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One of the hallmark properties of fluids is their shear viscosity which is, among other things, responsible
for parabolic flow profiles through narrow channels. In recent years, there has been a growing number of
observations of said flow profiles in electronic transport measurements in a variety of material systems, most
notably in graphene. In this paper, we investigate the shear viscosity of interacting graphene from a theoretical
point of view. We study both a phenomenological as well as a microscopic model and find excellent agreement
between the two. Our main finding is collective modes make a sizable contribution to the viscosity that can equal
or even outweigh the electronic contribution that is usually assumed dominant. We comment on how this finding
carries over to systems beyond graphene and related Dirac materials.
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I. INTRODUCTION

Hydrodynamics describes the flow properties of classical
fluids such as water, air, or plasmas. Its foundations are con-
served quantities, such as mass, momentum, and energy, and
their slow relaxation towards local equilibrium. This relax-
ation is driven by interactions between the constituents of the
fluid. A direct consequence of said interactions is their shear
viscosity. This manifests itself in a friction or drag between
adjacent layers of the fluid in the presence of a velocity
gradient [1].

In recent years, hydrodynamics gained renewed atten-
tion across many disciplines, including condensed-matter
physics [2–8]. It is understood as an emergent universal
description of dynamical properties of strongly correlated sys-
tems in their long-wavelength and low-frequency limit [9].
The framework is generic and applicable to the study of
properties of quantum phase transitions [2,10] as well as
to quantum spin liquids [11] or magnon dynamics in ferro-
magnets [12]. Hydrodynamic behavior in more conventional
electronic solid-state systems, such as metals, had been elu-
sive for many decades [13]. The main obstacles are usually
dominant competing scales due to the underlying lattice of
solid-state systems in the form of impurities and lattice vibra-
tions. These limitations have been overcome in recent years,
with graphene sitting at the front of this development [14–18].

In the conventional theory of hydrodynamic graphene,
there is an underlying assumption: The fluid is composed of
electrons and holes that equilibrate locally due to collisions
mediated by (long-range) interactions [6,19–28]. However,
these interactions not only lead to local equilibration, the main
assumption underlying hydrodynamics, they also facilitate the
emergence of collective excitations, such as charge-density
oscillations called plasmons [29–31]. Those are proper quasi-
particles in their own right: In three-dimensional metals,
plasmons are inert due to their large excitation gap [32]. In two
dimensions, however, they follow a square-root dispersion

relation [33–35]. Being gapless, they are important for low-
energy equilibrium, for properties such as superconducting
instabilities [36,37], and near-equilibrium phenomena [38,39]
such as hydrodynamic transport phenomena [40–43].

In recent works, some of us have studied the thermoelectric
response of interacting two-dimensional Dirac systems at and
away from the Dirac point. We found a small enhancement
of the thermal conductivity due to plasmons at the charge-
neutrality point. Away from the Dirac point, however, a strong
enhancement of the thermal conductivity is found. This can
be explained from the undamped gapless nature of plasmons
together with their increasing density of states [41–43]. These
works suggest that every quantity that depends on energy is
sensitive to plasmons. The shear viscosity is directly related
to the stress-energy tensor and consequently potentially sees a
large plasmon effect.

In this paper, we study the effect of plasmons on the
shear viscosity in interacting graphene or, more generally,
two-dimensional Dirac theories at varying fillings (our find-
ings are in fact more generically relevant for two-dimensional
Fermi liquids). The shear viscosity of the interacting electron-
hole fluid in charge-neutral graphene was estimated before
in Refs. [22,44]. Now, we go further, including the contribu-
tion of the plasmons on equal footing [45]. A corresponding
experiment has recently been carried out not only at the
charge-neutrality point but also at moderately high dopings
corresponding to the Fermi-liquid regime [18]. Thus, the goal
of this paper is twofold: (i) to find an effective hydrodynamic
description of a viscous fluid composed of electrons, holes,
and plasmons, all on equal footing; and (ii) to extend the
previous theoretical calculation of the shear viscosity from
Ref. [22] away from the Dirac point into the Fermi-liquid
regime. We use two complementary approaches: an effective
Chapman-Enskog approach and a microscopic description in
terms of coupled Boltzmann equations for electrons, holes,
and plasmons.
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Our main result is shown in Fig. 3 which shows the sizable
enhancement of the viscosity due to the plasmons.

II. MODEL

We model the noninteracting electronic structure with a
low-energy Dirac Hamiltonian of the type

Ĥ0 =
∫

dx �̂
†
i,λ(x)[−ih̄vF σ · ∇x − μ + Vex(x)]λλ′�̂i,λ′ (x).

(1)
The operators �̂

†
i,λ(x) and �̂i,λ(x) create and annihilate an

electron at a position x. The effective Fermi velocity is given
by vF , approximately 106 m/s for graphene, while the filling
is controlled by a chemical potential μ. The static poten-
tial Vex(x) = n0

∫
dx ′V (x − x′) is added in order to account

for the positive charge background of average density n0

in which the electrons move. The flavor index, denoted i,
ranges from i = 1, . . . , N = 4 accounting for spin and val-
ley degrees of freedom (for Dirac systems with a different
number of flavors this is an adjustable parameter of the the-
ory). The symbols λ, λ′ ∈ {+,−} denote spinor indices and
σ = (σx, σy) are Pauli matrices (note that double indices are
summed over) [46]. Additionally, electrons and holes interact
via Coulomb interaction according to

ĤI = 1/2
∫

dxdx′ �̂†
i,λ(x)�̂†

i,λ′ (x′)V (x − x′)�̂i,λ′ (x′)�̂i,λ(x).

(2)
The instantaneous Coulomb interaction between two elec-
trons of charge e locating at x and x′ is given by the usual
V (x − x′) = e2/(4πε|x − x′|), where ε is the average dielec-
tric constant, measuring the average value of the dielectric
constant of materials above and below it. The strength of
the Coulomb interaction is typically characterized by the ra-
tio of the potential energy to the kinetic energy. This ratio
boils down to the fine-structure constant α = e2/4πε h̄vF for
Dirac systems. For suspended graphene in vacuum, ε = 1
and ε ≈ 7 for graphene sandwiched between hexagonal boron
nitride layers. Thus, for those two cases, α = 2.2 and α ≈ 0.3,
respectively [47].

Contrary to Ref. [22], we go beyond perturbation theory in
α and explicitly include collective excitations, most notably
plasmons. A key complication in this approach is to find an
approximation that respects conservation laws and explicitly
does not double count degrees of freedom. The basis is the
proper use of the random-phase approximation (RPA) which
leads to a set of coupled (kinetic) equations of electrons, holes,
and plasmons, all on equal footing. The whole procedure is
very technical and discussed at length in Refs. [41–43].

III. FLUID

In the hydrodynamic framework of the RPA, the “fluid”
is composed of three types of particles, all on equal footing:
electrons, holes, and plasmons (see Fig. 1). We introduce
an index λ that distinguishes electrons (λ = +) and holes
(λ = −). The respective energies read εk,λ = λvF |k|, and the
velocity of a quasiparticle is given by vk,λ = ∇kεk,λ = λvF k̂.
Note that from this point onwards we set h̄ = kB = 1. Here, h̄
is the reduced Planck constant and kB denotes the Boltzmann

FIG. 1. Beyond weak coupling, the fluid of hydrodynamic
graphene is composed of three types of particles, electrons, holes,
and plasmons, allowing for the local variation of the respective num-
ber densities δn+, δn−, and δnb. These particles contribute equally to
viscosity, which leads to a parabolic flow profile of the joint velocity
u through a narrow channel. The three components are coupled via
the long-range collisions [cf. Eqs. (4)], here schematically repre-
sented in the inset.

constant. We denote the corresponding distribution func-
tions fλ(k, x, t ) that reduce to the Fermi function in thermal
equilibrium.

For the plasmons, we review the most salient features here
(more details can be found in Refs. [41–43] and cited papers).
The plasmon dispersion relation is given by

ωq =
√

N

2
αvF T log[2 + 2 cosh(μ/T )]q ≡

√
Nq, (3)

where T is the temperature and q is the modulus of the
two-dimensional momentum. The velocity of the plasmons
is given by wq = ∇qω(q). The requirement for a Boltzmann
equation to be valid is the existence of well-defined quasi-
particle excitation. A plasmon of high momentum is overly
damped into a particle-hole continuum, so only the plasmon of
small momentum, or long wavelength, are well defined. Con-
sequently, there is a momentum cutoff for plasmons beyond
which their spectral function is broadened significantly. The
momentum cutoff is found to be qc = N [41]. The distribution
function of the plasmons is henceforth called b(q, x, t ).

Although the fluid is composed of three distinct species
with differing quasiparticle velocities, all the components
are locked in a uniform flow of velocity u. This locking is
a consequence of entropic constraints (see the Supplemen-
tal Material [48]). Therefore, the viscous forces from each
sector—be they fermions or plasmons—arise from the same
velocity field.

IV. EFFECTIVE BOLTZMANN EQUATIONS

Formally, the Boltzmann equations (BEs) can be derived
from the Keldysh formalism. Here, however, we content our-
selves with using them and refer the reader to Refs. [41–43].
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We find three coupled equations:

∂t fλ + vk,λ · ∇x fλ − ∇xεk,λ · ∇k fλ = I f
λ [ f , b],

∂t b + wq · ∇xb − ∇xωq · ∇qb = Ib[ f , b]. (4)

The left-hand side (LHS) contains the so-called streaming
terms accounting for spatial and temporal variations. The
right-hand side contains the collision terms, Ib[ f , b] and
I f

λ [ f , b], that couple the three equations explicitly. A detailed
discussion of the scattering terms has been provided in the
Supplemental Material [48]. It is important to note that for the
problem at hand we do not require a translational symmetry-
breaking collision term for the reason that viscosity manifests
itself in a situation in which translational symmetry is broken
by boundary conditions.

Performing momentum integrals with respect to the mo-
ments of the distribution function allows to derive the
conservation laws. In the present paper we are considering
the first two moments, i.e.,

∫
k δ fλ,k and

∫
k kδ fλ,k, that state

conservation of particle number and momentum; in particular,
we can evaluate the momentum flux, which comprises the
average momentum current up̄, pressure P, and viscous terms
as � = up̄ + 1P + δ�, where the last term corresponds to the
viscous contribution. Decomposing the distribution functions
into their equilibrium and fluctuation correction contributions,
i.e., fλ = f 0

λ,k + δ fλ,k and b = b0
q + δbq, allow us to write

δ� =
∑

λ

N
∫

dk
(2π )2

vλ,k k δ fλ,k +
∫

dq
(2π )2

wqqδbq. (5)

We use two complementary methods to account for the
fluctuations of the distribution functions coming from the
collision operators: (a) the Chapman-Enskog method and (b)
the the linear-response method, including a numerical solution
of the BEs.

V. THE CHAPMAN-ENSKOG APPROACH

As a first approach to calculate the viscosity of the three-
component fluid, we resort to the Chapman-Enskog (CE)
method [49] with a Bhatnagar-Gross-Krook (BGK) approx-
imation [50,51] for the collision operators. This is a way to
effectively decouple the equations using the so-called relax-
ation time approximation:

δ fλ,k = τλD f 0
λ and δbq = τbDb0. (6)

This is the leading-order CE expansion, where the differen-
tial operator D

.= ∂t + vk,λ · ∇x − ∇xεk,λ · ∇k is shorthand
for the LHS of Boltzmann equations, Eq. (4), and the re-
laxation times τλ and τb combine the collision mechanisms,
providing an effective phenomenological description of the
problem [52,53].

The velocity of electrons (holes) with respect to the fluid
velocity reads cλ = λvF k̂ − u, which allows to rewrite the
streaming term of the Boltzmann operator as

D f 0
λ = f 0

λ

(
1 − f 0

λ

){cλ · ∇T

T

(
cλ · k

T
− 3Pλ

nT

)

+ k
T

·
[

(cλ · ∇)u − cλ−u
2

∇ · u
]}

, (7)

where we made use of the Euler fluid equations to eliminate
the time derivatives. This leads to a viscous tensor of the form

δ�λ = −3τλPλ

4
(2ė − 1 Tr ė), (8)

where ėi j = (∂iu j + ∂ jui )/2 is the strain-rate tensor. The re-
laxation time τ shown here is to be suitably chosen following
Eq. (6) and it is assumed to have no dependence on the
momentum as a first approximation. Thus, the shear viscosity
due to the fermions can be identified as η = ∑

λ 3τλPλ/4.
Note that there is no contribution of the bulk viscosity, as
expected for systems with linear dispersion [54]. Moreover,
the Fermi-liquid limit of this result agrees with the recent
literature [55]. Additionally, if one wishes to account for the
fermionic self-energy contributions this can easily be achieved
by accounting for renormalization effects via the Fermi ve-
locity. However, such corrections have a negligible impact
on the global behavior of the viscosity (see the Supplemental
Material [48]).

For the plasmons, we start with the aforementioned square-
root dispersion relation ω(q) = √

Nq, The relative velocity is
defined as C = ∂qωq̂ − u, implying that ω(q) = 2(C + u) ·
q. This treatment makes the a priori unjustified assumption
that the fluid of plasmons flows at the same velocity as the
fluid of the electrons and holes. However, this is not an as-
sumption but can in fact be derived from the underlying BE
(see the Supplemental Material [48]). The streaming term now
reads

Db0 = b0(1 + b0)

{
q · (2C + u)

T 2
C · ∇T

+ q
T

·
[

(C · ∇)u − 3

5
C∇ · u + 9

20
u∇ · u

]}
. (9)

Choosing the correct form of the relaxation time for the
plasmons is more delicate and in principle relies on a mi-
croscopic treatment of the coupled equations. However, since
the coupled equations can be understood as a wave-particle
interaction, it is natural to consider Landau damping as the
main relaxation mechanism. From RPA calculations [42,43]
the decay rate is given by

1

τb
= −πω(q)2[n f [ω(q)/2] − n f [−ω(q)/2]]

8T log(2 + 2 cosh μ/T )
, (10)

where n f (·) is the equilibrium Fermi-Dirac distribution. We
used Eq. (10) to compute the bosonic contribution to viscosity.
The viscous tensor is given by

δ�b = −ηb

[
2ė − 1 Tr ė − 1

∇ · u
10

]
, (11)

where the viscosity is given by the integral

ηb =
∫ qc

0

d

dq

(N 2τb(q)

2
q5/2

)
b0 dq. (12)

We limit the integration to the cutoff at qc in order to ensure
that the contribution of plasmons is bounded within the range
where they are long lived. The evaluation of the shear viscos-
ity, arising from the plasmon sector, is showcased in Fig. 2.
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FIG. 2. Plasmonic contribution to viscosity α = 0.9 evaluated at
T = 300 K from Eq. (12).

Note that, contrary to the case of fermions, when taking the
divergence of this tensor, one will get both shear viscosity and

bulk viscosity ∇ · �b = −ηb[∇2u − 1
10∇(∇ · u)], the latter

being, however, small compared to the shear part.
We conclude that there is an effect of the plasmons on the

total viscous forces.
While the relaxation time approximation is very useful

to understand the qualitative features of the system, it does
not allow for quantitative statements, because it relies on a
particular choice of the relaxation time value and behavior.
Therefore, we will now devise a strategy to determine the
relaxation time based on a linear-response theory solution of
the Boltzmann equation.

VI. BOLTZMANN EQUATION AND LINEAR-RESPONSE
THEORY

The BGK procedure has the relaxation time as a free pa-
rameter. A technique complementary to the CE procedure is to

solve the coupled Boltzmann equations, Eqs. (4), within linear
response. This gives direct access to the relaxation times from
a microscopic theory. The collision integrals Ib[ f , b] and
I f

λ [ f , b] describe collision processes involving two fermions
and a single plasmon and are detailed in Ref. [43] as well
as the Supplemental Material [48] with their corresponding
Feynman diagrams.

In the presence of a small velocity gradient, the
streaming terms on the left-hand side assume the form
wq · ∇xb0

q = ωq

2T b0
q(1 + b0

q)[(q̂iq̂ j − δi j )
Xi j

2 + ∇·u
2 ] and vλ,k ·

∇x f 0
λ,k = ελ,k

T f 0
λ,k(1 − f 0

λ,k )[(k̂ik̂ j − δi j )
Xi j

2 + ∇·u
2 ] in linear re-

sponse where we introduced X i j = 2ė − 1 Tr ė. Let us note
that the last term in the square brackets proportional to ∇ · u
is responsible for the bulk viscosity, which we disregard from
now on [56].

The driving terms motivate a parametrization of the devia-
tion of the distribution functions from their equilibrium values
f 0
λ (k) and b0(q) in the standard way. We write fλ(x, k, t ) =

f 0
λ (k) + δ fλ(k) and b(q, x, t ) = b0(q) + δb(q), where

δb(q) = gb(q)

T

ωq

2T
b0(q)[1 + b0(q)]

∑
i j

(
qiq j

q2
− 1i j

)
Xi j,

≡ b0(q)[1 + b0(q)]
∑

i j

gb
i j (q)Xi j, (13)

and

δ fλ(k) = gf
λ(k)

T

ελ,k

T
f 0
λ (k)

[
1 − f 0

λ (k)
]∑

i j

(
kik j

k2
− 1i j

)
Xi j,

≡ f 0
λ (k)

[
1 − f 0

λ (k)
]∑

i j

gf
λ,i j (k)Xi j . (14)

We proceed to the linearization of the collision integrals and
find that

Ib
(1)[ f , b] = −N

∑
λ,λ′

∫
dk

(2π )2
Mk+q,k

λλ′ δ(ωq + ελ,k− ελ′,k+q)
[

f 0
λ (k)

[
1− f 0

λ′ (k+ q)
]
b0(q)

][
gf

λ,i j (k)− gf
λ′,i j (k + q) + gb

i j (q)
]
Xi j,

(15)

I f
(1)λ[ f , b] = −

∑
λ′

∫
dq

(2π )2
Mk+q,k

λλ′ δ(ωq + ελ,k − ελ′,k+q)
[

f 0
λ (k)

[
1 − f 0

λ′ (k + q)
]
b0(q)

][
gf

λ,i j (k) − gf
λ′,i j (k + q) + gb

i j (q)
]
Xi j

−
∑
λ′

∫
dq

(2π )2
Mk−q,k

λλ′ δ(−ωq + ελ,k − ελ′,k−q)
[[

1 − f 0
λ (k)

]
f 0
λ′ (k − q)b0(q)

]

× [
gf

λ′,i j (k − q) − gf
λ,i j (k) + gb

i j (q)
]
Xi j . (16)

The remainder is to find the solution of the linearized Boltz-
mann equations for the function gb

i j (q) and gf
λ,i j (k) by means

of a variational method. This method is standard and has been
intensively used for solving a Boltzmann equation (see, for
example, Ref. [57]).

VII. RESULTS

For a slowly varying velocity field, the correction to the
stress tensor can be expanded in gradients of u(x). The shear
viscosity characterizes the diffusive relaxation of transverse
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FIG. 3. The ratio of shear viscosity η to s0 evaluated at the room
temperature T = 300 K as a function of charge density n. Here, η/s0

is plotted in the unit of kB/h̄ where s0 is electron entropy density at
the Dirac point. In this plot, the fine-structure constant α ≈ 0.9.

momentum density fluctuations measuring the resistance of a
fluid to establish a transverse velocity gradient. In the model
of the three-component fluid of electrons, holes, and plas-
mons, Eq. (5) describes the momentum flux which can be
related to the shear viscosity according to δi j = −ηi jkl ėkl .
Microscopically, this leads to

ηi jkl = 1

8

(∑
λ

N
∫

dk
(2π )2

(ελ,k )2

T 2
gf

λ(k) f 0
λ,k

(
1 − f 0

λ,k

)

+
∫

dq
(2π )2

(ωq)2

4T 2
gb(q)b0

q

(
1 + b0

q

))

× (δikδ jl + δilδ jk − δi jδkl ), (17)

which is what we calculated numerically. In order to esti-
mate the size of the effect of collective plasmon modes, we
also calculated the viscosity in perturbation theory following
Ref. [22]. For a value of α ≈ 0.9, the result is plotted in Fig. 3.

As a function of the density, the red curve shows the total
viscosity including fermions and plasmons, whereas the blue
curve shows the viscosity of the fermions only calculated in
perturbation theory in α. We find that there is a drastic increase
in viscous effects due to plasmons.

VIII. CONCLUSIONS

In this paper, we computed the contribution to the shear
viscosity from the plasmons in the charge fluid of graphene.
We employed a multifluid model describing electrons, holes,
and plasmons in line with Refs. [41–43]. Following both
relaxation time approximation and linear-response theory
methods, we arrive to agreeing results that show a possibly
strong enhancement of the viscosity due to the electron/hole-
plasmon interactions. Comparing our results to experiment
will shed light on the interaction physics of graphene and
might allow for an alternative determination of the fine-
structure constant. Beyond graphene, we believe that our
result is generic to two-dimensional metals which will al-
low for insights into the physics of two-dimensional Fermi
liquids [58,59].
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