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Casimir-Lifshitz force for graphene-covered gratings
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We study the Casimir-Lifshitz force (CLF) between a gold plate and a graphene-covered dielectric grating.
Using a scattering matrix (S-matrix) approach derived from the Fourier modal method (FMM), we find a
significant enhancement in the CLF as compared to a mere dielectric slab coated with graphene, over a wide
range of temperatures. Additionally, we demonstrate that the CLF depends strongly on the chemical potential of
graphene, with maximal effects observed at lower filling fractions. Finally, we analyze the Casimir force gradient
between a gold sphere and a graphene-coated dielectric grating, highlighting potential avenues for experimental
measurements.
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I. INTRODUCTION

The Casimir-Lifshitz force (CLF), resulting from quantum
vacuum fluctuations, manifests in the interactions between
polarizable bodies. In 1948, Casimir [1] first developed a
theoretical framework for this force between two perfectly
conducting plates at zero temperature. Later, Lifshitz ex-
panded this framework to encompass bodies with diverse
optical properties and at finite temperatures [2]. Since its
experimental verification [3], the CLF has attracted significant
research interest, with investigations focused on exploring
different geometries and materials [4–11].

Among diverse geometrical systems, the grating configura-
tion is particularly important in the study of the CLF and has
been explored both theoretically [12,13] and experimentally
[14,15], in terms of the nontrivial interplay between geometry
and dielectric properties of the interacting bodies. Analyz-
ing such structures necessitates precise and efficient methods
such as the Fourier modal method (FMM) or its improved
version, the FMM with adaptive spacial resolution (FMM-
ASR), which significantly enhances efficiency for metallic
gratings [16].

The dielectric properties of the interacting objects can af-
fect the scattering details, which are relevant to both CLF in
and out of thermal equilibrium and radiative heat transfer. In
particular, there has been much progress in graphene-based
structures [17–28], that utilizes the unique optical properties
of this material [29–33]. A recent study [34] delved into the
CLF between graphene gratings, utilizing another enhanced
version of the FMM approach known as FMM with local basis

*Contact author: youssef.jeyar@umontpellier.fr
†Contact author: mauro.antezza@umontpellier.fr

functions [35]. This study shows the potential for modulat-
ing the force by manipulating geometry parameters and/or
graphene properties. The investigation is further extended to
analyzing heat transfer within these structures for both aligned
[36] and misaligned [37] cases. Patterning the graphene sheet
into grating will result in a topology transition of the modes
for energy transfer from the circular one to the hyperbolic one,
which allows a significant enhancement in the heat transfer.

In another example [38], graphene is integrated with
one-dimensional plasmonic nanogratings with high aspect
ratios and narrow grooves; the good agreement between
theory and experiment suggests promising prospects for high-
performance electrically tunable graphene-based infrared
photodetectors and biological sensors.

Beyond graphene, other two-dimensional (2D) materials
like black phosphorus (BP) have been considered in the
CLF calculations [39]. The anisotropy of BP conductivity
leads to differences in the Casimir force along its principal
axes. Increasing doping concentrations in BP and graphene
sheets, as well as introducing a substrate and taking high
temperatures, can significantly increase the CLF. Addition-
ally, recent research demonstrates an innovative approach to
micrometer-scale self-assembly, leveraging attractive Casimir
and repulsive electrostatic forces between charged metallic
nanoflakes in an aqueous solution [40]. This method forms a
self-assembled optical Fabry–Pérot microcavity with tunable
properties, highlighting the potential for advanced nanostruc-
tures with real-time adjustable configurations.

In this work, we explore the CLF between graphene-coated
dielectric grating and gold semifinite plane, using the scatter-
ing matrix approach obtained by an adapted FMM to include
the graphene sheet. This configuration combines the features
of both the grating structures and the special dielectric proper-
ties of graphene, which is expected to provide more freedom
in controlling the CLF.
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FIG. 1. Schematic of the system: a dielectric grating is covered
with graphene sheet and is placed at a distance d from a gold
half-space. The grating is periodic in the x direction with period D,
characterized by width a, a depth h1 and filling fraction f = a/D.

In Sec. II, we describe the physical system, in Sec. III
we introduce the reflection operators obtained by the FMM.
Finally, in Sec. IV, we present and discuss the numerical
results. The calculation details of the scattering matrix are
provided in the Appendix.

II. PHYSICAL SYSTEM

The physical system depicted in Fig. 1 consists of a dielec-
tric grating coated with a graphene sheet (body 1) facing a
gold half-space (body 2). These two bodies are separated by a
distance d and maintained at a temperature T . The dielectric
grating, composed of fused silica (SiO2), exhibits periodicity
in the x direction with a period D (we use a fixed value of
D = 1 µm in this study), each period contains an SiO2 region
of width a, giving a filling fraction f = a/D. The grating has
a thickness h1 of 300 nm and is positioned on top of an SiO2

slab with a thickness h2 of 100 nm, which in turn sits on a
silicon (Si) half-space.

For this configuration, the Casimir-Lifshitz pressure (CLP)
acting on body 1 along the z positive direction can be ex-
pressed as [13,34,41]

P(d, T, μ) = kBT

4π2

+∞∑
m=0

′
∫ π

D

− π
D

dkx

∫ +∞

−∞
dkyTr(γ ′M), (1)

where γ ′ = diag(k′
zn, k′

zn)n, k′
zn =

√
ξ 2

m/c2 + k2
n, kn =

(kxn, ky), kxn = kx + n 2π
D , kx is in the first Bril-

louin zone [− π
D , π

D ], and ky is in R. The notation
diag(un, un)n represents a diagonal matrix of size
2(2N + 1) × 2(2N + 1), where the diagonal elements are
u−N , u−N+1, . . . , uN , u−N , u−N+1, . . . , uN . The expression for
M is given by

M = (U (12)R(1)+R(2)− + U (21)R(2)−R(1)+), (2)

where R(1)+ and R(2)− represent the reflection operators cor-
responding to the two bodies in the (TE, TM) basis obtained
using the scattering matrix approach, as will be discussed
hereafter. As for the intercavity operators, they are defined as
follows (I denoting the operator identity):

U (12) = (I − R(1)+R(2)−)−1,

U (21) = (I − R(2)−R(1)+)−1.
(3)

In Eq. (1), the sum is over the Matsubara frequencies (ξm =
2πmkBT/h̄) and the prime on this sum means that the first
term (m = 0) is divided by 2. kB is the Boltzmann constant,
and h̄ is the reduced Planck’s constant.

For fused silica, the dielectric response at imaginary fre-
quencies is obtained through the Kramers-Kronig relation
ε(iξm) = 1 + 2π−1

∫ ∞
0 ωε′′(ω)/(ω2 + ξ 2

m)dω and relies on
the data extracted from the dielectric function of SiO2, as
sourced from Ref. [42], extrapolated along the real frequency
axis.

We adopt the following model for the dielectric function of
silicon [15]:

εSi(iξm) = 1.035 + 11.87 − 1.035

1 + ξ 2
m/ω2

0

+ ω2
p

ξm(ξm + �)
, (4)

where ω0 = 6.6 × 1015 rad s−1, ωp = 2.37 × 1014 rad s−1,
and � = 6.45 × 1013 rad s−1.

We employ the Drude permittivity model for the dielectric
function of gold (Au)

εAu(iξm) = 1 + ω′2
p

ξm(ξm + γ )
, (5)

with h̄ω′
p = 9 eV and h̄γ = 35 meV.

The contribution of graphene is introduced through its
conductivity, which varies with temperature T and chemical
potential μ. We model the conductivity as the sum of in-
traband and interband components: σg = σintra + σinter. More
precisely, their expressions on the imaginary frequency axis
are given by [26,29–31]

σintra(iξm) = 8σ0kBT

π (h̄ξm + h̄/τ )
ln

[
2 cosh

(
μ

2kBT

)]
,

σinter(iξm) = σ04h̄ξm

π

∫ +∞

0

G(x)

(h̄ξm)2 + 4x2
dx, (6)

where, σ0 = e2/(4h̄), e is the electron charge, G(x) =
sinh(x/kBT )/[cosh(μ/kBT ) + cosh(x/kBT )], and τ the relax-
ation time (we use τ = 10−13 s). The plots of the dielectric
permittivity for fused silica and the graphene conductiv-
ity at Matsubara frequencies are presented in our previous
paper [18].

III. REFLECTION OPERATORS

In this section, we present the derivation of the reflection
operators for the interacting bodies. We begin with body 1,
which comprises a dielectric grating covered with graphene,
as depicted in Fig. 1. The reflection operator can be directly
obtained, as sub-blocs, from the scattering matrix, which has
dimensions of 4(2N + 1) × 4(2N + 1) and can be represented
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as follows:

S =
(
R− T −
T + R+

)
. (7)

This matrix is obtained through the use of the FMM (see
detailed calculations in the Appendix) and takes the form

S =
(

1 0
0 


)
S̃

(
1 0
0 


)
, (8)

where


 ≡
(

diag
(
eik(4)

zn (h1+h2 )
)

n
0

0 diag
(
eik(4)

zn (h1+h2 )
)

n

)
, (9)

k(i)
zn =

√
εi(ω)

ω2

c2
− k2

n for medium i (see details in the Ap-

pendix), and

S̃ = S̃1 � S̃2 � S̃3. (10)

Here, the star product operation A = B�C is defined as [16]

A11 = B11 + B12(1 − C11B22)−1C11B21,

A12 = B12(1 − C11B22)−1C12,

A21 = C21(1 − B22C11)−1B21,

A22 = C22 + C21(1 − B22C11)−1B22C12, (11)

and

S̃1 =
(

K′
1 −P

L′
1 + M′

1 −P′

)−1(
K1 P

L1 + M1 −P′

)
,

S̃2 =
(


1 0
0 1

)(−P −K3

P′ −L3

)−1(
P −K′

3
P′ −L′

3

)(

1 0
0 1

)
,

S̃3 =
(


2 0
0 1

)(
K′

3 K4

L′
3 L4

)−1(
K3 K′

4
L3 L′

4

)(

2 0
0 1

)
. (12)

In these matrices, we have introduced

Li = √
εi

(
Bxi Ay

Byi −Ax

)
, L′

i = √
εi

(
Bxi −Ay

Byi Ax

)
,

Ki =
(

Ay −Bxi

−Ax −Byi

)
, K′

i =
(−Ay −Bxi

Ax −Byi

)
,

Mi = σgZ0

(−Ax −Byi

−Ay Bxi

)
, M′

i = σgZ0

(
Ax −Byi

Ay Bxi

)
,

(13)

with

Ax = diag

(
kxn

kn

)
n

, Ay = diag

(
ky

kn

)
n

,

Bxi = c√
εiω

diag

(
kxn

kn
k(i)

zn

)
n

,

Byi = c√
εiω

diag

(
ky

kn
k(i)

zn

)
n

, (14)

and


1 ≡eDh1 =
(

eD(11)h1 0
0 eD(22)h1

)
,


2 ≡
(

diag
(
eik(3)

zn h2
)

n 0
0 diag

(
eik(3)

zn h2
)

n

)
. (15)

Z0 denotes the impedance of vacuum.
The reflection matrix of body 1, denoted as R(1)+, can be

derived directly from the matrix R−. Specifically, due to the
distinct orientations along the z axis, R(1)+ shares identical
characteristics with R− within the two diagonal blocks. How-
ever, a sign difference is observed within the two off-diagonal
blocks, detailed in Ref. [16], as follows:

R(1)+ =
{
R−

p,p′ p = p′

−R−
p,p′ p �= p′ . (16)

For body 2, positioned at a distance d from the origin, a
phase shift is induced in the reflection matrix, as outlined in
Ref. [41]. This reflection matrix can be formulated as

〈p, k, n|R(2)−(ω)|p′, k′, n′〉
= ei(kzn+k′

zn′ )d〈p, k, n|R̃(2)−(ω)|p′, k′, n′〉. (17)

Here, R̃(2)− is diagonal with dimensions 2(2N + 1) ×
2(2N + 1) and can be easily obtained using the Fresnel
coefficients

R̃(2)− = diag
(
ρTE

n , ρTM
n

)
, (18)

where

ρTE
n = kzn − kAu

zn

kzn + kAu
zn

, (19)

ρTM
n = εAu(ω)kzn − kAu

zn

εAu(ω)kz + kAu
z

. (20)

In these expressions, kzn =
√

ω2

c2
− k2

n.

Finally, it is worth noting that this calculation is also valid
for imaginary Matsubara frequencies by replacing ω with iξm.

IV. RESULTS AND DISCUSSION

A. The effect of graphene coating

Now that we have all the necessary ingredients to calculate
the Casimir-Lifshitz pressure for the configuration described
previously (see Sec. II), let us discuss some numerical results.
To begin with, we explore the impact on the CLP of covering
the dielectric grating with graphene. The ratio of the pressure
with graphene to that without graphene across various values
of μ and f , for separation distances ranging from 60 nm to
8 µm, at temperatures T = 300 K and T = 10 K, is depicted
in Fig. 2.

At T = 300 K and for the slab configuration ( f = 1), we
observe in Fig. 2(a), that at short distances, below 60 nm,
the CLP with graphene is approximately 10% higher than
without graphene for μ = 0 and μ = 0.2 eV (solid lines with
* and + markers), and 17% higher for μ = 0.5 eV (solid line
with square marker). This enhancement peaks at d = 500 nm
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FIG. 2. Ratio of the CLP with graphene to CLP without graphene
for different values of μ and f at T = 300 K (a) and T = 10 K (b).
Here, D = 1 µm, h1 = 300 nm, and h2 = 100 nm.

before declining as d increases. Beyond this separation, the
CLP enhancement is almost identical for the three values of μ.
Figure 2(b) shows the ratio when the temperature is reduced
to 10 K for the same range of d . The enhancement remains <

20%. For μ = 0.2 eV and 0 eV, no peaks are observed. The
ratio decreases to 5% at d ≈ 1 µm.

As the system cools down to T = 10 K, we observe a
behavior similar to that at T = 300 K at short separation
distances with minor variations. However, as the separation
distance increases, the influence of graphene diminishes and
becomes negligible, with this effect being less than 5% for
μ = 0 eV and μ = 0.2 eV.

On the other hand, the effect of graphene becomes
more pronounced for the grating configuration. Considering
T = 300 K and f = 0.2, as shown Fig. 2(a), we clearly see
significant changes on the CLP, with approximately a 100%
increase for μ = 0 eV (dotted line with *), 110% for μ =
0.2 eV (dotted line with +), and 130% for μ = 0.5 eV (dotted
line with square) at short separation distances (i.e., below d =
60 nm). Similar trends persist at T = 10 K [Fig. 2(b)], where
the relative change remains considerable, around 85% for
μ = 0 eV, 105% for μ = 0.2 eV, and 130% for μ = 0.5 eV.
This enhancement decreases with increasing separation dis-
tance, reaching approximately 40% at 1 µm for T = 300 K,
irrespective of the chemical potential. However, at T = 10 K,
the impact of graphene at this separation distance varies with
the chemical potential, with enhancements of 13%, 20%, and
32% observed for μ = 0 eV, μ = 0.2 eV, and μ = 0.5 eV,
respectively. Additionally, the enhancement of the CLP by
graphene continues to diminish with increasing separation
distance at both temperatures.

To gain more insight into the order of magnitude of the
CLP and how it varies with the geometric parameters and
temperature, we plot the pressure P as a function of d on a
log-log scale for μ = 0 eV and at T = 300 K [Fig. 3(a)] and at
T = 10 K [Fig. 3(b)]. These plots cover distances from 60 nm
to 8 µm for different filling fractions f = 0, 0.2, 0.5, 0.8, and
1. Notably, when f = 0, the configuration corresponds to the
graphene sheet located on top of a vacuum gap 300 nm from
the top surface of the SiO2 layer with thickness h2 = 100 nm,
supported by a silicon half-space. We observe that the CLP
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10-8
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10-4

10-2

100
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10-7 10-6 10-5
10-8
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10-4
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FIG. 3. Casimir-Lifshitz pressure at T = 300 K (a) and
T = 10 K (b), for μ = 0 eV and different filling fractions f = 0,
0.2, 0.5, 0.8, and 1. The Lifshitz limit for metals, PLif, is shown as a
black dashed line.

increases with the filling fraction f regardless of tempera-
ture. Moreover, at T = 300 K, the CLP reaches the Lifshitz
limit for metals (PLif = kBT ζ (3)

8πd3 ) at nearly 6 µm (for all fill-
ing fractions), as illustrated clearly in Fig. 3(a). However, at
T = 10 K, depicted in Fig. 3(b), this limit remains unattained
within the explored separation distances due to the larger ther-
mal wavelength λT = h̄c

kBT , which is approximately 229 µm.

B. Chemical potential and geometry effects

Next, we investigate the impact of the chemical potential
combined with the geometry of the grating. For that, we an-
alyze the ratio of the CLP at μ = 0.2 eV and 0.5 eV to that
at μ = 0 eV, for various filling fractions f = 0, 0.2, 0.5, 0.8,
and 1, and spanning distances from 60 nm to 8 µm.

At T = 300 K and μ = 0.2 eV, Fig. 4(a) shows that having
a nonzero chemical potential always increases the pressure for
any value of f . This augmentation is larger for smaller filling
fraction. The ratio peaks at around 80 nm and decreases with
distance. This effect is most pronounced when f = 0, reach-
ing a maximum increase of ≈9% and for f = 1 (representing
a slab configuration) the maximum increase is reduced to only
1%.

As the chemical potential increases to μ = 0.5 eV, as
shown in Fig. 4(b), the effect becomes more significant, with
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1.1
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FIG. 4. The ratio of CLP [calculated using Eq. (1)] at μ = 0.2 eV
(a) and μ = 0.5 eV (b) to that at μ = 0 eV, at T = 300 K, for various
filling fractions f = 0, 0.2, 0.5, 0.8, and 1.
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FIG. 5. The ratio of CLP [calculated using Eq. (1)] at μ = 0.2 eV
(a) and μ = 0.5 eV (b) to that at μ = 0 eV, at T = 10 K, for various
filling fractions f = 0, 0.2, 0.5, 0.8, and 1.

an increase of 32% for f = 0, 16% for f = 0.2 at d ≈ 100
nm. The maximum ratio also becomes larger for other values
of f .

Figure 5 shows the results when the temperature is reduced
to 10 K. The most notable change is that the effect of μ

becomes stronger. The ratio P(μ)/P(μ = 0) becomes larger
for the chosen parameters. In particular, the maximum ratio
increases for all values of f compared to 300 K. For example,
the peak ratio for f = 0 is 1.42 and 1.85 for μ = 0.2 eV
[Fig. 5(a)] and 0.5 eV [Fig. 5(b)], respectively, at 10 K. Fur-
thermore, it is apparent that the distance at which the ratio
attains peak value is shifted towards larger values compared
to 300 K.

To further study the impact of geometry, we analyze the
ratio of the CLP for a graphene-covered dielectric grating to
that of both a graphene-covered slab and a bare slab (without
graphene). In Fig. 6(a), where T = 300 K and μ = 0 eV, the
CLP between the graphene-covered grating and the gold half-
space remains lower than that between a graphene-covered
slab and a gold half-space when the separation distance is less
than 4 µm. Beyond 4 µm, the effect of f diminishes, with the
ratio approaching 1, since the two structures have the same
asymptotic Lifshitz limit. Similarly, at T = 10 K, as depicted
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FIG. 6. Normalized CLP for different filling fractions f = 0, 0.2,
0.5, 0.8, and 1 (if σg �= 0) relative to the CLP for f = 1 with graphene
(a) and without graphene (b) at T = 300 K and for μ = 0 eV.
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FIG. 7. Normalized CLP for different filling fractions f = 0, 0.2,
0.5, 0.8, and 1 (if σg �= 0) relative to the CLP for f = 1 with graphene
(a) and without graphene (b) at T = 10 K and for μ = 0 eV.

in Fig. 7(a), we observe a comparable trend with a greater
saturation distance.

On the other hand, the CLP for the graphene-coated di-
electric grating ( f �= 1) is initially lower than that for the bare
slab at small separation distances, as illustrated in Fig. 6(b).
However, as the separation distance d increases, this trend
reverses. For f = 0.8, the CLP exceeds that of the bare slab
beyond 300 nm, while for f = 0.5, this occurs beyond 1 µm.
As f increases, the cross-over distance shifts to larger values.
The crossover no longer occurs for T = 10 K, as it is clear
from Fig. 7(b) where the CLP for the graphene-coated grating
( f �= 1) is lower that of the bare slab. It is noteworthy that
when the slab is covered with graphene ( f = 1), the pressure
is always higher compared to that without graphene whether
at T = 300 K or T = 10 K.

C. Thermal effect and Casimir force gradient

Now we explore the thermal impact of graphene by exam-
ining the ratio of the CLP at T = 300 K to that at T = 10 K.
Initially, for μ = 0 eV and f = 0, a notable thermal effect
emerges around 300 nm, where the ratio is approximately
1.7 [Fig. 8(a)]. As we increase the filling fraction, this peak
gradually diminishes in height and shifts towards larger sep-
aration distances. For instance, the local peak decreases to
approximately 1.4 for f = 0.2 (at d = 500 nm) and 1.15 at
d = 1 µm for f = 1. After this peak (for every f ), the ratio
decreases, before eventually experiencing a sharp increase
for distances ≈6 µm. The sharp rise is expected because the
pressure at T = 300 K reaches the Lifshitz limit [see Fig. 3(a)]
while remaining below it at T = 10 K [see Fig. 3(b)]. In this
limiting case, using the expression PLif = kBT ζ (3)/(8πd3)
yields a ratio of 30. Consequently, it is expected that the ratio
continues to increase until reaching the thermal wavelength,
approximately 229 µm, beyond which the value levels off.

Moreover, this thermal effect decreases with the chemical
potential, as demonstrated in Figs. 8(b) and 8(c) for μ = 0.2
and 0.5, respectively. This is due to the fact that the graphene
conductivity Eq. (6) only depends weakly on the temperature
T ≈ 10−3 eV when μ is larger than T .

Finally, we consider the gradient of the Casimir force
between a gold sphere and a dielectric grating covered with
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FIG. 8. Ratio of the CLP at T = 300 K to that at T = 10 K for
μ = 0 eV (a), μ = 0.2 eV (b), and μ = 0.5 eV (c), for different
filling fractions f = 0, 0.2, 0.5, 0.8, and 1.

graphene. According to the proximity force approximation
(PFA) [11,14], the Casimir pressure P between two parallel
plates is proportional to the gradient of the Casimir force in the
sphere-plate geometry, and it can be expressed as F ′ = 2πRP,
where R is the sphere radius. The latter configuration is used
in experiments to avoid the difficulty in keeping two planar
bodies parallel at short separations. We considered a gold
sphere with a radius of 40 µm and we calculated the force
gradient over distances ranging from 60 nm to 1 µm for two
configurations a slab ( f = 1) and a grating with f = 0.2 and
μ = 0 eV at T = 300 K shown in Fig. 9(a) and T = 10 K
shown in Fig. 9(b).

Our analysis revealed that the effect of the graphene on the
force gradient is significantly more pronounced for a grating
compared to solid SiO2, particularly at short separation dis-
tances for both temperatures. The force gradient at d = 200
nm increases by 94% and 55% respectively for T = 300 K
and 10K when graphene is added to an SiO2 grating with
f = 0.2.

FIG. 9. Gradient of the Casimir force between a gold sphere with
radius R = 40 µm and a graphene-coated fused silica grating with
the following parameters: period D = 1 µm, depth h1 = 300 nm, and
slab thickness h2 = 100 nm, at T = 300 K (a) and T = 10 K (b) for
different values of μ and f .

FIG. 10. Geometry of the FMM calculation: A dielectric grating
characterized by dielectric permittivity ε2(x), with period D, width a,
and depth h1, covered with a graphene sheet and placed on a top of
a slab with dielectric permittivity ε3 and thickness h2, which in turn
rests on a dielectric half-space with dielectric permittivity ε4.

V. CONCLUSION

In conclusion, we have investigated the Casimir-Lifshitz
pressure between a graphene-coated dielectric grating and a
gold half-space using an adapted FMM. Our results reveal
that covering the dielectric grating with graphene leads to
a significant increase in pressure, with enhancements up to
130% for μ = 0.5 eV and f = 0.2, compared to only 17%
when covering a slab with graphene, over a wide range of
temperatures from 10 K to 300 K. Additionally, we have
shown that the CLP depends strongly on the chemical po-
tential of graphene, with maximal effects observed at lower
filling fractions ( f = 0.2 in our case) for both T = 300 K and
10 K. Notably, our findings indicate that the pressure for a
graphene-coated dielectric grating can surpass that of a bare
slab at T = 300 K at certain separation distances even when
f is small. Furthermore, we have identified a thermal effect
between 300 nm and 400 nm, which diminishes with increas-
ing filling fraction and chemical potential. Lastly, we have
presented the Casimir force gradient between a gold sphere
and a graphene-coated dielectric grating, a configuration that
is used for experimental measurements.
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APPENDIX: SCATTERING-MATRIX CALCULATION FOR
GRAPHENE-COVERED GRATING USING

THE FOURIER MODAL METHOD

In this Appendix, we will describe the calculation of
the scattering matrix using the Fourier modal method for
dielectric gratings coated with graphene, employing a zero-
thickness model. This approach simplifies the representation
of graphene and facilitates its direct inclusion into the bound-
ary conditions of the FMM. The structure under study is
depicted in Fig. 10, where a graphene sheet is positioned
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at z = 0. Four distinct zones can be distinguished : (i) zone
1 (z < 0) is characterized by ε1, (ii) zone 2 (0 < z < h1)
contains a lamellar grating with a period D along the x axis,
a thickness h1, and a relative dielectric permittivity denoted
ε2(x) given by Eq. (A1), (iii) zone 3 (h1 < z < h1 + h2), is
a homogeneous slab with permittivity ε3, and (iv) zone 4
(z > h1 + h2) is a semi-infinite medium characterized by ε4.

ε2(x) =
{

εa if 0 � x � a

εb if a � x � D
. (A1)

1. Electromagnetic fields

Due to periodicity along the x axis, the electromagnetic
fields in each homogeneous zone (i = 1, 3, 4) can be ex-
panded into the so-called Rayleigh expansion as follows:

E(i)(R, ω) =
∑
p,φ

∫ π
D

− π
D

dkx

2π

∑
n∈Z

∫ +∞

−∞

dky

2π

× eiK(i)φ
n ·Rê(i)φ

p (kn, ω)E (i)φ
p (kn, ω),

B(i)(R, ω) =
√

εi(ω)

c

∑
p,φ

∫ π
D

− π
D

dkx

2π

∑
n∈Z

∫ +∞

−∞

dky

2π

× eiK(i)φ
n ·R(−1)pê(i)φ

S(p)(kn, ω)E (i)φ
p (kn, ω), (A2)

where p denotes the index of polarization (p = 1, 2 for TE
and TM respectively), R = (r, z), S(p) is a function [S(1) = 2
and], and

ê(i)φ
TE (kn, ω) = 1

kn
(−kyêx + kxnêy),

ê(i)φ
TM (kn, ω) = c

ω
√

εi(ω)

( − knêz + φki
znk̂n

)
. (A3)

Here, êx, êy, and êz are unit vectors in the (x, y, z) Cartesian
basis, k̂n = kn/kn, φ is the direction of propagation of the
waves (+,−) along the z axis for the incident and the reflected
fields, respectively, and K(i)φ

n = (kn, φk(i)
zn ).

For the different amplitudes in these zones, we use the
notations

E (1)+ = I, E (1)− = R,

E (3)+ = C, E (3)− = C′,

E (4)+ = T, E (4)− = J. (A4)

In the periodic region (zone 2), the electric field assumes
the following form:

E(2)(R, ω) =
∫ π

D

− π
D

dkx

2π

∑
n∈Z

∫ +∞

−∞

dky

2π
eikn·rE(2)(z, kn, ω).

(A5)

In the actual computation, we will truncate the sum ranging
from −∞ to ∞, retaining only 2N + 1 Fourier harmon-
ics, N is termed the truncation order. In order to obtain
the amplitudes E(2)(z, kn, ω), we have to solve Maxwell’s

equations within this zone:⎧⎪⎪⎨
⎪⎪⎩

∂yEz − ∂zEy = ik0H̃x

∂zEx − ∂xEz = ik0H̃y

∂xEy − ∂yEx = ik0H̃z

⎧⎪⎪⎨
⎪⎪⎩

∂yH̃z − ∂zH̃y = −iεk0Ex

∂zH̃x − ∂xH̃z = −iεk0Ey

∂xH̃y − ∂yH̃x = −iεk0Ez,

(A6)

with k0 = ω/c, and H̃ = Z0H .
Eliminating the z components from Eq. (A6), we obtain

two systems of equations involving only the parallel compo-
nents over which the boundary conditions hold:

∂z

(
Ex

Ey

)
=

⎛
⎜⎜⎝

− i

k0
∂x

1

ε(x)
∂y ik0 + i

k0
∂x

1

ε(x)
∂x

−ik0 − i

k0
∂y

1

ε(x)
∂y

i

k0
∂y

1

ε(x)
∂x

⎞
⎟⎟⎠

×
(

H̃x

H̃y

)
, (A7)

∂z

(
H̃x

H̃y

)
=

⎛
⎜⎜⎝

i

k0
∂x∂y −ik0ε(x) − i

k0
∂x∂x

ik0ε(x) + i

k0
∂y∂y − i

k0
∂x∂y

⎞
⎟⎟⎠

×
(

Ex

Ey

)
. (A8)

Subsequently, following the method elaborated in more
detail, for instance, in Ref. [43], we transform these equa-
tions into Fourier space and get

∂zE = FH̃

∂zH̃ = GE, (A9)

where E = [Ex,Ey]t and H̃ = [H̃x, H̃y]t are vectors con-
taining the Fourier components of the electric and magnetic
parallel components of the field in the grating zone. Moreover,

F =

⎛
⎜⎜⎝

iβ

k0
α[[ε]]−1 ik01 − iα

k0
[[ε]]−1α

−ik01 + iβ2

k0
[[ε]]−1 − iβ

k0
[[ε]]−1α

⎞
⎟⎟⎠, (A10)

and

G =

⎛
⎜⎜⎝

− iβ

k0
α −ik0[[ε]] + iα2

k0

ik0[[ε−1]]−1 − iβ2

k0

iβ

k0
α

⎞
⎟⎟⎠. (A11)

Here, [[ε]] is the Toeplitz matrix such that [[ε]]mn = εm−n, β

is a scalar, and α = diag(kxn)n.
Using the coupled Eqs. (A9), we deduce the equation for E

alone:

∂2
z E = FGE = PD2P−1E, (A12)

where P and D2 contain, respectively, the eigenvectors and
eigenvalues of the matrix FG, each having dimensions of
2(2N + 1) × 2(2N + 1) and take the following form:

P =
(

P(11) P(12)

P(21) P(22)

)
,D =

(
D(11) 0

0 D(22)

)
. (A13)
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The solution of the set of Eqs. (A9) can then be written

E = P(eDzA + e−DzB)

H̃ = P′(eDzA − e−DzB), (A14)

where A = [Axn, Ayn]t and B = [Bxn, Byn]t (n ∈ [−N, N]) are
arbitrary constant vectors, and P′ = F−1PD.

2. Boundary conditions

After expressing the fields in all zones, we are going
to enforce the boundary conditions at their interfaces. For
both analytical and numerical convenience, we introduce an

additional phase factor in the expressions of the fields within
zones 3 and 4. Specifically in zone 3, we take the z dependence
of the fields under the form eik(i)φ (z−h1 ), while in zone 4, we
we take it under the form eik(i)φ (z−h1−h2 ). These adjustments
facilitate the calculations and can be easily reverted at the
conclusion of the analysis. For this reason, we will first obtain
the scattering matrix with this simplified phase S̃, and then
multiply it by the accumulated phase to obtain the actual
scattering matrix S [see Eq. (8)].

Using the zero-thickness model for the graphene sheet and
applying the boundary conditions for the electric field com-
ponents at the interface (z = 0) between zones 1 and 2, in the
Cartesian coordinates system, we obtain (after projection on
the Fourier basis)

⎛
⎝− ky

kn
(I1n + R1n) + c√

ε1ω
k(1)

zn
kxn
kn

(I2n − R2n)
kxn
kn

(I1n + R1n) + c√
ε1ω

k(1)
zn

ky

kn
(I2n − R2n)

⎞
⎠ =

(
P(11)

nm (Axm + Bxm) + P(12)
nm (Aym + Bym)

P(21)
nm (Axm + Bxm) + P(22)

nm (Aym + Bym)

)
. (A15)

Doing the same for the magnetic field components, we have

(
P′(11)

nm (Axm − Bxm) + P′(12)
nm (Aym − Bym) + c

ω
k(1)

zn
kxn
kn

(I1n − R1n) + √
ε1

ky

kn
(I2n + R2n)

P′(21)
nm (Axm − Bxm) + P′(22)

nm (Aym − Bym) + c
ω

k(1)
zn

ky

kn
(I1n − R1n) − √

ε1
kxn
kn

(I2n + R2n)

)

= σgZ0

⎛
⎝ kxn

kn
(I1n + R1n) + c√

ε1ω
k(1)

zn
ky

kn
(I2n − R2n)

ky

kn
(I1n + R1n) − c√

ε1ω
k(1)

zn
kxn
kn

(I2n − R2n)

⎞
⎠. (A16)

At the interface z = h1 we have the following equations for the electric field

⎛
⎝− ky

kn
(C1n + C′

1n) + c√
ε3ω

k(3)
zn

kxn
kn

(C2n − C′
2n)

kxn
kn

(C1n + C′
1n) + c√

ε3ω
k(3)

zn
ky

kn
(C2n − C′

2n)

⎞
⎠ =

(
P(11)

nm

(
eD(11)

mm h1 Axm + e−D(11)
mm h1 Bxm

) + P(12)
nm

(
eD(22)

mm h1 Aym + e−D(22)
m h1 Bym

)
P(21)

nm

(
eD(11)

mm h1 Ax,m + e−D(11)
mm h1 Bxm

) + P(22)
nm

(
eD(22)

mm h1 Aym + e−D(22)
mm h1 Bym

)
)

,

(A17)

and the boundary conditions for the magnetic field are as follows:

(
− c

ω
k(3)

zn
kxn
kn

(C1n − C′
1n) − √

ε3
ky

kn
(C2n + C′

2n)

− c
ω

k(3)
zn

ky

kn
(C1n − C′

1n) + √
ε3

kxn
kn

(C2n + C′
2n)

)
=

(
P′(11)

nm

(
eD(11)

mm h1 Axm − e−D(11)
mm h1 Bxm

) + P′(12)
nm

(
eD(22)

mm h1 Aym − e−D(22)
mm h1 Bym

)
P′(21)

nm

(
eD(11)

mm h1 Axm − e−D(11)
mm h1 Bxm

) + P′(22)
nm

(
eD(22)

mm h1 Aym − e−D(22)
mm h1 Bym

)
)

.

(A18)
Likewise, at the final interface, z = h1 + h2, we obtain

⎛
⎝− ky

kn

(
eik(3)

zn h2C1n + e−ik(3)
zn h2C′

1n

) + c√
ε3ω

k(3)
zn

kxn
kn

(
eik(3)

zn h2C2n − e−ik(3)
zn h2C′

2n

)
kxn
kn

(
eik(3)

zn h2C1n + e−ik(3)
zn h2C′

1n

) + c√
ε3ω

k(3)
zn

ky

kn

(
eik(3)

zn h2C2n − e−ik(3)
zn h2C′

2n

)
⎞
⎠ =

⎛
⎝− ky

kn
(T1n + J1n) + c√

ε4ω
k(4)

zn
kxn
kn

(T2n − J2n)
kxn
kn

(T1n + J1n) + c√
ε4ω

k(4)
zn

ky

kn
(T2n − J2n)

⎞
⎠
(A19)

and

(
− c

ω
k(3)

zn
kxn
kn

(eik(3)
zn h2C1n − e−ik(3)

zn h2C′
1n) − √

ε3
ky

kn
(eik(3)

zn h2C2n + e−ik(3)
zn h2C′

2n)

− c
ω

k(3)
zn

ky

kn
(eik(3)

zn h2C1n − e−ik(3)
2n h2C′

1n) + √
ε3

kxn
kn

(eik(3)
zn h2C2n + e−ik(3)

zn h2C′
2n)

)
=

(
− c

ω
k(4)

zn
kxn
kn

(T1n − J1n) − √
ε4

ky

kn
(T2n + J2n)

− c
ω

k(4)
zn

ky

kn
(T1n − J1n) + √

ε4
kxn
kn

(T2n + J2n)

)
.

(A20)
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3. Scattering matrix

Finally, we can now write the previous equations in matrix compact form as(R
A

)
= S̃1

(I
B

)
,

(B
C

)
= S̃2

(A
C′

)
, (A21)

and

(
C′
T

)
= S̃3

(C
J

)
,

where the explicit expressions of S̃1, S̃2, and S̃3 are already given in Sec. III.
Furthermore, to derive the actual scattering matrix, we incorporate a phase correction, as previously mentioned. This

adjustment is implemented in Eq. (8).
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