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Highly accurate and efficient potential for bcc iron assisted by artificial neural networks
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Atomic forces and energies, calculated by interatomic potential, are fundamental components of molecular
dynamics (MD) and Monte Carlo (MC) simulations. Compared with traditional potentials, machine-learning
(ML) potentials trained by using extensive density-functional theory databases exhibit high accuracy in predict-
ing physical and chemical properties of materials, but their transferability often faces constraints. To address
this limitation, physically informed neural network (PINN) potentials have been developed. These models
synergistically combine the strengths of ML with physics-based bond-order interatomic potentials, aiming for
both improved accuracy and broader applicability. However, a major limitation remains: the low performance of
PINN potentials, hindering large-scale simulations. This work introduces a potential framework by incorporating
an artificial neural network (ANN) into typical potential functions, which not only improves the transferability
compared with the ANN potential, but also significantly improves the performance of ML potentials. The
developed ANN assistant potential for body-centered cubic (bcc) iron demonstrates exceptional accuracy in
property predictions while boasting remarkable computational efficiency. Its performance utilizing a single
graphics processing unit (GPU) card overcomes both 12-message passing interface central processing unit -only
ML potential and GPU-accelerated ML potential by achieving speedups of 201× and 26×, respectively. The
proposed approach has a potential to provide a powerful way to develop high accurate and efficient potentials
even in the other systems.
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I. INTRODUCTION

Interatomic potentials are widely used as the physical basis
of molecular statics, molecular dynamics (MD), and Monte
Carlo (MC) simulations in computational physics, chemistry,
and materials science to predict or explain chemical reactions,
physical processes, and material properties. Utilizing those
traditional potentials, it is easy to carry out the simulations for
large-scale systems exceeding ten million atoms and nanosec-
ond timescales [1]. In such simulations, precisely predicting
atomic and molecular forces and energies are crucial for both
simulation stability and reliable results.

To date, there have been many functional forms of tradi-
tional potential, which are used to address different materials.
For gas systems, the simple Lennard-Jones (LJ) potential
[2] remains the popular choice, while metal systems of-
ten utilize more complex models like the embedded-atom
method (EAM) [3,4], modified EAM (MEAM) [5], and
angular-dependent potential (ADP) [6]. The MEAM and ADP
contain angular components to consider the influence of bond
angles between atoms in pure metals and alloys. These po-
tentials are often recommended for use in conjunction with
Ziegler-Biersak-Littmark [7] potential for radiation damage
simulations. In addition, many-body potentials such as Tersoff
[8], Stillinger-Weber [9], and other bond-order potentials [10]
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effectively capture the influence of many-body interactions in
molecular systems and chemical reactions. For these many-
body potentials, the functional forms are more complex than
those of traditional pairwise potentials due to the complex
structures of many-body parts [8].

Traditional potentials shine in terms of computational
efficiency, particularly on modern parallel computing archi-
tectures like GPU and many-core processor devices. However,
many studies demonstrated that the accuracy of those poten-
tials is much less than the density-functional theory (DFT)
calculations since only a small database obtained from DFT
calculations or experiments was used for fitting the param-
eters of these potentials [1]. For instance, a widely used
EAM potential [3] fails to predict the migration behavior
of 1/2〈111〉 screw dislocation, while another EAM poten-
tial struggles to capture 〈111〉 mixed dislocation behavior
[4,6]. Therefore, traditional potentials usually can only repro-
duce specific properties of materials. Accordingly, complex
quantum-mechanically based bond-order potential (BOP)
have been developed and proven to excel in predicting various
material properties [11]. However, their computational cost
remains a significant challenge, with BOP running approxi-
mately 633 times slower than traditional EAM potentials, as
illustrated in Ref. [6].

Recently, machine-learning (ML) methods [6,12,13]
driven by massive databases generated through DFT calcula-
tions, particularly those employing artificial neural networks
(ANNs), are widely used to develop the highly accurate
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interatomic potentials [14–16]. In ANN potentials, the de-
scriptors, such as the Chebyshev polynomial [17] and the
symmetry function developed by Behler [14], are used to de-
scribe the atomic environment, which are fed into the network
to predict atomic energy and forces. During the training, a
loss function based on atomic energy is extensively used to
update network parameters [16,18]. As a result, ANN poten-
tials have demonstrated the ability to achieve high accuracy
in energy predictions, often within a few meV per atom com-
pared to DFT results [1]. However, calculating forces remains
computationally expensive due to the complex relationship
between the atomic environment and the atomic energy in-
herently coming from the complexity of the neural network.
This complexity limits the efficiency of the ML potential
compared to the traditional potentials. Additionally, these po-
tentials frequently suffer from low transferability [1], meaning
their reliability of energy and force predictions for structures
not included in the DFT database is uncertain.

To address the low transferability in ML potentials, phys-
ically informed neural network potentials (PINNs) have
recently developed as a promising solution [1,19,20]. While
PINN potential was also trained by a large DFT database,
it uniquely integrates governing physics principles as a reg-
ularizing constraint. This distinctive approach improves the
transferability, enabling them to effectively handle structures
outside the training database [1,19]. Despite their advantages,
PINN potentials continue to face a significant bottleneck in
force calculation, exhibiting speeds approximately 100 times
slower than traditional potentials [1].

Developing accurate and efficient interatomic potentials
for molecular dynamics or Monte Carlo simulations remains
a critical challenge. While recent advancements in machine
learning have yielded promising frameworks such as neu-
roevolution potential [21], restricted multicanonical ensemble
method [22], Green-Kubo method [23], Gaussian approxima-
tion potential [24,25], graph neural network [26], polynomial
models [27], PINN [1,19], and others [28,29], their compu-
tational efficiency often hinders widespread adoption despite
achieving first-principles accuracy. To overcome this lim-
itation, continuous research is essential to develop novel,
accurate, and high-performance potentials.

In this work, we proposed a ML potential framework,
named artificial neural networks assistant (ANNA) potential,
by combining ANN with physical models. Since the force cal-
culation in ANNA potential is simplified, this potential shows
quite higher performance in comparison with traditional ANN
potential. Besides, the resulting ANNA potential, trained for
body-centered cubic (bcc) iron, demonstrates high accuracy in
property prediction. The proposed ANNA framework offers
a promising approach to address this challenge by providing
a pathway to develop high-accuracy and high-performance
potentials for a wide range of systems.

II. METHODOLOGY

A. Angular-dependent potential

In the ANNA potential for BCC iron, an ADP potential
[30] was selected as the physical basis which describes both
pair- and bond-order effects, especially in distorted bonding
environments around crystal defects [31]. The total energy
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where i and j are the index of atoms. The first and second
terms in Eq. (1) are the pair interaction between atoms and
embedding energy, respectively, as those found in the conven-
tional EAM model. To model these interactions, we employ
a generalized LJ potential for the pair term and a simple
polynomial function [4] for the embedding term, defined as
follows:
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where rc is the cutoff distance, set to be 5.055 Å based on the
conventional ADP potential [30]. The z1 in Eq. (2) is equal to
ri j/r1, with ri j being the distance between atoms i and j, and
r1 being a fitting parameter. The ρ̄i is the host electron density
at atom i caused by surrounding neighbor atoms ( j), given as
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where z2 = ri j − r0 and the first term in the summation is a
cutoff function given as follows:

ψ (x) =
{

x4
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. (5)

The angular contribution in Eq. (1) will be introduced by
the noncentral components of bonding through vectors and
given as
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where α and β refer to the Cartesian directions. u(ri j ) and
w(ri j ) are the dipole and quadrupole functions, respectively,
defined as

u(ri j ) = ψ

(
ri j − rc

h

)
(d1e−d2ri j + d3), (9)

w(ri j ) = ψ

(
ri j − rc

h

)
(q1e−q2ri j + q3). (10)

B. Training and implementation of the ANNA potential

Figure 1 illustrates the conceptual framework of the ANNA
potential. Traditional interatomic potentials model the poten-
tial energy as a function of atomic coordinates with constant
parameters shared by all atoms. PINN potentials, however,
innovatively allow certain parameters to adapt based on the
local atomic environment. This variation, the key idea behind
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FIG. 1. Flowchart of the developed artificial neural networks assistant (ANNA) potential. As an input for the artificial neural network
(ANN), 28 symmetry functions (G) including 9 radial and 19 angular contributions are selected. The parameters in the bottom-right corner are
trained using the DFT database.

PINN approaches, involved estimating some or all parame-
ters for each atomic coordinate using an ANN [1]. However,
this approach necessitates calculating all the derivatives of
the activation functions in each layer in ANN with respect
to the atomic environment for force calculation, making it
computationally expensive [32].

Our ANNA potential capitalizes on the assumption that a
limited subset of subfunctions exhibits significant sensitivity
to the atomic environment while remaining relatively stable
for small atomic displacements within a specific range. We
leverage this by strategically selecting these subfunctions,
enabling us to safely neglect their derivatives in force cal-
culations. Some parameters in these subfunctions are set to
be “local parameters,” which will be calculated through an
ANN in order to account for the specific atomic environ-
ment, as shown in Fig. 1. Extensive trials revealed that the
angular contributions in Eqs. (9) and (10) serve as the typical
subfunctions, and d2 and q2 within these equations can be des-
ignated as the local parameters. This configuration provides
consistently favorable training results. Supplemental Material,
Fig. S1 [33] illustrates the variability of u(ri j) and w(ri j)
for different atom pairs (i, j) when atom i is displaced by
0.25 Å, approximately 10% of the nearest-neighbor distance.
The other 15 parameters in Eqs. (2)–(4) and (9) and (10)
including V0, b2, b1, r1, r0, h, δ, A0, γ , y, C0, d1, q1, d3, and q3

are treated as the “global parameters” throughout the training
process.

The feedforward ANN architecture features a designed
structure of 28 inputs, 2 hidden layers with 6 nodes each, and
2 outputs (d2 and q2). The modified hyperbolic tangent and
linear functions were set as the activation functions in each
hidden layer and output layer, respectively. Before training,
only the atomic environment so called the “symmetry func-
tions G” was calculated as the input, as shown in Fig. 1.
The 9 radial and 19 angular G values were considered for
the ANNA, which are the same as the ANN potential for

bcc Fe [16]. The DFT database contained 6501 ferromagnetic
(FM) structures was calculated by Mori and Ozaki and the
detailed information is available in the Supplemental mate-
rials of Ref. [16]. Atomic structures in the database contain
the point defects, surface, and unstable atomic structures with
varying sizes, ranging from a few atoms to dozens. The global
parameters in the physical model and the parameters including
weights and biases in ANN were trained by adjusting these
parameters to minimize the loss function, which consists of
the errors of both energy and force, defined as follows:

loss = we
1

Ns

Ns∑
i=0

(Ei − EDFT)2

+ w f
1

3Na

3∑
α=1

Na∑
j=0

(
Fj, α − FDFT, α

)2
, (11)

where we and w f are the weights for the errors of energy and
force predictions compared to the DFT calculation, respec-
tively. The Ns and Na are the number of structures and atoms
in the database, respectively. The α = 1, 2, and 3 represent the
Cartesian directions.

With the complete set of parameters for the bcc iron ANNA
potential acquired, we implemented the potential in both
central processing unit (CPU) and GPU versions within the
LAMMPS [43] package guided by the flowchart in Fig. 1, and
made it publicly accessible through GitHub [44].

III. COMPARISON OF POTENTIALS

Figure 2 shows the accuracy of the ANNA potential and
the error distributions of atomic energy and force. The black
dashed lines are the perfect-fitting line with a slope of 1.0.
It can be found that the predicted energy and force are in
excellent agreement with the values in the DFT database,
which is better than the energy and force prediction by the
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FIG. 2. Accuracy of the ANNA potential. (a) and (c), respectively, depict the comparison of energy and force predicted by anna_apd with
respect to the reference DFT data, which contain more than 128 802 atoms; the dashed lines are the perfect fit with a slope equal to 1.0.
(b) and (d) are the error distributions for the energy of structures and the force of atoms, respectively.

conventional ADP potential [6]. Quantitatively, the average
error for energy prediction is about 0.063 eV per atom and
the error for force predictions is approximately 0.1398 eV/Å
per atom. Although the average force error per atom is small,
the predictions from anna_adp for the atoms with large force
deviate significantly from DFT forces. This trend is consis-
tent with results from an ANN potential [16] and an eam_fs
potential [3], particularly eam_fs, which exhibits the most
significant overestimation. This behavior is attributed to two
possible causes: (i) low force values predicted by Lennard-
Jones–like analytical repulsion term; and (ii) only few atoms
have large atomic forces within 128 802 atoms database.
Therefore, expanding the database with more such structures
is necessary to improve accuracy of anna_adp, which will be
explored in future studies.

Variation models with different point defects, linear de-
fects, and planar defects were constructed by using our
developed code [45] or the ATOMSK [46] package to validate
this potential. Detailed information about the crystalline struc-
ture of models and the parameters of simulation can be seen in
Supplemental Material, Methods [33]. The structures includ-
ing edge, mixed, screw dislocations, stacking faults, and grain
boundaries for validation were also compared with the struc-
tures in DFT database to check the repeatability (similarity)
between them. The results suggest these structures for valida-
tion differ substantially from those in the training database,
as can be seen in Sec. C of the Supplemental Material [33].

Three established potentials, ANN potential (annp) [16], ADP
potential (adp_new) [6], and EAM potential (eam_fs) [3],
were adopted to demonstrate the prediction performance of
the proposed ANNA potential. The training database of annp
is the sub-database of this potential (anna_adp) and contains
5751 atomic structures [16].

A. Fundamental properties of bcc iron

Table I summarizes the fundamental properties of bcc iron
predicted by four different potentials in comparison with the
DFT calculation and experimental data. It can be found that
most properties obtained by annp, adp_new, and anna_adp
agree well with the DFT and experimental values, while the
formation energies of monovacancy and divacancy, and sur-
face energy predicted by eam_fs, show a large deviation from
the reference data. The elastic constant of C12 predicted by
adp_new is smaller than that of DFT results, while those
predicted by annp and anna_adp are consistent with that by
the DFT calculation [47]. In the simulation of interstitial
formation energy, an additional atom will be randomly in-
troduced into the matrix. Subsequently, energy minimization
based on the potential allows the atom to find a stable position.
However, the annp significantly overestimates the formation
energy of an interstitial atom when the additional atom is ran-
domly placed very close to the perfect matrix. The essential
reason is that the additional atom will move to the perfect
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TABLE I. Fundamental properties of bcc Fe predicted by four different potentials in comparison with experimental, first-principles, and
tight-binding (TB) calculations. a0 is equilibrium lattice parameter, Ci j is elastic constants, E f

v is vacancy formation energy, E f
dv are the

divacancy formation energy at first-, second-, third-, fourth-, and fifth-nearest-neighbor distance, E f
i is interstitial formation energy, and γs is

surface energy.

Properties Experiment Ab initio/TB annp adp_new eam_fs anna_adp

a0 (nm) 0.286 65a; 0.285 5b 0.2834c 0.283 56 0.282 96 0.285 5 0.283 74
C11 (GPa) 242d 297(288)c 274.68 250.39 243.36 294.58
C12 (GPa) 146.5d 151(148)c 176.90 108.04 145.01 162.11
C44 (GPa) 112d 105(102)c 110.27 110.07 116.04 107.79
E f

v (eV) 2.0 ± 0.2e 1.93–2.02f; 2.07g,h 2.355 2.055 1.712 2.2613
E f

dv (1NN) (eV) 4.265i; 4.24j 4.278 4.003 3.297 4.438
E f

dv (2NN) (eV) 4.20j 4.001 3.919 3.188 4.262
E f

dv (3NN) (eV) 4.45j 4.490 4.078 3.447 4.528
E f

dv (4NN) (eV) 4.653 4.056 3.397 4.441
E f

dv (5NN) (eV) 4.732 4.082 3.449 4.399
E f

i [100] (eV) 4.37f; 4.64g,h 18.77(4.96) 4.572 4.195 4.446
E f

i [110] (eV) 3.41f; 3.64g,h 17.66(3.94) 3.754 3.528 3.969
E f

i [111] (eV) 4.11f; 4.34g,h 19.30(4.13) 4.352 4.01 3.694
γs (100) (J/m2) 2.36k 2.543j; 2.29l 2.535 2.6045 1.785 2.30
γs (110) (J/m2) 2.36k 2.495j; 2.27l; 2.412 2.32 1.61 1.74
γs (111) (J/m2) 2.36k 2.752j; 2.52l 2.626 2.688 1.971 2.489
γs (112) (J/m2) 2.629j; 2.50m 2.613 2.578 1.857 2.20

aReference [50].
bReference [51].
cWithout and with (values in parentheses) quasiharmonic zero-point energy contributions, Ref. [52].
dReference [53].
eReference [54].
fReference [55].
gReference [56].
hReference [57].
iReference [16].
jReference [47].
kFor average orientation, Ref. [60].
lReference [58].
mReference [59].

lattice site during energy minimization, which results in large
system energy. This can be observed by comparing the values
with those obtained by using the optimized structures (shown
in parentheses within Table I).

Further evidence can be seen from the unusual behavior
of the ground-state energy-volume curve of ferromagnetic
(FM) iron calculated by spin dynamics MD [48,49] presented
in Fig. 3. The result might have been induced by the fact
that the database consists of the FM bcc structures with the
lattice constant ranging only from 2.480 78 to 3.182 48 Å,
which corresponds to the atomic volume ranging from 7.63 to
16.12 Å3. Therefore, the generalizability of the annp is lim-
ited because its energy prediction deteriorates for the atomic
volume without the database. Additionally, the annp shows
a relatively large fluctuation when the atomic volume is
small or large, as well as the eam_fs under the condition
of large atomic volume. In the atomic volume range of 8
to 10 Å3, both adp_new and eam_fs consistently underes-
timate the energy compared to the DFT values, as can be
seen from the inset. However, these behaviors are not found
from the curve predicted by anna_adp, which owes to a
powerful synergy that the ANNA framework effectively in-

tegrates the physical foundation of atomic interactions with
the exceptional adaptability and learning capabilities of neural
networks.

FIG. 3. Ground-state energy-volume for ferromagnetic (FM) bcc
iron. The navy blue points indicate the DFT predictions [61].
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FIG. 4. Vacancy migration barrier at zero pressure and tempera-
ture predicted by four interatomic potentials. The gray points indicate
the DFT calculations [6].

Since the DFT database was constructed assuming only
FM state, the resulting anna_adp potential can primarily
capture the properties of FM iron. The Curie temperature (Tc)
was also estimated by using spin dynamics MD. The Tc value
is about 900 K and close to the results obtained from adp_new
potential and experiment (∼1045 K) [6,49]. To improve the
accuracy of anna_adp for predicting the other magnetic states,
the DFT database needs to be expanded by adding different
magnetic states such as the antiferromagnetic, antiferromag-
netic double layer, paramagnetic, and that with noncollinear
spin directions. This will be a subject in future study. There-
fore, the anna_adp potential is suitable for simulations under
finite temperature, which is similar to the annp, adp_new, and
eam_fs potentials.

B. Migration energy of monovacancy

The migration energy for monovacancy along the 〈111〉 di-
rection can be seen in Fig. 4. Interestingly, the migration paths
predicted by adp_new and eam_fs exhibit a double-hump
profile, which is predominantly attributed to the presence of a
metastable transition state, characterized by a localized mini-
mum energy state along the migration path [6]. However, the
results obtained from annp and anna_adp agree well with the
DFT data, especially for the results from annp. The migration
barriers for annp and anna_adp potentials are 0.7589 and
0.8727 eV, respectively. Based on these values, we further
estimate the activation energy including the formation energy
and migration barrier (E f

v + Em
v ) of self-diffusion for mono-

vacancy. The activation energy calculated by the adp_new is
2.908 eV, which is consistent with the experimental value
2.91 ± 0.04 eV [62,63]. The values for annp and anna_adp
are 3.114 and 3.134 eV, respectively, and slightly larger than
the experimental value. The eam_fs potential predicts a small
activation energy (2.34 eV) due to the small E f

v and Em
v .

C. Dislocation behavior

Accurately capturing dislocation activities and their core
structures is crucial for predicting the behavior of met-

FIG. 5. Nudged elastic band (NEB) calculations for (a)
a0/2〈111〉 screw dislocation and (b) a0/2〈111〉 70.5° mixed disloca-
tion. The inset in (a) displays the dislocation trajectories predicted
by the four potentials and the DFT results distinguished by the
method of cost function (red line) and disregistry (black line) [68].
DFT_1 and DFT_2 values in (a) are obtained from Ref. [67] and
DFT_3 values are from Ref. [68]. The gray points in (b) are the DFT
calculations [6].

als during deformation processes. In this work, two typical
dislocations in bcc iron, the screw dislocation (S111) and the
70.5° mixed dislocation (M111), are considered to investigate
the migration behavior. These two dislocations have the same
Burgers vector b = a0

2 〈111〉 with a0 being lattice parameter, as
visualized in Supplemental Material, Fig. S3 [33]. The S111
has a compact, nonplanar core, which results in a comparably
large Peierls stress and non-Schmid behavior [64,65]. Unlike
S111, the M111 shows the planar core and is expected to have
low Peierls stress [6,65]. Based on DFT results [47,66], it is
known that the core structure of S111 can be divided into three
types, i.e., the nondegenerate ground-state so-called “easy”
core (E), the split core (S), and the hard core (H).

Figure 5(a) shows the variation of Peierls potential with
the transition path for S111 from easy to easy cores. The inset
displays the dislocation core locations for the four potentials
and DFT results (detailed calculations in Supplemental Mate-
rial, Eqs. (1) and (2) [33]). Notably, the adp_new and eam_fs
potentials exhibit a marked inadequacy in capturing the true
behavior of the dislocation. The double-hump profiles suggest
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FIG. 6. Atomic configuration of dislocation cores for (a) a0/2〈111〉{110} edge, (b) BC core of a a0/2〈111〉{110} 70.5° mixed,
(c) a0〈100〉{100} edge, and (d) a0〈100〉{110} edge dislocations. The atomic color shows the error norm from DFT results [70]. The green
and magenta lines are the dislocation lines perpendicular to the screen.

the presence of a local minimum intermediate state [6]. The
fundamental reason for the deficiency lies in the fact that
the migration paths predicted by the two potentials are close
to split core, deviating from the actual transition path. The
results obtained from the annp and anna_adp potentials show a
single-hump profile and the barriers are 0.035 26 and 0.033 08
eV, respectively, which are in good agreement with the DFT
value (0.028 48–0.0396 eV) [67,68] and the experimental re-
sult (0.037 eV) [69]. In addition, the migration path predicted
by the anna_adp is slightly concave, which is mostly close
to the DFT-calculated path compared with the curve obtained
from annp.

For M111, the changing of dislocation center along the
〈112〉 direction on the {110} glide plane results in two distinct
core configurations: (i) AC core, where the core centers on
atoms; and (ii) BC core, where the core lies on the center
of bonds between atoms [65]. Based on the DFT calculations
and BOP potential analysis, we know that the AC core in bcc
iron corresponds to the ground state with minimum energy
and the BC core represents the transition state [6,65]. In addi-
tion, the DFT results in Fig. 5(b) show an extremely small
energy difference between AC and BC core configurations
[6,65]. Only the anna_adp predicts both the same variation
in transition energy as the DFT curve and a closely matching
Peierls barrier (0.000 519 eV for anna_adp and 0.000 4727 eV
for DFT). In contrast, the other potentials predict large bar-

riers and a reversed stability of the cores, especially for
the eam_fs potential. The relaxed simulation, detailed in
Supplemental Material, Fig. S4 [33], further demonstrates that
only the anna_adp predicts the AC cores as the minimum en-
ergy configuration. The animation of the dislocation moving
from AC to AC cores for all four potentials can be seen in the
Supplemental Material, Movies 1–4.

To further evaluate the anna_adp potential’s accuracy
for dislocation modeling in bcc iron, we calculated core
structures of different dislocations including a0/2〈111〉{110}
edge, M111, a0〈100〉{100} edge, and a0〈100〉{110} edge
dislocations, and compared them with corresponding DFT
calculations [70]. Figure 6 shows the atomic configuration
and the colors are the error normal [16] (

√
|rpotential

i − rDFT
i |)

of the atomic positions (ri) between the results predicted
by anna_adp and DFT calculations. The error norms for
a0〈100〉{100}, and a0〈100〉{110} edge dislocations are re-
markably small, indicating the exceptional consistency be-
tween the core configurations calculated by the potential and
those obtained from DFT calculations. Although error norms
of the a0/2〈111〉{110} edge and the M111 dislocation cores
are slightly larger than those of the other two edge disloca-
tions, the maximum error norm of these cores is still less
than 0.17 Å. Therefore, these results demonstrate that the
ANNA potential can accurately capture the core structure of
dislocations.
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FIG. 7. Generalized stacking-fault energy (GSFE) curves of the (110) glide plane in [11̄0] and [11̄1] directions as a function of external
loads: (a), (b) no external load; (c), (d) 7.5% uniaxial strain; (e), (f) 5.0% equibiaxial strain. The olive and navy blue points are the DFT
calculations [71].

D. Generalized stacking-fault energy

It has been known long time that the stable stacking fault
generated by dislocation dissociation in the bcc metals is not
possible. However, when the area has an extremely large stress
compared to the stress-free area, this phenomenon could also
be observed in bcc metals [71]. The experimental results for
bcc iron show the dislocation dissociation on {110} plane
[72]. Additionally, atomic simulations have revealed the for-
mation of stacking fault in bcc models under highly strained
systems, e.g., crack tips [73] and nanobeams subjected to
tension [74] and bending [75].

Therefore, we created two models to investigate the gen-
eralized stacking-fault energy (GSFE) under the following

conditions: no external load, 7.5% uniaxial strain, and 5.0%
equibiaxial strain (Supplemental Material, Methods [33]).
Figure 7 shows the results predicted by all four potentials
in comparison with DFT calculations. A notable feature of
eam_fs and adp_new is that their GSFE curves differ signif-
icantly from the shape of DFT results in most cases. Both
potentials exhibit remarkable changes in the curvature of their
GSFE curves, shifting from positive to negative and back
again, forming a shoulderlike shape when the normalized shift
is larger than 0.05 in [11̄0] directions [71]. Similarly, the
curve predicted by eam_fs potential in [11̄1] direction under
equibiaxial strain also shows a shoulderlike feature, which
corresponds to the unphysical structures with the formation
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of local minimum [16,71]. However, this phenomenon is not
observed for anna_adp and annp potentials. The most GSFE
curves predicted by the two potentials are close to the DFT
calculations. The GSFE curve of (112) glide plane in [11̄1]
direction, with no external load, for the four potentials can
be seen in Supplemental Material, Fig. S5 [33]. All curves
exhibit the same shape as DFT results, but the value predicted
by eam_fs for the normalized shift larger than 0.25 is lower
than those of others.

E. Grain-boundary energy

Grain boundaries not only govern the mechanical prop-
erties of nanocrystalline [76,77] or martensite steel with
complex hierarchical boundaries [78] but also provide the
energetically favorable positions for the source or sink of point
defects [79] or dislocation [80]. Two types of dislocations, the
symmetry-tilt grain boundary (STGB) and twist grain bound-
ary (TWGB), were considered for validation purposes. The
detailed structure of the two types of boundaries can be seen
in Supplemental Material, Tables S1 and S2 [33].

The energies for the 46 STGBs with misorientation angle
(θm) ranging from 11.6° to 168.5° [81] and the 21 TWGBs
with θm ranging from 1.59° to 86.63° [82] are shown in Fig. 8.
For both types of GBs, the energies predicted by the adp_new
and eam_fs are generally lower than those obtained by the
other two potentials and DFT calculations. This trend is par-
ticularly noticeable for STGB energies calculated by eam_fs
and TWGB energies predicted by adp_new. The STGB en-
ergies predicted by the eam_fs and anna_adp significantly
differ from those of DFT by approximately 18.66 and 14.07%
on average, respectively. However, annp and anna_adp in
most cases demonstrate the ability to capture accurate re-
sults for two types of GBs. This is potentially attributed to
their training database that consists of point defects, surface,
and unstable atomic structures [81]. The STGB energies cal-
culated using these two potentials exhibit minor deviations
from DFT calculations, with 4.58% for annp and 7.11% for
anna_adp on average. Although the annp shows close agree-
ment with the reference data, it occasionally predicts less
accurate results when the GB structure contains the atomic
pair with a short distance. This phenomenon can be seen from
the energy for θm = 2.7◦ TWGB in Fig. 8(b), which might
be attributed to the strange behavior of ground-state energy-
volume curve at small range of atomic volume, as shown in
Fig. 3.

F. Phonon density of states

Phonons, associated with the lattice vibrations in crys-
talline materials, reflect many physical properties of materials
such as thermal conductivity [84], heat capacity [85], sound
velocity, and elastic constants in solid [86]. Here, the phonon
density of states (DOS) was calculated by using the four
potentials, as shown in Fig. 9. The results obtained from most
potentials are in good agreement with the experimental data
(black dashed line) [87], especially for the high-frequency
region. Only the eam_fs potential exhibits a slight deviation
from the reference data.

FIG. 8. Grain-boundary energies for (a) symmetric tilt grain
boundaries (STGBs) and (b) twist grain boundaries (TWGBs). The
navy blue points in (a) and (b) are the results of the DFT calculation
from Ref. [81] and Ref. [83], respectively.

G. Computational performance

Figure 10 shows the computational performance of the
GPU-implemented anna_adp compared with both 12-MPI

FIG. 9. Phonon DOS for bcc Fe calculated by using the four
interatomic potentials. The black dashed line is experimental
data [87].
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FIG. 10. Computational performance using a large model
(152 880 atoms) after running 1000 time steps compared with: 12-
MPI (message passing interface) tasks CPU-only of annp [16],
GPU-accelerated annp [32], and adp_new potential accelerated by
KOKKOS Library. For the case of two GPU cards, 2-MPI tasks were
used.

tasks CPU-only runs of annp, GPU-accelerated annp [32],
and GPU-accelerated adp_new by KOKKOS Library [88]. All
the values were obtained using the neighbor list generated
by CPU device and stored in random access memory. For
the GPU runs, the list is transferred to the GPU device
upon updating, which introduces a minor time overhead.
Detailed benchmark information can be seen in Supplemental
Material, Methods [33]. It can be found that anna_adp shows
remarkable performance on a single GPU card, achieving
0.605 ns per day for compute unified device architecture
(CUDA)- and 0.592 ns per day for open computing language
(OPENCL) builds. The performances are 201 and 197 times
faster than the 12-MPI tasks CPU-only runs of annp (0.003 ns
per day), which is essentially attributed to simplified force
calculation methodology. Furthermore, utilizing two GPU
cards yields an approximate doubling of performance relative
to a single card. Impressively, anna_adp also surpasses the
GPU-accelerated annp by achieving a speedup of about 26×
and 22× for CUDA- and OPENCL builds by using a single GPU
card, respectively. This substantial performance enhancement
enables simulations spanning larger temporal and spatial
scales. When the neighbor list builds on a GPU device,
anna_adp performance exhibits a slight further improvement
for CUDA- and OPENCL builds.

Compared with traditional adp_new potential acceler-
ated by KOKKOS Library [88], the performance of anna_adp
(0.605 ns per day) is approximately 5.1 times slower than that
of adp_new (3.116 ns per day), which is caused by the artifi-
cial neural network term in anna_adp. Although the physical
models for both potentials are the same, the computational
cost of 28 symmetry functions and forward propagation of
ANN per atom in anna_adp is also high. The performance
difference between the two potentials for two GPU cards
becomes small (4.02 ns per day for adp_new, 1.062 ns per day,
and 1.045 ns per day for anna_adp CUDA- and OPENCL builds,
respectively). The reason is that KOKKOS Library always

uses the undesirable thread-safe atomic operation for updat-
ing the forces of neighbors [89,90], which has a limitation
on the performance. The limitation will become serious for
the multiple CPU cores running because of the interprocess
communication for the ghost atoms (atoms copied from the
neighboring domain).

Additionally, the anna_adp shows lower performance com-
pared with eam_fs potential accelerated by using KOKKOS

Library (about 10.4 and 8.9 times slower by using a sin-
gle and two GPU cards with CUDA build, respectively). Two
additional terms of angular and ANN in anna_adp are the
essential reason for the low performance of the potential com-
pared with eam_fs, but these two terms significantly increase
the accuracy of the anna_adp potential. Another important
reason for the high performance of adp_new and eam_fs is
that the embedding function, electron density function, and
pair-interaction function are provided in a tabulated format
by interpolation approach and the values are stored in the
memory [43,91]. Therefore, these energy function values for
different atomic pairs can be searched from the energy tables,
which are very efficient. Hence, the implementation of eam
terms in anna_adp will be modified in the next step to support
the energy tables, which may further improve the performance
of anna_adp.

IV. CONCLUSIONS

In summary, an approach has been developed to train
the ANNA potential by incorporating a neural network into
typical physical functions that exhibit insensitivity to atomic
displacements within a specific range. The resulting ANNA
potential for bcc iron demonstrates superior accuracy in
predicting a wide range of iron properties, including point
defects, dislocations, surfaces, stacking faults, and grain
boundaries.

Crucially, this approach effectively addresses a major lim-
itation of traditional machine-learning potential and PINN
potentials, namely, their relatively low performance. It can
also be used to develop ANNA potentials for other binary
or multielement alloys to achieve the highly accurate and
efficient MD simulations. However, identifying the above-
mentioned optimal physical functions for training a given
potential remains a challenge. For alloy system, the input
(symmetry functions, G) of ANN might be different from
the pure metal since different element pairs require different
parameters of G. Therefore, the Behler-Parrinello symmetry
functions might be a better choice for alloy [14,15]. Collabo-
rative efforts are underway to develop a platform for training
this ANNA potential, and the results will be reported in a
forthcoming publication.
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