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Magneto-optical conductivity of a band-inverted charge transfer insulator
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Recently, quantum anomalous Hall state has been observed in moiré transition metal dichalcogenide bilayers.
Its topological physics can be explained by a band-inverted charge transfer insulator model, in which the
topological phase transition occurs in the presence of the band inversion. Starting from an effective three-band
low-energy model, we investigate the Landau levels and the magneto-optical conductivity of a band-inverted
charge transfer insulator on the honeycomb lattice. We derive the real and imaginary parts of the longitudinal
conductivity and Hall conductivity using Kubo formalism. We find that the magneto-optical conductivity
indicates a discontinuity at the point of band inversion in the low-frequency regime, which can serve as a probe
for band topology. It is shown that the charge transfer gap, chemical potential, and magnetic field have a sensitive
effect on the magneto-optical conductivity. The unique band structure also changes the peaks in the imaginary
part of the Hall conductivity into two distinct contributions of opposite signs. We also study the relationship
of the band-inversion signature and transport properties and highlight its distinct features that can be probed
experimentally.
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I. INTRODUCTION

When a material is subjected to an external magnetic field,
the electron energy spectrum is usually quantified as discrete
Landau levels (LLs). Magneto-optical conductivity spectrum
originates from the optical transitions between these discrete
LLs [1–3]. As the LLs directly related to the nature of the
system, magneto-optical conductivity is a crucial and practical
technique for detection of target material’s electronic prop-
erties [4–10]. For instance, information such as the energy
gap, the characteristics of the band structure, and the Fermi
velocity of systems can be extracted from the resonant peaks
of optical conductivity. The optical spectrum shows infor-
mation in the positions and heights of peaks as well as in
the shift of the peaks due to variations of system parameters
such as magnetic field and chemical potential. Especially, the
magneto-optical property can be also served as a sensitive
experimental method to detect the inner topologies [11–13].

In recent years, the LL formation and characteristics of
Dirac materials like two-dimensional (2D) materials [14–24]
and topological insulators [12,25–28] under an external mag-
netic field have been widely investigated. It is found that the
energy dispersion of LLs in monolayer graphene is propor-
tional to

√
nB, where n denotes LL index and B stands for

the magnetic field [14]. The conduction and valence bands
in graphene are mirror symmetric, with the n = 0 flat band
residing at zero energy. Additionally, the related research
has also been extended to multilayer graphene [17,20,21].
The magneto-optical conductivity of 2D Dirac materials like
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graphene and the surface state of three-dimensional (3D)
topological insulator exhibits a set of asymmetric peaks sit-
uated above a flat background [14,19,20,27,29]. For Weyl
semimetals, they produce a set of asymmetric peaks on a
linear background [15,22]. In the presence of a quadratic
momentum factor in the low-energy Hamiltonian, it is found
that the LLs spacings are proportional to the magnetic field B
and drastically different from the square root of B law [22,27].
This has important implications for the optical absorption.
The quadratic momentum term breaks the particle-hole sym-
metry and splits the magneto-optical absorption line into two
peaks structure [22,27].

For the one-band Hubbard models with half-filling, a large
enough Coulomb repulsion can suppress double occupancy
per unit and produce the Mott insulating state [30–36]. In a
Mott insulator, the mutual Coulomb repulsion prevents the
conduction electrons from moving and their strong electron
correlation keeps them entirely isolated on their respective
atomic sites. The charge transfer insulators can be catego-
rized within the broader Mott insulator framework [37–40].
In a charge transfer insulator, the energy cost is less than the
Coulomb interaction when transferring an electron between
the anion and the cation without creating double occupancy.
The physics of charge transfer insulators is captured by a
two-band Hubbard model, where the band derived from an-
ions is located inside the Mott gap of the cation states. A
typical energy gap in a charge transfer insulator is formed
between the unoccupied (upper) d-electron Hubbard band and
the occupied chalcogen (like oxygen) p-electron band.

A physical realization of charge transfer insulators with
highly controllable gap by a displacement field could be
realized in moiré transition metal dichalcogenide bilayers
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FIG. 1. (a) A schematic sketch of the real-space structure of
the MoTe2/WSe2 bilayer illustrating the honeycomb moiré lattice.
Red and blue dots denote the A and B sublattices, respectively. Red
arrows represent 2π/3 xy antiferromagnetic order on the A sublattice.
(b) The inverted band structure of the effective three-band Hamilto-
nian, showing a quadratic band touching. The A band is above the B
bands after the twofold degeneracy B band dips below it.

[41–49]. Recently, quantum anomalous Hall effect has been
observed in AB-stacked MoTe2/WSe2 moiré heterobilayers
experimentally [50,51]. The appearance of the topological
phase can be described by a band-inverted charge transfer
insulator mechanism based on a two-band Hubbard model
[52]. It has been identified that a quadratic band-touching
point has topological feature, and can be driven towards a
quantum anomalous Hall phase with time-reversal symmetry
breaking even under arbitrary weak interactions, while strong
interactions may lead to other competing phases [53,54].

The band inversion between cation and anion bands in
a charge transfer insulator induces a transition from a Mott
insulator to a topologically nontrivial state. Therefore, it is
important to detect the nature of the gap related to the compe-
tition between charge transfer energy and Coulomb repulsion.
In this work, we present a systematic investigation of the
magneto-optical response of the charge transfer insulators
with both linear and quadratic energy terms, based on the
low-energy effective Hamiltonian and Kubo formula. It is ex-
pected that the information about the charge transfer gap, LLs
properties, and band-inversion signature could be extracted
from the magneto-optical conductivity.

This paper is organized as follows. In Sec. II, we present
the effective low-energy Hamiltonian and compute the LLs
analytically. We also discuss the effects of the magnetic field
on the LLs and how the LL spectra vary when tuning the
charge transfer gap. In Sec. III, we calculate the magneto-
optical conductivity and discuss the selection rules of the
optical absorption between different LLs. We also investigate
the effect of the charge transfer gap and the chemical potential
on the transport properties. In Sec. IV, we finally give a
summary of our findings.

II. LANDAU-LEVEL SPECTRUM

We start our discussion from a low-energy effective Hamil-
tonian of a band-inverted charge transfer insulator first [52].
Especially, the charge transfer model considered here is
resemble to the 2D moiré superlattices in semiconductor

heterostructures. The model has been used to describe the
phase transition from a correlated insulator to a quantum
anomalous Hall state in AB-stacked MoTe2/WSe2 het-
erostructures. The model Hamiltonian we considered here is
given by

H =

⎛
⎜⎜⎜⎝

− k2

2mA
λk− −λeiθ k+

λk+ k2

2mB
+ δ 0

−λe−iθ k− 0 k2

2mB
+ δ

⎞
⎟⎟⎟⎠, (1)

where eiθ represents the in-plane order on the A sublattice and
λ is a dimensionless parameter modeling the effective mass
and spin-orbit coupling. k± = kx ± iky, and the charge transfer
gap is denoted by δ. The A and B sublattices represent the
cation and anion, and the effective masses are given by mA and
mB, respectively. The other A band is ignored as it is far from
the Fermi level due to the different influence of the Coulomb
repulsion. It is noted that we do not start from an interacting
Hubbard-type model, and the effective low-energy model is
taken into account. Actually, the interaction term gnB↑nB↓ on
the anions plays an essential role after the charge transfer gap
is inverted. The spin-degenerate model of B sublattice with an
interaction term gnB↑nB↓ has been considered by performing
the Hartree-Fock treatment and density matrix renormaliza-
tion group calculations [52]. The results indicate that in the
presence of even arbitrarily weak repulsive interactions, the
quadratic band touching is unstable and towards the open-
ing of a topological gap, resulting in a quantum anomalous
Hall state.

Here electrons in the charge transfer band are spin de-
generate prior to the inversion, whereas holes connected to
the lower Hubbard band are spin nondegenerate. Band in-
version across bands can be induced by further reducing
the charge transfer energy to invert the charge transfer gap.
Following this transition, an insulating state can be thought
of as having a negative charge transfer gap, similar to the
negative band gap found in inverted semiconductors. As a
result, quantum anomalous Hall state arises after inverting
the charge transfer gap [55–58]. The quadratic momentum
term and the negative charge transfer gap term lead to a
quadratic band-touching structure in band structure, as shown
in Fig. 1.

In the presence of a magnetic field, the continuous bands
become quantized into discrete LLs. To get the LL spectrum
of the Hamiltonian, we start with a uniform magnetic field
along the z direction, and in this case the LL spectrum can
be analytically obtained. The applied magnetic field quan-
tizes the motion of the electrons in the x-y plane. We make
the Peierls substitution k ⇒ � = k + A for describing tightly
bound electrons in the magnetic field and choose the Landau
gauge. Correspondingly, the vector potential in the effective
Hamiltonian is chosen as A = (0, Bx, 0). We ignore the Zee-
man effect caused by magnetic fields in our calculations for
simplicity. By introducing the creation and annihilation op-
erators a† = lB√

2
(�x + i�y), a = lB√

2
(�x − i�y), the effective
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Hamiltonian can be written as

H =

⎛
⎜⎜⎜⎝

− 1
mAlB

2 (a†a + 1/2)
√

2λ
lB

a −
√

2λ
lB

eiθ a†

√
2λ

lB
a† 1

mBlB
2 (a†a + 1/2) + δ 0

−
√

2λ
lB

e−iθ a 0 1
mBlB

2 (a†a + 1/2) + δ

⎞
⎟⎟⎟⎠, (2)

where lB = √
h̄/(eB) denotes the magnetic length and the creation and annihilation operators satisfy the commutation rule

[a, a†] = 1.
We can solve H� = E� by setting � = (χ1|n〉, χ2|n + 1〉, χ3|n − 1〉)T . Within a same band, each LL is indexed by the Fock

number n. The eigenstates are a mixture of spin down of A for |n〉↑, spin up of B for |n + 1〉↑, and spin down of B for |n − 1〉↓.
The corresponding eigenequation is given by⎛

⎜⎜⎜⎝
− 1

mAlB
2 (n + 1/2) − E

√
2λ

lB

√
n + 1 −

√
2λ

lB
eiθ√n

√
2λ

lB

√
n + 1 1

mBlB
2 (n + 3/2) + δ − E 0

−
√

2λ
lB

e−iθ√n 0 1
mBlB

2 (n − 1/2) + δ − E

⎞
⎟⎟⎟⎠

⎛
⎜⎝

χ1

χ2

χ3

⎞
⎟⎠ = 0. (3)

To obtain nontrivial solution of the eigenvectors, it re-
quires Det(H − E ) = 0. Setting A = − 1

mAlB
2 (n + 1

2 ), B1 =
1

mBlB
2 (n + 3

2 ) + δ, and B2 = 1
mBlB

2 (n − 1
2 ) + δ, the equation of

the LL spectrum is deduced as

2λ2

l2
B

[n(B1 − E ) + (n + 1)(B2 − E )]

−(B1 − E )(B2 − E )(A − E ) = 0. (4)

The roots of the cubic polynomial equation can be solved
analytically via Cardano’s formula. The eigenvalues and
eigenstates of the matrix can be obtained analytically and
numerically. The components of the wave function are also
thus obtained. Although the analytic forms for the LL spectra
are rather complex, the approximated analytical expression
of LLs could be obtained in the case of n � 1. In this case,
B1 ≈ B2 ≈ n/(mBlB

2) + δ and three LL branches can be ap-
proximately expressed as

En�1,± ≈ n

2l2
B

(
1

mB
− 1

mA

)
+ δ

2

±
√[

n

2l2
B

(
1

mB
+ 1

mA

)
+ δ

2

]2

+ 16nλ2

l2
B

,

En�1,0 ≈ n

mBlB
2 + δ. (5)

For the relatively weak magnetic field, it can be deduced that
two LL branches En�1,± indicate

√
nB dependence on the

magnetic field and they are separated by an energy gap δ

approximately. Differently, the third LL branch En�1,0 shows
a linear-B dependence as En�1,0 ∝ nB.

In the opposite case of the lowest LL n = 0, the eigenequa-
tion is given by

⎛
⎜⎜⎝

− 1
2mAlB

2 − E
√

2λ
lB

0
√

2λ
lB

3
2mBlB

2 + δ − E 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎝χ1

χ2

0

⎞
⎟⎠ = 0 (6)

and the LL for n = 0 can be simply solved as

E0± = 1

4l2
B

(
3

mB
− 1

mA

)
+ δ

2

±
√[

1

4l2
B

(
3

mB
+ 1

mA

)
+ δ

2

]2

+ 8λ2

l2
B

. (7)

In the calculation, we take mA = 0.35me and mB = 0.65me

[41,49–51] from the experimentally determined values of AB-
stacked MoTe2/WSe2 heterostructures for calculating, where
me is the bare electron mass. Other system parameters are
taken as θ = 2π

3 [52] and λ = 0.1.
In Fig. 2, we present the evolution of the LL energy spec-

trum as a function of the magnetic field for different charge
transfer gap values. The four lowest LLs indexed by n = 0
(black lines), n = 1 (red lines), n = 2 (blue lines), and n = 3
(green lines) are depicted to show the effect of charge transfer
energy and magnetic field. It is shown in Fig. 2 that there
are two types of LL branches for n > 1 in the low mag-
netic field regime: one branch exhibiting linear dependence
on the magnetic field B and two branches showing the

√
B

dependency. Here, the lowest LL with index n = 0 belongs to
the second type of branches. With the increase of the mag-
netic field, the LLs crossing appears between the LL branch
with

√
B dependence and the branch with linear dependence

on B. It is noted that for strong magnetic field, the posi-
tive

√
B-resolved LL branch with index n is gradually equal

with the linear-B-dependent branch with n + 2. Furthermore,
the

√
B-resolved branches do not exhibit mirror symme-

try. Consequently, the absorption peaks in magneto-optical
conductivity could reflect the imperfect mirror symmetry
between the positive and negative branches of the LL
spectrum.

In the limit of weak magnetic field B = 0, it can be deduced
from Eq. (7) that the eigenstates are highly degenerate with
E = 0, δ. The LL spectra are separated by the energy gap
δ. As shown in Fig. 2, the linear-B-dependent branch of the
system is pinned at different points in the conduction and
valence bands in different signs of charge energy gap δ. In
the case of δ > 0, the linear-B-dependent LL branch is always
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FIG. 2. The lowest four sets of Landau levels as a function of the magnetic field B for different charge transfer gaps (a) δ = 1 meV,
(b) δ = 0 meV, (c) δ = −2 meV, and (d) δ = −1 meV. The LL indices are indicated by different line colors: n = 0 (black lines), n = 1 (red
lines), n = 2 (blue lines), and n = 3 (green lines). The blue gray dotted line is the zero-energy line.

located in the conduction band as a function of the magnetic
field. In the case of δ = 0, the charge transfer gap between
different bands closes and the linear-B-dependent LL branch
starts from zero energy. As δ decreases further and becomes
negative, the energy gap reopens and the system undergoes
a band-inverted phase transition. The location of the linear-
B-dependent LL branch shifts to the valence band with the
decrease of δ and the linear-B-dependent branch crosses zero
energy at a critical magnetic field, as shown in Figs. 2(c)
and 2(d).

Here the band gap in our model is inverted by the neg-
ative charge transfer gap, the sign reversal of the band gap
is related to the LL crossing or pinned at these points. Ac-
tually, this signature of LLs has also been shown in several
other topological systems and been suggested to detect the
topological nature of electronic bands [11–13,59,60]. For in-
stance, in inverted HgTe quantum wells, it is known that
the lowest conduction LL and the uppermost valence LL
cross at a finite critical magnetic field [11,59–61]. In a Flo-
quet topological insulator thin film, it is shown that the
electrons of the top and bottom surface states are pinned
at different points in the n = 0 LLs for different topologi-
cal phases [12]. The features of LLs are also suggested to
serve as a probe for band topology in moiré superlattice
systems characterized by bands with nontrivial valley Chern
numbers [13].

We then study the influence of the charge transfer gap
δ. Figure 3 illustrates the lowest 11 LLs as a function of
charge transfer gap with different magnetic fields. It is shown
that two LL branches are always positive or negative and
one branch undergoes the sign reversal as a function of the
gap δ. The positive LL branch and the negative one are
separated by an energy gap, which is determined by the
charge transfer gap and the magnetic field. In the low mag-
netic field limit, the linear-B-resolved LL branch is highly
degenerate. In the case of δ < 0, it implies that numerous
electronic states are occupied in a small energy range, which
is similar to a nearly flat band. Therefore, it is expected that
the interaction and correlation between electrons becomes
important in this system. With the increase of the mag-
netic field, the energy splitting of LLs is strongly enhanced.
These features of LLs can sensitively affect the optical ab-
sorption and magneto-optical conductivity properties, as we
discuss later.

III. MAGNETO-OPTICAL CONDUCTIVITY

In this section, we study the magneto-optical conductivity
of the band-inverted charge transfer insulator with different
charge transfer gaps and chemical potentials. The LL spec-
trum reflects the band-inversion signature, as demonstrated
above; it is thus expected that such a feature leads to a

045445-4



MAGNETO-OPTICAL CONDUCTIVITY OF A … PHYSICAL REVIEW B 110, 045445 (2024)

0 1

0

2

4
En
er
gy
(m
eV
)

(meV)

T(a)

0 1
(meV)

T(b)

0 1
(meV)

T(c)

FIG. 3. Landau-level spectrum of n < 12 as a function of the charge transfer gap δ for different magnetic fields (a) B = 0.1 T, (b) B = 0.5 T,
and (c) B = 1 T. The LL indices are indicated by different line colors.

significant change in the magneto-optical conductivity image.
The critical magnetic field for the sign reversal of the linear-
B-dependent LL branch is also expected to be extracted from
the magneto-optical conductance. With the knowledge of the
LLs and eigenvectors of the Hamiltonian under a magnetic
field, the magneto-optical conductivity can be obtained from
the Kubo formula [62,63]. The standard Kubo formalism is
utilized to derive the expressions for the magneto-optical con-
ductance by taking into account the optical, magnetic fields,
and frequency dependence. Expressed in the LL basis in the
clean limit, the general expression of the Kubo formula is as
follows:

σαβ = − ih̄e2

2π l2
B

∑
nn′

∑
ii′

[
f (Eni ) − f (En′i′ )

Ens − En′i′

]

× 〈ψn,i| jα|ψn′,i′ 〉〈ψn′,i′ | jβ |ψn,i〉
ω + Eni − En′i′ + iε

, (8)

where f (x) = 1/[1 + eβ(x−μ)] denotes the Fermi-Dirac
distribution function, β is the inverse temperature, and μ

is the chemical potential. The current density operators are
given by jα = i[H, xα] = ∂H

∂�α
with

jx =

⎛
⎜⎜⎝

− 1
mA

�x λ −λeiθ

λ 1
mB

�x 0

−λe−iθ 0 1
mB

�x

⎞
⎟⎟⎠,

jy =

⎛
⎜⎜⎝

− 1
mA

�y −iλ −iλeiθ

iλ 1
mB

�y 0

iλe−iθ 0 1
mB

�y

⎞
⎟⎟⎠. (9)

The matrix elements of the current density operators can be
calculated by dividing them into diagonal and off-diagonal
parts. Replacing �α with a and a†, the overlapping matrix
elements 〈ψn,i| jα|ψn′,i′ 〉 can be directly evaluated and
its detail derivation process is given in the Appendix.
Substituting the expression of current operators into the
Kubo equation, the dissipative components corresponding to
the absorptive parts of the longitudinal conductivity tensor

σxx and the transverse Hall conductivity tensor σxy can be
obtained as

σxx = − ih̄e2

2π l2
B

∑
ii′

[
f (E0i ) − f (E1i′ )

E0i − E1i′

M1i′
x,0iM

0i
x,1i′

ω + E0i − E1i′ + i0+

+
∑
n=1

(
f (Eni ) − f (En+1i′ )

Eni − En+1i′

Mn+1i′
x,ni Mni

x,n+1i′

ω + Eni − En+1i′ + i0+

+ f (Eni ) − f (En−1i′ )

Eni − En−1i′

Mn−1i′
x,ni Mni

x,n−1i′

ω + Eni − En−1i′ + i0+

)]

(10)

and

σxy = − ih̄e2

2π l2
B

∑
ii′

[
f (E0i ) − f (E1i′ )

E0i − E1i′

M1i′
x,0iM

0i
y,1i′

ω + E0i − E1i′ + i0+

+
∑
n=1

(
f (Eni ) − f (En+1i′ )

Eni − En+1i′

Mn+1i′
x,ni Mni

y,n+1i′

ω + Eni − En+1i′ + i0+

+ f (Eni ) − f (En−1i′ )

Eni − En−1i′

Mn−1i′
x,ni Mni

y,n−1i′

ω + Eni − En−1i′ + i0+

)]
.

(11)

Here Mn′i′
x,ni = 〈ψn,i| jx|ψn′,i′ 〉 and Mn′i′

y,ni = 〈ψn,i| jy|ψn′,i′ 〉
denote the transition rates between different LLs and their
expression is given in the Appendix. The first term in the
magneto-optical conductivity means the contribution related
to the LL with n = 0, which is considered separately.

Optically allowed interband and intraband LL optical
transitions should satisfy the selection rule of n′ = n ± 1.
Transition between the same LL branch with different index n
is called intraband transition, and the interband transition rep-
resents the optical absorption between different LL branches.
Through the absorption of the photon with certain frequency,
one electron could be excited from the valence band to the
unoccupied states and the magneto-optical conductance is
thus generated. For convenience, the three LL branches are
labeled by LT , LM , and LB, respectively. Here LT and LB
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FIG. 4. (a), (c), (e) The real part of the longitudinal optical conductivity Re(σxx ) and (b), (d), (f) the imaginary part of the transverse Hall
conductivity Im(σxy ) plotted as a function of the charge transfer gap δ in units of σ0 = h̄e2

2π l2
B

for different magnetic fields B = 0.1, 0.5, and 1 T

(from left to right), respectively. Other parameters are taken as the chemical potential μ = 0 meV and the temperature T = 0.05 K.

represent the positive and negative
√

B-resolved LL branches,
while LM denotes the linear-B-dependent branch. We use the
notation T m j

ni to denote transitions originating from a LL with
index n, i to the LL with index m, j, where i, j stand for the
index of the three bands. In the calculation, we take the low
temperature T = 0.05 K, the chemical potential μ = 0 meV,
and ε = 0.05 meV to discuss the longitudinal magneto-optical
conductivity σxx and the transverse Hall conductivity σxy. Fur-
thermore, σ0 = h̄e2

2π l2
B

is taken as the unit of conductance.

A. Influence of charge transfer gap and magnetic field

We first consider the effect of the charge transfer gap δ

on the magneto-optical conductance. The real part of the lon-
gitudinal Re(σxx ) and imaginary parts of the transverse Hall
conductivity Im(σxy) are demonstrated in Fig. 4 as functions
of photonic energies and charge transfer gap for different

magnetic fields. As illustrated in Fig. 4, the conductance peaks
indicate the linear dependence on the charge transfer gap δ. It
is noted that the conductance peaks show discontinuity points
when the band inversion occurs near the band inversion of
δ = 0, especially for low magnetic fields and low photonic
energies. These points shift towards lower δ with the increase
of photon energy and magnetic field. The interval between the
conductance peaks becomes wider with the decrease of δ. For
the negative charge transfer gap δ < 0, an extra conductance
peak is induced at low photonic energy, while it is absent
for δ > 0. The extra conductance peak origins from optical
absorption between the electrons of the linear-B-resolved LL
branch. Therefore, these features in the magneto-optical con-
ductance could serve as a signature of the band inversion
and related topological phase transition. With the increase
of the magnetic field B, the discontinuity point of the con-
ductance peaks moves towards to the higher photonic energy
regime.
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FIG. 5. The real part of longitudinal magneto-optical conductiv-
ity Re(σxx ) and the imaginary part of transverse Hall conductivity
Im(σxy ) versus the photon energy h̄ω for different charge transfer
gaps δ = 0.5 meV in (a) and (b), 0 meV in (c) and (d), −0.5 meV in
(e) and (f), and −1 meV in (g) and (h), respectively. Other parameters
are taken as the magnetic field B = 0.5 T and the chemical potential
μ = 0 meV and the conductance is in units of σ0 = h̄e2

2π l2
B

.

In Fig. 5 we present the magneto-optical conductance
Re(σxx ) and Im(σxy) as a function of photon energy for differ-
ent charge transfer gaps δ. It can be deduced from Eq. (11) that
the transitions n + 1 → n lead to negative peaks in the imag-
inary Hall conductivity. As illustrated in Fig. 5, transitions of
electrons between different LLs produce a series of absorption
resonance peaks against a flat background, similar to the the
magneto-optical conductance in graphene [14,29]. With the
decrease of the charge transfer gap δ, most conductance peaks
gradually shift towards lower magnetoexcitation frequencies
with increased spectral heights.

We initially concentrate on the case of δ � 0. In this case
the interband transitions satisfy the selection rule and make
the predominant contribution to magneto-optical conductivity
at low-frequency regime. The first two positive peaks on the
left side are from the transitions T 1M

0B and T 2M
1B , and the first

negative peak is origin from T 1M
2B . Interestingly, the transitions

T 3M
2B and T 0T

1B have the similar transition energy lengths, re-
sulting in their combined contribution to the formation of the
third positive peak. However, the contribution of the transition
T 0T

1B is relatively small. A similar transition rule governs the
occurrence of other peaks at higher magnetoexcitation ener-
gies, expressed as T (p+1)M

pB , T (p−1)M
pB , T (p−1)T

pB , T (p+1)T
pB . Among

these transitions, T (p−1)M
pB manifests as a negative peak with an

intensity comparable to the positive peak from T (p+1)M
pB with

similar transition energies. Due to the larger transition energy
of T pT

(p−1)B and T (p−1)T
pB , the corresponding peak is smaller and

located at a higher photon energy. Similar with the peaks
generated from T (p+1)M

pB and T (p−1)M
pB , the peaks origin from

T pT
(p−1)B and T (p−1)T

pB does not merge into one peak due to
imperfect mirror symmetry between the positive and negative
LL branches.

However, the magneto-optical conductivity is quite dif-
ferent in the band-inverted case of δ < 0. In this case, the
conductance peak contributed by the competition between the
transitions T 0T

1M and T 1M
0B becomes negative. Importantly, the

conductance peak close to the low-frequency limit h̄ω = 0 ap-
pears, which is mainly contributed by the intraband transitions
T (p+1)M

pM . For the band-inverted case, the conductance peaks

induced by the transitions T (p+1)M
pM , T (p−1)T

pM , and T (p+1)T
pM begin

to appear, while they are absent for δ > 0. The appearance of
these new transitions is contributed by the linear-B-resolved
LL branch LM with its energy below the chemical poten-
tial. It is shown in Fig. 5 that there is an energy interval
when δ < −0.5 meV where only some small peaks are res-
ident in. The energy range of the interval is decided by
how many transitions of T (p+1)M

pB and T (p−1)M
pB are blocked.

The small peaks in this region are induced by the transi-
tions from the LL branch LB to LT , which are ignorable
before.

At the band-inversion point δ = 0, it is shown in Fig. 5
that the sign of the conductivity peaks in Im(σxy) switches,
as a result of the band-gap closure. With the decrease
of δ, the optical absorption caused by the transition T 1M

0B
moves to the lower energy, while the peak induced by T 0T

1M
moves to the higher-energy regime. The competition be-
tween these two transitions leads to the discontinuity near the
band-inversion point δ = 0 in both Re(σxx ) and Im(σxy), as
illustrated in Fig. 4. Furthermore, it is also shown in Fig. 5
that the peak of the conductance Re(σxx ) and Im(σxy) near
the low-frequency limit h̄ω = 0 appears only in the band-
inverted case. The magneto-optical conductance peak in the
low-frequency regime manifests the closing and reopening
signature of the charge transfer gap.

In the following, we turn to discuss the magneto-optical
conductivity under circularly polarized light. From the longi-
tudinal conductivity σxx and the transverse Hall conductivity
σxy, one can define the polarized conductance σ± = σxx ±
iσxy with the right-handed polarization conductance σ+ and
left-handed polarization part σ−, respectively. The polarized
conductance Re(σ±) = Re(σxx ) ∓ Im(σxy) is demonstrated in
Fig. 6. Correspondingly, the heights of the original positive
peaks in Im(σxy) are doubled in Re(σ−) while the negative part
is diminished. We focus on the Re(σ+) as it directly gives the
differences between the longitudinal and Hall conductivity.
As mentioned before, the peaks at higher energies are little
affected by varying the system parameters. Interestingly, the
right circular polarization conductivity σ+ exhibits a series
of peaks at low-frequency regime for the band-inverted case
of δ < 0, which origins from the transitions T (p−1)T

pM . And
the interval in Re(σ+) is wider than in Re(σxx ). Therefore,
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FIG. 6. The real part of right-handed polarization part magneto-
optical conductivity Re(σ+) and the real part of left-handed
polarization part Re(σ−) plotted for δ = 0.5, 0, −0.5, and −1 meV
(from top to bottom). Other parameters are taken as the magnetic
field B = 0.5 T and the chemical potential μ = 0 meV.

the signature of band inversion can be directly observed by
studying the circular polarization conductance σ±.

B. Influence of chemical potential

Due to the LL transition rule, only the transitions excited
from LL below the chemical potential μ to the unoccupied
LL states above μ, are permitted. In the subsection above, we
consider the case of μ = 0, where the interband transitions
make the main contribution to the magneto-optical conduc-
tivity. To investigate the effect of the chemical potential μ,
we depict the magneto-optical conductivity as a function of
h̄ω for different values of μ = 0, 0.9, and 1.3 meV in Fig. 7,
where the charge transfer gap is taken as δ = 0. By tuning the
chemical potential, only the LL states with its energy Eni < μ

are occupied at low temperature and could be excited to higher
unoccupied LLs, considerably modifying the LL transitions
and optical absorption processes.

As illustrated in Fig. 7, the dependence of the magneto-
optical conductivity on the photonic energy is not simply
shifted by μ when tuning the chemical potential of the system.
For different values of μ, several new transitions between LLs
are permitted accompanied with some transitions forbidden.
As the chemical potential is tuned away from μ = 0, it is
shown in Fig. 7 that there is an interval region where only
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FIG. 7. The real part of longitudinal magneto-optical conductiv-
ity Re(σxx ) and the imaginary part of transverse Hall conductivity
Im(σxx ) plotted for μ = 0, 0.9, and 1.3 meV (from top to bottom),
respectively. Other system parameters are taken as the charge transfer
gap δ = 0 meV and the megnetic field B = 0.5 T.

some small peaks are resident in. In this region, only few
LL transitions are permitted, and both the magneto-optical
conductance Re(σxx ) and Im(σxy) approach small values.
The appearance of the zero-conductance region is origins
from the results that the transitions related to the linear-B-
dependent LL branch are forbidden. The small peaks in this
region are mainly contributed by the transitions between two√

B-resolved LL branches. The energy width of the nearly-
zero-conductance region increases as the chemical potential
μ is tuned far from zero.

It is shown in Figs. 5 and 7 that the magneto-optical
conductivity at low-frequency region indicates the similar de-
pendence with the increase of the chemical potential μ and
decrease of charge transfer gap δ. A qualitative explanation
for the behavior of the related peaks is that the LL transitions
generate the similar effects on the peaks. As the decrease
of δ, the LLs spacing near the chemical potential drops and
the density of states of the LL spectrum is increased. As a
result, the transitions and the magneto-optical conductivity at
low-frequency region are enhanced. With the increase of the
chemical potential, the interband transitions are suppressed,
while the intraband transitions are enhanced. Furthermore, as
shown in Figs. 5 and 7, the magneto-optical conductivity in
the high-frequency regime is almost unaffected when tuning
the chemical potential. This could be understood as the op-
tical transitions in the high frequency mainly relate the LLs
with higher energies, where the energy difference of these
transitions is rather large compared to the chemical potential
modulation.

Here we start from the tight-binding model on a hon-
eycomb lattice [52], which is used to explain the observed
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quantum anomalous Hall effect in AB-stacked MoTe2/WSe2

moiré heterobilayers [50,51]. Differently, a tight-binding
model on a triangle lattice through a detailed symmetry anal-
ysis is also proposed [64] to describe the low-energy moiré
bands in this system. Although these proposed model Hamil-
tonians have different structures and energy bands, all of
them could capture the physics of the quantum anomalous
Hall effect in two-dimensional systems. The topological phase
transition and band inversion are also embodied in different
model Hamiltonians. In this case, some detail and quantitative
values of the magneto-optical conductivity behavior are differ-
ent for different lattices. However, in the low-energy regime,
an extra conductance peak appears in the band-inverted case,
while it is absent in the normal band case. Such a property
is directly related to the physics of band inversion and can
serve as a probe of the band topology. Furthermore, similar
magneto-optical signatures are also indicated in several other
topological systems [11,12,27].

IV. CONCLUSION

In conclusion, we investigate the LL spectrum and the
magneto-optical conductivity of a band-inverted charge trans-
fer insulator on a honeycomb lattice based on a three-band
model, which describes the low-energy physics of moiré tran-
sition metal dichalcogenide bilayer. Effects of the charge
transfer gap, the magnetic field, and the chemical potential on
the LLs and the transport properties are discussed in detail.
It is shown that two branches of LL are

√
B resolved as a

function of the magnetic field B, while the third LL spectrum
indicates the linear-B dependence. With the increase of the
magnetic field, two branches of

√
B-resolved LLs are always

separated by an energy gap, while the linear-B-resolved LL
branch crosses between the valence and conduction bands in
the band-inverted case. This feature of LLs is consistent with
several other topological systems, and it can be used to probe
the band topology. In the low magnetic field regime, electronic

states of the linear-B-resolved LL branch are occupied in a
small energy range.

The magneto-optical conductivity is sensitive to the prop-
erties of LLs. Here the magneto-optical conductivity indicates
quite different behaviors in the band-inverted case and the
normal band case. It is found that the magneto-optical con-
ductance peaks show discontinuity points when the band
inversion occurs. With the increase of the magnetic field, the
discontinuity point of the conductance peaks moves towards
the higher photonic energy regime. The magneto-optical
conductivity also manifests the closing and reopening signa-
tures of the energy band. In the low-frequency regime, the
conductance peak only appears in the band-inverted case,
which is contributed by the intraband transitions of the
linear-B-resolved LLs. However, the conductance peak in the
low-frequency limit is absent for the normal band case. There-
fore, it is expected that the magneto-optical conductivity could
serve as a probe for the topological character of bands for a
band-inverted charge transfer insulator.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Founda-
tion of China under Grants No. 12074209 and No. 12274063
by the Natural Science Foundation of Sichuan Province
(NSFSC, Grant No. 2024NSFSC0451) and Fund of the State
Key Laboratory of Low-Dimensional Quantum Physics under
Grant No. ZZ202402.

APPENDIX: DERIVATION OF THE MATRIX ELEMENTS
IN THE MAGNETO-OPTICAL CONDUCTIVITY

In this Appendix we present the derivation of the matrix
elements in the magneto-optical conductivity. By introduc-
ing a† = lB√

2
(�x + i�y), a = lB√

2
(�x − i�y), we have �x =

1√
2lB

(a† + a), �y = i√
2lB

(a − a†) and the matrix elements can
be expressed as

〈�n,a| jx|�m,b〉 = (χ∗
na,1〈n| χ∗

na,2〈n + 1| χ∗
na,3〈n − 1|)

⎛
⎜⎜⎝

− 1
mA

�x λ −λeiθ

λ 1
mB

�x 0

−λe−iθ 0 1
mB

�x

⎞
⎟⎟⎠

⎛
⎜⎝

χmb,1|m〉
χmb,2|m + 1〉
χmb,3|m − 1〉

⎞
⎟⎠, (A1)

where m and n is the LL index and a, b represent the three eigenenergies for a certain n. The above calculation can be divided
into two parts and the contribution from the diagonalized part is given by

(χ∗
na,1〈n| χ∗

na,2〈n + 1| χ∗
na,3〈n − 1|)

⎛
⎜⎜⎝

− 1
mA

�x 0 0

0 1
mB

�x 0

0 0 1
mB

�x

⎞
⎟⎟⎠

⎛
⎜⎜⎝

χmb,1|m〉
χmb,2|m + 1〉
χmb,3|m − 1〉

⎞
⎟⎟⎠

=
(

−
√

m√
2lBmA

χ∗
na,1χmb,1 +

√
m + 1√
2lBmB

χ∗
na,2χmb,2 +

√
m − 1√
2lBmB

χ∗
na,3χmb,3

)
δn,m−1

+
(

−
√

m + 1√
2lBmA

χ∗
na,1χmb,1 +

√
m + 2√
2lBmB

χ∗
na,2χmb,2 +

√
m√

2lBmB

χ∗
na,3χmb,3

)
δn,m+1, (A2)
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and the second part is

(χ∗
na,1〈n|χ∗

na,2〈n + 1|χ∗
na,3〈n − 1|)

⎛
⎜⎝ 0 λ −λeiθ

λ 0 0
−λe−iθ 0 0

⎞
⎟⎠

⎛
⎜⎝ χmb,1|m〉

χmb,2|m + 1〉
χmb,3|m − 1〉

⎞
⎟⎠

= λχ∗
na,2χmb,1δn,m−1 + λχ∗

na,1χmb,2δn,m+1 − λeiθχ∗
na,3χmb,1δn,m+1 − λe−iθχ∗

na,1χmb,3δn,m−1. (A3)

Therefore, the total expression of 〈�n,a| jx|�m,b〉 is given by

〈�n,a| jx|�m,b〉 =
(

−
√

n + 1√
2lBmA

χ∗
na,1χmb,1 +

√
n + 2√
2lBmB

χ∗
na,2χmb,2 +

√
n√

2lBmB

χ∗
na,3χmb,3 + λχ∗

na,2χmb,1 − λe−iθχ∗
na,1χmb,3

)
δn,m−1

+
(

−√
n√

2lBmA

χ∗
na,1χmb,1 +

√
n + 1√
2lBmB

χ∗
na,2χmb,2 +

√
n − 1√
2lBmB

χ∗
na,3χmb,3 + λχ∗

na,1χmb,2 − λeiθχ∗
na,3χmb,1

)
δn−1,m.

(A4)

The nonzero elements Mn,n−1
x,ii′ = 〈�n,i| jx|�n−1,i′ 〉 and Mn,n+1

x,ii′ = 〈�n,i| jx|�n+1,i′ 〉 are deduced as follows:

Mn−1i′
x,ni = (

Mni
x,n−1i′

)∗ = −
√

n√
2lBmA

χ∗
ni,1χn−1i′,1 +

√
n + 1√
2lBmB

χ∗
ni,2χn−1i′,2 +

√
n − 1√
2lBmB

χ∗
ni,3χn−1i′,3

+ λχ∗
ni,1χn−1i′,2 − λeiθχ∗

ni,3χn−1i′,1. (A5)

In the case of the lowest LL with index n = 0, the matrix element is nonzero only for m = 1 and their expressions are
evaluated as

〈�0,a| jx|�1,b〉 = (χ∗
0a,1〈0|χ∗

0a,2〈1|0)

⎛
⎜⎜⎝

− 1
mA

�x λ −λeiθ

λ 1
mB

�x 0

−λe−iθ 0 1
mB

�x

⎞
⎟⎟⎠

⎛
⎜⎝χ1b,1|1〉

χ1b,2|2〉
χ1b,3|0〉

⎞
⎟⎠. (A6)

Repeating the above procedure, the nonzero elements in the case of n = 0 are deduced as

〈�0| jx|� ′
1〉 = − 1√

2lBmA

χ∗
0a,1χ1b,1 + 1

lBmB
χ∗

0a,2χ1b,2 + λχ∗
0a,2χ1b,1 − λeiθχ∗

0a,1χ1b,3. (A7)

Similarly, for the matrix of the current operator jy, the nonzero elements Mn,n−1
y,ii′ = 〈�n,i| jy|�n−1,i′ 〉 and Mn,n+1

y,ii′ =
〈�n,i| jy|�n+1,i′ 〉 are given by

Mn−1i′
y,ni = (

Mni
y,n−1i′

)∗ = i√
2lB

(√
n

mA
χ∗

ni,1χn−1i′,1 −
√

n + 1

mB
χ∗

ni,2χn−1i′,2 −
√

n − 1

mB
χ∗

ni,3χn−1i′,3

)

− iλχ∗
ni,1χn−1i′,2 + iλe−iθχ∗

ni,3χn−1i′,1. (A8)
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topological transitions in HgTe/CdTe quantum wells by mag-
neto-optical measurements, Phys. Rev. B 91, 235433 (2015).

[12] M. Shah, M. Q. Mehmood, Y. S. Ang, M. Zubair, and Y.
Massoud, Magneto-optical conductivity and giant Faraday-Kerr
rotation in floquet topological insulators, Phys. Rev. B 107,
235115 (2023).

[13] Q. Wu, J. Liu, Y. Guan, and O. V. Yazyev, Landau levels as a
probe for band topology in graphene Moiré superlattices, Phys.
Rev. Lett. 126, 056401 (2021).

[14] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Anomalous
absorption line in the magneto-optical response of graphene,
Phys. Rev. Lett. 98, 157402 (2007).

[15] P. E. C. Ashby and J. P. Carbotte, Magneto-optical conductivity
of Weyl semimetals, Phys. Rev. B 87, 245131 (2013).

[16] L. Ju, L. Wang, X. Li, S. Moon, M. Ozerov, Z. Lu, T. Taniguchi,
K. Watanabe, E. Mueller, F. Zhang, D. Smirnov, F. Rana, and
P. L. McEuen, Unconventional valley-dependent optical selec-
tion rules and landau level mixing in bilayer graphene, Nat.
Commun. 11, 2941 (2020).

[17] S. Yuan, R. Roldán, and M. I. Katsnelson, Landau level spec-
trum of aba- and abc-stacked trilayer graphene, Phys. Rev. B
84, 125455 (2011).

[18] P. Liu, C. Cui, X.-P. Li, Z.-M. Yu, and Y. Yao, Landau
level spectrum and magneto-optical conductivity in tilted Weyl
semimetal, Phys. Rev. B 107, 085146 (2023).

[19] H. Funk, A. Knorr, F. Wendler, and E. Malic, Microscopic view
on landau level broadening mechanisms in graphene, Phys. Rev.
B 92, 205428 (2015).

[20] D. Wang and G. Jin, Combined effect of magnetic and electric
fields on Landau level spectrum and magneto-optical absorption
in bilayer graphene, Europhys. Lett. 92, 57008 (2010).

[21] S. H. R. Sena, J. M. Pereira, F. M. Peeters, and G. A. Farias,
Landau levels in asymmetric graphene trilayers, Phys. Rev. B
84, 205448 (2011).

[22] J. M. Shao and G. W. Yang, Magneto-optical conductivity of
Weyl semimetals with quadratic term in momentum, AIP Adv.
6, 025312 (2016).

[23] J. Li, Y. Sun, M. Wu, and H. Pan, Novel electric field effects
on magneto-optical conductivity in eight-pmmn borophene,
J. Phys.: Condens. Matter 33, 185501 (2021).

[24] J. D. Malcolm and E. J. Nicol, Magneto-optics of general
pseudospin-s two-dimensional Dirac-Weyl fermions, Phys. Rev.
B 90, 035405 (2014).

[25] R.-L. Chu, X. Li, S. Wu, Q. Niu, W. Yao, X. Xu, and C. Zhang,
Valley-splitting and valley-dependent inter-Landau-level opti-
cal transitions in monolayer MoS2 quantum Hall systems, Phys.
Rev. B 90, 045427 (2014).

[26] X. Yuan, Z. Yan, C. Song, M. Zhang, Z. Li, C. Zhang, Y. Liu, W.
Wang, M. Zhao, Z. Lin, T. Xie, J. Ludwig, Y. Jiang, X. Zhang,
C. Shang, Z. Ye, J. Wang, F. Chen, Z. Xia, D. Smirnov et al.,

Chiral Landau levels in Weyl semimetal nbas with multiple
topological carriers, Nat. Commun. 9, 1854 (2018).

[27] Z. Li and J. P. Carbotte, Magneto-optical conductivity in a
topological insulator, Phys. Rev. B 88, 045414 (2013).

[28] M. Calixto, N. A. Cordero, E. Romera, and O. Castaños, Sig-
natures of topological phase transitions in higher Landau levels
of HgTe/CdTe quantum Wells from an information theory per-
spective, Phys. A (Amsterdam) 605, 128057 (2022).

[29] E. Illes and E. J. Nicol, Magnetic properties of the α−T3

model: Magneto-optical conductivity and the Hofstadter butter-
fly, Phys. Rev. B 94, 125435 (2016).

[30] D. I. Khomskii, Transition Metal Compounds (Cambridge Uni-
versity Press, Cambridge, 2014).

[31] C. A. Marianetti, G. Kotliar, and G. Ceder, A first-order Mott
transition in LixCoO2, Nat. Mater. 3, 627 (2004).

[32] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insula-
tor: Physics of high-temperature superconductivity, Rev. Mod.
Phys. 78, 17 (2006).

[33] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transi-
tions, Rev. Mod. Phys. 70, 1039 (1998).

[34] Y. Tokura, Quantum materials at the crossroads of strong corre-
lation and topology, Nat. Mater. 21, 971 (2022).

[35] D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu, The
Hubbard model, Annu. Rev. Condens. Matter Phys. 13, 239
(2022).

[36] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents,
Correlated quantum phenomena in the strong spin-orbit regime,
Annu. Rev. Condens. Matter Phys. 5, 57 (2014).

[37] J. Zaanen, G. A. Sawatzky, and J. W. Allen, The elec-
tronic structure and band gaps in transition metal compounds,
J. Magn. Magn. Mater. 54-57, 607 (1986).

[38] J. Zaanen and G. A. Sawatzky, Systematics in band gaps and
optical spectra of 3D transition metal compounds, J. Solid State
Chem. 88, 8 (1990).

[39] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Band gaps and
electronic structure of transition-metal compounds, Phys. Rev.
Lett. 55, 418 (1985).

[40] X. Bu and Y. Li, Optical signature for distinguishing between
Mott-Hubbard, intermediate, and charge-transfer insulators,
Phys. Rev. B 106, L241101 (2022).

[41] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Hubbard
model physics in transition metal dichalcogenide Moiré bands,
Phys. Rev. Lett. 121, 026402 (2018).

[42] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald,
Topological insulators in twisted transition metal dichalco-
genide homobilayers, Phys. Rev. Lett. 122, 086402 (2019).

[43] K. Slagle and L. Fu, Charge transfer excitations, pair density
waves, and superconductivity in Moiré materials, Phys. Rev. B
102, 235423 (2020).

[44] Y. Zhang, N. F. Q. Yuan, and L. Fu, Moiré quantum chemistry:
Charge transfer in transition metal dichalcogenide superlattices,
Phys. Rev. B 102, 201115(R) (2020).

[45] E. C. Regan, D. Wang, C. Jin, M. I. Bakti Utama, B. Gao, X.
Wei, S. Zhao, W. Zhao, Z. Zhang, K. Yumigeta, M. Blei, J. D.
Carlström, K. Watanabe, T. Taniguchi, S. Tongay, M. Crommie,
A. Zettl, and F. Wang, Mott and generalized Wigner crystal
states in WSe2/WS2 moiré superlattices, Nature (London) 579,
359 (2020).

[46] Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K. Watanabe,
T. Taniguchi, A. H. MacDonald, J. Shan, and K. F. Mak,

045445-11

https://doi.org/10.1103/PhysRevB.93.085426
https://doi.org/10.1103/PhysRevB.93.085442
https://doi.org/10.1103/PhysRevB.105.045409
https://doi.org/10.1103/PhysRevB.91.235433
https://doi.org/10.1103/PhysRevB.107.235115
https://doi.org/10.1103/PhysRevLett.126.056401
https://doi.org/10.1103/PhysRevLett.98.157402
https://doi.org/10.1103/PhysRevB.87.245131
https://doi.org/10.1038/s41467-020-16844-y
https://doi.org/10.1103/PhysRevB.84.125455
https://doi.org/10.1103/PhysRevB.107.085146
https://doi.org/10.1103/PhysRevB.92.205428
https://doi.org/10.1209/0295-5075/92/57008
https://doi.org/10.1103/PhysRevB.84.205448
https://doi.org/10.1063/1.4942203
https://doi.org/10.1088/1361-648X/abf19e
https://doi.org/10.1103/PhysRevB.90.035405
https://doi.org/10.1103/PhysRevB.90.045427
https://doi.org/10.1038/s41467-018-04080-4
https://doi.org/10.1103/PhysRevB.88.045414
https://doi.org/10.1016/j.physa.2022.128057
https://doi.org/10.1103/PhysRevB.94.125435
https://doi.org/10.1038/nmat1178
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1038/s41563-022-01339-6
https://doi.org/10.1146/annurev-conmatphys-031620-102024
https://doi.org/10.1146/annurev-conmatphys-020911-125138
https://doi.org/10.1016/0304-8853(86)90188-5
https://doi.org/10.1016/0022-4596(90)90202-9
https://doi.org/10.1103/PhysRevLett.55.418
https://doi.org/10.1103/PhysRevB.106.L241101
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevLett.122.086402
https://doi.org/10.1103/PhysRevB.102.235423
https://doi.org/10.1103/PhysRevB.102.201115
https://doi.org/10.1038/s41586-020-2092-4


LIU, KE, GUO, ZU, LI, AND LÜ PHYSICAL REVIEW B 110, 045445 (2024)

Simulation of Hubbard model physics in WSe2/WS2 moiré
superlattices, Nature (London) 579, 353 (2020).

[47] Y. Shimazaki, I. Schwartz, K. Watanabe, T. Taniguchi, M.
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