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Hybrid scaling properties of the localization transition in a non-Hermitian
disordered Aubry-André model
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In this paper, we study the critical behaviors in the non-Hermitian disorder Aubry-André (DAA) model, and
we assume the non-Hermiticity is introduced by nonreciprocal hopping. We employ the localization length ξ ,
the inverse participation ratio (IPR), and the energy gap �E as the characteristic quantities to describe the
critical properties of the localization transition. By performing scaling analysis, the critical exponents of the
non-Hermitian Anderson model and the non-Hermitian DAA model are obtained, and these critical exponents
are different from their Hermitian counterparts, indicating that the Hermitian and non-Hermitian Anderson and
DAA models belong to different universality classes. The critical exponents of the non-Hermitian DAA model
are remarkably different from both the pure non-Hermitian AA model and the non-Hermitian Anderson model,
showing that disorder is an independent relevant direction at the non-Hermitian AA model critical point. We
further propose a hybrid scaling law to describe the critical behavior in the overlapping critical region constituted
by the critical regions of the non-Hermitian DAA model and the non-Hermitian Anderson localization.
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I. INTRODUCTION

In the process of material preparation and experiment,
disordered factors such as impurities and defects are in-
evitable. In 1958, Anderson proposed the famous Anderson
model to investigate the effect of disorder on phases and
phase transitions [1]. Theoretically, one dimensional (1D)
or 2D Anderson model localizes for any infinitesimal disor-
der amplitude, and in 3D Anderson model the localization
transition should emerge at some finite nonzero disorder am-
plitude [2,3]. In addition to disorder, quasiperiodic systems
[4–8] where the translational invariance is broken by the in-
commensurate period can also lead to Anderson localization.
Among many theoretical quasiperiodic models, the Aubry-
André model (AA) is one of the most celebrated examples
[9–21], partly inspired by its realization in the pseudorandom
optical lattice [22] and ultracold atoms [23]. A remarkable
feature of the AA model is self-duality, which manifests an
energy independent localization transition occurring at finite
quasiperiodic potential [24].

Although both disorder and quasiperiodicity can lead to
localization transitions, theoretical studies have uncovered
significant disparities between the two mechanisms, e.g., the
localization-extended transition can happen even in the 1D
AA model [9]. Moreover, scaling analysis showed that lo-
calization transitions in disorder systems and in quasiperiodic
systems belong to two distinct universality classes and present
different critical behavior [4,13,19,25–32]. For example, the
critical exponents of the 1D AA model and the 1D Anderson
model are different [13,25–27]. For the many-body localiza-
tion (MBL) in interacting disorder or quasiperiodic systems,
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exact diagonalization and real space renormalization group
studies indicated that MBL transitions can also be categorized
into different universality classes with their specific critical
exponents which depend on symmetry class and dimensional-
ity [19,30–32]. Recently, Bu et al. have introduced a disorder
AA (DAA) model that seamlessly merges the mechanisms of
localization into a unified framework [13,14]. It was shown
that disorder and quasiperiodic potentials act as two different
relevant directions, and rich critical phenomena in the critical
region spanned by the quasiperiodic and disorder potentials
were found. In particular, a remarkable characteristic of this
model is the presence of an overlapping critical region con-
structed from the critical regions of the DAA model and
Anderson localization.

In recent years, there has been a surge in the develop-
ment of non-Hermitian physics, which has found applica-
tions across a broad spectrum of condensed matter physics
[33–45]. The interplay between non-Hermiticity and disor-
der or quasiperiodicity also brings new perspectives to our
understanding of localization transition [32,46–70]. The non-
Hermitian extension of the Anderson model by Hatano and
Nelson discovered that a mobility edge can indeed form even
in 1D [46,47]. For the non-Hermitian quasiperiodic system, it
has been demonstrated that non-Hermiticity can induce reen-
trant localization, i.e., the localization transition can appear
twice as the strength of the quasiperiodicity is increased [68].
For the non-Hermitian AA model with nonreciprocal hopping
or gain and loss, it has been observed that the localization
transition consistently occurs in tandem with both a topolog-
ical phase transition and a transition from real to complex
of energy spectra [54,55,57]. More importantly, the introduc-
tion of non-Hermiticity can also significantly alter the critical
behavior of localization transitions, e.g., the Hermitian and
non-Hermitian AA systems belong to different universality
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classes [25,66]. However, the impact of non-Hermiticity
on the critical behaviors of the DAA model still remains
unexplored.

In this paper, we investigate the scaling properties of the
localization transition in a non-Hermitian DAA model, and we
assume that the non-Hermiticity of this model is introduced
by nonreciprocal hopping. We use the localization length ξ ,
the inverse participation ratio (IPR), and the energy gap �E
(i.e., the difference between the second lowest value and the
lowest value of the real part of eigenenergies) as characteris-
tic observables to perform our scaling analysis. The scaling
functions of these quantities are established, and the critical
exponents for the pure non-Hermitian Anderson model and
the non-Hermitian DAA model are determined. We find that
the exponents of the non-Hermitian DAA model are different
from those of both the non-Hermitian Anderson model and
the non-Hermitian AA model, indicating that the disorder is
an independent relevant direction at the non-Hermitian AA
critical point. Our scaling analysis also discovers that the
non-Hermitian DAA model and the Hermitian DAA model
belong to different universality classes. Furthermore, an over-
lapping critical region, constituted by the critical regions of
the non-Hermitian DAA model and the non-Hermitian Ander-
son localization transition, is also found for the non-Hermitian
DAA model, and a hybrid scaling law for localization transi-
tion in this overlapping critical region is proposed.

The rest of the paper is arranged as follows. The non-
Hermitian DAA model and the characteristic observables are
introduced in Sec. II. In Sec. III, we perform our scaling
analysis on the pure non-Hermitian Anderson model and the
non-Hermitian DAA model, and determine the critical expo-
nents. Then in Sec. IV, by taking disorder and quaisperiodic
potentials as scaling variables, the general finite size scaling
forms of these three observables are established and verified.
Moreover, a hybrid scaling law in the overlapping region is
also proposed and numerically verified. A summary is given
in Sec. V.

II. THE NON-HERMITIAN DAA MODEL
AND THE CHARACTER OBSERVABLES

A. The non-Hermitian DAA Model

The Hamiltonian of the non-Hermitian DAA model reads

H = −
L∑
j

(JLc†
j c j+1 + JRc†

j+1c j ) + �

L∑
j

w jc
†
j c j

+ (2JR + δ)
L∑
j

cos [2π (γ j + φ)]c†
j c j, (1)

in which c†
j (c j ) is the creation (annihilation) operator of the

hard-core boson, J represents the hopping coefficient, JL =
Je−g and JR = Jeg are the asymmetry hopping coefficients,
w j ∈ [−1, 1] gives the quenched disorder configuration, and
� measures the disorder strength; (2JR + δ) measures the
amplitude of the quasiperiodic potential, γ is an irrational
number, and φ ∈ [0, 1) is the phase of the potential. The pe-
riodic boundary condition (PBC) is imposed in the following
calculation. To satisfy PBC, γ has to be approximated by a

FIG. 1. Sketch of the phase diagram of the non-Hermitian DAA
model under a specified value of g. The region A (violet region)
denotes the critical region of localization transition of the non-
Hermitian DAA model. The region B (yellow region) denotes the
critical region of the Anderson localization transition. The intersec-
tion of regions A and B represents the overlapping critical region
where non-Hermitian DAA and non-Hermitian Anderson localiza-
tion critical regions coexist.

rational number Fn/Fn+1 where Fn+1 = L and Fn are the Fi-
bonacci numbers [57,66]. In the following, we assume J = 1
as the unit of energy.

For the non-Hermitian AA model, i.e., � = 0 in Eq. (1),
previous studies have found that it undergoes a localized-
extended phase transition at δ = 0 [57,66]. For the non-
Hermitian Anderson model, i.e., δ = −2JR in Eq. (1), its state
with the lowest real part of the eigenenergy remains localized
at any finite values of �, indicating that the phase transition
point is always located at � = 0 [46,47].

For the non-Hermitian DAA model, we have delineated
the phase diagram within the δ-� parameter plane under a
specified value of g, as depicted in Fig. 1. When δ > 0, the
non-Hermitian DAA is in the localized phase. When δ <

0 and � = 0, this model reverts to the non-Hermitian AA
model, and all the eigenstates are extended. For the pure 1D
non-Hermitian Anderson model, the Anderson transition of
the state with the lowest real part of the eigenenergy occurs
at � = 0 when L → ∞, which means infinite disorder will
localize the wave function for δ < 0. Around the critical point
(δ,�) = (0, 0), the critical region of the non-Hermitian DAA
model is spanned by � and δ. For δ < 0 and infinitesimal �,
there is a critical region of Anderson localization. As a result,
near the critical point (δ,�) = (0, 0) and δ < 0, these critical
regions inevitably overlap with each other.

In Fig. 2, we present the energy spectrum of the non-
Hermitian DAA model. Our findings indicate that the
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FIG. 2. (a) Real and (b) imaginary parts of energy spectra of the
model Eq. (1). The black curve corresponds to the states with the
lowest real part of the eigenenergy, where the energy spectrum is
always real for all δ′s. Here, we choose g = 0.5, φ = 0.2, � = 0.8,

and L = 377 in the calculation.
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energy spectra predominantly exhibit real values when δ > 0,
whereas they incorporate imaginary components when δ <

0. This suggests that the introduction of disorder disrupts
the correspondence between the real-complex transition of
the energy spectrum and the localization transition in the
non-Hermitian AA model. It can be observed that the char-
acteristics of its energy spectrum are very similar to those
of the non-Hermitian AA model [66], indicating that one-
dimensional quasiperiodic systems are quite stable under
perturbations by disorder [30,71].

B. Character observables

Here, we employ the ξ , IPR, and �E to explore the scaling
law in the critical regions.

In the localized phase, the localization length ξ for the non-
Hermitian system is defined as [25,66]

ξ =
√√√√

L∑
n>nc

[(n − nc)2]Pi, (2)

in which Pi is the probability of the wavefunction at site i, and
nc ≡ ∑

nPi is the localization center. In the thermodynamic
limit of L → ∞, ξ scales with the distance to the critical point
ε as

ξ ∝ ε−ν, (3)

where ν is a critical exponent. For the pure non-Hermitian
AA model, ε = δ and ν = νδ = 1 under both PBC and open
boundary condition (OBC) [66,72].

IPR is defined as [73,74]

IPR =
∑L

j=1 ||
( j)〉|4
∑L

j=1 ||
( j)〉|2 , (4)

where |
( j)〉 is the right eigenvector. For the extended phase,
IPR scales as IPR ∝ L−1. For the localized state, IPR scales
as IPR ∝ L0. At the critical point, IPR scales as

IPR ∝ L−s/ν, (5)

where s is a critical exponent. When L → ∞, IPR scales with
the distance to the critical point ε as

IPR ∝ εs. (6)

For the non-Hermitian AA model, ε = δ and s = sδ = 0.1197
[65,66].

At the critical point of localization transition, energy gap
�E scales with the lattice size L as

�E ∝ L−z, (7)

where z is a critical exponent. For the non-Hermitian AA
model, ε = δ and z = zδ = 2 [66]. When L → ∞, energy gap
�E scales as

�E ∝ ενz. (8)

By taking into account the finite-size effect, the general
scaling ansatz of a quantity Y reads

Y (ε) = Ly/ν f (εL1/ν ), (9)

where y is the critical exponent of Y defined according to Y ∝
ε−y when L → ∞, and f (.) is the scaling function.

III. THE CRITICAL EXPONENTS

In this section, we study the scaling behaviors of the char-
acteristic observables, and obtain the corresponding critical
exponents for the pure non-Hermitian Anderson model and
the non-Hermitian DAA model.

A. The critical exponents for non-Hermitian Anderson model

For the non-Hermitian Anderson model with δ = −2JR in
Eq. (1), the finite-size scaling functions for ξ , IPR, and �E
can be derived from Eqs. (3), (6), (8), and (9). The scaling
function for ξ reads

ξ = L f1(�L1/νA ), (10)

where νA is the critical exponent for the non-Hermitian Ander-
son model, and fi is the scaling function. Similarly, the scaling
of IPR should satisfy

IPR = L−sA/νA f2(�L1/νA ), (11)

where sA is the critical exponent of IPR for the non-Hermitian
Anderson model. The scaling function for �E reads

�E = L−zA f3(�L1/νA ), (12)

where zA is the critical exponent of �E for the non-Hermitian
Anderson model.

To determine the critical exponents νA, sA, and zA, we
numerically calculate these three characteristic observables
versus disorder strength �, and rescale them according to
Eqs. (10)–(12), respectively, based on some trial values for
these variables. In Fig. 3(a1), we plot ξ versus � for different
L. After rescaling ξ and � as ξL−1 and �L1/νA with νA =
1.99(9), we find that the rescaled curves collapse onto each
other very well, as shown in Fig. 3(a2). The error estimation
method employed is identical to that described in Ref. [13],
which relies on the observation of a deviation between the
rescaled curves occurring when νA lies outside the range of
1.90 to 2.08. In Figs. 3(b1) and 3(b2), the numerical results
of IPR versus � before and after rescaling to Eq. (11) are
plotted. We find that collapse of the rescaled curves is best
when sA = 1.99(1), by setting νA = 1.99(9) as an input. The
numerical results of �E versus � and the rescaled curves of
�ELzA versus �L1/νA are plotted in Figs. 3(c1) and 3(c2). By
setting νA = 1.99(9) as an input, we find that the best collapse
of these rescaled curves appears when zA = 2.00(1).

Hence, the critical exponent set of the 1D non-Hermitian
Anderson model is obtained as (ν, s, z) = (νA, sA, zA) =
(1.99, 1.99, 2.00). It is noteworthy that the values of these
critical exponents deviate from those observed in the 1D Her-
mitian Anderson model [13,26]. This discrepancy indicates
that non-Hermitian and Hermitian Anderson models are cate-
gorized under distinct universality classes.

Accurately estimating the critical exponents as well as the
precision of those estimations is crucial for understanding
the critical properties of the Anderson transition. Slevin and
Ohtsuki proposed a correction method for finite-size scaling
at the Anderson transition, which provides another possibil-
ity to further explore the reliability of numerical analysis
results [75].
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FIG. 3. Scaling properties in the state with the lowest real part
of the eigenenergy for the pure non-Hermitian Anderson model.
The curves of ξ versus � before (a1) and after (a2) rescaled for
different L′s. The curves of IPR versus � before (b1) and after (b2)
rescaled for different L′s. The curves of �E versus � before (c1) and
after (c2) rescaled for different L′s. We use g = 0.5, and the result
is averaged for 1000 samples of disorder. The double-logarithmic
scales are used.

B. The critical exponents for the non-Hermitian DAA model

For the non-Hermitian DAA model, the critical exponents
along the δ and � directions should be different, since δ and �

are two distinct relevant directions. The non-Hermitian DAA
model returns to the non-Hermitian AA model when � = 0,
hence, the critical exponents along the direction of δ should be
(ν, s, z) = (νδ, sδ, zδ ) = (1, 0.1197, 2) [66]. The scaling ex-
ponents along the � direction (ν, s, z) = (ν�, s�, z�) should
be a distinct set from those in the non-Hermitian Anderson
model. This is due to the nature of the critical point at (�, δ) =
(0, 0) being different from the extended state scenario.

Along the � direction, localization length ξ scales with �

as ξ ∝ �−ν� . Similarly, by taking into account the finite-size
effect, the scaling ansatz of ξ reads

ξ = L f4(�L1/ν� ). (13)

The curves of ξ versus � for various L’s at δ = 0 are plotted
in Fig. 4(a). After rescaling ξ and � according to Eq. (13),
we find that the rescaled curves exhibit a quite good collapse
onto each other when ν� = 0.52(2), as plotted in Fig. 4(b).
This new critical exponent ν� indicates that the disorder con-
tributes a new relevant direction at the non-Hermitian AA
critical point.
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FIG. 4. (a) Curves of ξ versus � for the non-Hermitian DAA
model at δ = 0 for various L′s. (b) The rescaled curves of ξL−1

versus �L1/ν� according to Eq. (13). We use g = 0.5, and the result is
averaged for 1000 samples. The double-logarithmic scales are used.

From Eq. (7), it is shown that �E ∝ L−zδ and �E ∝
L−z� should be applicable simultaneously. Hence, we have
z� = zδ = 2. While for IPR, the simultaneous applicability of
Eq. (5) in both directions provides the following relationship:

s� = sδ

ν�

νδ

. (14)

Therefore, along the � direction, ε = � and s = s�, Eq. (6)
becomes

IPR ∝ �s� = �sδν�/νδ . (15)

By studying the scaling properties of IPR with L → ∞, we
can determine s� and further verify the critical exponent ν�.

In Fig. 5, IPR versus � at δ = 0 for different g values are
plotted. The lattice size is L = 4181, which is large enough
so that the size effects are tiny. We find that the plots of IPR
versus � are parallel lines in the double-logarithmic coordi-
nates. Notably, the average slope of these lines is s� = 0.0642
with the fitting error of the exponent being ±0.0004, aligning
close to the theoretical prediction value of s� = sδν�/νδ =
0.0623(24) by setting ν� = 0.52(2) as an input. This consis-
tency also confirms the correctness of the value of ν� within
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FIG. 5. Curves of IPR versus � for the non-Hermitian DAA
model at δ = 0 for various g′s. We use L = 4181 and the result is
averaged for 1000 samples. The dashed lines are fitting lines. The
fitting error of the exponent is ±0.0004. The double-logarithmic
scales are used.
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the error bar. In addition, since we have calculated the results
for different g values and they all fit well with the theoretical
predictions, this indicates that the obtained exponent is uni-
versally applicable to the non-Hermitian DAA model.

Thus, we obtain the set of critical exponents for the
non-Hermitian DAA model in the � direction as (ν, s, z) =
(ν�, s�, z�) = (0.52, 0.0642, 2). These exponents are differ-
ent from that of the Hermitian DAA model [13]. This also
indicates that the non-Hermitian DAA and the Hermitian
DAA models belong to different universality classes.

IV. HYBRID SCALING PROPERTIES AROUND THE
CRITICAL POINT OF THE NON-HERMITIAN

DAA MODEL

In this section, we study the scaling properties around the
critical point of the non-Hermitian DAA model. In particular,
a hybrid scaling law is proposed to characterize the scaling
properties in the overlapping critical region constructed by the
non-Hermitian DAA critical region and the Anderson local-
ization transition.

A. Full scaling forms in the critical regions

By taking � and δ as scaling variables, the general finite
size scaling forms of these three observables are

ξ = L f5(δL1/νδ , �L1/ν� ), (16)

IPR = L−sδ/νδ f6(δL1/νδ , �L1/ν� ), (17)

�E = L−zδ f7(δL1/νδ , �L1/ν� ). (18)

In the critical region of the non-Hermitian DAA model, the
scaling functions Eqs. (16) to (18) should be applicable.

In the overlapping critical region where δ < 0, both the
scaling functions of the non-Hermitian Anderson transitions
and the non-Hermitian DAA model should play significant
roles. Here, to study the scaling behavior in this overlapping
critical region, the following hybrid scaling law is proposed.
In a typical scenario in which the overlapping critical region
is postulated to be composed of critical region A and criti-
cal region B, the hybrid scaling law proposes the following
hypotheses: First, within the overlapping critical region, the
critical properties should be concurrently describable by the
critical theories pertaining to both region A and region B.
Second, a constraint should be imposed between the scaling
functions of both region A and region B.

It’s worth noting that overlapping critical regions are a
common phenomenon in condensed matter physics [13,76–
80], and this hybrid scaling law has a general and uni-
versal significance. For instance, both the Hermitian DAA
and AA-Stark models exhibit overlapping critical regions of
localization transition, and they have also confirmed the cor-
rectness of this hybrid scaling law [13,76]. Similarly, in the
study of the nonequilibrium dynamics in the Yang-Lee edge
singularity, a hybrid Kibble-Zurek scaling has been proposed
to describe the behavior of driven dynamics in overlapping
critical regions [77,78].

Here, we take the critical properties of ξ to illustrate this
hybrid scaling law. According to this hybrid scaling law, both

10
-5

10
-3

10
-1

10
0

10
1

10
2

10
3

10
-2

10
1

10
4

10
-3

10
-2

10
-1

10
-5

10
-3

10
-1

0.3

0.45

0.6

0.75

10
-2

10
1

10
4

0.8

1.2

1.6

2

10
-5

10
-3

10
-1

10
-5

10
-3

10
-1

10
-2

10
1

10
410

1

10
2

10
3

10
4

(a1)

L−1

L1/

144 233

377 610

987 1597

2584 4181

(a2)

L

IP
R

(b1)

IP
R
Ls

/

L1/

(b2)

(c1)

EL
z

L1/

(c2)

FIG. 6. Scaling properties in the state with the lowest real part of
the eigenenergy for fixed δL1/νδ = 1. The curves of ξ versus � before
(a1) and after (a2) rescaled for different L′s. The curves of IPR versus
� before (b1) and after (b2) rescaled for different L′s. The curves
of �E versus � before (c1) and after (c2) rescaled for different
L′s. Here, g = 0.5, and the result is averaged for 1000 samples. The
double-logarithmic scales are used.

the scaling functions of ξ , i.e., Eqs. (10) and (16), are appli-
cable in the critical region where δ < 0. Combining Eqs. (10)
and (16), the constraint between these two scaling functions
should satisfy

f5(δL1/νδ , �L1/ν� ) = f1[�L1/ν� (δL1/νδ )κ ], (19)

where κ ≡ νδ (1/νA − 1/ν�). We find that κ includes both the
critical exponents of the non-Hermitian DAA model and the
non-Hermitian Anderson model, which gives the constraint
between these scaling functions.

B. Numerical results

In this section, we numerically verify these scaling the-
ories. By fixing δL1/νδ at a constant value, Eqs. (16)–(18)
are first verified. In Fig. 6, the scaling properties of ξ , IPR,

and �E versus � for δL1/νδ = 1 are plotted. After rescaling
according to Eqs. (16)–(18), the rescaled curves collapse onto
each other well, confirming Eqs. (16)–(18). In the overlapping
critical region with δ < 0, the similar numerical results for
fixing δL1/νδ = −1 are plotted in Fig. 7. The collapse of the
rescaled curves shown in Figs. 7(a2), 7(b2), and 7(c2) also
confirms Eqs. (16)–(18).
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� before (a1) and after (a2) rescaled for different L′s. The curves
of IPR versus � before (b1) and after (b2) rescaled for different
L′s. The curves of �E versus � before (c1) and after (c2) rescaled
for different L′s. Here, g = 0.5, and the result is averaged for 1000
samples. The double-logarithmic scales are used.

Then, we take δ = −0.5 as an example to examine the
applicability of Eq. (10) in the overlapping region, and the
numerical results are plotted in Fig. 8. We find that
the rescaled curves collapse onto each other well, indicating
that Eq. (10) is still applicable in this overlapping region.
Therefore, numerical results in Figs. 7(a1) and 7(a2) as well
as Fig. 8 confirm the first hypothesis of the hybrid scaling
law.

The numerical results of f5 = ξL−1 as a function of �L1/ν�

for various δ < 0 are plotted in Fig. 9(a). By rescaling �L1/ν�

as �L1/ν� (δL1/νδ )κ , we find that the rescaled curves collapse
very well, verifying Eq. (19) and the second hypothesis of the
hybrid scaling law.

V. SUMMARY

In summary, we have studied the critical behaviors of
the non-Hermitian DAA model, where non-Hermiticity is
induced by nonreciprocal hopping. The scaling functions
of these quantities for the non-Hermitian Anderson model
and the non-Hermitian DAA model have been obtained,
and the critical exponents of these models have been de-
termined. We have discovered that the critical exponents
of the non-Hermitian DAA differ from the non-Hermitian
Anderson model and the non-Hermitian AA model, which
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FIG. 8. (a) The curves of ξ versus � for different L′s at δ =
−0.5. (b) Rescaled curves of ξL−1 versus �L1/νA collapse onto each
other. Here, g = 0.5, and the result is averaged for 1000 samples of
φ. The double-logarithmic scales are used.

indicates that disorder introduces a new relevant direction at
the non-Hermitian AA critical point. Critical properties in
the critical region spanned by the disorder and quasiperiodic
potentials have been explored in detail. Especially, in the
overlapping region constituted by the critical regions of the
non-Hermitian DAA model and the non-Hermitian Anderson
model, a hybrid scaling law is proposed and numerically
verified.

On-site gain and loss is another important form of non-
Hermiticity, and many studies have shown that the effects
of this non-Hermiticity on the localization are quite differ-
ent from those of nonreciprocal effects [54,81]. Therefore,
as a potential extension of this paper, it is also worth
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FIG. 9. (a) The curves of ξL−1 versus �L1/ν� for different δ′s
at L = 987. (b) Rescaled curves of ξL−1 versus �L1/ν� (δL1/νδ )κ

collapse onto each other. Here, g = 0.5, and the result is averaged
for 1000 samples. The double-logarithmic scales are used.
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investigating the non-Hermitian DAA model with on-site gain
and loss. Additionally, since the non-Hermitian disorder or
quasiperiodic models are also highly sensitive to boundary
conditions [45,82], it is also necessary to discuss the critical
properties of the non-Hermitian DAA model under OBC. This
could also be a possible extension of this paper.
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