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We present an approach for simulating x-ray nanobeam Bragg coherent diffraction patterns based on the
Takagi-Taupin equations. Compared to conventional methods, the current approach can be universally applied
to any weakly strained system including semi-infinite crystals that diffract dynamically. It addresses issues such
as the curved wave front and redivergence of the focused incident beam. We show excellent agreement with
experimental data for a strained La0.7Sr0.3MnO3 thin film on a SrTiO3 substrate and a path to extracting physical
information using automatic differentiation.
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I. INTRODUCTION

The precise control of strain and crystalline quality is cen-
tral to engineering desired properties across a wide array of
functional materials. Various research goals, ranging from op-
timizing the electronic structure in hybrid perovskites [1] and
tuning the magnetotransport properties in magnetic oxides
[2] to driving spin transitions in solid-state quantum systems
[3], all share the same material architecture that interfaces
epitaxially with a high-quality single-crystal substrate. Co-
herent diffraction imaging methods, despite recent advances
in instrumentation [4–6] and methodology [7–9], often shy
away from this type of material system due in large part
to the inability to account for the substrates’ contribution to
the measured diffraction intensity. More specifically, conven-
tional iterative phase retrieval methods rely on the Fourier
transform to describe the thin film diffraction process, which
fails when the measured intensity is influenced by the strong
substrate Bragg peak in close proximity in reciprocal space.

Preliminary attempts to incorporate dynamical diffrac-
tion from semi-infinite crystals into nanobeam diffraction
were successful [10], but the recursive calculation based on
Darwin’s formalism was limited to the case of planar thin
films and to perfect substrates. The Takagi-Taupin equa-
tions (TTEs) [11,12] can be a good alternative. As a more
general treatment of dynamical diffraction, the TTEs are
based on solving Maxwell’s equations in a medium with a
three-dimensional periodic distribution of dielectric suscep-
tibility [13–15]. While analytical solutions exist except for a
few ideal cases [16,17], numerical calculations of the TTEs
can be performed on crystals of arbitrary shape [18], having

*Contact author: tzhou@anl.gov
†Contact author: mvholt@anl.gov

been extensively applied to calculate the reflectivity of bent
single crystals [19–21]. More recently, TTEs were applied to
simulate Bragg coherent diffraction imaging (BCDI) with an
unfocused parallel beam [22–24]. The studies showed dynam-
ical diffraction artifacts in the far field for particles of size
exceeding the extinction length but offered no solution that
can be embedded in the phase retrieval process.

In this work, we report the development of a TTE-based
numerical framework for x-ray nanobeam Bragg coherent
diffraction that tackles key issues related to the use of a
convergent coherent beam and to compatibility with phase
retrieval approaches. The incident angular spread of a tightly
focused beam, combined with the large acceptance of two-
dimensional detectors, is known to satisfy multiple diffraction
conditions at once [25]. The diffraction scenario is thus more
complex than with a parallel beam as in BCDI or reflectiv-
ity experiments. Additionally, the propagation of the curved
wave front, more specifically the redivergence of the focused
beam, also needs to be taken into account for sample thickness
beyond the depth of focus.

We examine the validity of our approach with a quanti-
tative comparison between the far-field diffraction patterns
predicted by the model and those obtained in experiments.
The current approach differs from conventional Fourier trans-
form based methods mainly by its direct expression of the
lattice strain and its ability to account for the dynamically
diffracting substrate. Its explicit description of the scattering
condition has proven useful in uniting datasets acquired at
different sample and detector angles. More importantly, the
close resemblance of the numerical framework to an artifi-
cial neural network (NN) indicates that any optimizers for
NN training can be applied to perform the inverse process
(e.g., from diffraction pattern to strain in the sample). We
demonstrate this capability by simultaneously retrieving the
lattice strain and film thickness from a single x-ray nanobeam
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FIG. 1. (a) Schematic of the experimental setup. Zone plate optics were used for the focusing of the incident beam. A cropped area
(100 × 100 pixels) of the detector image is shown here for clarity. (b) Specular rod profile extracted from the θ -2θ scan on as-grown and
implanted LSMO.

Bragg coherent diffraction pattern using gradient descent op-
timization with automatic differentiation. The inverse process
demonstrated in this work is an important first step to account
for dynamical effects in phase retrieval with scanning x-ray
nanobeam coherent diffraction, which is an emerging tech-
nique colloquially known as Bragg ptychography [8,26].

II. EXPERIMENTAL METHOD
AND SIMULATION FRAMEWORK

A. Bragg coherent diffraction of a thin film

The sample studied in this work was an epitaxially
strained La0.7Sr0.3MnO3 (LSMO) thin film (≈ 40 nm thick-
ness) grown on a (001)-oriented SrTiO3 (STO) substrate and
selectively patterned by Ar+ implantation [27]. Through litho-
graphic masking, arrays of square pads of intact crystalline
LSMO film, 2 × 2 µm2 in size separated by 2 µm, were
fabricated. Regions of LSMO outside of the masked pad areas
were partially amorphized by the ion implantation.

X-ray nanodiffraction measurements of this sample were
performed on the 26-ID-C beamline at the Advanced Photon
Source. A schematic of the experimental setup is shown in
Fig. 1(a). The focused beam size was 60 nm at 10 keV, as
confirmed by transmission ptychographic reconstructions on
a test pattern. Two sets of data were acquired by separately
positioning the focused beam in the center of a masked pad
and in the implanted area. For each dataset, a radial θ -2θ scan
of 65 points was performed about the specular 002 LSMO
and STO Bragg reflections. The total scattering angle 2θ was
around 37◦. The radial scans consisted of moving the sample
angle in increments of �θ = 0.0125◦ while simultaneously
shifting the detector angle by 2�θ . The scattering plane was
horizontal, and the rotations of both the sample and the detec-
tor were around a vertical axis. Each point of the radial scan

was associated with a far-field diffraction pattern, measured
on a Medipix detector (55 µm pixel size, 515 × 515 pixels) at
a sample-to-detector distance of 0.9 m. The far-field condition
is thus fulfilled because the product of the detector distance
(≈ 1 m) and the x-ray wavelength (≈10−10 m) is much larger
than the diameter of the illuminated area (≈10−8 m) squared.

The θ -2θ motion scanned the momentum transfer along
the specular rod 00� in reciprocal space. Figure 1(b) shows
the specular rod profile for the two datasets generated by
integrating the intensity in a narrow region of interest centered
on the detector. The strong intensity oscillations on the red
curve confirm that the masked area consisted of an as-grown
LSMO film of high crystal quality while the dampened inten-
sity oscillation on the blue curve indicates that the LSMO in
the implanted area was significantly damaged.

B. Extending the TTE framework for x-ray nanobeam
Bragg coherent diffraction

To simulate x-ray nanobeam Bragg coherent diffraction
patterns, we adopt the symmetric version of two beam
TTEs [22]:

∂E0(r)

∂s0
= iπ

λ
[χ0E0(r) + Pχhe−i�h·r+ih·u(r)Eh(r)],

∂Eh(r)

∂sh
= iπ

λ
[χ0Eh(r) + Pχhei�h·r−ih·u(r)E0(r)]. (1)

Here, E0(r) and Eh(r) are, respectively, the scalar pseudoam-
plitudes for the transmitted wave E0 and the diffracted wave
Eh. Their partial derivatives are taken with respect to s0 and sh,
which are unit distances along the directions of their respec-
tive wave vectors K0 and Kh. The symbol i is the imaginary
unit, and λ is the wavelength of the x-ray beam. The Fourier
components of the dielectric susceptibilities χ0, χh, and χh
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FIG. 2. Bottom: Cross-sectional schematic of the numerical framework used in this work. The orange arrows indicate the direction of
wave propagation between the adjacent subsections. Top: Cross-sectional view of the amplitude of Eh in logarithmic scale, simulated using 36
parallelepiped-shaped subsections for a total substrate thickness of 8.76 µm. The step size for numerical integration is s0 = sh = 13.16 nm. The
red arrow indicates the direction and point of incidence of the nanofocused beam. Inset: Amplitude of the initial condition Ein in logarithmic
scale.

are complex quantities related to the structure factor at their
corresponding reciprocal lattice vectors, as denoted by the
subscripts. The variable P is the polarization factor. For spec-
ular reflections in the horizontal scattering geometry such as
those measured in this work, P = cos 2θ . The vector u(r) is
the strain field. The vector h is the reciprocal lattice vector,
and �h is the deviation from the Bragg condition at h. A
formula for |�h| for rocking scans can be found in [22]. For
the radial θ -2θ scans around a specular reflection as explored
in this work, we derive the following formula:

|�h| = 4π

λ
�θ cos θ. (2)

The scheme for solving the TTEs in this work is illustrated
in Fig. 2. For information on the numerical integration of
the TTEs using the half-step method, the reader is referred
to the original work of Authier et al. [28] and Gronkowski
[29]. In this section, we focus on the differences between this
work and those previously reported for simulating BCDI im-
ages [22–24]. Specifically, the application of BCDI is limited
to isolated objects with size smaller than the illumination,
whereas there is, in principle, no size limit for experiments
with a scanning x-ray nanobeam, laterally or in the depth
dimension. The extensions described in this work mostly
deal with problems arising from wave propagation in a large
probed volume, namely, the redivergence and the curved wave
front of the focused incident beam.

The numerical integration volume is divided into
parallelepiped-shaped subsections denoted Gm,n. The Y and
Z axes of the parallelepipeds are chosen to be along the direc-
tion of the incident wave vector K0 and the diffracted wave
vector Kh, respectively. The X axis of the parallelepipeds is
perpendicular to the scattering plane spanned by Y and Z.
The superscripts m and n denote the number of subsections
in which the exit wave would have propagated along the
direction of K0 and Kh, respectively. For a given subsection

Gm,n as shown in Fig. 2, its top left and bottom right edges
are, respectively, the incident and exit surfaces of E0, while its
bottom left and top right edges are, respectively, the incident
and exit surface of Eh. The waves at the incident and exit
surfaces are denoted with the subscripts in and out. The first
parallelepiped G1,1 contains the illuminated surface area. To
account for the curve wave front of the focused incident beam,
the initial condition is set as

E1,1
0,in = Ein, (3)

where E1,1
0,in is the transmitted wave field E0 at the incident sur-

face of G1,1. The incident wave field Ein is obtained through
probe reconstruction with transmission ptychography on a
resolution target under otherwise the same illumination con-
dition. An example of Ein is shown in the inset of Fig. 2. The
remaining initial conditions are

Em,m
0,in = 0, m = 2, 3, . . . , (4)

Em,1
h,in = 0, m = 1, 2, . . . . (5)

Gm,m correspond to the subsections containing part of the
sample surface and are marked as green parallelograms in the
schematic shown in Fig. 2. Equation (4) indicates that, except
for G1,1, there is no incident beam on the sample surface. Gm,1

are the subsections in the path of the incident beam and are
marked as purple parallelograms in the schematic shown in
Fig. 2. Equation (5) indicates the absence of diffracted waves
entering the leftmost edge of the integration volume.

The procedures for wave propagation inside each sub-
section follow the same principle as described in the
demonstrations for BCDI [22–24]. Numerical integration of
Eq. (1) is performed sequentially along the beam propagation
directions Y and Z. The calculation along X is concurrent.
Once the calculation on a subsection Gm,n is complete, the
wave fields Em,n

0,out and Em,n
h,out at its exit surfaces are collected to
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FIG. 3. Comparison between experimental and simulated far-field diffraction patterns at various incident angles. The beam was focused
on the center of a masked (as-grown) LSMO pad. (a) Experimental and (b) simulated data at θ = θLSMO. (c) Experimental and (d) simulated
data at θ = θLSMO + 0.1◦. (e) Experimental and (f) simulated data at θ = θLSMO + 0.2◦. The corresponding sections of the specular rod profile
are shown in the insets above. with the numbering −1, +1, +2, and +3 marking the position of the maxima of different orders of the thickness
fringes. The intensity scale bar applies to all images.

serve as the boundary conditions for subsequent calculations,
with

Em+1,n
0,in = Em,n

0,out,

Em,n+1
h,in = Em,n

h,out. (6)

Figure 2 also shows a cross section of Eh in the scatter-
ing plane spanned by Y and Z, calculated at the Bragg
condition of the substrate STO 002 reflection. Dynamical
effects are clearly visible, as evidenced by the Pendellösung
fringes.

Breaking down the integration network into smaller sub-
sections has the advantage of reducing the computer memory
needed for numerical integration on an exceedingly large sam-
ple volume. Figure 6 in Appendix A depicts in detail the order
of computation for each subsection Gm,n in the case of M = 5.
The boundary conditions between neighboring subsections
are listed explicitly. These boundary conditions are what is
limiting the calculations from being carried out simultane-
ously on all subsections. More importantly, the division into
smaller subsections allows, to an extent, consideration of the
redivergence of the focused incident beam. To achieve this, we
draw inspiration from the multislicing technique commonly
used in electron diffraction [30]. A wave exiting one sub-
section is Fresnel propagated before entering the next. We
note that the distance of the Fresnel propagation (∼1 µm, the

side length of a subsection along the propagation direction) is
much smaller than the depth of focus of most nanofocusing
x-ray optics (∼10 µm).

The final diffracted intensity I is obtained by propagating
the exit wave Eout to the far field:

I ∝ |F (Eout )|2, (7)

where F denotes the Fourier transform. Eout is obtained by
concatenating Em,m

h,out, which are diffracted wave fields leaving
the sample in adjacent regions of space:

Eout = E1,1
h,out

	E2,2
h,out

	 · · · 	EM,M
h,out , (8)

where 	 denotes concatenation.

III. RESULTS

A. Nanobeam coherent diffraction at the thin film Bragg peak

We first show how the proposed TTE-based numerical
framework can accurately model thin film coherent diffraction
with a nanofocused beam. For a single nanodiffraction image
acquired at a given incident angle, a significant area of the
reciprocal space was simultaneously measured due to the large
acceptance of the area detector and to the large convergence
angle of the focused beam. This is illustrated in Fig. 3(a),
which shows a diffraction pattern acquired when the focused
beam was centered on the masked LSMO pad. The sample
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angle of this measurement was such that the LSMO 002
Bragg condition was satisfied (θ = θLSMO). The section of the
specular crystal truncation rod (CTR) profile corresponding
to the 2θ range of the detector image is plotted in the inset
directly above Fig. 3(a). The relationship between the nan-
odiffraction pattern and the CTR is as follows: the minima
of the CTR intensity oscillations appear as dark stripes on
the nanodiffraction pattern, while the film Bragg peak corre-
sponds to the bright band in the middle of the detector, which
is occluded by the shadow of the central beam stop. Another
important feature to note is that the left (smaller 2θ ) side of the
diffraction pattern is brighter than the right side (larger 2θ ).
This asymmetric intensity distribution is caused by the strong
002 STO substrate Bragg peak, which diffracts at a slightly
smaller θ/2θ angle (θSTO = θLSMO − 0.23◦).

This experimental image, which encompasses simultane-
ously nanodiffraction from a thin film and a contribution
from the substrate, offers a unique opportunity to validate our
forward model. Figure 3(b) shows the simulated diffraction
pattern obtained by varying the thin film parameters until it fit
best to the experimental data. This in turn allowed us to deter-
mine the thickness of the LSMO film to be 41 ± 3 nm and its
out-of-plane lattice parameter to be cobs

LSMO = 3.858 Å. Com-
paring the result with the bulk lattice parameter of cbulk

LSMO =
3.8935 Å [31], we found that the film was under an out-
of-plane compressive strain of −0.91%. This strain state is,
indeed, expected due to the lattice mismatch of the epitaxial
LSMO film with the STO substrate (a = 3.905 Å) and was
previously observed with surface x-ray diffraction measure-
ment [32,33]. Excellent predictions were also obtained versus
the experimental data at larger θ/2θ angles measured during
the radial scan, as shown in Figs. 3(c) and 3(e). It is worth
mentioning that to produce the results shown in Figs. 3(d)
and 3(f), it sufficed to change just the �θ variable in Eq. (2).
The same parameters determined previously for Fig. 3(b) were
used, without extra fitting or rescaling of the intensity level.

Our numerical framework correctly replicated the asym-
metric intensity distribution observed in Fig. 3(a), with the
simple assumption of a perfectly crystalline (001) oriented
STO substrate with thickness larger than the Bragg extinc-
tion depth. Figure 7(a) in Appendix B shows a comparable
diffraction pattern from the thin film alone. A more symmetric
intensity distribution was observed, which was expected in
the absence of the substrate Bragg peak. More importantly,
our numerical framework correctly accounted for the coupling
between the diffraction from the thin film and from the sub-
strate. Figure 7(b) shows a comparison of the intensity profiles
with and without such coupling. With the film-substrate cou-
pling, the simulated intensity using the numerical framework
presented in this work matched the experimental data well.
Without the film-substrate coupling, the intensity of the −1
order thickness fringe was underestimated. Without the film-
substrate coupling, we also observed a slight shift of the center
of the LSMO Bragg peak to larger 2θ values by 0.003◦, which
could, in turn, be wrongly interpreted as a slightly larger
compressive strain by 0.01%.

B. Nanobeam coherent diffraction at the substrate Bragg peak

Accurate model prediction was also achieved in close
vicinity to the substrate Bragg peak. This is demonstrated for

data measured from the ion-implanted region of the sample.
Figure 4(a) shows the experimental diffraction pattern taken at
the diffraction condition of the STO 002 reflection (θ = θSTO),
along with the corresponding section of the specular CTR
profile. The bright vertical streak in the middle of the image
is the STO substrate 002 Bragg peak, occluded by the shadow
of the central beam stop. The “plateau” of weak intensity on
its left (smaller 2θ ) side originates from contribution from
the irradiated LSMO film layer. In order to produce the best-
fit image in Fig. 4(b), the out-of-plane lattice parameter of
the LSMO used in the simulation was adjusted to cion

LSMO =
3.940 Å, which corresponds to an out-of-plane tensile strain
of 1.20%. Such lattice expansion was previously observed in
an Ar+-implanted LSMO layer [27,34].

We note that dynamical effects alone cannot explain the
observed broadening of the Bragg streak along the 2θ direc-
tion. As shown in Fig. 4(c), the experimentally observed peak
breadth of 0.008◦ FWHM is much larger than the Darwin
width of a dynamically diffracting STO 002 peak, calculated
at 0.002◦ FWHM. The difference between the experimental
and simulated peak breadth is attributed to the mosaicity in the
substrate. In Appendix C, we describe a strategy to properly
account for the effect of substrate mosaicity in the simulation.
Using this strategy and the material parameters determined
in Fig. 4(b), very good agreement was also found between
experiment [shown in Figs. 4(d) and 4(f)] and the model
prediction [shown in Figs. 4(e) and 4(g)] at incrementally
different θ/2θ positions, without extra fitting or rescaling of
the intensity level.

C. Extracting sample information
from a single diffraction pattern

The good agreement obtained versus the experimental data
makes the proposed method a promising candidate for ex-
tracting physical information of the sample. Here, we show
a demonstration of retrieving the thickness and out-of-plane
strain of the LSMO layer directly from individual diffraction
patterns, assuming the film is uniform within the illuminated
area. Such a fitting approach can also be scaled up to the
case of multiple beam positions across the sample to en-
able phase retrieval in scanning nanobeam Bragg coherent
diffraction, also known as Bragg ptychography [8,26]. The
principle behind the parameter retrieval from a single diffrac-
tion pattern is similar to what was previously demonstrated for
Lorentz transmission electron microscopy [35]. A simulated
diffraction pattern is first generated using a set of guessed
parameters through the forward propagation model described
in Sec. II B. The mean square error (MSE) between the simu-
lated and experimental diffraction pattern is then calculated.
Subsequently, the gradient of the MSE with respect to the
input parameters is computed using reverse mode automatic
differentiation [36,37], and the parameters are then updated
in steps proportional to the negative of the gradients. From
there, the entire process is repeated until the improvement of
the MSE falls below a predefined value.

We demonstrate retrieval of both the strain and the thick-
ness of the LSMO film from an individual diffraction pattern
using the experimental data shown in Fig. 3(a). The initial
guesses for the two parameters were, respectively, −0.2% and
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FIG. 4. Comparison between experimental and simulated far-field diffraction patterns at various incident angles. The beam was focused
on implanted LSMO far away from the masked array. (a) Experimental and (b) simulated data at θ = θSTO. (c) Width of the substrate Bragg
peak in pixels. The data were extracted from the area in the white box in (a) and (b), then summed along the vertical axis. (d) Experimental
and (e) simulated data at θ = θSTO − 0.075◦. (f) Experimental and (g) simulated data at θ = θSTO + 0.075◦. The intensity scale bar applies to
all images.

90 nm, to show how the proposed scheme performs under
initial conditions far from the ground truth. Figure 5(a) shows
the evolution of the MSE, strain, and film thickness. The
correct values were obtained at about 100 iterations, after
which both the MSE and the parameters ceased to change.
Figure 5(b) shows the diffraction pattern simulated with the
initially guessed parameters. Compared to the experimental
(target) data, the spacing between the bright and dark stripes
was too small due to an overestimated film thickness. The
brightest band was found too much to the left (smaller 2θ )

side of the image due to an underestimated compressive strain.
As shown in Fig. 5(c), after 50 iterations, the retrieved strain
was close to the actual value, which explains the roughly
correct position of the bright band, but the retrieved thickness
overshot to a smaller value, resulting in the larger width of
the thickness fringes. Figure 5(d) shows the diffraction pattern
simulated using the parameters retrieved after 100 iterations,
with good agreement with the experimental data shown in
Fig. 3(a). The small discrepancy between the final optimized
diffraction pattern and the simulated diffraction pattern shown

FIG. 5. (a) Evolution of mean square error, retrieved strain, and film thickness. The corresponding diffraction pattern at iteration number
(b) 0, (c) 50, and (d) 100. The intensity is shown in the same log scale as Fig. 3(b).
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FIG. 6. Order of computation versus RAM usage for M = 5. The boundary conditions between neighboring subsections are listed explicitly.

in Fig. 3(b) originates from the smaller substrate volume
(1 µm thickness) considered during the parameter retrieval.
We use the Adam optimizer [38] implemented in Google’s
TENSORFLOW package. The initial learning rate was set to 1.
Each iteration took 90 s on an Intel Xeon E7 CPU.

IV. CONCLUSION

To summarize, the Takagi-Taupin equations were extended
to simulate x-ray nanobeam Bragg coherent diffraction data.
Excellent agreement with experimental data taken on epi-
taxially strained and ion-implanted LSMO thin films grown
on a STO substrate was obtained, and characteristics of the
thin film were determined via gradient descent optimization
enabled by automatic differentiation.

A key feature of the current development is its ability to
account for substrates’ contributions to the measured diffrac-
tion intensity. We demonstrate this by correctly reproducing
the asymmetric intensity distribution observed near the LSMO
thin film Bragg peak in Fig. 3. We note that one does not need
to be in close vicinity to the substrate peak for its influence
to be significant. The asymmetric intensity distribution was
observed more than 0.2◦ away in θ from the substrate Bragg
condition, which is more than 25 times the width of the sub-

strate peak (FWHM = 0.008◦). We further note that due to the
complex diffraction conditions excited simultaneously by the
large convergent angle of the incident beam and by the large
acceptance of the two-dimensional detector, the dynamically
diffracting substrate peak was observable over a much larger
angular range in nanobeam diffraction than in parallel beam
diffraction (including BCDI), as shown in Fig. 4.

Another important benefit of the current approach is its ex-
plicit description of the scattering condition �h and the strain
field u(r). The former enables the modeling of experimental
data taken at different sample and detector angles with the
change of one single parameter, which is convenient when
multiple datasets on the same sample need to be processed to-
gether, such as in the case of multiangle Bragg ptychography
[39]. The latter is interesting because it connects the measured
intensity directly to strain, bypassing the cryptic phase in-
formation seen in many phase retrieval methods. Additional
steps were also implemented in the numerical framework
to address issues such as beam redivergence in thick
samples.

The excellent agreement between the simulated and exper-
imental data is a critical first step towards real-space image
reconstruction based on the current approach. State-of-the-
art phase retrieval methods rely on the Fourier transform to

FIG. 7. Effect of coupling between the film and the substrate. (a) Simulated far-field diffraction pattern at θ = θLSMO without a contribution
from the substrate. (b) Comparison between the experimental data (black curve) and simulated intensity with (red curve) and without (blue
curve) the coupling between the thin film and the substrate. The three peaks are, respectively, the −1 order thickness fringe, the 002 LSMO film
Bragg peak, and the +1 order thickness fringe. The dip in the experimental intensity at about pixel number 72 was due to missing intensities
in the gap between the detector modules.
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propagate a wave back and forth between the sample and
the detector space, which limits their application strictly in
the kinematical limit. In the case of BCDI, non-negligible
dynamical effects have been demonstrated for Au particles
as small as a few hundred nanometers in size [22–24]. De-
spite showing how a TTE-based approach could potentially
account for those effects in a simulated scenario, the authors
did not provide any solution to the inverse problem (i.e.,
from intensity to phase) due to the lack of an analytical form
based upon which the wave can be back propagated from
the detector space to the sample space. Taking advantage of
the resemblance of the numerical framework in Fig. 2 to a
multilayer perceptron [40], we circumvented this requirement
of wave back-propagation by using automatic differentiation
based gradient descent optimization, a method commonly
used for training a NN. We demonstrated the essence of this
capability (i.e., from intensity to strain) by retrieving both the
lattice strain and the thickness of the LSMO film from a single
diffraction pattern. Our results thus establish a foundation
upon which reconstruction methods can be built to spatially
resolve strain within three-dimensional volumes of crystals
from thousands of diffraction patterns measured at distinct
overlapping sample locations in a manner analogous to Bragg
ptychography. Such an implementation is particularly impor-
tant for samples in which the substrate’s influence on the
diffraction intensity is prominent.
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APPENDIX A: ORDER OF COMPUTATION
FOR THE NUMERICAL FRAMEWORK

Breaking down the integration network into smaller sub-
sections allows the calculation of an exceedingly large sample
volume with relatively low computer memory (RAM) us-
age. This is particularly useful when dynamical diffraction
from the substrate needs to be considered, in which case the
numerical integration is performed for a minimum sample
thickness that equals the extinction depth of the substrate
material (∼10 µm). Figure 6 shows the order of computa-
tion in the case of M = 5. The green blocks are subsections
containing the sample surface, while the purple blocks are
subsections containing the bulk substrate. The computation
is mostly sequential as limited by the boundary conditions,
although a certain level of parallelism can be achieved.

APPENDIX B: EFFECT OF COUPLING BETWEEN
THE FILM AND THE SUBSTRATE

With the approach proposed in this work, the coupling
between the film and the substrate is considered by simply
placing the film on top of the substrate in the numerical frame-
work. The coherent sum of the intensity diffracted by the film
and by the substrate is naturally included in the simulation,
without the need to explicitly state the nature of their coupling.
Figure 7(a) was obtained by considering just the thin film in
the numerical framework. The black curve in Fig. 7(b) was
obtained by summing up the experimental detector intensity in
Fig. 3(a) in the vertical direction. The red curve was obtained
by summing up the simulated detector intensity in Fig. 3(b) in
the vertical direction. To obtain the intensity profile without

FIG. 8. (a) Simulated far-field diffraction pattern at θ = θSTO. The breadth of the Bragg streak is given by dynamical diffraction effects.
(b) Width of the substrate Bragg peak in number of pixels. Dynamical effects (blue dashed curve) alone cannot explain the peak broadening
observed in the experimental data (black dots) shown in Fig. 4.
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the substrate-film coupling, we first simulate separately the
film diffraction pattern and the substrate diffraction pattern
while considering dynamical effects. The intensities from the
two diffraction patterns are added together incoherently. The
blue curve is then obtained by summing up the resulting
diffraction pattern in the vertical direction. An intensity shift
of 1 pixel in Fig. 7(b) corresponds to a peak shift of 0.003◦ in
2θ .

APPENDIX C: PEAK BROADENING
BY SUBSTRATE MOSAICITY

Figure 8(a) shows the diffraction pattern of a bare STO
substrate without considering substrate mosaicity. As shown

in Fig. 8(b), the peak breadth of the dynamically diffracting
substrate peak (blue curve) is significantly narrower than the
experimental data (black dots). To account for this, a total of
31 LSMO on STO simulations were performed, each differing
from one another by a 0.001◦ rotation of the substrate in the
scattering plane centered at θSTO. The intensities of these 31
diffraction patterns were weighted by a Gaussian distribution
function and summed incoherently. The FWHM of the Gaus-
sian distribution function was 0.008◦, corresponding to the
mosaicity spread of the STO crystal, which was determined
by laboratory x-ray diffraction on the same substrate prior to
the thin film growth. The resulting peak breadth (red curve) is
in excellent agreement with the experimental data.
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