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The non-Hermitian skin effect, in which eigenstates of non-Hermitian Hamiltonians are localized at one
boundary in the open boundary condition, has attracted great interest recently. In this paper, we investigate
the skin effect in one-dimensional dissipative quantum many-body systems, which we call the Liouvillian skin
effect (LSE). We rigorously identify the existence of the LSE for generalized boundary conditions by solving
the Liouvillian superoperator of an exactly solvable model with the advantage of the Bethe ansatz. The LSE is
sensitive to boundary conditions where the signature is reflected in eigenfunctions of the system. We confirm that
the LSE is fragile to a tiny coflow boundary hopping with non-Hermitian current but can survive a counterflow
boundary hopping in the thermodynamic limit. Our work provides a prototypical example of exactly solvable
dissipative quantum many-body lattice systems exhibiting the LSE for generalized boundary conditions. It can
be further extended to other integrable open quantum many-body models.
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I. INTRODUCTION

Open systems are ubiquitous, covering the atomic realm
to the observable universe. In recent years, open quantum
many-body physics has become an important area [1–3],
principally due to experimental advances in accurately con-
trolling dissipation and interactions between particles [4–15],
and has received considerable theoretical attention [16–78].
Furthermore, recent theoretical progress has revealed that
many rich phenomena can emerge from the interplay between
dissipations and interparticle interactions, including, but not
limited to, parity-time symmetric quantum criticality [16,17],
anomalous nonexponential dynamics [24] and non-Hermitian
many-body localization [56–60], and negative central charge
at an exceptional point [74,75].

A quantum system coupled to environment degrees of
freedom constitutes an open quantum system whose time
evolution is described by a Lindblad master equation un-
der the Markovian approximation. The dynamics of an open
quantum system are dominated by the Liouvillian superop-
erator and can be described by the effective non-Hermitian
Hamiltonian under some circumstances. It has been shown
that the non-Hermitian Hamiltonian exhibits unique features,
among which the non-Hermitian skin effect (NHSE) [79–83]
has attracted growing attention both theoretically [84–107]
and experimentally [108–116]. The NHSE states that the
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eigenstates of a non-Hermitian Hamiltonian can be localized
at the boundaries under open boundary conditions, although
they remain extended under the periodic boundary condi-
tion. This effect originates from the sensitivity of related
non-Hermitian terms in the Hamiltonian to boundary pertur-
bations and manifests in not only eigenstates properties but
also distinct features of eigenvalues under different boundary
conditions.

Previous investigations primarily dealt with the NHSE
at the level of single-particle systems and revealed that the
NHSE has a dramatic influence on the topology and dynamics.
Recently, a number of studies have examined the NHSE in the
framework of many-body systems [117–133] and found that
the interplay between the NHSE and interaction can give rise
to the impact on properties such as the slowdown of relaxation
dynamics [117], many-body localization [128], and entangle-
ment transition [129–131]. More recently, the skin effect was
identified to exist in the Liouvillian superoperator due to its
intrinsic non-Hermiticity and was named the Liouvillian skin
effect (LSE) [134–137]. Meanwhile, research on exactly solv-
able models of open quantum many-body systems gradually
has increased, leading to the structure of the Liouvillian in the
framework of Yang-Baxter integrability being an emerging
field of mathematical physics [138–149].

In the literature, Guo et al. [85] demonstrated the existence
condition of the NHSE for more general boundary conditions
at the single-particle level. Moreover, a recent study [149]
revealed that boundary conditions have a significant influence
on the integrability of non-Hermitian systems. It is natural to
begin investigating the existence of and reveal the connection
between the LSE and boundary conditions at the level of
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many-body physics. In this paper, we explore the relationship
between the LSE and different boundary conditions using
techniques to solve the Liouvillian superoperators that were
developed recently. By constructing an exactly solvable Li-
ouvillian superoperator, we find the exact solutions for more
general boundary conditions, allowing us to unearth evidence
for the existence of the LSE. We find that the LSE is destroyed
by a certain type of boundary perturbation but is immune to
another type of perturbation. Our work provides firm ground
for the existence of the LSE and its sensitivity to boundary
effects from the exactly solvable many-body system perspec-
tive.

The rest of this paper is organized as follows. In Sec. II, we
introduce an exactly solvable Liouvillian superoperator that
can be mapped to a non-Hermitian XXZ chain in the subspace.
Section III solves the exact solution in the periodic boundary
condition (PBC) and the open boundary condition (OBC).
Then, we discuss the general boundary condition and identify
the existence condition of the LSE in Sec. IV. Finally, we
summarize in Sec. V. All the calculation details are provided
in the Appendixes.

II. THE MODEL

The time evolution of the density matrix ρ(t ) for a Marko-
vian open quantum system is generally governed by the
Lindblad master equation [150,151] (h̄ = 1),

dρ(t )

dt
≡ L̂ ρ(t ) = −i[ĤS, ρ(t )] + D[ρ(t )], (1)

where L̂ is the Liouvillian superoperator. The first term
corresponds to the coherent evolution, and the second
term D[ρ(t )] = ∑

k[2L̂kρ(t )L̂†
k − {ρ̂(t ), L̂†

k L̂k}] gives the dis-
sipation process. Here [·, ·] and {·, ·} denote commutator
and anticommutator, respectively. According to the Choi-
Jamiołkowski isomorphism [152,153], the Lindblad equa-
tion can be expressed as the equivalent equation d

dt |ρ〉 =
L̂ |ρ〉 with the vectorized density matrix |ρ〉 = ∑

i, j ρi, j |i〉 ⊗
| j〉 in double space HR ⊗ HL, and the Liouvillian superoper-
ator is written as

L̂ = − i
(
ĤS ⊗ Î − Î ⊗ ĤT

S

)
+

∑
k

[2L̂k ⊗ L̂∗
k − L̂†

k L̂k ⊗ Î − Î ⊗ (L̂†
k L̂k )T]. (2)

The Lindblad equation is determined by the spectrum of
L̂ . The system reaches a steady state which is the zero-energy
eigenstate of L̂ . The solvability of L̂ clearly involves the
choice of operators L̂k . Typically, the Liouvillian superop-
erator is not integrable except in special circumstances; for
example, L̂k is chosen to be the single creation and annihila-
tion operator, and the Hamiltonian ĤS is simply the integrable
model. Reference [140] found an alternative mechanism
connecting the Lindblad superoperator to known integrable
models. Suppose local projectors P̂m

j acting on the double

space which satisfy P̂m
j P̂n

j = δm,nP̂m
j and P̂0

j = 1 − ∑
m P̂m

j

exist. If all projectors commute with L̂ , i.e., [L̂ , P̂m
j ] = 0,

then the double space can be decomposed by a series of sub-
spaces which are the eigenspace of projector set {P̂m

j }. These

subspaces are invariant spaces of the Liouvillian superopera-
tor. If we choose the dissipation operator L̂k and Hamiltonian
ĤS such that Liouvillian superoperator in projected subspaces
matches the integrable models, the full spectrum of L̂ can be
obtained analytically by solving each subspace individually.

Based on the above consideration, we consider a trans-
lationally invariant one-dimensional spin chain with length
L, and the dissipation acts on the system locally. Then the
Liouvillian superoperator is rewritten as

L̂ = − i
(
ĤS ⊗ Î − Î ⊗ ĤT

S

) +
L∑

j=1

M∑
n=1

[
2L̂(n)

j ⊗ L̂∗(n)
j

− L̂†(n)
j L̂(n)

j ⊗ Î − Î ⊗ (
L̂†(n)

j L̂(n)
j

)T]
, (3)

where j is the site index and M denotes the number of
dissipation channels on each site. In order to derive an
exactly solvable Liouvillian superoperator, the choice of
operators L̂(n)

j and Hamiltonian ĤS should guarantee the in-

tegrability of L̂ . We first focus on the purely dissipative
case, i.e., ĤS = 0. We choose the local dissipation chan-
nels to be L̂(1)

j = √
JLŜ+

j Ŝ−
j+1 and L̂(2)

j = √
JRŜ+

j+1Ŝ−
j , where

S±
j is the local spin operator. Defining local projectors

P̂1
j = |1〉R

j |0〉L
j 〈0|Lj 〈1|Rj , P̂2

j = |0〉R
j |1〉L

j 〈1|Lj 〈0|Rj , and P̂0
j =

1 − P̂1
j − P̂2

j , where |1〉 and |0〉 denote spin up and down,
respectively, and R and L operators act on the right and left
Hilbert spaces, one can find easily P̂k

j P̂ l
j = δk,l P̂k

j , and the
Liouvillian superoperator commutes with these projectors.

Next, we consider the effective Liouvillian superopera-
tor in projected subspaces. The most representative subspace
is the diagonal subspace d

dt P̂0|ρ〉 = P̂0L̂ |ρ〉 = L̂eff P̂0|ρ〉,
where P̂0 = ∏

j P̂0
j and L̂eff = P̂0L̂ P̂0. We now derive the

effective Liouvillian L̂eff . First, we derive the effective action
of individual L̂ terms:

L̂ (1,2)
j,eff = P̂0

[
2L̂(1,2)

j ⊗ L̂∗(1,2)
j − L̂†(1,2)

j L̂(1,2)
j ⊗ Î

− Î ⊗ (
L̂†(1,2)

j L̂(1,2)
j

)T ]
P̂0

= JL,R
[
Ŝ+

j Ŝ−
j+1 + (

Ŝz
j Ŝ

z
j+1 − 1

4

)
+ 1

2

( ∓ Ŝz
j ± Ŝz

j+1

)]
. (4)

From the Liouvillian (4), one can see clearly that nonrecip-
rocal hopping derives from unequal dissipation strengths of
L̂(1)

j and L̂(2)
j . When adding L̂ (1)

j,eff and L̂(2)
j,eff terms together, the

PBC ensures that the contribution of the last term vanishes.
Further taking into account both L̂ (1,2)

j,eff terms, we arrive at the
effective Liouvillian

L̂eff =2J
L∑

j=1

[
e−φ

2
Ŝ+

j Ŝ−
j+1 + eφ

2
Ŝ+

j+1Ŝ−
j

+ cosh φ

(
Ŝz

j Ŝ
z
j+1 − 1

4

)]
. (5)

Here we reset parameters JL and JR via J and φ (JL =
Je−φ , JR = Jeφ). The original parameter JR (JL) denotes the
strength of up-spin hops to the right (left), and the PBC is
adopted as schematically displayed in Fig. 1. We note that this
model can be mapped to the Hatano-Nelson model [154] with

045440-2



LIOUVILLIAN SKIN EFFECT IN A ONE-DIMENSIONAL … PHYSICAL REVIEW B 110, 045440 (2024)

1 2
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FIG. 1. Illustration of three boundary conditions. (a) The open
boundary condition (OBC) with no hopping between two edges.
(b) The periodic boundary condition (PBC). (c) The generalized
boundary condition (GBC), where the hopping amplitudes are un-
equal to ones in the bulk (δL 	= JL , δR 	= JR.).

nearest-neighbor interaction by a Jordan-Wigner transforma-
tion. Without loss of generality, we assume φ > 0, which
means the right hopping is greater than the left. The solution
of φ < 0 is connected to the φ > 0 case by inversion transfor-
mation (Ŝ+

j , Ŝ−
j , Ŝz

j ) → (Ŝ+
L+1− j, Ŝ−

L+1− j, Ŝz
L+1− j ). This model

will be our main focus in the following discussion. A similar
asymmetric non-Hermitian XXZ model is found to be exactly
solvable under the PBC [155,156].

We move on now to consider other boundary conditions.
For the OBC, as shown in Fig. 1(a), we can derive the follow-
ing with the same procedure as in the PBC case. Following
Eq. (4), we now have single Ŝz terms dangling at each end of
the boundary:

L̂ OBC
eff = J

L−1∑
j=1

[
eφ Ŝ+

j+1Ŝ−
j + e−φ Ŝ+

j Ŝ−
j+1

+ 2 cosh φ

(
Ŝz

j Ŝ
z
j+1 − 1

4

)]
+ J sinh φ

(
Ŝz

L − Ŝz
1

)
.

(6)

The effective model (6) is also exactly solvable since bound-
ary terms preserve the U (1) symmetry. Moreover, we further
consider generalized boundary conditions (GBCs). The effec-
tive Liouvillian is derived by adding extra boundary terms
from Eq. (4) to the OBC effective Liouvillian (6):

L̂ GBC
eff = J

L−1∑
j=1

[
eφ Ŝ+

j+1Ŝ−
j + e−φ Ŝ+

j Ŝ−
j+1

+ 2 cosh φ

(
Ŝz

j Ŝ
z
j+1 − 1

4

)]
+ J sinh φ

(
Ŝz

L − Ŝz
1

)

+ δL

[
Ŝ+

L Ŝ−
1 +

(
Ŝz

L − 1

2

)(
Ŝz

1 + 1

2

)]

+ δR

[
Ŝ+

1 Ŝ−
L +

(
Ŝz

1 − 1

2

)(
Ŝz

L + 1

2

)]
, (7)

with δL and δR being boundary couplings. The Liouvillian
superoperator (7) is negative semidefinite, and its zero-energy
eigenstate corresponds to the steady state. The OBC case is
δL = δR = 0, and when δL = Je−φ and δR = Jeφ , the GBC
goes back to the PBC case. Exploring the physical properties
of the system under the GBC takes on special significance.

Before proceeding, we now discuss the effect of the system
Hamiltonian part and other projected subspaces. The system
Hamiltonian ĤS , as demonstrate above, should be chosen to
ensure integrability in projected subspaces. Under the guid-
ance of this principle, the integrability will be protected as
long as the added Hamiltonian preserves the projected sub-
spaces invariant and does not destroy the dissipation part. It
is straightforward to write down a generic Hamiltonian of
nearest-neighbor form, ĤS = ∑L

j=1 J ′Ŝz
j Ŝ

z
j+1 + hŜz

j . The co-

herent term ĤS ⊗ Î − Î ⊗ ĤT
S is diagonal in different invariant

subspaces since Ŝz does not flip a spin on each site, and the
whole Liouvillian superoperator maintains its integrability.
Under such circumstances, we then ignore the coherent term
because it adds only a diagonal constant and has no influence
on the subsequent discussion of the LSE. For other projected
subspaces (P̂ 	= P̂0), the effective Liouvillian superoperators
are connected to non-Hermitian XXZ chains with different
parameters [140]. So in the rest of this paper, we study only
the non-Hermitian XXZ model defined in Eqs. (5) through (7).

III. SOLUTION UNDER THE PERIODIC AND OPEN
BOUNDARY CONDITIONS

This section will examine exact solutions of the Liouvillian
superoperator under the PBC and OBC. Detailed analytical
derivations are shown in Appendixes A and B. In the follow-
ing we outline the main results.

We first deal with the PBC case. Since the number of
up-spin particles N↑ or down-spin particles N↓ is a conserved
quantity, we can solve the non-Hermitian XXZ model individ-
ually in different subspaces with fixed (N↑, N↓):

|ψ〉 =
M∑

j=1

L∑
x j=1

ϕ(x1, x2, . . . , xM )S+
x1

S+
x2

· · · S+
xM

|vac〉, (8)

where | vac〉 = | ↓↓ · · · · ↓〉 denotes the vacuum (no bo-
son excited) state and M = N↑. The wave function
ϕ(x1, x2, . . . , xM ) is expressed by the Bethe ansatz form

ϕ(x1, x2, . . . , xM ) =
∑

P

AP exp

⎛
⎝i

M∑
j=1

kpj x j

⎞
⎠, (9)

where {k j} is the quasimomentum and the eigenspectrum
(dispersion relation) is determined with respect to the quasi-
momentum,

E = E0 + 2J
M∑

j=1

[cos(k j + iφ) − cosh φ], (10)

where the quasimomenta are determined by the Bethe ansatz
equations (BAEs) (A7). By solving the BAEs, we get the
gapless excitation spectrum, which resembles the behavior of
the Hermitian XXZ model in the gapless phase.
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FIG. 2. LSE in the OBC at half filling. (a) The occupation num-
ber of the spin up at each site for different φ. (b) Spin imbalance I as
a function of φ. Here we choose the system length L = 20, and the
number of up spins M = 10.

Actually, Ref. [155] pointed out that if one considers an
artificial non-Hermitian XXZ model with tunable Sz coupling,
the model undergoes a phase transition from gapless to gapped
phases if one increases φ while maintaining the Sz coupling.
However, the physical effective Liouvillian considered in our
paper has the property that magnon hopping strength is re-
lated to Sz coupling, so the system remains in the gapless
phase for any nonzero φ. This means that the non-Hermitian
XXZ model considered here is in the same phase as the
Hermitian gapless phase. Their ground states thus have no
qualitative difference. The difference between Hermitian and
non-Hermitian models is only that the latter has a complex
spectrum.

For the OBC case, the non-Hermitian XXZ model (6) can
also be exactly solved as long as a matched ansatz is chosen.
Starting from the ansatz

ϕ(x1, x2, . . . , xM ) =
∑

P,r1,...,rM

AP(r1, r2, . . . , rM )

× exp

⎡
⎣ M∑

j=1

(
ir jkp j x j + φx j

)⎤⎦, (11)

where r j = ±1 denotes waves reflected by the bound-
ary, one can obtain the exact dispersion relation E =
J

∑M
j=1[cos(k j ) − cosh φ] and BAEs (B5). Remarkably, both

the dispersion relation and BAEs under the OBC are the same
as those of the Hermitian counterpart in (B7). This feature,
in fact, can be understood through an imaginary gauge trans-
formation, Ŝ+

j → e− jφ Ŝ+
j , Ŝ−

j → e jφ Ŝ−
j , and Ŝz

j → Ŝz
j , which

transforms the non-Hermitian XXZ model (6) to its Hermitian
counterpart (B7); meanwhile, the wave function gets an expo-
nential factor e

∑M
j=1 φx j . Remarkably, in this case the excitation

spectrum is gapped, distinct from the PBC case.
Owing to this exponential weight, the spin-up (boson)

tends to be more concentrated than in the Hermitian case,
resulting in the appearance of the LSE. Figure 2(a) shows
the density distribution of the steady state for different φ for
the half-filling case, from which we can see the skin effect
appears. To quantitatively describe the LSE, we introduce the
spin imbalance I = N↑,r−N↑,l

N↑,r+N↑,l
, where N↑,l , N↑,r (N↑,r, N↓,r) is

0 0.05 0.1 0.15 0.2
0

2

4

6 10-3

5 10 15 2010-10

10-5

10-1
(a) (b)

FIG. 3. Comparison of the GBC and OBC for imbalance and
spectrum. (a) The imbalance deviation �I between the GBC (δL 	=
0, δR = 0) and the OBC cases as a function of system size L. Here
we choose M = L/2, φ = 0.5, and δL = 0.5JL . (b) Finite size scaling
of the mean energy level difference δE between the GBC (δL 	= 0,
δR = 0) and OBC for M = L/4.

the number of up spins in the left (right) half of the lattice. In
the limit φ → 0, spins are uniformly distributed on the lattice.
With the growth of φ, up-spin particles tend toward occupying
part of the lattice near the right boundary, and the spin imbal-
ance I rises from 0 to 1 [see Fig. 2(b)]. This means that, under
the OBC, the system ultimately relaxes to the steady state with
the LSE, regardless of the choice of initial states. Physically,
the asymmetric hopping causes a spin current, leading to the
up spins congregating near the right boundary.

IV. SOLUTION UNDER GENERALIZED BOUNDARY
CONDITIONS

In this section, we focus on the GBC and investigate the
fate of the LSE as additional boundary terms are inserted. For
the sake of convenience, we first study the situation in which
a counterflow boundary hopping (δL 	= 0, δR = 0) is added to
the Liouvillian:

L̂left = J
L−1∑
j=1

[
eφ Ŝ+

j+1Ŝ−
j + e−φ Ŝ+

j Ŝ−
j+1

+ 2 cosh φ

(
Ŝz

j Ŝ
z
j+1 − 1

4

)]
+ J sinh φ

(
Ŝz

L − Ŝz
1

)

+ δL

[
Ŝ+

L Ŝ−
1 +

(
Ŝz

L − 1

2

)(
Ŝz

1 + 1

2

)]
. (12)

We will see that results in this situation are the same as
those in the OBC case in the thermodynamic limit. In order
to verify this, we calculate the imbalance difference �I =
Ileft − IOBC for the steady state between the Liouvillian (12)
and (6). As illustrated in Fig. 3(a), the imbalance difference
exponentially vanishes with increasing of the system size L.
This means the LSE survives in the presence of counterflow
boundary hopping. The reason the boundary term δL does not
spoil the LSE can be understood through a simple physical
picture. in the large-φ limit, the steady state approaches to
the state |↓〉1 |↓〉2 · · · |↓〉L−M |↑〉L−M+1 |↑〉L−M+2 · · · |↑〉L, the
boundary hopping is forbidden, and meanwhile, the right hop-
ping in the bulk has no effect on the domain wall.
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For finite φ, we apply the gauge transformation Ŝ+
j →

e− jφ Ŝ+
j , Ŝ−

j → e jφ Ŝ−
j , and Ŝz

j → Ŝz
j , as done in the OBC case.

Then the Liouvillian (12) turns into the Hermitian counter-
part of the OBC (B7) plus a boundary term, δLe−φLŜ+

L Ŝ−
1 +

δL(Ŝz
L − 1

2 )(Ŝz
1 + 1

2 ), where the effect caused by boundary
hopping term Ŝ+

L Ŝ−
1 is exponentially small. This conclusion

is supported by the result in Fig. 3(a). Another term, δL(Ŝz
L −

1
2 )(Ŝz

1 + 1
2 ), is Hermitian and just serves as a boundary po-

tential which does not flip boundary spins. This will bring
out a 1/L correction in the spectrum. To discern this, we
calculate the mean energy level difference δE = E left − EOBC

between the Liouvillian (12) and (6). Here the mean energy
is defined by E = ∑

j E j , with E j = Ej−Emin

Emax−Emin
, where Emax

(Emin) denotes the maximum (minimum) eigenvalue. The fi-
nite size scaling of δE as plotted in Fig. 3(b) displays the 1/L
correction as expected.

We move on now to consider the more general situ-
ation, i.e., neither δL nor δR is zero. First, we find that
coflow boundary hopping strength δR is exponentially ampli-
fied (δReφLŜ+

1 Ŝ−
L ) if one employs the gauge transformation

done above. This implies that we cannot extract the correct
consequences from the gauge transformation, indicating that
the wave function ansatz under the OBC has failed because
it no longer matches boundary conditions induced by δR. In
fact, as shown in Appendix C, in the thermodynamic limit,
the eigenfunction necessarily takes the form of a PBC-like
wave function instead of the OBC-like one. Concretely, the
PBC-like eigenfunction dismisses the LSE and consists of
modified plane waves λ

x j
L eikPj x j instead of the original plane

waves. The amplitudes of the modified plane waves depend
on the ratio λ = Jeφ/δR, leading to the density distribution
at the right boundary (x j = L) being only λ times greater
than that at the left boundary (x j = 1), which fundamentally
differs from the OBC case, where the LSE manifests in the
exponential amplifier eφL of the density distribution. In order
to characterize the distinction between them, we compute
the ratio of up-spin particle numbers between the right and
left boundaries 〈nL↑〉/〈n1↑〉, as illustrated in Figs. 4(a) and
4(b). For the case of the GBC with δR = 0, the ratio is
exponentially divergent due to the LSE, while it remains a
finite value for the GBC with δR 	= 0, showing the absence
of the LSE. Moreover, the distinction is also reflected in the
imbalance of eigenstates. If we introduce mean imbalance
I = ∑

n In/D, where In denotes the imbalance of the nth
eigenstate, a significant difference can be visualized from
Figs. 4(c) and 4(d).

For the GBC (δR = 0), I gradually approaches 1 as the
system size grows since eigenstates exhibit the LSE, but it is
nearly constant once a finite δR 	= 0 is involved. That is to say,
the LSE is fragile under the perturbation of coflow boundary
hopping δR but can survive the counterflow term δL. To see
this more clearly, we investigate the parameter variations from
the vanishing coflow boundary coupling δR/JR = 0 to the full
coflow boundary coupling δR/JR = 1 with a fixed counterflow
strength δL/JL = 1. This corresponds to the transition from
the GBC with δR = 0 and δL 	= 0 to the PBC. Figure 5(a)
plots the occupation number of up-spin particles at half filling,
which shows that almost all up spins occupy the right half of
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FIG. 4. Comparison of (a) and (b) the occupation ratio
〈nL↑〉/〈n1↑〉 in the steady state and (c) and (d) mean imbalance I
as a function of 1/L for two different GBCs. (a) and (c) plot the
results of the GBC (δL 	= 0, δR 	= 0), and the OBC case (δL 	= 0,
δR = 0) is plotted in (b) and (d). Here we choose M = L/2, φ = 0.5,
δL = 0.5JL , and δR = 0.5JR for (a) and (c) and M = L/2, φ = 0.5,
δL = 0.5JL , and δR = 0 for (b) and (d).

the lattice exhibiting the LSE when δR = 0. As coflow bound-
ary coupling δR increases, the occupation number smooths
gradually and eventually reaches a discrete uniform distribu-
tion in the PBC case δL/JL = 1. To examine the fate of the
LSE further, we calculate the occupation ratio between the
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FIG. 5. LSE in boundary conditions transitioning from the GBC
to PBC at half filling. (a) The occupation number of up-spin particles
at each site for different δR. (b) The occupation ratio 〈nL↑〉/〈n1↑〉 for
different δR. The inset shows a single-logarithm plot where the ratio
for δR = 0 has an exponential magnitude but follows a power law for
finite δR 	= 0. Here we choose system length L = 20, M = L/2, and
δL/JL = 1. The parameter choice δL/JL = 1 means that the system is
in the PBC when δR/JR = 1.
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right and left boundaries 〈nL↑〉/〈n1↑〉, as shown in Fig. 5(b).
One can see clearly that an exponentially divergent ratio eφL

appear in δR = 0, which means the LSE exists, while the LSE
vanishes for any finite coflow boundary term δR 	= 0 since
〈nL↑〉/〈n1↑〉 is just algebraically related to JR/δR and tends
toward being finite in the thermodynamic limit [see Fig. 4(a)].

V. SUMMARY AND OUTLOOK

In summary, using the non-Hermitian XXZ model as
an example of exactly solvable many-body Liouvillian su-
peroperators, we detailedly solved the model under various
boundary conditions utilizing the Bethe ansatz, which enabled
us to investigate the existence condition of the LSE under
different boundary conditions. The main conclusions are sum-
marized as follows. First, for the PBC in which no LSE
occurs, there is no phase transition (gap closing) in the sys-
tem. Second, for the OBC, the wave function is intrinsically
distinct from the PBC one due to the existence of the LSE. We
identified the LSE by investigating the density distribution and
spin imbalance. We then explored the fate of the LSE in the
presence of boundary hoppings. The LSE survives in a kind of
GBC with nonzero counterflow hopping at the boundary be-
cause the exact solutions, in this case, are equivalent to those
of the OBC in the thermodynamic limit. In contrast, the LSE
will be destroyed immediately once a coflow hopping appears
at the boundary, with goes back to the similarity to solutions
in the PBC. An obvious fact is that boundary conditions will
have no consequences on the system in thermodynamic limit.
This is, indeed, true in Hermitian systems. For open quantum
systems, which are intrinsically non-Hermitian, the proper-
ties of the system could strongly depend on the boundary
condition, even in the thermodynamic limit. This paper is a
beneficial endeavor to understand the LSE in exactly solv-
able open quantum many-body systems. These results add
to the expanding field of open quantum systems and could
provide a deeper understanding of the non-Hermitian realm.
Further studies are desired to explore the integrability of
many-body Liouvillian superoperators, especially under con-
straint boundary conditions. Generally, the existing literature
mainly deals with those non-Hermitian models whose Hermi-
tian parts are integrable. However, a recent study [149] found
that a particular non-Hermitian Bose-Hubbard model with
unidirectional hopping turned out to be integrable, although
the Bose-Hubbard model itself is not integrable and cannot
be analytically solved. This discovery opens the avenue for

further explorations and would produce exciting findings in
open many-body quantum systems.
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APPENDIX A: EXACT SOLUTION FOR THE
NON-HERMITIAN XXZ MODEL IN PERIODIC

BOUNDARY CONDITION

In this Appendix, we solve the non-Hermitian XXZ model
under the periodic boundary condition (PBC) by means of the
Bethe ansatz. The model is written as

L̂ = 2J
L∑

j=1

[
e−φ

2
Ŝ+

j Ŝ−
j+1 + eφ

2
Ŝ+

j+1Ŝ−
j

+ cosh φ

(
Ŝz

j Ŝ
z
j+1 − 1

4

)]
, (A1)

where φ > 0 denotes the nonreciprocal spin hopping and
the PBC is applied (Ŝx,y,z

L+1 = Ŝx,y,z
1 ). Now we show that this

non-Hermitian XXZ model (A1) can be exactly solved by
the Bethe ansatz. According to the standard procedure of the
Bethe ansatz, we start from the reference state

| Vac〉 = | ↓↓ · · · ↓〉, (A2)

which satisfies L̂ | Vac〉 = E0| vac〉, with E0 = 0. This means
the reference state is the steady state of the Lindbladian.
Writing the eigenfunction in the SZ = M − L

2 sector with the
number of down-spin particles M (without loss of generality,
we set M � L

2 ),

|ψ〉 =
M∑

j=1

L∑
x j=1

ϕ(x1, x2, . . . , xM )S+
x1

S+
x2

· · · S+
xM

|vac〉. (A3)

We restrict the state to the region 1 < x1 < x2 < · · · < xM <

L since states in other regions can be obtained by permutation
symmetry.

According to the eigenequation L̂ |ψ〉 = E |ψ〉, one can
derive the following relation:

J
∑

j

(
1 − δx j+1,x j+1

)
[ψ (x1, . . . , x j + 1, x j+1, . . . , xM )e−φ + ψ (x1, . . . , x j, x j+1 − 1, . . . , xM )eφ]

+
⎡
⎣E0 − E − 2J cosh φ

⎛
⎝M −

∑
j

δx j+1,x j+1

⎞
⎠

⎤
⎦ϕ(x1, x2, . . . , xM ) = 0. (A4)

Constructing the many-body wave function by means of the Bethe ansatz form

ϕ(x1, x2, . . . , xM ) =
∑

P

AP exp

⎛
⎝i

M∑
j=1

kpj x j

⎞
⎠, (A5)
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where P = (p1, p2, . . . , pM ) is a permutation of 1, 2, . . . , M, yields the eigenvalue

E = E0 + 2J
M∑

j=1

[cos(k j + iφ) − cosh φ] (A6)

and the Bethe ansatz equations

exp(ik jL) = (−1)M−1
M∏

l 	= j

exp[i(k j + kl ) − 2φ] + 1 − 2 cosh φ exp(ik j − φ)

exp[i(k j + kl ) − 2φ] + 1 − 2 cosh φ exp(ikl − φ)
(A7)

via the PBC ϕ(x1, x2, . . . , xM ) = ϕ(x2, . . . , xM , x1 + L). For
the sake of convenience, introducing rapidity parameters {λ j},

exp(ik j − φ) = − sin[φ(λ j + i)/2]

sin[φ(λ j − i)/2]
, (A8)

(A7) becomes

[
sin φ

2 (λ j + i)

sin φ

2 (λ j − i)

]L

eφL =
M∏

l 	= j

sin φ

2 (λ j − λl + 2i)

sin φ

2 (λ j − λl − 2i)
. (A9)

Taking the logarithm of the above equations, we obtain

Lθ1(λ j ) = 2π I j + iφL +
M∑

l 	= j

θ2(λ j − λl ), (A10)

where θn(λ) = 2 arctan[tan( φλ

2 ) coth( nφ

2 )]. For the ground
state (M = L

2 ), we have I j = −( L
2 − 1)/2,−( L

2 − 1)/2 +
1, . . . , ( L

2 − 1)/2 − 1, ( L
2 − 1)/2. In the thermodynamic limit

L → ∞, Eq. (A10) becomes

2θ1(λ) = 2π

∫ λ

σ (λ′)dλ′ + iφ + 2
∫
C

θ2(λ − λ′)σ (λ′)dλ′,

(A11)

where C is the rapidity path in the complex plain. Since θ1 is
a function with a period of 2π

φ
, one can restrict the domain of

definition to π
φ
� Re λ � π

φ
. Differentiating (A11), the distri-

bution σ (λ) satisfies the equation

φ sinh φ

cosh φ − cos(φλ)
= 2πσ (λ) +

∫
C

φ sinh(2φ)

cosh(2φ) − cos[φ(λ − λ′)]
σ (λ′)dλ′, (A12)

from which one can find two poles ⇒ λ − λ′ = ±2i in the integrand. If −1 < Im λ < 1 and −1 < Im λ′ < 1, then the integral
path dose not enclose poles, which means the path can be continuously deformed to the real axis. As φ grows, the path C
gradually extends to the complex plane and then touches poles when φ = φc, in which case Eq. (A11) diverges and the mass gap
is closed [155].

Next, we calculate the critical value φc. When φ < φc, the poles are not enclosed by curve C, and the integral path can be
continuously deformed to the real axis, in which case

φ sinh φ

cosh φ − cos(φλ)
= 2πσ (λ) +

∫ π
φ

− π
φ

φ sinh(2φ)

cosh(2φ) − cos[φ(λ − 1)]
σ (�)dλ. (A13)

We can solve σ (λ) by performing the Fourier transformation
of Eq. (A13).

σ (λ) =
∞∑

m=−∞

e−imφλ

2 cosh(mφ)
. (A14)

After substituting Eq. (A14) into Eq. (A11) and considering
the expansion

θ1(λ) = φλ −
∑
m 	=0

exp(−imφλ − φ|n|)
imφ

,

θ2(λ) = φλ −
∑
m 	=0

exp(−imφλ − 2φ|n|)
imφ

, (A15)

we obtain the equation

φ = 2π iZ (λ) + φ

2
b − i

2
φλ +

∑
m 	=0

e−imφ

2m cosh(mφ)

+
∑
m 	=0

(−1)m emφb

2m cosh(mφ)
. (A16)

The critical value φc is determined by λ = ±π
φ

+ i,

φ = φ +
∞∑

m=1

(−1)m tanh(mφ)

m
, (A17)

from which we find there is only a trivial solution φc = 0. That
means no gap closing happens.
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APPENDIX B: EXACT SOLUTION FOR THE
NON-HERMITIAN XXZ MODEL UNDER OPEN

BOUNDARY CONDITIONS

In this Appendix, we discuss the non-Hermitian XXZ
model under the OBC, which exhibits the skin effect. In the
OBC, the Liouvillian is expressed as

L̂OBC = J
L−1∑
j=1

[
eφ Ŝ+

j+1Ŝ−
j + e−φ Ŝ+

j Ŝ−
j+1

+ 2 cosh φ

(
Ŝz

j Ŝ
z
j+1 − 1

4

)]
+ J sinh φ

(
Ŝz

L − Ŝz
1

)
.

(B1)

For simplicity, we first discuss the limit φ → ∞, in which the
Liouvillian can be reduced to the following form (in units of
eφ):

L̂OBC = J
L−1∑
j=1

[
S+

j+1Ŝ−
j +

(
Ŝz

j Ŝ
z
j+1 − 1

4

)]
+ J

2

(
Ŝz

L − Ŝz
1

)
.

(B2)

Notably, the matrix representation of the Liouvillian (B2)
is a triangular matrix in the basis

{|↓ · · · ↓↓↑↑ · · · ↑〉 , |↓ · · · ↓↑↓↑ · · · ↑〉 ,

|↑↑ · · · ↑↓↑↓↓ · · · ↓〉 · · · , |↑↑ · · · ↑↓↑↓↓ · · · ↓〉 ,

|↑↑ · · · ↑↓↓ · · · ↓〉}, (B3)

in which case it can easily be diagonalized. One can find
that the state |↓〉1 |↓〉2 · · · |↓〉M |↑〉M+1 |↑〉M+2 · · · |↑〉L where
a spin domain-wall plateau emerges, is the exact eigen-
state. This eigenstate is also a steady state because it
has zero eigenvalue. This means that the system relaxes
eventually to the skin mode, where all up spins (bosons)
are arranged in right sites. For the finite φ, the Liou-
villian (B1) is solvable with the Bethe ansatz. Here it
should be emphasized that the Liouvillian (B1) cannot be
solved simply in terms of the traditional Bethe ansatz for
the Hermitian case in the OBC, i.e., ϕ(x1, x2, . . . , xM ) =∑

P,r1,...,rM
AP(r1, r2, . . . , rM ) exp(

∑M
j=1 ikp j x j ). One should

adopt the following ansatz:

ϕ(x1, x2, . . . , xM ) =
∑

P,r1,...,rM

AP(r1, r2, . . . , rM )

× exp

⎡
⎣ M∑

j=1

(ir jkp j x j + φx j )

⎤
⎦, (B4)

where r j = ±1 denotes the plane wave of the jth particle
traveling toward the left (r j = −1) and right (r j = 1). In this
way, after some calculations, one can obtain the following
Bethe ansatz equations:

ei2(L−1)k j

(
eik j − sinh φ − cosh φ

)(
eik j + sinh φ − cosh φ

)
(
e−ik j − sinh φ − cosh φ

)(
e−ik j + sinh φ − cosh φ

)
=

M∏
l 	= j

S(−k j, kl )S(kl , k j )

S(k j, kl )S(kl ,−k j )
, (B5)

with S(k j, kl ) = 1 − 2 cosh φeikl + ei(k j+kl ) and the associated
eigenvalues

E = 2J
M∑

j=1

[cos(k j ) − cosh φ]. (B6)

One can find that the BAEs and eigenvalues are identical
to those in the Hermitian XXZ model under the OBC, and
the only difference between them exists in the wave function,
where φ will appear in the non-Hermitian system, as shown
in Eq. (B4). In order to understand this, we employ the gauge
transformation Ŝ+

j → e− jφ Ŝ+
j , Ŝ−

j → e jφ Ŝ−
j , and Ŝz

j → Ŝz
j to

eliminate the unequal hopping which reproduces the Hermi-
tian counterpart

L̂Hermitian = J
L−1∑
j=1

[
Ŝ+

j+1Ŝ−
j + Ŝ+

j Ŝ−
j+1

+ 2 cosh φ

(
Ŝz

j Ŝ
z
j+1 − 1

4

)]
+ J sinh φ

(
Ŝz

L − Ŝz
1

)
.

(B7)

Thus, it is straightforward that for the Hermitian XXZ
model (B7), BAEs and eigenvalues are given by Eqs. (B5)
and (B6). But the wave function to be changed corre-
spondingly, ϕ(x1, x2, . . . , xM ) → ϕ(x1, x2, . . . , xM )e

∑M
j=1 φx j ,

is nothing but the ansatz (B4). This implies that the NHSE
exists under the OBC because the solution of k j is identical
to the Hermitian case which is determined by BAEs (B7) and
the wave function captures the exponential factor.

APPENDIX C: EXACT SOLUTION FOR THE
NON-HERMITIAN XXZ MODEL UNDER GENERALIZED

BOUNDARY CONDITIONS

After solving the non-Hermitian XXZ model under the
PBC and OBC, we discuss other situations in which one
unidirectional hopping term appears at the boundary. We first
investigate the situation in which the Liouvillian is expressed
as

L̂left = J
L−1∑
j=1

[
eφ Ŝ+

j+1Ŝ−
j + e−φ Ŝ+

j Ŝ−
j+1

+ 2 cosh φ

(
Ŝz

j Ŝ
z
j+1 − 1

4

)]
+ J sinh φ

(
Ŝz

L − Ŝz
1

)

+ δL

[
Ŝ+

L Ŝ−
1 +

(
Ŝz

L − 1

2

)(
Ŝz

1 + 1

2

)]
. (C1)

Here δLŜ+
L Ŝ−

1 denotes the unidirectional hopping from the left
to the right boundary.

Starting from the OBC ansatz (B4), since the
boundary hopping term has no impact on the bulk
spins, the eigenenergy is the same as in the OBC
case (B6). However, it is expected that the boundary
equations will be modified, and a straightforward
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calculation gives

J
M∑

j=2

∑
δ=±1

(
1 − δx j+δ,x j+δ

)
φ(1, . . . , x j + δ, . . . , xM )e−δφ −

⎡
⎣E + 2J cosh φ

⎛
⎝M − 1/2 −

M∑
j=2

δx j+1,x j+1

⎞
⎠

⎤
⎦ϕ(1, x2, . . . , xM )

+Je−φϕ(2, x2, . . . , x j, . . . , xM ) − (J sinh φ + δL ) ϕ(1, x2, . . . , x j, . . . , xM−1, xM ) = 0, (C2a)

J
M−1∑
j=1

∑
δ=±1

(
1 − δx j+δ,x j+δ

)
φ(x1, . . . , x j + δ, . . . , L)e−δφ −

⎡
⎣E + 2J cosh φ

⎛
⎝M − 1/2 −

M−1∑
j=1

δx j+1,x j+1

⎞
⎠

⎤
⎦ϕ(x1, x2, . . . , L)

+Jeφ

M−1∑
j=1

ϕ(x1, . . . , x j, . . . , L − 1) + δLϕ(1, x1, . . . , x j, . . . , xM−1)
�����������������������

+ J sinh φ ϕ(x1, . . . , x j, . . . , xM−1, L) = 0, (C2b)

where the term marked with the wavy line originates from the boundary hopping term. From the OBC ansatz (B4), one can find
the boundary hopping term is exponentially smaller than other terms since they are amplified with a factor eLφ . This means that
the boundary term vanishes in the thermodynamic limit, which indicates solutions are identical to those of the OBC case. Hence,
it is reasonably concluded that the system exhibits the NHSE where up-spin particles accumulate toward the right boundary.
An alternative explanation for the NHSE existing in this system is that in the large-φ limit, similar to the OBC case, the state
|↓〉1 |↓〉2 · · · |↓〉M |↑〉M+1 |↑〉M+2 · · · |↑〉L is a zero-energy eigenstate because the boundary hopping term has no effect on it.

We now turn to discuss the generalized boundary condition with δL 	= 0 and δR 	= 0, as shown in Eq. (7). In this case, the
boundary equations are given by

J
M∑

j=2

∑
δ=±1

(
1 − δx j+δ,x j+δ

)
ϕ(1, . . . , x j + δ, . . . , xM )e−δφ −

⎡
⎣E + 2J cosh φ

⎛
⎝M − 1/2 −

M∑
j=2

δx j+1,x j+1

⎞
⎠

⎤
⎦ϕ(1, x2, . . . , xM )

+Je−φϕ
(
2, x2, . . . , x j, . . . , xM

) + δRϕ(x2, . . . , x j, . . . , xM , L)
���������������������

− (J sinh φ + δL )ϕ(1, x2, . . . , x j, . . . , xM−1, xM ) = 0,

(C3a)

J
M−1∑
j=1

∑
δ=±1

(
1 − δx j+δ,x j+δ

)
ϕ(x1, . . . , x j + δ, . . . , L)e−δφ −

⎡
⎣E + 2J cosh φ

⎛
⎝M − 1/2 −

M−1∑
j=1

δx j+1,x j+1

⎞
⎠

⎤
⎦ϕ(x1, x2, . . . , L)

+Jeφ ϕ(x1, . . . , x j, . . . , L − 1) + δLϕ(1, x1, . . . , x j, . . . , xM−1) + (J sinh φ − δR) ϕ(x1, . . . , x j, . . . , xM−1, L) = 0, (C3b)

where the term marked with the wavy line comes from the boundary hopping. If we still use the OBC ansatz, the boundary
term exponentially grows with system size, which far outweighs the other terms. This is unreasonable because the equation is
dominated only by a boundary term no matter how small δR is. Therefore, an alternative ansatz should be employed. Suppose
the quasimomentum takes a complex value and we perform the substitution k j → k j + iφ. We find that this substitution cancels
the exponential divergence in the boundary term. The boundary equation (C3b) gives rise to the relation AP (r1,r2,...,−)

AP (r1,r2,...,+) ∼ e−2φL,

which means AP (r1,r2,...,−)
AP (r1,r2,...,+) → 0 in the large-L limit. Moreover, when x j+1 = x j + 1, the contact condition gives

AP1,...,Pj ,Pj+1,...,PM (r1, . . . , r j, r j+1, . . . , rM )

AP1,...,Pj+1,Pj ,...,PM (r1, . . . , r j+1, r j, . . . , rM )
= −S(kPj+1 , kPj )

S(kPj , kPj+1 )
. (C4)

Combining Eq. (C4) with the condition AP (r1,r2,...,−)
AP (r1,r2,...,+) → 0 indicates that all coefficients AP(r1, r2, . . . , rM ) for any r j = −1 are

zero. The vanishing left-moving wave indicates a no-reflecting boundary condition in the thermodynamic limit. As a result,
we modify the PBC wave function by a substitution into the PBC wave function eikPj x j → λ

x j
L eikPj x j , with λ = Jeφ

δR
, and hence,

ϕ(x1, x2, . . . , xM ) = ∑
P AP exp(i

∑M
j=1 kpj x j + x j ln λ). After this substitution, the coefficient δL of the term with the wavy line

in (C3a) transforms to JR, which is the same as the boundary hopping in the PBC. In fact, from boundary condition (C3a), using
the modified PBC wave function, one can derive PBC-like BAEs,

exp(ik jL) = (−1)M−1κ

M∏
l 	= j

exp[i(k j + kl ) − 2φ] + 1 − 2 cosh φ exp(ik j − φ)

exp[i(k j + kl ) − 2φ] + 1 − 2 cosh φ exp(ikl − φ)
. (C5)

We can see clearly that BAEs (C5) are the same as the ones in the PBC case up to the coefficient κ = 1 − (JL−δL )( JR
δR

)1/L eik j

JR
, which

serves as a boundary term. However, the boundary term just produces a 1/L correction which vanishes in the large-L limit, which
means no LSE exists.
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