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Accidental bound states in the continuum in acoustic resonators with rotating obstacles
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Bound states in the continuum (BICs) are embedded states in the radiation spectrum, which have garnered
significant interest across various areas, including photonics and acoustics. In this work, by introducing rotational
obstacles into acoustic resonators, we report a series of accidental BICs in coupled waveguide-resonator systems.
We demonstrate that a general type of accidental BICs would emerge at specific rotating angles, supported by the
mode symmetries at the boundary interface between resonators and attached waveguides. We further demonstrate
that the presence or absence of accidental BICs is closely related to the geometric parameters of resonators and
obstacles, and can be predicted by the mode evolution within closed resonators. Additionally, we show that two
BICs of an individual mode could converge, merge, and vanish in a single resonator by changing the geometry
parameters. We also explore the topological origins of these phenomena. Our study provides an efficient way to
manipulate and engineer BICs through rotating obstacles in acoustic resonator systems.
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I. INTRODUCTION

In recent years, there has been a growing focus on high-Q
resonances, driven by their significant potential applications
in sensors and lasers [1–5]. Bound states in the contin-
uum (BICs) have emerged as a viable pathway to achieve
high-Q resonance [6,7]. The concept of BIC originated from
the quantum system [8], and then extended into different
physical systems like acoustic waves [9–19], water waves
[17,20–23], optics, and photonics systems [24–29]. BICs are
unique resonate states that exist within the energy spectrum
of extended states but remain perfectly localized and do not
radiate energy, thus are also known as trapped modes or
embedded eigenmodes. Due to the nonradiative nature of
BICs, these modes exhibit zero radiation loss, which theoret-
ically results in an infinite quality (Q) factor. Based on the
physical mechanism of the formation of BICs, they can be
classified as symmetry-protected (SP) BICs [10,11,25,29,30],
Friedrich-Wintgen (FW) BICs [28,31,32], Fabry-Perot (FP)
BICs [24,33–35], and accidental BICs [26,35,36].

In acoustics, BICs, alternatively referred to as trapped
modes, were first observed in the acoustic waveguide in-
serted with a parallel plate obstacle [9]. Furthermore, the
acoustic waveguide system with different shapes and posi-
tions of the obstacles inside was also demonstrated to support
quasitrapped mode [10–19]. Recently, acoustic resonators
have gained popularity in investigating BICs, especially open
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coupled waveguide-resonator systems for the prevalence of
achieving high-Q resonance with simple structures and easy
fabrication [37–50]. For such integrated systems, the effec-
tive non-Hermitian Hamiltonian method can be applied to
search for the zero point of the imaginary part of complex
eigenfrequency, corresponding to the zero coupling between
waveguides and resonators [7,51,52]. Some pioneering works
have elucidated the existence of SP BICs [43,45,48], FW BICs
[37–40,43,45,46], accidental BICs [40,45,48], and FP BICs
[37,44,50] in coupled waveguide resonators. Most of the SP
BICs are found in such systems with mirror symmetry C2v [7],
and FW BICs are supported by the destructive interference of
two or more resonant modes within cavities. Accidental BICs
arise from parameter tuning, such as the waveguide positions
[45,48]. Meanwhile, acoustic BICs have found applications
in sound emission enhancement [42], perfect absorption
[49,50,53], and so on. In optics, the corporation of dielectric
scatters into waveguides or cavities has been demonstrated to
support accidental BICs or selective excitation of quasi-BICs
(QBICs) without symmetry preserved [35,36,54]. However,
this phenomenon remains underexplored in finite acoustic res-
onators, which possess diverse mode distributions that could
enable innovative ways to manipulate BICs, such as merging
BICs within a single resonator [35,44].

In this work, in the presence of rotating obstacles,
we demonstrate the existence of accidental BICs in cou-
pled waveguide-resonator systems. The rotation of obstacles
breaks the symmetry of the resonators and relocates the
eigenmode patterns, translating the BIC into QBIC. How-
ever, with the increase of rotation, the QBIC will translate
into accidental BIC at a specific angle, where a symmetric
mode distribution at the interface between the resonator and
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FIG. 1. Schematic of rotating obstacle in coupled-waveguide
rectangular resonator system.

the coupled waveguide appears. The formation angles of the
BICs can be tuned by the geometry parameters of the waveg-
uides and obstacles, and we also calculate the eigenmodes in
two-dimensional (2D) closed resonators to get the converging
value of BIC angles. The emergence of accidental BICs is
also linked to the geometry parameters of the systems, such
as the obstacle size and the position of attached waveg-
uide. This phenomenon can also be well predicted through
the analysis of mode evolution within enclosed resonators.
Furthermore, we also observe multiple accidental BICs in
high-order resonant modes, demonstrating their converging,
merging, and vanishing by simply altering the length of the
resonator. Finally, we reveal the topological origins of the
merging process. We systematically investigate the relation-
ship of the Q factor with several asymmetry parameters and
apply the coupled-mode theory (CMT) [43,52] to elucidate the
transmission spectra of the QBICs. Our study provides a new
paradigm for the manipulation of accidental BICs in acoustic
resonators, which may find applications in acoustic sensors,
filters, and so on.

II. ACCIDENTAL BICS IN 2D RECTANGULAR
RESONATORS

To begin with, we investigate a coupled waveguide-
resonator system depicted in Fig. 1. The dimensions of the
rectangular resonator are L = 90 mm, W = 80 mm, embedded
with a small rectangular obstacle with dimensions of lx =
30 mm, ly = 45 mm. The rotational angle is denoted by θ , and
the width of the attached waveguides is set as d = 30 mm.
According to the effective non-Hermitian Hamiltonian, the
coupled system would have a complex eigenfrequency ω =
ω0 − iγ , where ω0 and γ denote the resonant frequency and
radiative decay rate, respectively. The Q factor of eigenmodes
can be calculated by Q = ω0/2γ , and eigenmodes are denoted
as Mmn depending on the number of the antinodes along the x
and y axis. Here, commercial finite-element method (FEM)
software COMSOL Multiphysics is utilized to acquire the
eigenmodes and Q factors. The speed of sound and density
of air are 343 m/s and 1.21 kg/m3, respectively. Due to the
symmetry of the system, we set the range of rotational angle
θ between 0◦ to 90◦. We first calculate the eigenfrequencies
and Q factors within the rotational range and the excited
transmission spectrum, as shown in Figs. 2(a) and 2(b).

FIG. 2. Accidental BICs in 2D rectangular resonators. (a) Eigen-
mode spectra and Q factors. Insets show the patterns (total acoustic
pressure) of BIC. (b) transmission spectra with respect to angle θ

in a 2D rectangular resonator system. (c) Eigenmode patterns of the
accidental BICs and QBICs within the calculated frequency range.
(d) The transmission spectrum of QBIC with θ = 52◦ using CMT
and simulations. The inset shows a pattern of QBIC.

Here, we only consider the coupling of the first propagating
mode of the waveguide, and the frequency range is set as
1000 to 4500 Hz, where five eigenmodes of the resonator,
M21, M12, M22, M31, and M32, are considered, respectively.
Due to significant coupling effects with the waveguide, the
resonance modes exhibit multiple nodal distributions in the
propagation direction, while reserve one node number in the y
direction, such as M21 and M31, consistently displaying modes
with low Q factors. Conversely, modes such as M12, M22, and
M32, which exhibit a dual nodal distribution perpendicular
to the propagation direction, possess the capability to sustain
high-Q modes.

Specifically, the structure reserves symmetries when θ =
0◦ and 90◦ for these modes, which can be seen as regular
resonators alternatively. Therefore, six SP BICs can be found
as shown in Fig. 2(a), which have infinite Q factors. We
can also find the vanishing line widths when approaching
these BICs in the transmission spectrum shown in Fig. 2(b).
When θ deviates from these two angles, M12, M22, and
M32 would collapse into QBICs because of the symme-
try breaking of the structure. However, when the rotation
reaches the specific angles (θBIC1 = 50.8◦, θBIC2 = 20.7◦, and
θBIC3 = 49.3◦), modes M22 and M32 would translate into BICs
again from QBICs, classified as accidental BIC1-3 here. This
transformation is also characterized by the observation of
approaching infinite Q factor and vanishing linewidth, as de-
picted in Figs. 2(a) and 2(b). The eigenmode patterns of the
BICs and QBICs are provided in Fig. 2(c) and the rotation an-
gles here are set as θQBIC1 = 52◦, θQBIC2 = 23◦, and θQBIC3 =
48◦. Finally, we calculate the transmission spectrum of the
QBIC1 shown in Fig. 2(d). Besides, the transmission spectra
of the QBIC2 and QBIC3 are also calculated, as detailed in
Appendix A. The good agreement between the simulated re-
sults and CMT provides additional validation for the proposed
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FIG. 3. (a) Dependence of the Q factor on the asymmetry pa-
rameter α = sin(θ − θBIC). (b) Q factors of M22 versus d for SP
BIC and accidental BIC. (c) Q factors of M22 versus ds for SP
BIC and accidental BIC. (d) Evolution of the Q factors distribution
with respect to angle θ versus width d . Here, d is set as 32 mm,
24 mm, 16 mm, 8 mm, 2 mm, 0.2 mm, respectively. Insets show the
eigenmode patterns.

model’s utility in constructing BICs. Finally, we also pre-
sented the time-domain propagation of the QBIC in contrast
with the low-Q mode, as illustrated in Fig. S1 [55]. For the
QBIC angles, with a modulated Gaussian pulse incident, the
QBIC is excited and sustained over an extended period due to
its high-Q characteristic. Conversely, for the low-Q resonance,
the acoustic wave gradually decays to nearly zero over time
[55].

To deepen our understanding of the accidental BIC here,
we investigate the interrelation between geometric parameters
such as rotation angle θ , width d in the formation of BICs,
and here we select BIC1 as demonstration. First, we analyze
the variations of the Q factor of accidental BIC concern-
ing asymmetry parameters α = sin(θ − θBIC). Subsequently,
an inverse quadratic correlation is discerned, as depicted in
Fig. 3(a), demonstrating adherence to prior work [29]. Next,
we undertake the analysis of width d . Here, we assume that
θ = θBIC for both SP BIC and accidental BIC, then adjust the
value of d . We find that the Q factor dramatically decreases
for accidental BIC, while preserve relative high for SP BIC, as
shown in Fig. 3(b). It should be noted that the variation of Q
factors is mainly caused by numerical precision instead of the
parameter adjustment. This phenomenon further demonstrates
the existence of accidental BIC. In Fig. 3(c), we calculate the
variations of the Q factor of the SP and accidental BICs with
respect to the asymmetry parameter, denoted as α = ds/d , and
both of them exhibit an inverse quadratic relationship with α.
The differential results observed between the two asymmetric
parameters can be attributed to the symmetry breaking in the
structure. Finally, we also study the evolution of accidental
BIC angles with d , as presented in Fig. 3(d). Here, we cal-
culate the Q factor with the variation of θ , at d = 32 mm,
24 mm, 16 mm, 8 mm, 2 mm, and 0.2 mm, respectively. In the
results obtained, we observe that the parameter θ converges

FIG. 4. (a) Eigenmode acoustic pressure at symmetric point A
versus θ within a closed resonator. The red cross is located at (48.21◦,
0 mm). (b) Q factors of M22 versus ds with θ = 18◦, 45◦, and 72◦,
respectively. (c) Eigenmode patterns of accidental BICs at each an-
gle. (d) Q factors of M22 versus θ with ds = 5 mm. Insets show the
eigenmode patterns.

towards a distinct value as d approaches an exceedingly small
magnitude. To precisely determine the value, we compute the
eigenmode pattern of M22 as a function of the angle θ in a
closed resonator. Subsequently, we extract the total acoustic
pressure at the midpoint on the left boundary, designated as
symmetry point A, as depicted in Fig. 4(a). It should be noted
that the rotation process will relocate the mode pattern, thus
changing the value of acoustic pressure at the symmetry point,
as illustrated in the insets of the mode pattern. The mode
patterns here can be replicated approximately through the en-
gineering of modes M22 and M31 [45]. When the zero-pressure
nodal line aligns with the symmetry point, which corresponds
to the intersections between the pressure distribution line and
gray dash line, three angles 0◦, 90◦, and the specific angle
48.12◦ can be identified, respectively. The SP BICs (0◦and
90◦) will be preserved when attaching waveguides, while the
middle mode gives rise to accidental BIC where the angle
is dependent on the parameter of the waveguide. And this
phenomenon is distinct to the resonators without obstacles,
where the accidental BIC is degenerate to SP BIC, as shown
in Fig. 9.

The formation of accidental BIC, as discussed above, is
attributed to rotation of the obstacle in the above discussion.
However, when the rotation angle deviates from θBIC, adjust-
ing the waveguide’s position can be employed to reconstruct
the accidental BIC [45]. In our study, we examined rotation
angles of θ = 18◦, 45◦, and 72◦, corresponding to relative
maximum and minimum deviations within the rotation range
[indicated by the purple quadrilateral in Fig. 4(a)]. At these
angles, without waveguide adjustment, the modes function as
QBICs with low quality factors. Effective reconstruction of
the accidental BICs is achieved by varying the waveguide’s
lateral position (ds) from −4 mm to 4 mm, as shown in
Fig. 4(b). The adjustments in ds correlate with the findings
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FIG. 5. (a) Eigenmode acoustic pressure at symmetric point A. (b) Eigenfrequency evolution versus θ with ly =
20 mm, 30 mm, 45 mm, 55 mm, respectively, within a closed resonator. (c) Q factors of M22 versus θ with ly = 20 mm and 45 mm in
a coupled-waveguide resonator system.

depicted in Fig. 4(a). For instance, at θ = 18◦ the optimal
ds is a positive 3.24 mm, whereas at θ = 72◦ it is a nega-
tive −1.62 mm, and at θ = 45◦ it remains relatively minor
at 0.76 mm. The eigenmode patterns, depicted in Fig. 4(c),
further corroborate that the origins of accidental BICs stem
from the modal symmetry with the waveguide. Additionally,
our study also delineates the maximum effective range for ds,
beyond which, as demonstrated in Fig. 4(d), the entire range
of rotation yields low-Q modes and fails to form BICs.

The investigation into mode pattern evolution reveals that
specific rotation angles of BICs correlate with the geomet-
ric parameters of obstacles. Additionally, we have calculated
the total acoustic pressure at the symmetry point across
various obstacle widths, as shown in Fig. 5(a). Notably, a
critical width (ly = 20 mm) delineates a transition where
zero-pressure nodal lines no longer align with symmetric
points, indicating the annihilation of accidental BIC. As ly
increases, intersections between the 45◦ and 90◦ dashed lines
become evident. Remarkably, when the obstacles are square
(lx = ly = 45 mm), the pressure distribution remains symmet-
rical with respect to the rotation angle θ , as depicted by the
yellow line in Fig. 5(a). At this configuration, an accidental
BIC manifests at θ = 45◦, marked by a red quadrilateral in
the inset of Fig. 5(a). Thereafter, the formation angle of BIC
will slightly deviate from 45◦ with an approaching value. Our
findings further reveal that rectangular obstacle shapes con-
tribute to an asymmetrical pressure distribution as the angle
varies.

Further analysis of the eigenfrequency variations with θ in
a closed resonator for the M22 mode is presented in Fig. 5(b).
The extent of eigenfrequency variation increases with ly,
aligning with the trends observed in Fig. 5(a) and suggesting
an evolution in mode shape. Additionally, we examine two
specific cases (ly = 20 mm and ly = 45 mm) to calculate the
variations in Q factors with θ when a waveguide is attached
for demonstration. For ly = 20 mm, the Q factors remain rel-
atively low, with the exception of near 0◦ and 90◦, suggesting
the absence of accidental BICs. Conversely, for ly = 45 mm,
accidental BIC (also referred to as SP BICs) occur at θ = 45◦,
aligning well with observations from the closed resonators.
The results we obtained highlights the impact of obstacle
geometry within the system, underscoring the critical role of
obstacle dimensions in the formation and evolution of BICs.
The 2D model discussed above can be readily extended to a

three-dimensional (3D) model for practical applications, as
shown in Fig. S2 [55]. Further details on this extension are
provided in the Supplemental Material [55].

III. MERGING BICS WITHIN SINGLE RESONATOR
IN GEOMETRY SPACE

Acoustic resonators facilitate the engineering of various
BICs, such as merging of FP BICs within pairs of resonators
or a mirrored resonator [44]. In our study, by embedding
rotational obstacles, we show the merging accidental BICs
phenomenon in single resonator. As indicated in Fig. 2(a),
we identify two accidental BICs, BIC2 and BIC3, within
mode M32. Subsequently, we explore the merging of these two
BICs through modifications in the geometric configuration, as
depicted in Fig. 6(a). Here, BIC2 and BIC3, characterized by
rotation angles θ2 and θ3 respectively, converge into a single
BIC at θm by adjusting the resonator length.

We initially analyzed the variation in the Q factor as a
function of the angle θ while reducing the resonator length,
as illustrated in Fig. 6(b). Decreasing the resonator length
causes the two accidental BICs to approach each other in the
angular space, represented by the orange and yellow lines in
Fig. 6(b). Notably, these BICs merge into a single BIC when
the length reduction reaches �L = −10.2 mm, as indicated
by the blue line in Fig. 6(b). The resultant merged BIC’s
angle is positioned between those of the original BICs. As
the length decreases further to �L = −16 mm, the merged
BIC transitions into a QBIC, with relatively low Q factors
across the entire rotation range, as shown by the brown curve
in Fig. 6(b). Additionally, we also calculated the evolution of
M32 within closed resonators, as depicted in Fig. S3 [55]. Prior
to merging, two intersections between 0 and 90 degrees were
observed, indicating the presence of two BICs. Conversely, in
the merged case, only one intersection with the zero pressure
line was found, indicating the presence of a single BIC.

We also present the Q-factor dependence on the asymmetry
parameter α = sin(θ − θBIC) with �L = −5 mm and
−10.2 mm, as shown in Fig. 6(c). At �L = −5 mm, the
calculated Q factors for BICs before merging exhibit an
inverse quadratic correlation with the asymmetry parameter,
illustrated by the yellow circles and purple curve in Fig. 6(c).
Conversely, for the merged BIC (�L = −10.2 mm),
the calculated Q factors display an inverse quartic correlation
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FIG. 6. Merging BICs in single resonator. (a) Schematic of the merging BICs utilizing geometry parameter. (b) Evolution of Q factors
distribution versus angle θ . Here, �L is set as −1 mm, −5 mm, −10.2 mm, and −16 mm, respectively. (c) Dependence of the Q factor on the
asymmetry parameter α = sin(θ − θBIC) with �L = −5 mm (before merge) and �L = −10.2 mm (merged) (log-log scale). (d) Transmission
spectrum of the single resonator around BIC2 and BIC3 (marked as red circles) before merging (e) for merged BIC (marked as blue star) and
(f) after BIC merging.

with the asymmetry parameter, further demonstrating the
merging phenomena, as depicted in blue circles and orange
curve in Fig. 6(c). The slight discrepancies between the
calculated results and the fitting curve may be attributed
to numerical precision and proximity to another SP BIC
near 0◦. Typically, individual BICs may experience reduced
Q factors due to scattering losses, which are caused by
inevitable deviations during fabrication. Merging multiple
BICs within geometric configurations offers a novel approach
for enhancing Q factors in practical applications [44,56–59].

Additionally, we calculate the transmission spectrum for
the cases of the BICs before merging, during merging, and
after merging, as depicted in Figs. 6(d)–6(f). Initially, with
�L = −1 mm, two positions exhibiting zero linewidth are
identified [marked with red circles in Fig. 6(d)], representing
the individual BICs in the angular space before merging.
Subsequently, reducing �L to the critical value of −10.2 mm
resulted in a single zero-linewidth position [marked with a
blue star in Fig. 6(e)], indicating the merger of the two BICs
into a singular state. Further decreasing �L to −16 mm led
to the continuation of mode M32 in the transmission spectrum,
as shown in Fig. 6(f), illustrating the annihilation of the BIC.
Moreover, the linewidth shown in Fig. 6(f) is broader com-
pared with the previous cases, reflecting the relatively lower
Q factors.

The merging BIC in geometry space can also be under-
stood from the topological perspective. In periodical system
like photonic crystals, the topological origin of the BIC is
polarization singularity carrying topological charge in mo-
mentum space, contributing to their robustness [27]. However,
in finite systems such as acoustic resonators where momentum
space cannot be defined, BICs are characterized by topo-
logical charges of q = +1 and q = −1, indicated by phase

singularities [44,60]. To generate phase singularities within
our transmission system, it is necessary to shift the dispersion
curve to the negative imaginary frequency axis. This align-
ment induces topological charges at the intersections of the
dispersion curve and θ axis, manifesting as phase vortices. To
address this, we introduced a slight artificial gain into the res-
onators, implemented by setting the sound velocity in the res-
onators to v = 343 × (1 − 2.5 × 10−5i) in our simulations.

We first calculate the eigenfrequency variation with re-
spect to θ in the vicinity of BIC2, as shown in Fig. 7(a).
For the lossless scenario, BIC2 is positioned at the zero
of the eigenfrequency’s imaginary component, indicating no
coupling with the waveguide. In systems with induced gain,
however, the eigenfrequency curve intersects the zero line
at two points, corresponding to the topological charges near
BIC2. Subsequently, we delineate two closed paths, C1 and
C2, that encompass these intersections on the angle-frequency
plane. The phase distributions along these paths are calculated
and presented in Figs. 7(b) and 7(c). The topological charge
is determined by the counter-clockwise phase accumulation
around C1 and C2 as follows:

q = 1

2π

∮
dφ. (1)

Based on the equations presented, the topological charges
of C1 and C2 can be determined as q1 = +1 and q2 = −1,
respectively. The reflected phase exhibits analogous results, as
illustrated in Fig. S4 [55]. Similarly, the topological charges
for BIC3 and the merged BIC can be evaluated through the
phase accumulation along closed paths depicted in Figs. 7(d)–
7(i). These topological charges are q3 = +1, q4 = −1, q5 =
+1, and q6 = −1. The concept of merging BICs from a
topological perspective involves the cancellation of positive
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FIG. 7. Topological perspective of merging BICs. (a) Evolution of the imaginary part of the eigenfrequecy versus θ for BIC 2, (d) BIC 3,
and (g) merged BIC. The blue curves represent the passive system and the orange curves represent the modified system, where a slight gain
is introduced. (b), (c), (e), (f), (h), and (i) represent the phase distributions of closed paths C1 to C6 in the modified system, respectively, as
marked in (a), (d), and (g).

and negative charges via superposition. In this study, as BIC2
and BIC3 converge closely on the angular frequency plane,
their respective charges, q2 = −1 and q3 = +1, neutralize
to zero, resulting in a merged BIC. To further elucidate this
process, we have included a schematic diagram in Fig. S5
[55]. The proximity of these topological charges also indicates
the robustness of the BIC; thus, the merged BIC exhibits in-
creased robustness against external perturbations. Ultimately,
the annihilation of BIC results from the neutralization of the
existing topological charges.

IV. CONCLUSIONS AND DISCUSSION

In this work, we demonstrate the existence of accidental
BICs in acoustic resonators embedded with rotating obstacles.
These accidental BICs primarily depend on the mode symme-
try at the interfaces between the waveguides and the resonator,
effective only for modes that exhibit even distributions in
the perpendicular propagation direction. This phenomenon is
determined by changes in the coupling between the waveg-

uides and the resonator, which vary with the rotational state
of the embedded obstacle. Furthermore, these accidental BICs
can be adjusted by modifying the waveguides and the ob-
stacles’ geometry parameters. By shifting the position or
adjusting the dimensions of the attached waveguides, the
QBICs can be translated into BICs, and vice versa. With the
increased size of obstacles, the emergence and convergence of
accidental BICs can be observed.

We also provide an effective method to identify the angles
for BIC formation in closed resonators, further validated by
resonators with attached waveguides. Additionally, we ex-
plore the dynamics of multiple accidental BICs within the
M32 structure by varying the resonator’s length, a model
distinct from previous paired or mirrored-structure config-
urations that expands the potential for engineering BICs
within the geometric parameter space of single resonator. We
demonstrate that the Q factors of BICs before merging are
inversely proportional to the square of the asymmetry param-
eters sin(�θ ),�d , and ds, and a more robust inversely quartic
relationship is observed for merged BIC, indicating enhanced
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high-Q stability against perturbations. The proposed 2D mod-
els can be projected into 3D models for practical application.

Our work provides an effective approach to identifying
and manipulating the BICs within acoustic resonators, which
may facilitate the selective excitation of QBICs and other
control strategies. The principles established here are adapt-
able to resonators of various shapes, including cylindrical
and spherical forms, and are effective with different obstacle
shapes. Increasing the number of accidental BICs may require
the utilization of higher-order modes, which warrants further
investigation. This study aspires to guide the application of
the findings in specialized scenarios, particularly within the
domains of acoustic sensing and filtering.
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APPENDIX A: COUPLED-MODE THEORY FOR TWO
PORTS ACOUSTIC RESONATOR

The coupled-mode theory of the transmission or reflection
coefficient of the two ports system we consider here can be
written as follows [43,52]:

T (R)

= (ω − ω0)2 cos2 φ + γ 2 sin2 φ ± 2 sin φ cos φ(ω − ω0)γ

(ω − ω0)2 + γ 2
.

(A1)

Here, ω0 is the resonance frequency, γ is the decay rate,
and φ is the phase angle of the eigenfrequency. Both the
real and imaginary parts of the complex eigenfrequencies are
first calculated. By inserting the complex eigenfrequencies
into Eq. (A1) and fitting the phase angle, the transmission
coefficients can be predicted, and then compared with the
simulation results.

In our study, the complex eigenfrequencies of QBIC1–
3 are given as ω1 = 2π × (2625.47 − 0.021i) Hz, ω2 =
2π × (4173.96 − 0.035i) Hz, and ω3 = 2π × (4344.9 −
0.042i) Hz, respectively. The corresponding fitting parameters
φ are 0.28π , 0.11π , and 0.054π . The transmission spectra
for QBIC2 and QBIC3, as obtained from simulations and
CMT, are presented in Figs. 8(a) and 8(b), respectively. The
simulation results are consistent with CMT across all three
cases.

APPENDIX B: MODE DECOMPOSITION
IN THE RECTANGULAR RESONATOR

The eigenmodes of a closed rectangular resonator with
Neumann boundary conditions can be written as

ψmn(x, y) =Cmn cos

[
π (m − 1)x

Lx

]
cos

[
π (n − 1)y

Ly

]
,

FIG. 8. The transmission spectrum of (a) QBIC2 with θ = 23◦

and (b) QBIC3 with θ = 48◦ using CMT and simulations. The inset
shows patterns of QBICs.

× (m, n = 1, 2, 3 . . .), (B1)

where

C2
mn = (2 − δm,1)(2 − δn,1)

LxLy
(B2)

and Lx, Ly are the dimensions of the resonator.
As illustrated in Fig. 9(a), the accidental BIC discussed

in the main text exhibits mode patterns similar to the FW
BIC in rectangular resonators, which can be expressed as a
superposition of the two eigenmodes (M22 and M31) of the
closed resonator by the following [45]:

ψBIC(x, y) ≈ g1ψ22 + g2ψ31. (B3)

Here, ψ22 and ψ31 are the eigenfunctions corresponding to the
resonator modes M22 and M31, respectively. The coefficients
g1 and g2 are defined as g1 = cos(θ ) and g2 = sin(θ ). By
adjusting the value of θ , we can modulate the contribution of
each fundamental mode to the eigenmode pattern.

FIG. 9. Mode decomposition in a rectangular resonator without
obstacle. (a) Schematic of the mode decomposition in rectangular
resonator. (b) Acoustic pressure versus θ in the same point marked
in Fig. 4(a). (c) mode pattern evolution at the orange circles marked
in (b).
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Further, we calculate the pressure for this superposed mode
as θ varies, observed at the symmetry point referenced in the
main text, depicted in Fig. 9(b). Unlike configurations with
obstacles, variations in θ over a period of 2π do not lead
to the formation of an accidental BIC. It should be noted
that the intersection depicted in Fig. 9(b) locates at θ = 180◦,

where a SP BIC formed there. Additionally, the mode patterns
highlighted by the orange circles in Fig. 9(a) underscore that
in this instance, accidental BIC formation solely results from
waveguide adjustments [45]. The introduction of a rotated
obstacle in the resonators significantly enhances the flexibility
of constructing BICs in acoustic resonators.
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Topological nature of optical bound states in the continuum,
Phys. Rev. Lett. 113, 257401 (2014).

[28] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev,
A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, High-Q su-
percavity modes in subwavelength dielectric resonators, Phys.
Rev. Lett. 119, 243901 (2017).

[29] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y.
Kivshar, Asymmetric metasurfaces with high-Q resonances
governed by bound states in the continuum, Phys. Rev. Lett.
121, 193903 (2018).

[30] J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos,
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