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From knots to exceptional points: Emergence of topological features in non-Hermitian systems
with long-range coupling
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We present a study of complex energy braiding in a one-dimensional non-Hermitian system with nth-order
long-range asymmetrical coupling. Our work highlights the emergence of novel topological phenomena in such
systems beyond the conventional nearest-neighbor interaction. The modified SSH model displays n distinct knot
and link combinations in the complex energy-momentum space under periodic boundary conditions, which can
be controlled by varying the coupling strengths. A topological invariant, namely the braiding index, is introduced
to characterize the different complex energy braiding profiles, which depends on the zeros and poles of the
characteristic polynomials. Furthermore, we demonstrate that the non-Hermitian skin effect can be localized at
one or both ends, signifying conventional or bipolar localization, depending on the sign of the braiding index.
Phase transitions between different braiding phases with the same (opposite) sign of the topological invariant
occur at Type-1 (Type-2) exceptional points, with Type-1 (Type-2) phase transitions accompanied by single
(multiple) exceptional points. We propose an experimental setup to realize the various braiding schemes based
on the RLC circuit framework, which provides an accessible avenue for implementation without recourse to
high-dimensional momentum space required in most other platforms.
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I. INTRODUCTION

The study of non-Hermitian systems has a long history,
dating back to the early days of quantum mechanics [1–6].
However, it has gained renewed interest in recent years and
has been analyzed in various contexts, ranging from optics
[7–9] to photonics [10–13] to metamaterials [14–17] to
quantum field theory [18–20] to topolectrical circuits [21–35]
and to condensed-matter physics [5,36–43]. Non-Hermitian
systems are usually characterized by non-Bloch theory [6,44]
and exhibit novel and exotic physical phenomena that are
not present in Hermitian systems [30,45–48]. One of the key
features of non-Hermitian systems is the presence of complex
eigenenergies [49–52], which can have a profound impact
on the system’s behavior. In particular, the concept of energy
braiding [53–61], i.e., the criss-crossing of two eigenenergy
braids in complex energy space, has provided key insights
into the understanding of non-Hermitian properties, such as
(i) the non-Hermitian skin effect [62–68], which localizes the
bulk states to the edges of the system under open boundary
conditions, and (ii) exceptional points [21,69–72], which
are special points in the complex energy space where two
eigenvalues and their corresponding eigenvectors coalesce.

Complex energy braiding opens up a new avenue for
exploring novel topological phases and their correspond-
ing phase transitions. This is because the complex-valued
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eigenvalues of non-Hermitian systems confer an extra degree
of freedom in their energy-momentum spectra. Energy braid-
ing in non-Hermitian systems has been realized in a variety of
platforms, both theoretically and experimentally. On the theo-
retical side, the concept of complex energy braiding has been
studied using various models such as the Kitaev chain [73–77]
and the topological superconductor [78,79]. Experimentally,
energy braiding has been realized in a variety of platforms
such as photonic systems [54,80,81], metamaterial systems
[82], and electronic circuits [76,83]. In photonic systems,
complex energy braiding has been observed in wave guide
arrays and resonator arrays with asymmetrical couplings
[54,84]. A single-band system with long-range coupling was
experimentally realized in an optical resonator system [84].
In mechanical systems, the braiding of energy eigenvalues
has been demonstrated in the motion of coupled pendulums
[85], while in electronic circuits, it has been realized us-
ing inductor-capacitor circuits. Finally, one-band [86] and
two-band systems [59] with long-range coupling have been
experimentally realized in acoustic systems.

Despite the above plethora of studies on complex admit-
tance energy braiding in non-Hermitian systems, several key
questions remain unanswered:

(1) Is it possible to extend the braiding concept to mul-
tiple knots and links in a generalized one-dimensional (1D)
system?

(2) Is there a correlation between the localization of the
non-Hermitian skin effect and the handedness of the energy
braiding?

(3) Can generalized braiding circuits provide a general
approach to trace the locus of the exceptional points which
is not tied to any specific model?
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(4) Can an extended topological braiding index be defined
to describe non-Hermitian systems with arbitrary long-
distance coupling?

In this paper, we aim to address the above-mentioned
questions by reference to the complex energy braiding of a
model 1D non-Hermitian system which incorporates long-
range unidirectional coupling. Our model, which is based on
the bipartite modified non-Hermitian SSH model [87], allows
for an arbitrary number of braids or knots to be engineered in
the energy spectrum. Depending on the degree of long-range
coupling in the model, the eigenenergy strands in the complex
energy spectra can tangle with one another and form an arbi-
trary number of loops. In general, an nth-order asymmetrical
interchain coupling allows for n different configurations of
complex energy braiding. The braid configurations are char-
acterized by a new topological invariant, the knot/braiding
index, which depends on the number of zeros and poles of
the characteristic polynomial of the system’s Hamiltonian. In-
terestingly, the sign of the braiding index would determine the
localization of the non-Hermitian skin effect (NHSE) at either
or both ends of the 1D chain. This is unlike the conventional
NHSE, which is governed by the relative coupling strength
within the chain and is restricted to unipolar (localized at one
end) as opposed to bipolar localization. Furthermore, distinct
topological phases with different numbers of knots can be
transformed from one to the other via exceptional points,
which can be classified as Type-1 or Type-2 depending on
the sign of the braiding index across the phase boundary.
Finally, we propose an experimental framework for realizing
these braiding schemes in an RLC circuit, which offers a
simple accessible route to the realization of braiding in 1D
non-Hermitian systems.

II. MODEL WITH ARBITRARY NUMBER OF KNOTS

To realize various complex energy-momenta knots via 1D
nonreciprocal lattice, we consider a bipartite model with tun-
able long-range. coupling with two types of sublattice sites (A
and B) per unit cell. The model Hamiltonian is given by

H1(k) =
(

0 CAB,0 + CAB,−me−ikm

CAB,0 + CBA,neikn 0

)
. (1)

Equation (1) represents a two-band model with long-range
unidirectional couplings of n unit cells towards the right and
m unit cells towards the left. For a given value of momentum
k, the corresponding eigenvalues of H1(k) are given by

E±(k) = ±
√

(CAB,0 + CAB,−me−ikm)(CAB,0 + CBA,neikn).

(2)

As the momentum k varies from 0 to 2π within the Bril-
louin zone, the trajectories of the two complex eigenenergies
may form knots in the 3D (ReE , ImE , k) complex energy-
momentum space. If we assume, without loss of generality
that m > n, then the two eigenenergy bands may tangle with
each other for up to m times (e.g., if we set m = 3, then the
energy bands may tangle for zero, one, two, or three times)
depending on the coupling parameters. Figure 1 shows exem-
plary knot systems realized by the Hamiltonian in Eq. (1) with
m = 3 and n = 1 in which the bands tangle once [Fig. 1(a)],

twice [Fig. 1(b)], and three times [Fig. 1(c)]. These correspond
to the unknot, Hopf link, and trefoil configurations, respec-
tively. We can systematically describe these configurations via
the Artins notation [58,88], where a complex braiding with p
knots follows a sequence of band crossings, each of which can
be described by the braiding word τ

±p
1 . Here τ 1

1 (τ−1
1 ) denotes

the case where the trajectory of the first energy strand crosses
that of the second energy strand from the left (right) in the
projection of the 3D trajectory onto the ImE = ∞ plane. The
systems in Figs. 1(a)–1(c) can thus be described by the braid
words τ 1

1 , τ−2
1 , and τ−3

1 , respectively.
Furthermore, the different types of knot configurations can

be characterized by an integer topological number known as
the braiding index ξ , which is defined as [54]

ξ ≡
∫

dk

2π i
∂klog

∣∣∣∣H (k) − 1

2
TrH (k)I2

∣∣∣∣, (3)

where I2 is the two-by-two identity matrix.
The magnitude of ξ indicates the number of times that the

eigenenergy strands of H (k) wind or braid around each other
in (Re(E ), Im(E ), k) space, while its sign denotes the net
handedness of the braiding. Using the fact that the determinant
of a square matrix is equal to the product of its eigenvalues,
introducing H̃ (k) ≡ H (k) − 1

2 TrH (k)I2, and denoting the two
eigenvalues of H̃ (k) as Ẽ±(k), ξ can be rewritten as

ξ =
∫

dk

2π
∂k[ArgẼ+(k) + ArgẼ−(k)]. (4)

Because the Hamiltonian Eq. (1) is traceless, ξ for this
Hamiltonian can be interpreted as counting the number of
times that its eigenvalues wind around the complex energy
origin. For example, the leftmost plot in Fig. 1(a) shows that
for this unknot system, the two energy strands join together
to form a single loop that winds in the counterclockwise
direction as k increases (as is evident from the color coding
of the energy strings where darker colors correspond to larger
k values) and hence corresponds to a braiding index of +1. For
the Hopf link in Fig. 1(b), the gray-red and yellow-blue bands
each winds around the origin once in a clockwise manner and
hence collectively give rise to an overall braiding index of −2.
For the trefoil in Fig. 1(c), the gray-red and yellow-blue bands
each winds around the origin for one and a half times in a
counter-clockwise manner. [The fact that each band winds
around the origin for one and a half times can be seen from,
e.g., the yellow-blue line crossing a line slightly displaced
above the real energy axis only once on the negative side but
twice on the positive side, with the crossing points depicted
by open circles in the left panel of Fig. 1(c).] The two bands
therefore collectively give rise to a braiding index of −3.
Interestingly, for two-band systems, each of the two energy
strings begins and ends at the same value of complex energy
at k = 0 and k = 2π , respectively, when ξ is even, but when
ξ is odd, the start-point of one band coincides with the end
point of the other and vice versa (so that the trajectory of the
two bands collectively form a closed loop).

Beyond counting the number of times that the eigenenergy
strands wind around the origin on the complex energy plane,
the braiding index has an alternative mathematical interpre-
tation. Equation (3) can be recast into the form of a contour
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(a)

(b)

(c)

FIG. 1. Complex energy braiding with arbitrary number of knots in a 1D two-band modified SSH chain with long-range coupling. From
left to right: complex energy plane projection, 3D complex energy-k braiding, and schematic representation of braiding for m = 3, n = 1, and
CAB,0 = 1 in (a) an unknot system with one knot and CAB,−m = 0.22, CBA,n = −1.5; (b) a Hopf link system with two knots and CAB,−m = 1.4,
CBA,n = 1.6; and (c) trefoil system with three knots and CAB,0 = 1.4, CBA,n = −0.4. The dotted line and circles denote the crossing points of
the yellow-blue line with a line slightly displaced above the ReE axis mentioned in the text. The yellow-blue and gray-red lines in the left
and middle plots represent the eigenenergies of the two distinct bands with darker colors (i.e., red and blue) representing larger values of k for
0 � k < 2π .

integral over the complex unit circle in β ≡ exp(ik) space:

ξ = 1

2π i

∮
|β|=1

∂kẼ+(β )

Ẽ+(β )
. (5)

Equation (5) can be evaluated using the argument principle
as ξ = N − P, where N (P) is the number of zeros (poles) of
E+ enclosed inside the contour integral. From Eq. (2), Ẽ+ =√

(CAB,0 + CAB,−mβ−m)(CAB,0 + CBA,nβn). There are there-
fore m poles of E+ at β = 0 within the complex unit circle
due to the β−m term. The zeros of β occur when βm =
−CAB,−m/CAB,0, the solutions of which are given by the fol-

lowing equation:

β = β1, f

= |CAB,−m/CAB,0|1/me{i[Arg(CAB,−m )−Arg(CAB,0 )+(2 f +1)π/m]},
(6)

where f ∈ (1, . . . , m), and when βn = −CAB,0/CBA,n, i.e., the
solutions of which are given by

β = β2,g = |CAB,0/CBA,n|1/ne{i[Arg(CAB,0 )−Arg(CBA,n )+(2g+1)π/n]},
(7)

where, g ∈ (1, . . . , n). Depending on the relative magnitudes
of CAB,0, CAB,−m, and CBA,n, the m (n) values of β1, f (β2,g)
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(a)

(e) (f) (g)

(b) (c) (d)

FIG. 2. Braiding index phase diagram [(a)–(c)] schematic illustration of distribution of βs at which E = 0 on complex β plane at (a) ξ = 0,
(b) ξ = 1, and (c) ξ = −2 for a system described by Eq. (1) for m = 3 and n = 1. The yellow circle denotes the value of β due to the n = 1
term and the blue circles the values of β due to the m = 3 term. (d) ξ phase diagram of system in (a) with CAB,0 = 1. (e) Schematic illustration
of distribution of βs at which E = 0 on complex β plane on transition line between ξ = −2 and ξ = 1. (f) Complex energy projection and (g)
(Re(E ), Im(E ), k)-space trajectory of energy strings at transition in (e). The black circles in (g) denote the string-touching points at E = 0.

may fall inside, on, or outside the complex unit circle. Ne-
glecting for now the cases where the β1, f s or β2,gs lie exactly
on the complex unit circle, the possible values of ξ are thus
−m, when |CAB,−m/CAB,0| > 1, |CAB,0/CBA,n| > 1 so that
the β1, f s and β2,gs all lie outside the unit circle; 0, when
|CAB,−m/CAB,0| < 1, |CAB,0/CBA,n| > 1 so that the m β1, f s
all lie within the unit circle while the n β2,gs all lie outside
[Fig. 2(a)]; n, when |CAB,−m/CAB,0| < 1, |CAB,0/CBA,n| < 1,
so that the m β1, f s and n β2,gs all lie inside the unit circle
[Fig. 2(b)]; and (n − m), so that the n β2,gs all lie within the
unit circle while the m β1, f s all lie outside [Fig. 2(c)]. This
dependence of ξ on the relative magnitudes of CAB,0, C2L,
and CBA,n results in the phase diagram shown in Fig. 2(d)
where the boundaries between different values of the braiding
indices are defined by the equations: CAB,−m = ±CAB,0 and
CBA,n = ±CAB,0.

Let us now consider the case where the m values of
β1, f s (or n values of β2,gs) fall on the unit circle on the
complex β plane [Fig. 2(e)], for which the value of CAB,−m

(CBA,n) must necessarily fall on one of the phase bound-
aries between different values of ξ . This is because the β1, f s
and/or β2,gs have to pass through the unit circle for the
number of βs solutions to E+ = 0 that lie within the unit
circle to change. The correspondence between the complex
unit circle on the β plane to real values of k, i.e., β ≡
exp(ik) means that there are m, n, or (m + n) values of k
corresponding to zero energy on the periodic boundary con-
ditions (PBC) spectrum when only |CAB,−m/CAB,0| = 1, only

|CAB,0/CBA,n| = 1, or |CAB,−m/CAB,0| = |CAB,0/CBA,n| = 1,
respectively. Figures 2(f) and 2(g) illustrate this for the spe-
cific case of m = 3. For the particular model in Eq. (1), the
zeros of the E+ also happen to be exceptional points because
these zeros occur only when H1(k) is rank deficient and all the
matrix elements in the left or right columns are zero.

III. GBZ AND NHSE VARIATION IN COMPLEX
BRAIDING CONFIGURATIONS

We comment briefly on the relationship between the braid-
ing index and the NHSE. In 1D systems, a winding number
(or braiding index) ξr (E ) [62] may be defined with respect to
a reference energy E as

ξr (E ) =
∫

dk

2π i
∂klog|H (k) − E |. (8)

The braiding index ξ in Eq. (3) may be interpreted as a
special case of the winding number ξr (E ) where E is set to
1
2 Tr(H ), which for the model in Eq. (1) is equal to 0. The
winding number ξr (E ) may be visually determined from the
PBC spectrum of a system provided that the individual bands
can be separately identified and the direction of increasing k
indicated.

For example, in Fig. 3(a) the winding number at point A.
ξr (i) = −2 because the bands indicated by the red and blue
lines each winds around point A in a complete circle along the
clockwise direction. In contrast, the winding number at point
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Braiding number and NHSE. (a) Distribution of ξr (E ) on the complex energy plane and PBC spectrum for the Hopf link system
of Fig. 1(b) with m = 3, n = 1, CAB,0 = 1, CAB,−m = 1.4, and CBA,n = 1.6. The two energy bands are indicated by the blue and red lines, and
the arrows on the lines indicate the direction of increasing k. The blue dot A and red dot B denote values of E for which ξr (E ) takes the
values of −2 and −1, respectively. (b) Distribution of the number of distinct eigenstates with |β| > 1 on the complex energy plane for the
system in (a). (c) PBC spectra for the Hopf link system in (a) and the OBC spectra and spatial density distribution for its eigenstates in a
finite system with 40 nodes. Darker dots indicate a higher density distribution. The lines comprising faint blue (green) dots denote eigenstates
localized towards the right (left) with larger (smaller) node indices. [The green dots in (c) are located at E = 0.] (d) Variation of proportion
of OBC eigenstates in finite systems comprising 40 nodes localized nearer the left edge with CAB,−m and CBA,n. The dotted white lines denote
the partitions between phase regions with different values of the braiding index ξ , which are indicated at the top left corner of the regions. The
values of (CAB,−m,CBA,n) = (1.4, 1.6) plotted in (a)–(c) and (CAB,−m,CBA,n) = (0.8, 1.1) plotted in (e) and (f) are indicated. (e) Distribution
of ξr (E ) on the complex energy plane for a system with with m = 3, n = 1, CAB,0 = 1, CAB,−m = 0.8, and CBA,n = 1.1. (f) PBC spectrum and
OBC spectrum and eigenstate spatial distribution for a finite system containing 40 nodes for the system in (e).

B, ξr (B) = −1 because point B falls completely outside the
loop enclosed by the blue band and is enclosed only the red
band, which winds around the point in the counterclockwise
direction.

The magnitude of the winding number ξr (E ) is associated
with the number of bulk NHSE states that exist in a semi-
infinite system at E , as explained shortly, while the sign of the
winding number denotes whether it is a semi-infinite system
that extends from 0 to +∞ [positive ξr (E )] or a semi-infinite
system that extends from −∞ to 0 that hosts such bulk NHSE
states [3]. The braiding index ξ = ξr[− 1

2 Tr(H )] therefore in-
dicates the number and localization of NHSE states that exist
at E = − 1

2 Tr(H ) in the semi-infinite system.
To further elucidate the relationship between the wind-

ing number and semi-infinite eigenstates, we examine these
eigenstates more carefully. We consider first the eigenstates
for a semi-infinite system that extends from x = −∞ to x = 0.
We introduce the surrogate Hamiltonian H1(β ) [63] to the
Hamiltonian in Eq. (1) as

H1(β ) =
(

0 CAB,0 + CAB,−mβ−m

CAB,0 + CBA,nβ
n 0

)
, (9)

where β ≡ exp(ik) and k is now allowed to be complex. If
an eigenstate of the semi-infinite system at a given energy E
exists, then the eigenstate can be generically written as a linear
combination,

ψ (x) =
a=n+1∑

a=1,|βa;E |�1

|φa;E 〉caβ
x
a;E , (10)

where β = βa;E is the ath value of β for which one of the
eigenvalues of H1(β = βa;E ) is E and |φa〉E is the corre-
sponding eigenvector. The summation of a from 1 to n + 1
in Eq. (10) is due to the following considerations: The cou-
pling between the B node of a unit cell and the A node of the
nth neighbor to its right represented by the βn term in Eq. (9)
requires the A node component of ψ (x), i.e., 〈A|ψ (x) to
satisfy the boundary conditions 〈A|ψ (1) = 〈A|ψ (2) = ... =
〈A|ψ (n) = 0 beyond the rightmost unit cell of the semi-
infinite system at x = 0. A linear combination of n + 1
linearly independent eigenvectors is therefore required in
Eq. (10) to ensure that these n constraints are always satisfied.
Moreover, the corresponding β values for these eigenvectors
are required to satisfy |βa;E | � 1 to ensure that ψ (x) remains
bounded as x → −∞.
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Whether such right-localized eigenstates exist in a semi-
infinite system extending from x = −∞ to x = 0 for a given
E therefore hinges on whether there are at least n + 1 lin-
early independent eigenvectors of H1(β ) satisfying |βa;E | � 1
at that given E . The characteristic equation for |H1(β ) −
EI2| = 0 can be cast into the form of a (m + n)th-order poly-
nomial E2βm − (CAB,0β

m + CAB,−m)(CAB,0 + CBA,nβ
n) = 0,

which in general has (m + n) roots for the βs, corresponding
to (m + n) linearly independent eigenvectors.

Now recall that the braiding index is ξ = N − P, where
N is the number of zeros of E+ and P = m is the number
of poles of E+ that lie within |β| < 1 on the complex β

plane. As before, for simplicity, we first set aside the cases
where any of the β values lies exactly on the unit circle. The
zeros of E+ on the complex β plane are merely the βa;E=0

values corresponding to E = 0. The number of βa;E=0s that lie
within the complex unit circle on the β plane (excluding the
β = 0 term), i.e., N , is therefore m + ξ because ξ = N − m.
Conversely, the number of βs that lie outside the complex
unit circle on the β plane is m + n − (m + ξ ) = n − ξ . In
particular, ξ = −1 implies that there are n + 1 values of β

that lie outside the complex plane with n + 1 corresponding
linearly independent eigenvectors. This is exactly the num-
ber of linearly independent eignvectors with |β| � 1 required
to constitute a right-localized semi-infinite NHSE eigenstate.
A more negative value of ξ implies that there is an excess
number of |β| � 1 eigenstates that may be used to construct a
right-localized semi-infinite NHSE eigenstate. The fact that
only (n + 1) such |β| � 1 eigenstates are required out of
the n + |ξ | available ones implies that we can obtain Cn+|ξ |

n+1
linearly independent right-localized NHSE eigenstates in a
semi-infinite system extending from x = −∞ to x = 0 at
E = 0. Here Ca

b denotes the number of different combinations
of picking a items out of a set of b items. (Note that this
differs from the interpretation in Ref. [3] where |ξ | itself
is interpreted to be the number of degenerate semi-infinite
NHSE eigenstates.) In a similar manner, a positive value of ξ

implies that there are Cm+ξ
m+1 linearly independent left-localized

NHSE eigenstates in a semi-infinite system extending from
x = 0 to x = ∞ at E = 0.

The above arguments that ξ = ξr (E = 0) is correlated to
the number of semi-infinite NHSE eigenstates at E = 0 can
be readily extended to the case of arbitary E . Figure 3(b)
shows n(|β| > 1), i.e., the number of βs for which |β| > 1
corresponding to each value of E in the parameter set in
Fig. 3(a), for which m = 3 and n = 1. It can be readily verified
by a comparison between Figs. 3(a) and 3(b) that the relation
between the negative values of ξ in Fig. 3(a) to n(|β| � 1) in
Fig. 3(b) is given by n(|β| � 1) = ξr + m as discussed above.
Further, the PBC spectrum coincides with the boundary lines
between different values of ξr (E ). This is because changes
in ξr (E ) correspond to changes in the number of βs within
the complex unit circle on the β plane, which are necessarily
accompanied by βa,E s crossing the complex unit circle as E
is varied. A βa,E value that lies on the complex unit circle
corresponds to a real value of k = −iln(βa,E ) in Eq. (1) and
therefore lies on the PBC spectrum.

Let us label the βa,E s such that |β1,E | � |β2,E | �
...|βn+m,E |. Then, the general Brillouin zone (GBZ) of Eq. (1)

for a system with open boundary conditions (OBC) in the
thermodynamic limit is given by the loci of E for which
|βm,E | = |βm+1,E |. Recall from the above discussion that the
number of βa;E s that lie within the complex unit circle on the
β plane at energy E is m + ξr (E ). For a value of E that lies on
the GBZ, a positive finite value of ξr (E ) therefore implies that
|βm,E | = |βm+1,E | � 1, which corresponds to a left-localized
OBC NHSE state. Conversely, a negative value of ξr (E ) in
turn corresponds to a right-localized OBC NHSE state. Al-
though strictly speaking, the GBZ condition |βm,E | = |βm+1,E |
applies only in the thermodynamic limit, the NHSE localiza-
tion direction of a sufficiently long finite-sized chain follows
that of the chain in the thermodynamic limit. In particular,
a positive (negative) value of the braiding index ξ = ξr (0)
implies that OBC NHSE states within the central area around
E = 0 bounded by the PBC spectrum are localized at the left
(right) edge of the system. This is illustrated in Fig. 3(c),
which shows the eigenenergy and spatial density distribution
for the eigenstates of a 40-node-long finite system described
by the Hamiltonian with the parameter set of Figs. 3(a) and
3(b). As predicted by the negative signs of ξr (E ) shown in
Fig. 3(a), most of the eigenstates are localized towards the
right edge (large N) of the system, except for two topological
zero modes (TZMs) that are localized towards the left edge
(these TZMs are not described by the GBZ theory).

Apart from the TZMs, the NHSE localization direction
may differ from that predicted by ξ outside the central area
on the complex energy plane around E = 0 bounded by the
PBC spectrum. Figure 3(d) shows fL, the fraction of the 40
eigenstates of a 40 node-long system described by Eq. (1)
localized closer to the left edge, as a function of CAB,−m and
CBA,n. A fL value of 1 indicates that all of the eigenstates
are localized closer to the left edge while a proportion of
0 indicates that all of the eigenstates are localized closer to
the right edge. In the ξr (E ) = −2 regions at the four corners
of the plot in Fig. 3(d), there are regions at which fL devi-
ates very slightly from 0. These slight deviations are due to
TZMs that are localized at the left edge opposite to that of
the NHSE eigenstates, as shown in Fig. 3(c). Apart from the
ξr (E ) = −3 regions where all the eigenstates are localized to
the right, bipolar localization, in which the NHSE eigenstates
at different eigenenergies are localized at different edges of
the system, occurs throughout much of the CAB,−m–CBA,n pa-
rameter space. One example at (CAB,−m,CBA,n) = (0.8, 1.1)
is shown in Figs. 3(e) and 3(f) where Fig. 3(f) shows that
the eigenstates in the central complex energy region around
E = 0 are localized to the left, consistent with ξr (E ) = 1,
whereas the more numerous eigenstates in the complex E
side lobes are localized towards the right, consistent with
ξr (E ) = −1 in these lobes, as shown in Fig. 3(e).

IV. CONTINUOUS JUMPS IN BRAIDING INDEX VIA
INTRAUNIT CELL COUPLING AND ONSITE COUPLING

In the model in Eq. (1), there is a constraint in the braiding
index ξ in that it changes only in steps of ±m or ±n. This
is because the m (n) roots of CAB,0 + CAB,−m exp(−ikm) = 0
[CAB,0 + CBA,n exp(ikn) = 0] in Eq. (2) all have the same ab-
solute values. We can remove this constraint by modifying the
Hamiltonian with the introduction of a finite on-site potential,
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(a)

(c) (d) (e)

(b)

FIG. 4. Continuous jumps in ξ via intraunit cell coupling (a) ξ phase diagram of system with surrogate Hamiltonian given by Eq. (11)
with CAB,0 = Ci = 1, m = 3, and n = 1. The ξ = −1 regions, which are absent in Fig. 3(d), are highlighted in white. (b) Left: Variation of
complex βs for which E = 0 with CAB,−m at CBA,n = 2, as denoted by the white dotted line in (a). The values of β for which |β| > 1 (|β| < 1)
are marked in black (blue). Right: Projection of graph on left onto complex β plane. The points with lighter (darker) colors correspond to
smaller (larger) values of CAB,−m. Panels [(c)–(e)] show the evolution of the PBC spectrum with CAB,−m in the vicinity of the ξ = 0 to ξ = −2
transition denoted by the white arrow in (a). The black arrows in (c) and (e) show the movement direction of the energy bands as CAB,−m is
increased across the transition.

i.e.,

H2(β ) =
( −Ci CAB,0 + CAB,−mβ−m

CAB,0 + CBA,nβ
n Ci

)
, (11)

in which case the eigenenrgies E now satisfy

C2
i − (CAB,0 + CBA,nβ

n)(CAB,0 + CAB,−mβ−m) = E2. (12)

This results in a phase diagram for which all values of ξ across
the entire range of ξ = −m to ξ = n appear, as shown in
Fig. 4(a). Due to the offset C2

i in Eq. 12, the (m + n) values
of β that satisfy the E = 0 condition will no longer have the
same absolute values in general [Fig. 4(b)], thus removing the
restriction on the change in ξ to steps of ±m or ±n as was
the case when Ci = 0. As mentioned previously, a change in ξ

will be accompanied by the appearance of a zero eigenenergy
on the PBC spectrum since ξ varies with the number of β

values at which the energy eigenvalues are 0 and |β| < 1.
From Eq. (12), it can be seen that E = 0 corresponds to an
eigenenergy at which the two energy bands coincide with
each other [Fig. 3(d)]. As CAB,−m in Figs. 4(c)–4(e) is varied
towards the boundary between two ξ values [along the dotted
line shown in Fig. 4(a)], the two bands begin to approach each
other along the real energy axis [Fig. 4(c)]. They then touch
each other at E = 0 at the transition point corresponding to
the ξ boundary line [Fig. 4(d)] and then drift apart along
the imaginary energy axis [Fig. 4(e)] as CAB,−m is increased
further. As the energy bands touch at the transition point,

they swap partners, which in turn results in a change in the
connectivity between the energy bands and accordingly, the
number of times the two bands wind around E = 0. Consider
the series of figures Figs. 4(c)–4(e). Before the transition
[Fig. 4(c)], Re(E2) is less than 0 at the minimum value of |E |,
which results in the two bands being separated by a finite gap
along the real energy axis; Re(E2) becomes 0 at the transition
point, which results in the bands touching [Fig. 4(d)]; and,
finally, Re(E2) becomes positive after the transition point in
Fig. 4(e), which results in the two bands being separated by a
finite gap along the imaginary energy axis.

V. IMPACT OF BIDIRECTIONAL ASYMMETRIC
LONG-RANGE COUPLING ON BRAIDING PROFILE

In the models introduced so far, the interunit cell A
to B sublattice site coupling 〈A|H (β )|B〉 occurs only to
the left(CAB,−mβ−m) while the B to A sublattice coupling
〈B|H (β )|A〉 occurs only to the right (CAB,0β

n) term. This
implies that the maximum value of |ξ | that can occur is
max([m, n]), i.e., the largest distance of the interunit cell cou-
pling either along the left or right directions. We can further
generalize the model to extend the range of possible ξ values
and attain a larger maximum value of |ξ | for a given intercell
coupling distance by incorporating interunit cell bidirectional
coupling of both directions in both the A to B sublattice
sites and vice versa. The corresponding Hamiltonian in the
presence of this
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(a) (b) (c)

FIG. 5. Extended values of ξ in the presence of bidirectional coupling. (a) ξ phase diagram of system with surrogate Hamiltonian on
the CAB;3–CBA;1 plane at CAB;0 = CBA;0 = Ci = 1, and CAB;2 = CBA;−3 = 3. [(b) and (c)] PBC spectra of system in (a) at (b) (CAB;3,CBA;1 =
(4.5, 1.5) with ξ = −6 and (c) (CAB;3,CBA;1 = (1.5, 4.5) with ξ = 3.

bidirectional coupling is given by

H3(β ) =
(

−Ci
∑mAB

a=1 CAB;−aβ
−a + ∑nAB

b=0 CAB;bβ
b∑mBA

c=1 CBA;−cβ
−c + ∑nBA

d=0 CBA;dβ
d Ci

)
. (13)

Figure 5 shows an exemplary phase diagram for a system represented by Eq. (13) where mAB = mBA = 3, nAB = 2, and
nBA = 1 and two PBC spectra from the two extreme (positive and negative) values of ξ = nAB + nBA = 3 and ξ = −mAB −
mBA = −6 obtained when the β terms with the largest positive and negative exponents in the upper right element of Eq. (13) are
multplied with their counterparts in the lower left element. The presence of coupling along both the left and right directions in the
two off-diagonal terms of H implies that the exponents of the β terms sum up in the characteristic equation for the eigenenergy,
which is given by

E2 − C2
i +

(
mAB∑
a=1

CAB;−aβ
−a +

nAB∑
b=0

CAB;bβ
b

)(
mBA∑
c=1

CBA;−cβ
−c +

nBA∑
d=0

CBA;dβ
d

)
= 0. (14)

In the characteristic equation, the exponents of β now range
from −(mAB + mBA) to nAB + nBA. Correspondingly, for the
example depicted in Fig. 5, the values of ξ range from
−(mAB + mBA) = −6 when all of the (mAB + mBA + nAB +
nBA) |β| values at E = 0 fall outside the unit circle on the
complex β plane [Fig. 5(b)] to nAB + nBA = 3 when all of the
|β| values fall within the unit circle. Compared to the earlier
models with unidirectional couplings depicted in Figs. 2–4
for which m = 3 resulted in the maximum value of |ξ | being
only 3, the presence of bidirectional coupling results in the
doubling of the maximum value of |ξ | to 6 even though the
furthest interunit cell coupling is still maintained to the third
neighbor.

VI. TOPOLOGICAL PHASE TRANSITION THROUGH
EXCEPTIONAL CURVES

Two topologically distinct phases associated with differ-
ent braiding index cannot be continuously transformed into
one another without transiting through a vanishing band-gap
state, at which point the braiding index changes its value.
This transition signifies the presence of exceptional points
(EPs) lying on the boundary between the two distinct phases.
Specifically, all points lying on the phase boundaries between
two distinguished knot configurations [see the phase diagrams

in Figs. 2(d) and 4(a)] constitute EPs which are characterized
by vanishing band gap with real solution of k.

To illustrate the phase transition via EPs, let us consider
Eq. (1) and set n = 1 without loss of generality. The modified
Laplacian then reads

H (k, m) = (CAB,0 + CAB,−me−imk )σ++(CAB,0+CBA,neik )σ−,

(15)

where σ± = 1
2 (σx ± iσy). Note that the band-gap of the two

band non-Hermitian model can vanish in two possible ways.
First, if the transition points lie at the phase boundary between
two opposite handedness (i.e., the sign of the braiding index
changes from positive sign to negative sign or vice versa)
configurations, then the two strings with undercross (τm

1 ) con-
figuration transforms into an overcross (τ−m

1 ) configuration
or vice versa. This sort of phase transition is referred as
Type-2 phase transition which is accompanied by m number
of EPs (here we vary kx from −π to π for simplicity). On
the other hand, a second type of phase transition occurs when
two strings change its braiding index number at the phase
transition points while maintaining the same sign, so that
the handedness of the braiding and the NHSE localization
remains at the same edge. This is the so-called Type-1 phase
transition, where an undercross (overcross) configuration re-
mains undercross (overcross) in the braiding configuration.
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1

2

3

4

(a) (b) (c)

FIG. 6. Exceptional points evolution in the various braided non-Hermitian bands. (a) Phase diagram and the phase boundaries with various
types and number of EPs in the two-band system defined in Eq. (15) with second-order long-range coupling (i.e., m = 2). Type-1 and Type-2
EPs are defined at the phase boundaries between different knot index with same sign and opposite sign, respectively, and shown in the vertical
and horizontal arrows, respectively. [(b) and (c)] Various type EPs in the complex energy-momentum space. Type-1 transition is accompanied
by single EP located at k = 0 in (b). Type-2 transition is accompanied by two EPs located at k = ±π/2 in (c).

A Type-1 transition is accompanied by a single EP. As
an illustrative example, we consider a system with second-
order long-range coupling [i.e., setting m = 2 in Eq. (15)]
and plot the corresponding phase diagram in Fig. 6. Clearly,
the phase boundaries coincide with the CAB,−m/CAB,0 = ±1
and CBA,n/CAB,0 = ±1 lines. Interestingly, the band diagrams
corresponding to points lying on the lines PQ and RS (cor-
responding to CAB,−m = ±CAB,0) host two exceptional points
with Type-2 transition as there are only two real values of k
[i.e., k = ±π/2 for RS line; see Fig. 6(c) and k = 0, π for
PQ line] which result in zero band gap of Eq. (15). On the
contrary, the band diagrams corresponding to lines AB and
CD (corresponding to CBA,n = ±CAB,0) represent the Type-1
phase transition with a single exceptional point as there exists
only a single real value of k [i.e., k = 0 for the AB line, see
Fig. 6(b) and k = π for the EF line] which satisfies the zero
band-gap condition in Eq. (15). Thus a transition from unlink
(|ξ | = 0) to Hopf link with the |ξ | = 2 (unknot with |ξ | = 1)
phase constitutes a Type-2 (Type-1) transition [see Fig. 6(a)].

In general, Type-2 transition host m EPs for a system with
long-range coupling of the order of m, since there are m
real solutions of k corresponding to zero band gap. On the
other hand, the Type-1 phase transition hosts only a single EP,
regardless of the degree of the long-range coupling (i.e., m).
We summarize the locations of the m Type-2 EPs and single
Type-1 EP in the k space for several example of long-range
order in Table I (note that for simplicity we consider the values
of k within the range of −π to π ).

VII. PROPOSAL FOR TOPOLOGICAL
CIRCUIT REALIZATION

The intricate energy braiding described by the model in
Eq. (1) can be implemented in a practical electrical circuit
using an RLC configuration, as depicted in Fig. 7, for the
specific parameter values of m = 2 and n = 1 under PBC
configuration. For the corresponding OBC setup, the terminal
couplings should be replaced with appropriate capacitors to

ensure consistent total node admittance across all nodes (refer
to Appendix A for detailed information). The behavior of
this system is governed by Kirchhoff’s law, as expressed in

FIG. 7. (a) Circuit realization of the non-Hermitian braiding sys-
tem with long-range coupling in periodic boundary conditions. There
are 10 unit cells (one representative unit cell is highlighted with a
light yellow rectangle) with A (green dot) and B (red dot) sublattice
sites. Every node is grounded via an inductor as shown in (b). A
and B sublattice nodes are connected with a bidirectional capacitor
CAB,0 within each unit cell. For this demonstration, we selected long-
range coupling m = 2 and n = 1. So each A node of the unit cell
is connected to the B node of the second unit cell to its left via a
unidirectional capacitor CAB,m and, similarly, the B node of the cell
is connected to the A node of the first unit cell to its right via another
unidirectional capacitor CAB,n. All these long-range couplings are
realized through a unidirectional capacitor designed with the INIC as
shown in (c). Ca and Ra are incorporated into the INIC to stabilize the
outputs of the LT1363. This will generate unidirectional capacitance
of Ci from node B to A.
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TABLE I. Location and number of various Type of EPs for different order of long-range coupling for the 1D non-Hermitian system defined
in Eq. (15). Type-1 and Type-2 EPs emerge when the phase boundary lied between two distinct phases with indices of the same and opposite
signs, respectively. Type-1 phase transition hosts only single EPs irrespective to the choice of long-range order while the number of EPs lying
on the Type-2 phase boundary is equal to the order of the long-range coupling. We consider second- to sixth-order long-range coupling here.
Note that we vary k from −π to π for simplicity.

Order of long Type-1 transition Type-1 transition Type-2 transition Type-2 transition
range coupling Transition through AB line Transition through EF line Transition through PQ line Transition through RS line

m = 2 k = 0 k = π k = 0, π k = ± π

2
m = 3 k = 0 k = π k = 0, ± 2π

3 k = ± π

3 , π

m = 4 k = 0 k = π k = 0, ± 2π

4 , π k = ± π

4 ,±(π − π

4 )
m = 5 k = 0 k = π k = 0, ± 2π

5 , ±(π − π

5 ) k = ± π

5 , ±(π − π

5 ), π
m = 6 k = 0 k = π k = 0, ± 2π

6 , ±(π − 2π

6 ), π k = ± π

6 , ±(π − π

6 ), ± π

2

Eq. (16),

Ii(ω) =
∑

j

Ji j (ω)Vj (ω). (16)

Here Ii(ω) represents the current flowing into the ith node,
Ji j denotes the circuit admittance between the ith and jth
nodes, and Vj (ω) is the voltage at the jth node. The circuit
Laplacian, Ji j (ω), is given by

Ji j (ω) = iω

[∑
m

Ci j,m −
∑

n

1

ω2Li,n

]
, (17)

where Ci j,m represents the mth capacitor connected between
node i and j and Li,n are the grounding nth inductor connected
to node i. Applying Fourier transformation yields the k-space
representation of the circuit Laplacian, as seen in Eq. (18):

J (k) = iω

(
CAB,0 + CAB,n − 1

ω2La
−CAB,0 − CAB,−me−i m k

−CAB,0 − CAB,nei n k CAB,0 + CAB,−m − 1
ω2Lb

)
,

(18)

where sublattice nodes A and B are grounded through induc-
tors La and Lb, respectively. CAB,0 is a bidirectional capacitor
between node A and B, CAB,n is an unidirectional capacitor
from node A towards B, and CAB,−m is an unidirectional
capacitor from node B towards A (Fig. 7).

To realize any complex braiding phase, the system needs
to be driven at the resonant frequency ωr = 1√

La(CAB,0+CAB,n )
=

1√
Lb(CAB,0+CAB,−m )

.

The real-space matrix formation of J (k) for both PBC and
OBC can be found in Appendix A, supplemented by detailed
derivations and circuit diagrams. Current-inversion negative
impedance converters (INIC) topology, incorporating LT1363
operational amplifiers (Op-Amps), are employed to realize
unidirectional capacitors CAB,m,CAB,n [as shown in Fig. 7(c)].
To stabilize the Op-Amp output, a small capacitance (Ca)
in the picofarad range and a low-resistance (Ra) less than
1 k� are connected in parallel. Since achieving a perfect
unidirectional capacitance is challenging in practice, Ca and
Ra are meticulously tuned and tested to attain the best possible
unidirectional capacitance for the capacitors used in this study.
Detailed results of the INIC optimization can be found in
Appendix B.

To illustrate the practical implementation of our proposed
braiding scheme, four distinct braiding phases—referred to as
phases 1 through 4 in Fig. 6—have been selected for execution
in the electrical circuit setup. In the circuit implementation of
the phases, we dynamically adjust the circuit parameters to
demonstrate the versatility and adaptability of our proposed
approach. More specifically, as the circuit is exposed to com-
plex admittance eigenvalues with both positive and negative
amplitudes, it is vulnerable to noncausal instabilities [31]. To
prevent system instabilities, we grounded each of the nodes
with an additional resistor R0 to shift up the whole spec-
trum to have complex eigenvalues with no negative imaginary
parts. This shifting, however, has no effect in realizing the
braiding topologies this study is concerned about. Moreover,
this ensures converged transient circuit simulation results as
well. Careful numerical analysis was carried out to get the
optimum value of R0 which was chosen as 20 �. Also, par-
asitic resistance of 100 m� was added to each inductor to
mimic real-world systems. Table II lists all the chosen param-
eters for the four different phases. Interestingly, the complex
energy admittance spectrum can be reconstructed from the
circuit by applying current at each node and measuring the
node voltages. This allows the construction of the circuit
Green’s function. Subsequently, the inversion of this Green’s
function provides the resulting circuit Laplacian. From the
constructed circuit Laplacian, eigenvalues and eigenmodes
corresponding to the admittance spectrum and node voltage
distribution can be calculated. Figure 8 shows the complex
admittance spectrum corresponding to the circuit of Fig. 7.
The numerical results (red dots) are compared with LTSpice
simulation results (blue dots), revealing that the electrical
circuit setup can almost perfectly realize all the distinct phases
of the complex braiding system. Although there are slight
discrepancies between the numerical results and the circuit

TABLE II. Circuit Parameters to realize the four different braid-
ing phases.

Phase CAB,0 CAB,m CAB,n La Lb

1 4.7 nF 0.94 nF 2 nF 94.52 µH 112.28 µH
2 4.7 nF 0.94 nF 20 nF 25.64 µH 112.28 µH
3 4.7 nF 20 nF 2 nF 94.52 µH 25.64 µH
4 4.7 nF 20 nF 20 nF 25.64 µH 25.64 µH
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FIG. 8. Admittance energy spectrum; comparison between numerical results and LTSpice simulation of the circuit shown in Fig. 7. Red
and blue dots represent numerical and LTSpice simulation results, respectively. [(a)–(d)] The OBC admittance spectrum; [(e)–(h)] the PBC
admittance spectrum. All these results were obtained with 10 unit cells. In LTSpice, we added 500 m� effective series resistance to each
inductor. Other circuit parameters used in realizing different phases are outlined in Table II.

simulations, these mainly arise from the inclusion of parasitic
resistance in the inductors and the imperfect unidirectional
capacitance realized through the INIC, as discussed in detail
in Appendixes C–E. The necessary precautions for choosing
parameters related to the INIC are thoroughly covered in these
Appendices to ensure the transient analysis of the circuit con-
verges without causing the OpAmps to saturate. Furthermore,
the effects of parasitics and disorder on the braiding configu-
rations are discussed in Appendix D.

For details on the constraints of knot configurations achiev-
able in our setup, see Appendix C. In summary, our model can
only realize knots with an unknotting number of one due to the
limitations imposed by the two-band 1D configuration with
long-range coupling. Knots requiring more complex transfor-
mations are not possible within this framework.

VIII. CONCLUSION

In conclusion, we present a comprehensive analysis of
complex energy braiding in 1D non-Hermitian systems with
a general mth-order long-range asymmetrical coupling. Our
work provides a new perspective on the emergence of
novel topological phenomena induced by long-range cou-
pling beyond the conventional nearest-neighbor interaction.
By varying the coupling strengths, we demonstrate that the
modified SSH model displays m distinct knots and links
topologies in the complex energy-momentum space under
PBC. These topologies can be characterized by a new topolog-
ical invariant, the braiding index. We establish a correlation
between the braiding index and the zeros and poles of the
characteristic polynomials, providing insight into the topology
of complex energy braiding.

Additionally, our work shows a deep connection between
the braiding topology and eigenstate localization due to the
NHSE. We find that the NHSE can be localized at one or both
terminals of the system, signifying conventional or bipolar
skin localization respectively, depending on the sign of the
braiding index. Furthermore, we find that different complex
energy braiding configurations with the same sign (oppo-
site sign) can be transformed continuously through Type-1
(Type-2) phase transitions which traverse through single (mul-
tiple) EPs.

Finally, we propose a realistic experimental setup for re-
alizing various braiding schemes in an RLC circuit. This
circuit-based platform to realize braiding topology is readily
implementable using basic circuit components and avoids the
requirement for high-dimensional momentum space unlike
most other proposed platforms [54,60]. The proposed electri-
cal circuit setup provides a promising platform for exploring
the rich physics of complex energy braiding in non-Hermitian
systems with nonreciprocal long-range coupling.
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APPENDIX A: CIRCUIT LAPLACIAN FORMATION

In this section, we undertake a detailed derivation of the
circuit Laplacian specifically for the case where m = 2 and
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n = 1, considering a circuit with 10 unit cells, corresponding
to 20 nodes. Our objective is to apply Kirchhoff’s current

law as expressed in Eq. (16) to every node within the circuit
illustrated in Fig. 7,

Node 1: iω(C0 + Cn − 1
ω2La

+ 1
iωR0

)V1 − iωC0V2 − iωCmV18 = I1

Node 2: −iωC0V1 + iω(C0 + Cm − 1
ω2Lb

+ 1
iωR0

)V2 − iωCnV3 = I2

Node 3: iω(C0 + Cn − 1
ω2La

+ 1
iωR0

)V3 − iωC0V4 − iωCmV20 = I3

Node 4: −iωC0V3 + iω(C0 + Cm − 1
ω2Lb

+ 1
iωR0

)V4 − iωCnV5 = I4
...

...

Node 19: −iωCnV16 + iω(C0 + Cn − 1
ω2La

+ 1
iωR0

)V19 − iωC0V20 = I19

Node 20: −iωCnV1 − iωC0V19 + iω(C0 + Cm − 1
ω2Lb

+ 1
iωR0

)V20 = I20.
In matrix format, we can write

iω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

da −C0 0 0 0 · · · −Cm 0 0
−C0 db −Cn 0 0 · · · 0 0 0

0 0 da −C0 0 · · · 0 0 −Cm

0 0 −C0 db −Cn · · · 0 0 0

· · · · · · · · · · · · · · · · · · . . . · · · · · ·
0 0 0 0 −Cn · · · 0 da −C0

−Cn 0 0 0 0 · · · 0 −C0 db

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1

V2

V3

V4

V5
...

V16

V17

V18

V19

V20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I1

I2

I3

I4
...

I16

I17

I18

I19

I20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where da = C0 + Cn − 1
ω2La

+ 1
iωR0

and db = C0 + Cm −
1

ω2Lb
+ 1

iωR0
are the diagonal admittances. The real-space

representation of the model in Eq. (1) mirrors (A1), with the
exception of the diagonal terms. By exciting the circuit at the
resonant frequency ωr = 1√

La(CAB,0+CAB,n )
= 1√

Lb(CAB,0+CAB,−m )
,

we can effectively eliminate these diagonal terms.
To realize the OBC system, the capacitors coupling the

two ends must be removed, meaning the terms highlighted in
red in Eq. (A1) will be replaced by zero. Subsequently, when
the Laplacian matrix is multiplied by the complex frequency
iω, the real spectrum of the Laplacian corresponds to the
imaginary spectrum of Eq. (1) and vice versa.

APPENDIX B: UNIDIRECTIONAL CAPACITOR

Achieving unidirectional coupling in an electrical circuit
involves the utilization of a unidirectional capacitor, which
can be effectively implemented through a negative INIC. The
circuit configuration is depicted in Fig. 9.

To establish a unidirectional capacitance, denoted as C,
between node 1 and node 2, it is imperative to ensure that the
capacitance from node 1 to 2 is C, while the capacitance from
node 2 to 1 is effectively zero. The INIC setup, as illustrated
in Fig. 9, facilitates the creation of this unidirectional capaci-
tance by setting C1 = C2 = C/2 in Fig. 9(a). For the purpose
of stabilizing the Op-Amp output, a capacitor Ca is added
in parallel with a resistor Ra. Together, these components
form an impedance denoted as Za. The unidirectionality of
capacitive reactance, denoted as Zc, is achieved through this
setup.

1. Zero-capacitance

In this subsection, we delve into the intricacies of achiev-
ing nearly unidirectional capacitive coupling by approaching
zero capacitance in one direction. In Fig. 9(a), we assume
linear operation in the Op-Amp, and due to its very high
open-loop gain, we can consider the voltages at its inverting
and noninverting terminals to be equal, i.e., V+ = V−. This
implies V1 = Vf . Additionally, owing to the Op-Amp’s ex-
tremely high input impedance, the input currents at both the
inverting and noninverting terminals are approximately zero,
i.e., i+ = i− ≈ 0.

+ – +–

FIG. 9. Implementation of asymmetric capacitive coupling be-
tween two nodes using an INIC when the coupling direction is
reversed. (a) Circuit setup for achieving unequal capacitance of
C1 + C2 for coupling from node 1 to 2, while the capacitance from
node 2 to 1 is C2 − C1. For C1 = C2 = C/2, unidirectional coupling
capacitance of C from 1 to 2 is achieved, while the capacitance from
node 2 to 1 is approximately zero (C2 − C1 ≈ 0). (b) The same setup
with the sign of C1 reversed by reversing the polarity of the applied
voltage to the OPamps. Hence, for realizing unidirectional coupling
by setting C1 = C2 = C, coupling from node 1 to node 2 experiences
almost zero capacitance (C2 − C1 ≈ 0), while coupling from node 2
to node 1 involves a coupling of C.
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Now, the current from node 1 to the output terminal of the
Op-Amp is given by:

i1 = V1 − Vo

Za
. (B1)

Similarly, the current from the output of the Op-Amp to
the inverting terminal will be i2 = Vo−Vf

Za
= Vo−V1

Za
as V1 = Vf .

Since the current going to the Op-Amp through the inverting
terminal, i−, is zero, the same i2 will flow through C1, i.e.,
i2 = V1−V2

ZC
,

Vo − V1

Za
= V1 − V2

ZC1

Vo = V1 + Za

ZC1

(V1 − V2), (B2)

where ZC1 = 1
jωC1

is the capacitive reactance of capacitor C1

at frequency ω.
From (B1):

i1 = V1 − Vo

Za

Zai1 = V1 − V1 − Za

ZC1

(V1 − V2)

V1 − V2

i1
= −ZC1 .

This results in an equivalent negative capacitor. If another
capacitor C2 with impedance ZC2 is added in parallel, then the
total equivalent capacitance will be approximately C2 − C1.
Choosing C1 = C2 leads to an equivalent capacitance of ap-
proximately zero.

2. Non-zero capacitance

In the scenario where we reverse the polarity of the voltage
applied to the same circuit, as illustrated in Fig. 9(b), positive
capacitance can be achieved. Utilizing the same analysis as
before, we consider i+ = i− = 0 and Vf = V2. Consequently,
the current flowing through C1 is given by:

iC = V1 − V2

ZC1

V1 − V2

iC
= ZC1 .

In this case, we obtain a positive capacitive reactance ZC1 .
Introducing a parallel capacitor C2 results in a total capaci-
tance of C1 + C2.

3. Testing unidirectional capacitance

To test the unidirectional capacitance, we set up a typical
RC low-pass filter and used our unidirectional capacitor as a
test capacitance. In Fig. 10(a) we tested the zero capacitance
and by reversing the polarity of the capacitor in Fig. 10(b) we
test nonzero capacitance.

Figure 11 shows LTSpice simulation results of testing our
unidirectional capacitors in a low-pass filter configuration.
From the voltage gain(= Vo

Vs
), we calculated the 3-dB fre-

quency of a low-pass RC filter as f3dB = 1
2πRC . We used 1

FIG. 10. Unidirectional capacitor testing setup (a) zero-
capacitance test and (b) nonzero capacitance test.

k� as a test resistor. For zero (blue line) and nonzero (red
line) configurations, we found nonzero capacitances that are
17, 23, 39, and 50 times higher than the zero capacitances.

APPENDIX C: CONSTRAINTS ON KNOT TYPES
ACHIEVABLE IN OUR SETUP

In our model, not all types of knot configurations can be
realized; only knots with an unknotting number of one can be
achieved. The unknotting number, a concept from knot theory,
measures the minimum number of crossing changes needed to
transform a given knot into the simplest possible knot, known
as the unknot (a simple loop). In the context of our model with
two bands in a 1D setup containing long-range coupling, it is
indeed true that only twist knots with an unknotting number
of one can be realized. For example, in the case of a Hopf link
or a trefoil knot configuration, only a single crossing needs
to be changed to transform the knot configuration into an
unknot configuration. Furthermore, it is true that knots with
larger unknotting numbers (such as the cinquefoil knot with
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FIG. 11. Low-pass filter response using unidirectional capacitor
(a) 0.47 nF, (b) 1 nF, (c) 4.7 nF, and (d) 10 nF.
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FIG. 12. Braiding index phase diagram for the system described
by Eq. (1) of the main text with m = 3 and n = 1, showing the effects
of various tolerances in the coupling parameters: (a) 0% tolerance,
(b) 2.5% tolerance, and (c) 5.0% tolerance. [(d)–(f)] Braiding index
phase diagram in the presence of a masslike term proportional to
σz at different Cz values, (d) Cz = 0, (e) Cz = 0.2, and (f) Cz = 1.2.
Common parameter used: CAB,0 = 1.

an unknotting number of two) are not possible in our current
two-band model, as each band must have a unique complex
value at each k point.

APPENDIX D: ROBUSTNESS OF THE KNOT
CONFIGURATIONS AGAINST DISORDER

Our system demonstrates robustness against small parasitic
effects. To verify this, we varied the components within a 5%
tolerance of Eq. (1) and plotted the topological knot phase
diagram in Figs. 12(a)–12(c), which showed a profile almost
identical to the original one. Thus, the knot configuration is
quite protected against small parasitic variations. However,
the situation changes when a σz term is included in the Hamil-
tonian. If we rewrite the Hamiltonian in Eq. (1) with a mass
term as

H2(k) = H1(k) + Czσz; (D1)

where σz is the third Pauli matrix and Cz corresponds to the
masslike term in the Hamiltonian, then this term breaks the

chiral symmetry of the Hamiltonian. In the presence of a small
mass term (i.e., Cz � Ci), the braiding index phase diagram
does not change significantly [see Fig. 12(d)]. Therefore,
the complex braiding/knot configuration remains protected.
However, with a larger masslike term (i.e., Cz ≈ Ci), the braid-
ing index phase diagram changes a lot and the region with zero
knot index (unknotting phase) expands in the parameter plane,
as shown in Fig. 12(f), while other knot configurations with
nonzero knot indices are now confined within smaller param-
eter ranges. As a result, knot structures convert to an unknot
configuration across the wider parameter regime. Thus, knot
structures are still protected in the presence of a large chiral
symmetry-breaking Czσ z term but at the different coupling
parameters range.

APPENDIX E: STABILITY OF THE PROPOSED ELECTRIC
CIRCUIT NETWORK

In this section, we discuss some important points regarding
the stability of the proposed electric circuit network. Indeed,
the use of active elements such as OpAmps in a negative
impedance converter configuration to achieve unidirectional
couplings can introduce stability concerns.

To address this, we conducted additional analyses beyond
the steady-state AC simulations originally performed with
LTSpice. Specifically, we examined the time dynamics of
the system to assess the stability of the circuit. Our findings
indicate that the eigenvalues of the Laplacian with a negative
imaginary part can indeed lead to exponentially increasing
time evolution of the corresponding eigenstates, potentially
causing instability. For systems with periodic boundary condi-
tions, this issue is particularly critical as even slightly unstable
modes can diverge due to the loop feedback of the boundary
conditions. To mitigate this risk, careful design of the OpAmp
circuit is essential, including the implementation of feedback
mechanisms to ensure stability.

Additionally, we have outlined the steps taken to ensure
stability in the possible experimental setup, including the de-
sign parameters and feedback mechanisms used to counteract
potential instabilities. To prevent the system from going un-
stable due to noncausal instability, we added an additional
resistor R0 to each node to shift the entire admittance spec-
trum upward such that no complex eigenvalues have negative
imaginary parts. This adjustment does not alter the eigenstate
profile, allowing us to still observe the same braiding patterns.
With these changes in the circuit design, time domain analysis
of the system converges, and the system becomes stable.
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