allow obtaining truly exponentially localized WFs, as it
will be shown through numerical simulations in Sec. VI B.
These orbitals are somehow localized in real space but also
characterized by a seemingly divergent spread in the ther-
modynamic limit. In the following we will refer to them as
quasi-WFs (qWF). Notably, a certain degree of localization
in real space—not necessarily asympotically exponential—
appears to be a sufficient condition to define bona fide local
markers. Indeed, qWFs yield projectors P1,2 that might be ex-
ponentially localized only at short distances in the topological
phase. Still, short-range exponential localization seems to be a
sufficient condition to calculate integer local individual Chern
numbers C1,2 through Eq. (3).

IV. LOCAL Z2 MARKERS FOR PERIODIC SYSTEMS

A. Local PBC spin-Chern marker

Within PBCs, following the same strategy developed in
Sec. III A, the individual Chern numbers C± introduced in
Eq. (9) can be promoted to local individual Chern markers
using the PBC LCM [Eq. (7)]. A complementary, and equiv-
alent, way to look at this strategy is that we derive from
single-point spin-Chern numbers introduced in Ref. [12] the
corresponding local markers. In the limit of a very large
supercell, the BZ shrinks to the � point only, so just one
diagonalization of the Hamiltonian is required. Defining P� =∑Nocc

n=1 |un�〉〈un�| the ground-state projector, we can diagonal-
ize the projected spin operator (P�SzP� )|φλ�〉 = sλ|φλ�〉, and
construct the dual states for each spin sector:∣∣φ̃λb j

〉 =
∑

μ:sign(sμ )=σ

S−1
μλ (b j )e

−ib j ·r|φμ�〉, (19)

where σ = ± identifies the spin sector with overlap matrix
Sμλ(b j ) = 〈φμ�|e−ib j ·r|φλ�〉. Then, we define the projectors

P±
b j

=
∑

λ:sign(sλ )=±

∣∣φ̃λb j

〉〈
φ̃λb j

∣∣ (20)

that can be used to introduce two individual LCMs for positive
and negative eigenvalues of P�SzP�:

C (asym)
± (r) = − 1

2π
Im〈r|[P±

b1
,P±

b2

]
P±

� |r〉, (21)

C (sym)
± (r) = − 1

8π
Im〈r|([P±

b1
,P±

b2

] + [
P±

−b1
,P±

−b2

]
− [

P±
−b1

,P±
b2

] − [
P±

b1
,P±

−b2

])
P±

� |r〉, (22)

where P±
� = ∑

λ:sign(sλ )=± |φλ�〉〈φλ�|, so that P� = P+
� +

P−
� . In particular, the covariant derivative is approximated

by the forward finite difference formula in Eq. (21) and by
the symmetric finite difference in Eq. (22). Finally, the PBC

054203-5



NICOLAS BAÙ AND ANTIMO MARRAZZO PHYSICAL REVIEW B 110, 054203 (2024)

LSCM can be defined as

ν(r) = C+(r) − C−(r)

2
mod 2. (23)

B. Local PBC Z2 marker based on time-reversal symmetry

Within PBCs, given a set of J composite bands |ψnk〉, the
mth WF in the unit cell labeled by the lattice vector R can be
defined as

|wm(R)〉 = A

(2π )2

∫
BZ

dk e−ik·R
J∑

n=1

U (k)
nm |ψnk〉, (24)

where U (k)
nm is a unitary rotation that is optimized to ensure

the smoothness of the gauge. If such smooth and periodic
gauge exists (that is, if the Chern number C = 0) then the WFs
are exponentially localized functions in real space [59]. As
discussed in Sec. III B, we compute the WFs of the system
via projection onto trial states |gn〉. In particular, the trial
projections should break TR symmetry (to avoid the topo-
logical obstruction in the topological phase) and minimize
the spillage between the projectors P and P	, as defined in
Eq. (18). Hence, we compute qWFs and split them in two
subspaces mapped onto each other by TR symmetry, which
allows computing the PBC individual local Chern markers
C1,2(r) through Eq. (22). Since the Hilbert space spanned by
qWFs will be composed by pairs of states that are quasi-TR
symmetric, we need to consider only one of these states when
building the projectors P1,2. Finally, the PBC LZ2M can be
defined as

�(r) = C1(r) − C2(r)

2
mod 2. (25)

V. METHODS

A. Kane-Mele model

We validate our approach through numerical simulations
on the Kane-Mele model [2,3], a tight-binding model of spin-
ful electrons hopping on a honeycomb lattice, described by
the Hamiltonian:

H = �
∑

i

(−1)τi c†
i ci + t

∑
〈i j〉

c†
i c j + iλSO

∑
〈〈i j〉〉

νi jc
†
i σzc j

+ iλR

∑
〈i j〉

c†
i (e〈i j〉 · σ)c j + H.c., (26)

where c†
i = (c†

i↑, c†
i↓) and sums on spin indices are implied,

with the convention that if no spin matrices appear, they are
contracted over the identity. In Eq. (26), t is the nearest-
neighbor hopping amplitude, and � is a staggered on-site
potential, depending on the sublattice identified by τi ∈ {0, 1}.
In the following, we will set t = 1. The parameter λSO is the
intensity of the diagonal spin-orbit coupling, introduced as a
complex hopping between second nearest neighbors, where
νi j = sign(d1 × d2)z accounts for the direction of the hopping
and d1,2 are unit vectors connecting the site i to its second
nearest neighbor j. Finally, λR is the amplitude of the Rashba
term, which couples the two spin sectors and breaks Sz sym-
metry. Here σ = (σx, σy, σz ) is the vector of Pauli matrices,
and e〈i j〉 = d〈i j〉 × ẑ where d〈i j〉 is the unit vector along the
direction connecting site i to site j.

B. Smearing

When dealing with nonhomogeneous systems, such as su-
perlattices, the presence of metallic interfaces may affect the
convergence of the topological marker. Hence, we introduce
smearing similarly to what has been done in Ref. [47] to study
the intrinsic geometrical part of the local anomalous Hall
conductivity in metals. However, since the states appearing in
the projectors Pσ

b j
are linear combinations of the eigenstates of

the Hamiltonian, we cannot simply use a Fermi-Dirac distri-
bution as previously done for QAHIs in Refs. [35,47]. Hence,
we introduce a weight cσ

nb j
for each state |ṽσ

nb j
〉 (the parallel

transported vectors of each subspace, so σ = ± or σ = 1, 2)
that measures its spillage with the ground-state projector P�:

cσ
nb j

= Tr
{
P�

∣∣ṽσ
nb j

〉〈
ṽσ

nb j

∣∣}
=

∑
m

f (εm, Ts, μ)
∣∣〈um�

∣∣ṽσ
nb j

〉∣∣2
, (27)

where f (εm, Ts, μ) is the Fermi-Dirac distribution at smearing
temperature Ts and with chemical potential μ, evaluated for
the m-th eigenstate of the Hamiltonian H�|um�〉 = εm|um�〉.
We further improve the convergence by imposing a cutoff fc

on the Fermi-Dirac distribution to discard the empty states
with very small occupations f (εm, Ts, μ) < fc, where we
set fc = 0.1. Finally, the projectors with smearing can be
written as

Pσ
b j

=
∑

n

cσ
nb j

∣∣ṽσ
nb j

〉〈
ṽσ

nb j

∣∣. (28)

VI. NUMERICAL RESULTS AND DISCUSSION

A. Choosing the trial projections for the LZ2M

The topological obstruction arising when C 	= 0 manifests
in the overlap matrix between projected states [the S matrix
of Eq. (15)], that becomes singular somewhere in the BZ
[5], prohibiting the construction of MLWFs. As discussed in
Sec. III B, in order to have well-defined local Z2 topologi-
cal invariants based on TR symmetry, we split the occupied
manifold in two TR-conjugate sub-manifolds and select trial
projection orbitals |gn〉 that break TR symmetry and mini-
mize the spillage γ between P	 = P1 + 	P1	

−1 and the
ground-state projector P . If we were to choose trial projec-
tions localized on just one site of the cell, the information
on the other basis site would be missing since TR symmetry
acts only on spin in real space, resulting in a large value of
γ . Nonetheless, the resulting WFs can still have contributions
from all the lattice sites, even though the trial projections are
localized on different sites [57]. To minimize the spillage, we
observe that it is convenient to choose initial projections with
contributions from all sites. In the Kane-Mele model, this can
be obtained, for instance, with these two choices:

(Pr1)

{|g1(R)〉 = 1√
2
(|R, A,+〉 + |R, B,+〉)

|g2(R)〉 = 1√
2
(|R, A,−〉 − |R, B,−〉)

, (29)

(Pr2)

{|g1(R)〉 = 1√
2
(|R, A,+〉 + |R, B,−〉)

|g2(R)〉 = 1√
2
(|R, A,−〉 + |R, B,+〉)

, (30)

where |R, A, σ 〉 is a normalized δ-like orbital with spin σ

centered on site A in the primitive cell defined by R. Here we
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FIG. 1. Spillage between the ground-state projector P and P	 =
P1 + 	P1	

−1, where P1 is constructed with half of the quasi
Wannier functions, as a function of the supercell size for both open
(OBC) and periodic (PBC) boundary conditions, and for different
choices of trial functions as discussed in the text.

use the lattice vectors R of the pristine system defined in the
primitive cell, as opposed to the lattice vectors of the supercell
R̃. Indeed, the supercell on which the boundary conditions
are imposed is constructed through repetitions of its pristine
primitive cell. Then, we can choose the trial projections just
in the primitive cell and replicate the choice across the whole
supercell, even in the disordered case. The spillage between
the projectors P and P	 can then be measured as a function
of the linear size of the system L. The results we obtain are
reported in Fig. 1, where we compare the spillage [58] of the
projections defined in Eqs. (29) and (30) with the choice made
in Ref. [6], that is

(Pr3)

{|g1(R)〉 = 1√
2
(|R, A,+〉 + |R, A,−〉)

|g2(R)〉 = 1√
2
(|R, B,+〉 − |R, B,−〉)

. (31)

The spillage between the projections (Pr3) defined in Eq. (31)
is small compared to other choices, we but since the trial
functions are localized on a single site, the marker we can
compute with those functions will not work. The projections
(Pr2) [Eq. (30)] are localized on both sites but are character-
ized by a large spillage, so we can expect a poor convergence
of the marker with this choice. Overall, the best choice is (Pr1)
[Eq. (29)] and it will be used from now on when referring to
the LZ2Ms: These orbitals mix all sites resulting in the small-
est spillage. In general, to identify suitable initial projections,
one could first compute the MLWFs and then mix them to
minimize the spillage. When smearing is introduced in the
calculation of the LZ2Ms, additional trial projections must be
chosen to account for the partly occupied states. This case is
analogous to that of a metal, where WFs can be computed
via a “disentanglement” procedure [60]. However, it looks
unclear how the additional projections should be chosen, and
how the procedure should be carried out to ensure the require-
ments described before. Indeed, one would have to localize
the trial functions in an arbitrary unit cell in such a way as to
preserve the exponential localization of the projectors and to
make the marker independent with respect to the specific cell
the trial functions are localized in. Hence, the construction of
a LZ2M with smearing is left to further investigation.

FIG. 2. Convergence of the local topological markers in periodic
(PBC) and open boundary conditions (OBC) for the topological (top)
and trivial (bottom) phases. The convergence of the local spin-Chern
marker (LSCM) is exponential in OBCs, and polynomial in PBCs.
The local Z2 marker (LZ2M) convergence is always polynomial
except for the trivial phase in OBCs where it is exponential.

B. Convergence

In Fig. 2, we show the convergence of the LSCMs and
LZ2Ms, evaluated on a unit cell (two sites) in the center of
the supercell, as a function of the supercell linear size L in
both OBCs and PBCs. For the PBC markers, we report in
Fig. 2 the convergence of the symmetric formulations only, as
they converge faster than the asymmetric ones. The compari-
son between the PBC asymmetric and symmetric formulas is
reported in Fig. 3, that shows clearly the faster convergence
of the symmetric formulations. The convergence of the PBC
markers is polynomial in both the trivial and the topological
phases since the error is dominated by the approximation of
the derivative with finite differences in the single-point limit
[35]. Within OBCs, we can see that the convergence of the
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FIG. 3. Convergence of the symmetric and asymmetric local
spin-Chern markers (LSCM) and local Z2 markers (LZ2M) in peri-
odic boundary conditions (PBC) for the topological (top) and trivial
(bottom) phases. The symmetric formulas converge faster than the
asymmetric ones, and the convergence of all markers is polynomial.

LSCM is always exponential (due to the exponential local-
ization of the projectors P± [41]), while the LZ2M converges
exponentially in the trivial phase but polynomially in the topo-
logical one. This different behavior is due to the fact that, in
the topological phase, the projector is exponentially localized
only at short distances: Here, the projector is computed by
first obtaining qWFs and then taking half of them. This can be
clearly seen in Fig. 4, that shows, for the topological phase,
the decay of the matrix elements of the projectors used in
the OBC LSCM and OBC LZ2M in the bulk of a 100 × 30
crystallite with 6000 sites. We could not determine unam-
biguously whether this long tail is exponential or polynomial,
that would require studying much larger systems. In the triv-
ial phase, the projectors are always exponentially localized,
resulting in an exponential convergence of the markers. We
note that the LZ2M converges to the expected value despite its

FIG. 4. Matrix elements of the projectors P+ used in the local
spin Chern marker (LSCM) and P1 of the local Z2 marker (LZ2M)
inside the bulk as a function of the distance between lattice sites in
the topological (ν = 1, top) and trivial (ν = 0, bottom) phases in
open boundary conditions (OBC). The semilogarithmic scale high-
lights the exponential localization of the projectors, while the LZ2M
projectors are exponentially localized at short distances and their
tail decays more slowly in the topological phase. Nonetheless, P1,2

are localized enough to return the correct topological invariant of
the system. In the trivial phase, both projectors are exponentially
localized.

projectors not being fully exponentially localized. Indeed,
since the invariant is a topological and a ground-state quan-
tity, we only need the information about the local electronic
structure to retrieve its local value in real space. For this
reason, we argue that the projectors need to be exponentially
localized only at short distances, while the tail behavior deter-
mines other aspects such as the convergence of the formula
with the system size. We attribute the slower decay of the
tails of P1 to be a side effect of minimizing the spillage γ

[Eq. (18)] between the projectors P and P	. Because of the
topological obstruction, we cannot obtain TR symmetric and
exponentially localized WFs. In our procedure, we require
that the sum of the projector computed with half qWFs and
their TR partners is as close as possible to the initial projector,
still performing a minimal breaking of TR symmetry. That,
in turn, results in an almost TR symmetric gauge that leads
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FIG. 5. Profile along the x direction of the local spin-Chern
(LSCM) and local Z2 (LZ2M) markers with both open (OBC) and
periodic (PBC) boundary conditions for the Kane-Mele model in the
topological phase and in presence of Anderson disorder (W = 2).
First, a macroscopic average is performed over a radius R = 3 and
then over the two sites of the pristine lattice. The topological phase
persists for sufficiently small disorder amplitudes, as confirmed by
all markers. The discontinuous behavior of the OBC markers near
the edges is due to the presence of metallic edge states, which are
absent in PBCs.

to qWFs that cannot be truly exponentially localized because
of the topological obstruction. In other words, we are looking
for a compromise between the breaking of TR symmetry and
the exponential localization of WFs that allows us to probe
the local Z2 topology in real space. As a result, the spread
[Eq. (16)] of qWFs displays a very slow divergence with
the system size, and the long-tail behavior of P1 could be
attributed to the fact that the qWFs we obtain are not truly
exponentially localized.

C. Disordered systems

In Fig. 5, we show that both the LSCM and LZ2M are
capable of charting the local topology also in presence dis-
order. In particular, we consider Anderson disorder through a
random on-site potential uniformly distributed in the interval
[−W/2,W/2], where W is the disorder amplitude [61]. For
weak disorder the topology of the system is expected to sur-
vive, hence we consider a Kane-Mele model in its topological
phase (�/λSO = 0.5, λR/λSO = 1) with W = 2, for which the
single-point spin-Chern number [12] predicts a topological
phase. As shown in Fig. 5, the PBC markers display the ex-
pected local topology aside from small fluctuations due to the
disordered environment. To account for the lack of periodicity,
a macroscopic average on a radius R = 3 (in units of the lattice
parameter) has been employed. Specifically, the absence of
boundaries of the supercell is evident when comparing the
PBC markers with the OBC ones. In fact, despite showing the
same behavior inside the bulk of the system, near the bound-
ary the PBC markers are continuous while the OBC ones are
not, due to the presence of metallic edge states. Within OBCs
the individual LCMs C±(r) are such that their trace over the

whole sample vanishes, so the edge states contribution to the
marker should compensate the nontrivial bulk topology. When
computing the LSCM and LZ2M, since they are defined only
modulo 2, the divergence of the individual LCMs results in a
discontinuous behavior of the Z2 markers.

D. Heterojunctions and superlattices

Last, we validate and compare the performance of the local
markers on trivial/topological heterojunctions and superlat-
tices. We compute the LSCM in both OBCs (Fig. 6) and PBCs
(Fig. 7) for a 6000-site supercell made of alternating topo-
logical (�/λSO = 0.5) and trivial (�/λSO = 8) regions. Both
the LSCM and LZ2M are able to chart the local topology,
however, since the LSCM demonstrates a better convergence
and performance with respect to the LZ2M we use only the
former to discuss the numerical results for inhomogeneous
systems. The presence of metallic edge states is highlighted
in OBCs both at the edge of the supercell and at the interface
between the subsystems, while in PBCs they appear only at
the interface, as the superlattice is periodic in both directions.
In the calculation of the PBC marker, we set the smearing
temperature Ts = 0.05 to improve convergence. Within OBCs,
the Bianco-Resta LCM [21] vanishes when the trace is taken
over the entire sample, and the topological marker evaluated
at the metallic edges (where the Chern number is ill-defined)
diverges. For QSHIs, the same holds for the local individual
Chern markers C±(r). Here, since the local spin-Chern marker
is well-defined only modulo 2, the divergence of C±(r) results
in the discontinuity observed at the interfaces between regions
with different topology.

VII. SUMMARY AND CONCLUSIONS

We developed a framework to probe the local Z2 topology
of 2D TR-symmetric systems in real space for both finite
samples in OBCs and extended systems in PBCs, by introduc-
ing a number of topological markers. All markers are based
on the fundamental idea that the occupied manifold can be
split into two TR-conjugate subspaces, where a corresponding
individual local Chern marker can then be calculated. In the
first approach (LSCM), the separation is performed by diago-
nalizing the projected spin operator PSzP , as its spectrum is
generally made of two sectors of positive and negative eigen-
values separated by a gap, in the spirit of Prodan’s spin-Chern
number [41]. Hence, the LSCM depends on the existence of
such spectral gap, which is not an essential property of QSHIs
but seems to be usually satisfied also in presence of rather
strong Rashba SOC: We never observe such a gap closure
for the PSzP spectrum in our simulations on the Kane-Mele
model, at least as long as the Hamiltonian gap remains finite.
However, as discussed in Ref. [33], 3D strong topological
insulators are characterized by a vanishing gap of PSP for
all choices of the spin operator S. Notably, the LSCM could
in principle be used also for systems with a small breaking of
TR symmetry, as in the TR-symmetry-broken quantum spin
Hall effect [62], provided that the aforementioned spectral gap
remains finite, since the construction does not explicitly make
use of TR.

054203-9



NICOLAS BAÙ AND ANTIMO MARRAZZO PHYSICAL REVIEW B 110, 054203 (2024)

FIG. 6. Local spin-Chern marker for a 6000-site heterojunction of the Kane-Mele model made of topological and trivial regions in open
boundary conditions. The left and right regions are topological (ν = 1) while the center is trivial (ν = 0). One-dimensional metallic edge states
surround the topological regions, separating different topological phases. The inset displays the model parameters used for the trivial (gray)
and topological (blue) regions.

Conceptually the extra condition required by Prodan’s spin
Chern number is not completely satisfactory, so we introduced
another marker (LZ2M) that is entirely based on TR symme-
try and does not make use of the spin operator. Crucially,
Ref. [45] remarked that exponentially localized projectors
on each half of the manifold guarantee to yield an integer
local Chern number. While this is guaranteed in the LSCM
procedure by the existence of a spectral gap for PSzP , this is
not the case if TR is used to split the occupied manifold in two
TR-conjugate halves.

Hence, we find unitary rotations to obtain exponentially
localized projectors onto the two subspaces, through the WF
construction. However, QSHI do not admit a TR-symmetric
smooth gauge, hence exponentially localized WFs cannot be
obtained as TR-conjugate couples. Still, the calculation of the
Z2 invariant through the difference modulo two of individ-
ual Chern number requires a partition in two TR-conjugate
subspaces. We solve the conundrum by constructing “quasi”
WFs (qWFs) that minimize the spillage between the ground-
state projector P and the sum of one TR-split projector and
its TR-conjugate, i.e., P1 + 	P1	

−1. These qWFs are still
exponentially localized at short distances but exhibit a slower
asymptotic decay.

Once the TR-conjugate subspaces and their correspond-
ing well-localized projectors are found, we calculate local
Z2 markers through local individual Chern markers on the

two subspaces, both in OBCs [21,47] and PBCs [35]. Nu-
merical simulations on the Kane-Mele model show that all
these markers agree with each other and are able to probe
the local topology also for disordered systems as well as
topological/trivial heterojunctions and superlattices.

An implementation of all our markers is available in the
STRAWBERRYPY PYTHON package [63], which is part of the
Wannier function software ecosystem [64] and is interfaced to
popular tight-binding engines such as TBMODELS [65,66] and
PYTHTB [67].

The LSCM is computationally easier to implement and
use, essentially avoiding the need of qWFs or any other
localization procedure, so we suggest using that method in
applications whenever possible. Otherwise, if the system of
interest is such that the projected spin operator does not have
a finite gap, the LZ2M approach can always be used (if TR
symmetry holds). We emphasize that the construction of the
LZ2Ms is more delicate, as an accurate choice of the initial
projection orbitals is needed to obtain well-behaved topo-
logical markers. The specific projections we selected in our
numerical experiments might be improved, and the choice is
not universal, depending on the details of the system and its
topological phase.

Finally, it is worth remarking that the domains of
applications for the LSCM and LZ2M markers mostly
overlap, but there are some cases covered only by one of

FIG. 7. Local spin-Chern marker for a 6000-site superlattice of the Kane-Mele model made of topological and trivial stripes in periodic
boundary conditions. The left and right regions are topological (ν = 1) while the center is trivial (ν = 0), and one-dimensional metallic
channels separate the regions with different Z2 invariants. The inset displays the model parameters used for the trivial (gray) and topological
(blue) regions.
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the two approaches: The LSCM requires a finite gap in
the projected spin operator, but could in principle be used
also if TR symmetry is broken; on the contrary, the LZ2M
approach necessitates TR symmetry, but can be used also if
the projected spin operator is gapless.

Our local markers are based on the ground-state elec-
tron distribution only, hence being very suited to large-scale
ab initio electronic structure simulations of noncrystalline sys-
tems, not only under Anderson disorder but also in presence of
defects or interfaces, and for amorphous topological materials
[68–70] or quasicrystals [14,71]; in all cases even if TR sym-
metry or the perpendicular component of the spin, Sz, are not
conserved. Moreover, the construction of our markers could
potentially also be applied to the study of topological phonons

[72] and mechanical-optical setups [73], where the dynamical
matrix plays a role similar to the electronic Hamiltonian.
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