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We investigate the nonlinear magneto-optical response in noncentrosymmetric magnetic Weyl semimetals
featuring a quadratic tilt, focusing particularly on the influence of the van Hove singularity (VHS). In the absence
of a magnetic field, the second-order nonlinear Drude conductivity components exhibit inflection or dip behavior
across the VHS. In contrast, the second-order nonlinear anomalous Hall conductivity, primarily governed by the
Berry curvature dipole, manifests a subtle plateaulike structure. As the tilt strength increases, the VHS energy
rises, thereby amplifying the VHS-induced characteristics within these second-order conductivity components.
However, we show that in the presence of a magnetic field, the resultant magnetic moment suppresses nonlinear
electron transport while enhancing nonlinear hole transport. This effect serves to mitigate the impact of the VHS,
resulting specifically in an asymmetric peak or a kinklike structure in the magnetic-field-induced contribution to
the second-order nonlinear conductivity near the Weyl nodes. These findings provide insights into the intricate
interplay among the VHS, Berry curvature, and magnetic moment in nonlinear magneto-optical transport through
noncentrosymmetric magnetic Weyl semimetals.
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I. INTRODUCTION

The field of condensed matter physics has witnessed a sig-
nificant surge in interest and investigation into a unique class
of materials known as Weyl semimetals (WSMs) [1,2]. These
materials exhibit a specific electronic structure characterized
by the presence of band-crossing points, termed Weyl nodes
[3,4]. These nodes introduce a new kind of quasiparticle, Weyl
fermions, distinguished by their linear dispersion relations and
fundamental properties, making them pivotal entities in the
realm of topological materials [5,6].

One of the striking features of WSMs lies in the Berry
curvature flux emanating from these Weyl nodes within the
Brillouin zone, behaving like magnetic fields in momentum
space. These nodes serve as sources and sinks of Berry curva-
ture flux, intimately tied to the chiralities of the Weyl fermions
[7,8]. The distinct topological electronic structure of WSMs
has paved the way for the exploration of unconventional phe-
nomena and emergent behaviors, such as high-mobility effects
[9,10], Fermi arcs [1,3,6,11,12], and the intriguing chiral
anomaly [13–17]. These phenomena have spurred consider-
able interest and investigation into the transport properties
of these materials [18–20]. The simultaneous application of
electric and magnetic fields to WSMs has unveiled underly-
ing transport mechanisms, yielding notable discoveries like
positive longitudinal magnetoconductivity [13,21–27] and the
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giant planar Hall effect [28,29]. Further research has extended
into exploring the nonlinear magneto-optical responses to ex-
ternal electric fields, revealing intriguing phenomena such as
the quantum nonlinear Hall effect, which arises solely from
the dipole moment of the Berry curvature in the absence of an
applied magnetic field [30–33].

The foundational understanding of WSMs traces back
to the violation of symmetries. According to the Nielsen-
Ninomiya theorem [34,35], the existence of WSMs necessi-
tates the breaking of time-reversal or inversion symmetry [36].
Investigations into the impact of breaking these symmetries
have unveiled transitions from Dirac semimetals to WSMs,
manifesting in various transport signatures and anomalous
effects [19,36,37]. The manipulation of these symmetries
through external means, such as introducing magnetic atoms
or the magnetically doped multilayer heterostructure, has led
to the realization and study of magnetic WSMs [38–44],
showing fascinating effects like exotic drumhead surface
states [40], chiral magnetic effects, and the giant anomalous
Hall effect [41,42].

In certain WSMs, such as the TaAs family, the convergence
of Weyl nodes gives rise to a van Hove singularity (VHS) at
relatively low energies [45–47]. While the impact of the VHS
on conventional linear transport, including the emergence of
negative magnetic resistance induced by the VHS [48,49], has
been elucidated, its implications in nonlinear magneto-optical
responses have been largely overlooked.

In this work, we investigate the nonlinear magneto-optical
response across the VHS within noncentrosymmetric mag-
netic Weyl semimetals. We find that depending on the
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coupling between the conventional velocity and Berry curva-
ture dipole, the VHS induces inflection points, dip behaviors,
and subtle plateaulike structures in the second-order nonlinear
conductivity components at zero magnetic field. Further-
more, we demonstrate that the application of a magnetic
field suppresses nonlinear electron transport while enhancing
nonlinear hole transport due to the presence of the magnetic
moment. This duality mitigates the influence of the VHS but
also results in the emergence of asymmetric peaks or kinklike
structures in the magnetic-field-induced contribution to the
second-order nonlinear conductivities near the Weyl nodes.
Upon our evaluation of the magnitude of these nonlinear
conductivity components, our findings indicate the potential
observability of VHS-related features in noncentrosymmetric
magnetic WSMs subjected to simultaneous electric and mag-
netic fields.

This paper is organized as follows: In Sec. II, we introduce
a theoretical model describing noncentrosymmetric magnetic
WSMs in the presence of the VHS. In Sec. III, we establish
the magneto-optical transport equations within the semiclas-
sical approximation, considering the simultaneous impact of
electric and magnetic fields. In Sec. IV, we present analytical
formulations for second-order nonlinear magneto-optical con-
ductivities, followed by a detailed analysis of their numerical
results. Finally, we conclude in Sec. V.

II. THEORETICAL MODEL

A noncentrosymmetric magnetic WSM can be effectively
characterized through a low-energy Hamiltonian [50,51]:

H = vF
[
kxσxsz − kyσy − λ

(
k2

z − Q2
D

)
σz

] + HB, (1)

where σi and si (i = x, y, z) represent the Pauli matrices acting
on the orbital and spin space, ki denotes the wave vector, and
vF is the Fermi velocity. The term λ(k2

z − Q2
D)σz introduces

two Dirac nodes located at k = (0, 0,±QD). The Hamiltonian
HB consists of three components:

HB = Rk2
z + VIkzσzsz + Jexsz, (2)

where VIkzσzsz denotes the inversion symmetry-breaking
term, leading to the splitting of each Dirac node into two
Weyl nodes with opposite chiralities along the z axis. The
term Rk2

z disrupts the particle-hole symmetry (PHS), result-
ing in a tilted energy dispersion around the Weyl nodes and
modifying their energy. It is important to emphasize that in
Weyl semimetals hosting Fermi pockets, particularly when
these pockets are not directly linked to the Weyl nodes, the
inclusion of a PHS-breaking term is crucial for accurately de-
scribing this phenomenon [50,52,53]. The formulation of this
PHS-breaking term can be achieved by adjusting the lattice
structure (see, for example, Refs. [37,54]). In the presence of
the D4h symmetry of the crystal [55], the PHS-breaking term
is characterized by its proportionality to k2

z at the lowest-order
momentum [50]. However, at low energy, higher-order terms
such as cubic or quartic terms have minimal influence and
can be disregarded. Furthermore, by expanding the energy
dispersion around the Weyl nodes and retaining terms up to
the first order in kz, one can derive the energy dispersion in the
vicinity of the Weyl node of chirality. This representation cor-
responds to the low-energy excitations observed in materials

such as MoTe2 and WTe2, featuring a linear term proportional
to kz, indicating a tilt in the Weyl cone [56]. Finally, Jexsz

represents the time-reversal symmetry-breaking term, arising
from the exchange interaction between the Weyl-fermion spin
and the magnetization in a magnetic WSM. Diagonalizing
Hamiltonian (1) yields the energy spectrum:

εs
α = αvF

√
k2
‖ + �2

s (kz ) + Rk2
z + sJex, (3)

where k2
‖ = k2

x + k2
y , �s(kz ) = λ(k2

z − Q2
D) − sVIkz/vF , and

α = ± denote the conduction and valence bands. The corre-
sponding eigenvectors are

∣∣us
k+

〉 =
(

cos
θs

2
eiφs sin

θs

2

)t

, (4)

∣∣us
k−

〉 =
(

eiφs sin
θs

2
− cos

θs

2

)t

, (5)

where cos θs = �s (kz )√
k2
‖+[�s (kz )]2

and tan φs = − sky

kx
.

In Eq. (3), s = ±1 denotes the chirality of the Weyl node.
This can be identified through the Berry curvature �s

α , ex-
pressed as

�s
α = − Im

[〈∇kus
kα

∣∣ × ∣∣∇kus
kα

〉]
. (6)

By substituting Eqs. (4) and (5) into Eq. (6), the resulting
equations are

	s
αx/y = − sαkx/y�

′
s(kz )

2K3
, 	s

αz = − sα�s(kz )

2K3
, (7)

where �′
s(kz ) = ∂�s(kz )/∂kz and K = (k2

x + k2
y + �2

s )1/2.
The dispersion relation (3) depicted in Fig. 1(a) en-

compasses two pairs of band curves, denoted by s = ±1.
Each band pair intersects, forming two Weyl nodes located
at (0, 0,±

√
Q2

D + q2 − sq), with q = VI/(2λvF ), labeled as
W�,s [� = L, R; see the top panel of Fig. 1(a)]. When the
Fermi energy crosses the bands at energy ε > 0, an increase
leads to a Lifshitz transition [57], transforming the Fermi
surface from two disconnected parts into a single one [see
the bottom panel of Fig. 1(a)]. Throughout this transition, the
Fermi surface consistently remains asymmetric. These distinct
Fermi surface behaviors, coupled with the chiral anomaly,
significantly impact the nonlinear magneto-optical responses
in WSMs (as discussed below). Figure 1(b) illustrates the den-
sity of states (DOS) for varying tilt R. A detailed calculation
of DOS is provided in the Appendix. Evidently, the DOS
displays inflections at the VHS, which remain symmetrical
with respect to the zero-energy point at tilt R = 0. However,
with the application of tilt, the symmetry of the DOS is lost
due to the PHS breaking. The asymmetry induced by R can
be further heightened by the breaking of inversion symmetry
[see Fig. 1(c)].

III. MAGNETO-OPTICAL TRANSPORT EQUATIONS
WITHIN SEMICLASSICAL APPROXIMATION

We consider the simultaneous application of the static mag-
netic field B and light field E to the system. The resultant
electric current can be computed using the following integral:

j = −e
∫

[dk]Dṙ f (k, r, t ), (8)
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FIG. 1. (a) Top: The schematic portrays energy band dispersion
with four curves forming two pairs labeled by s = ±1. Each pair
intersects, creating four Weyl nodes denoted as W�,s(� = L, R).
The Fermi energy EF , indicated by the dashed blue line, traverses
the band curves, progressively increasing from left to right. Bot-
tom: Representation of the corresponding Fermi surface, exhibiting
asymmetric features and undergoing a Lifshitz transition [57] as
the Fermi energy increases. The density of states (b) for the tilt
R = 0 eV nm2 (black line), R = 0.02 eV nm2 (red line), and R =
0.04 eV nm2 (blue line) at VI = 0.05 eV nm and (c) for the param-
eter VI = 0 eV nm (black line), VI = 0.03 eV nm (red line), and VI =
0.05 eV nm (blue line) at R = 0.02 eV nm2. The other parameters are
set as QD = 2 nm−1, Jex = 0 eV, and λ = 0.06 nm.

where [dk] = dk/(2π )3 and the weighting factor D emerges
due to the alteration of the phase volume caused by the electric
and magnetic fields (see below). ṙ represents the electron’s
velocity and is obtained by solving the following equation of
motion [8]:

ṙ = 1

h̄
∇kε

s
αk − k̇ × �s

α,

h̄k̇ = −eE − eṙ × B. (9)

This equation describes the trajectory of an electron in phase
space, viewed as a wave packet within the semiclassical ap-
proximation. The self-rotation of the wave packet around its
center of mass under the magnetic field induces the existence
of an orbital magnetic moment ms

α , leading to a modification
of the dispersion relation (3):

εs
αk = εs

α − ms
α · B, (10)

with

ms
α = − e

2h̄
Im

[〈∇kus
kα

∣∣ × (
H − εs

α

)∣∣∇kus
kα

〉]
. (11)

By substituting the wave function |us
kα〉 in Eq. (11), the orbit

magnetic moments are further expressed as

ms
αx/y = −sαevF

kx/y�
′
s(kz )

2K2
, ms

αz = −sαevF
�s(kz )

2K2
. (12)

By solving the coupled Eq. (9), one can obtain

Dṙ = vs
α + e

h̄
E × �s

α + e

h̄
(vs

α · �s
α )B, (13)

Dk̇ = − e

h̄
E − e

h̄
vs

α × B − e2

h̄2 (E · B)�s
α, (14)

where vs
α = 1

h̄∇kε
s
αk and D = 1 + e

h̄ B · �s
α. In Eq. (13), the

first term is the usual group velocity, the second term is
the anomalous velocity induced by the Berry curvature, and
the third term represents their coupling induced by the mag-
netic field. In Eq. (14), the first two terms are the usual
Lorentz force, while the last term is associated with the chiral
anomaly [35].

In Eq. (8), f (k, r, t ) is a distribution function obeying the
semiclassical Boltzmann kinetic equation as follows:

df (k, r, t )

dt
= ∂ f

∂t
+ k̇

∂ f

∂k
+ ṙ

∂ f

∂r
= Ic{ f }, (15)

with Ic{ f } being a collision integral term. We assume that the
light field has the form of E(t ) = Ee−iωt and the magnetic
field is homogeneously applied to the WSM. In this situation,
the distribution function f (k, r, t ) becomes independent of
the spatial coordinate. Within the relaxation time approxima-
tion, Eq. (15) reduces to

∂ f

∂t
+ k̇

∂ f

∂k
= − f − f0

τ
, (16)

where f0 is the Fermi distribution function. For simplicity, we
ignore internode scattering, thus considering τ from Eq. (16)
as the intranode scattering time. A detailed discussion of the
influence of internode scattering in the nonlinear transport
regime is available in Ref. [56]. To solve Eq. (16), the distribu-
tion function f is expanded up to second order in the electric
field:

f = f0 + f1e−iωt + f2e−2iωt . (17)

Inserting Eq. (17) into Eq.(16) and equating equal powers
of E, we get the recursion equations. Further solving these
equations finally leads to

f1 = τ

1 − iωτ

1

h̄D

[
eE + e2

h̄
(E · B)�s

α

]
· ∇k f0, (18)

f2 = τ 2

(1 − iωτ )(1 − 2iωτ )

(
1

h̄D

)2[
eE + e2

h̄
(E · B)�s

α

]

· ∇k

{[
eE + e2

h̄
(E · B)�s

α

]
· ∇k f0

}
. (19)

Substituting Eqs.(18) and (19) into Eq. (8), we will get the
analytic expressions of the electric current in powers of E (see
below), which provides a basis for exploring the nonlinear
magneto-optical transport through WSMs.

IV. SECOND-ORDER NONLINEAR MAGNETO-OPTICAL
CONDUCTIVITIES

We now explore the second-order nonlinear magneto-
optical response of WSMs. If we employ Eq. (8), the
expression for the second-order nonlinear current response at
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the frequency 2ω is given by

js = −e
∫

[dk]Dṙ( f1 + f2). (20)

By substituting Eq. (13) into Eq. (20), the second-order non-
linear current can be expressed as

js = −e
∫

[dk]

{[
vs

α + e

h̄

(
vs

α · �s
α

)
B

]
f2 + e

h̄
E × �s

α f1

}
.

(21)

Combining Eqs. (18) and (19) with Eq. (21) yields the follow-
ing expression:

js = − eτ

(1 − 2iωτ )

∫
[dk]

h̄D

[
vs

α + e

h̄
(vs

α · �s
α )B

]

×
[

eE + e2

h̄
(E · B)�s

α

]
· ∂ f1

∂k
− e2τ

h̄(1 − iωτ )

×
∫

[dk]

h̄D
E × �s

α

[
eE + e2

h̄
(E · B)�s

α

]
· ∂ f0

∂k
. (22)

From Eq. (22), it is apparent that, alongside the E × �s
α term,

the chiral anomaly (i.e., the E · B term) contributes to the Hall
current. Moreover, the existence of a magnetic field induces a
magnetic moment [refer to Eq. (11)], exerting distinct effects
on the transport properties in the electron and hole regions
(detailed below).

A. Second-order nonlinear conductivity without magnetic field

In the absence of a magnetic field (B = 0), Eq. (22) simpli-
fies as follows:

js = − κ1

∫
[dk]vs

αeE · ∂

h̄∂k

[
(eE · vs

α )
∂ f s

0

∂εs
α

]

− κ2

∫
[dk]E × �s

α (eE · vs
α )

∂ f s
0

∂εs
α

, (23)

where κ1 = eτ 2

(1−2iωτ )(1−iωτ ) and κ2 = e2τ
h̄(1−iωτ ) . We express

Eq. (23) in the form of js
a = σ s

abcEb(ω)Ec(ω), where σ s
abc is

the second-order nonlinear conductivity:

σ s
abc(2ω) = σ s,0

abc + σ s,H
abc . (24)

In Eq. (24), the first term denotes the nonlinear Drude conduc-
tivity:

σ s,0
abc = e2κ1

h̄

∫
[dk]

∂vs
αa

∂kb
vs

αc

∂ f s
0

∂εs
α

, (25)

while the second term is the nonlinear anomalous Hall con-
ductivities induced by the intrinsic Berry curvature dipoles:

σ s,H
abc = −εadceκ2

∫
[dk]	s

αdv
s
αb

∂ f s
0

∂εs
α

, (26)

where εadc represents the three-dimensional Levi-Civita anti-
symmetric tensor and the integral denotes the Berry curvature
dipoles [33].

1. Second-order nonlinear conductivity σ
s,0
abc

Since the velocities vs
α exhibit odd functional dependencies

on the momentum components k, the integrands in Eq. (25)

maintain consistent odd symmetries regarding the momentum
kx, ky, or kz. In the absence of a tilt in the Weyl cone, the Fermi
energy surface preserves its symmetry relative to the origin.
In this context, contributions to the electric current from both
positive (WR,s) and negative (WL,s) Weyl nodes possess equal
magnitudes but opposite directions, resulting in the complete
nullification of the conductivity σ s,0

abc. However, when we con-
sider the tilt term Rk2

z , the parity characteristics of the velocity
vs

k remain unchanged. Nonetheless, the Fermi surface sym-
metry is exclusively disrupted along the z direction while
remaining preserved in the x and y directions. Thus, nonzero
components of the conductivity tensor σ s,0

abc necessitate an even
number of x or y indices, as outlined below:

σ s,0
zxx = e2vF κ1

8π2h̄2

∫
dkz

�s(kz )�′
s(kz )

r(kz )

[
1 − �2

s (kz )

r2(kz )

]
, (27)

σ s,0
xzx = e2vF κ1

8π2h̄2

∫
dkz

{[
�s(kz )�′

s(kz )

r(kz )
+ 2Rkz

h̄vF

]

×
[
−1 − �2

s (kz )

r2(kz )

]}
, (28)

σ s,0
zzz = − e2vF κ1

4π2h̄2

∫
dkz

{[
�s(kz )�′

s(kz )

r(kz )
+ 2Rkz

h̄vF

]

×
[

2λ�s(kz ) + [�′
s(kz )]2 − �2

s (kz )[�′
s(kz )]2

r2(kz )

]

+ 2R

h̄vF

[
�s(kz )�′

s(kz ) + r(kz )
2Rkz

h̄vF

]}
, (29)

where r(kz ) = μ−sJex−Rk2
z

h̄vF
. The Fermi surface symmetry con-

cerning the kx and ky axes implies that the other components
satisfy the relations σ s,0

xxz = σ s,0
zyy = σ s,0

yyz = σ s,0
zxx and σ s,0

yzy =
σ s,0

xzx . It is noted that σxxz does not precisely align with the
component σxzx, while it exhibits an approximate equivalence
to σxzx, particularly under conditions of small tilt amplitudes,
denoted by R. Additionally, Eqs. (27) and (29) can be ex-
pressed as follows: σ s,0

zxx = e3vF σd1

8π2 h̄2
τ 2

(1−2iωτ )(1−iωτ ) and σ s,0
zzz =

− e3vF σd2

4π2 h̄2
τ 2

(1−2iωτ )(1−iωτ ) . Here, σd1 and σd2 represent the inte-
gral terms in Eqs. (27) and (29), respectively. It is evident
that these parameters, σd1 and σd2, are not dependent on
the frequency ω. In the transport limit, where ωτ � 1, the
conductivity components σ s,0

zxx and σ s,0
zzz are proportional to τ 2

and independent of frequency. Conversely, in the optical or
clean limit, where ωτ � 1, these conductivity components
are proportional to 1/ω2 and independent of τ . These results
are consistent with those of the single-node model [58].

We begin our numerical analysis by examining the scenario
where the parameter Jex is set to zero. In Figs. 2(a) and 2(c),
the conductivity components σ+1,0

zxx and σ+1,0
zzz are presented

across the VHS and the Weyl node [indicated by circles in
the inset of Fig. 2(b)] within the s = +1 band, considering
various tilt values represented by R. Near the Weyl node,
σ+1,0

zxx demonstrates a linear correlation with the Fermi energy
EF , resulting in a cusp peak concerning the Fermi energy
at the Weyl node. This finding aligns with the outcomes of
the single-node model [50,58]. Conversely, at the VHS, σ+1,0

zxx
shows an inflection in relation to the Fermi energy, mark-
ing a transition from a linear to a nonlinear relationship. As
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FIG. 2. The second-order nonlinear conductivities (a) σ+1,0
zxx and

(c) σ+1,0
zzz in units of e2vF κ1/8π 2 h̄2 as a function of the Fermi energy

for the tilts R = 0.02 eV nm2 (black line), R = 0.04 eV nm2 (red
line), and R = 0.05 eV nm2 (blue line). (b) The tilt dependence of the
Weyl node and VHS that are indicated by the energy band diagram in
the inset. The specific positions of conductivity curve features, such
as peaks and inflection points, in (a) and (c) are precisely identified
by the intersecting horizontal and vertical dashed lines. The other
parameters are taken as VI = 0.04 eV nm, QD = 2nm−1, Jex = 0 eV,
and λ = 0.06 nm.

R increases, both the peak and the inflection shift towards
higher energies. Figure 2(b) precisely tracks their positions,
depicting the evolution of the Weyl node and VHS influ-
enced by the tilt. Remarkably, as the tilt strength increases,
the Weyl node experiences a more rapid shift, causing the
conductivity peak to approach the inflection point at the VHS
[refer to Fig. 2(a)]. Upon reaching a sufficient tilt magnitude,
the Weyl node and VHS merge into a single point. In this
scenario, the band structure around the Weyl node tends to
flatten, leading to a rapid increase in the density of states and,
consequently enhancing electron nonlinear transport. This en-
hancement manifests in the increased conductivity peak in
Fig. 2(a).

FIG. 3. The second-order nonlinear conductivities (a) σ+1,0
zxx and

(c) σ+1,0
zzz in units of e2vF κ1/8π 2 h̄2 as a function of the Fermi energy

for the parameter VI = 0.01 eV nm (black line) and VI = 0.05 eV nm
(red line) at R = 0.02 eV nm2. (b) The variation of the Weyl node and
VHS, marked in the inset, with the parameter VI . The precise loca-
tions of salient features in the conductivity curves, including peaks
and inflection points, in (a) and (c) are indicated by the intersection
of horizontal and vertical dashed lines. All other parameters remain
consistent with those of Fig. 2.

Moving to Fig. 2(c), we observe that the second-order
nonlinear conductivity σ+1,0

zzz displays a dip at either the Weyl
node or the VHS. Due to the distortion of the Fermi surface
induced by the tilt, these dip structures exhibit asymmetry.
With an increase in tilt, these two dips diminish in magnitude,
and their separation decreases, resulting in the emergence of
a broad peak between them. At the juncture where the Weyl
node and VHS merge, this peak notably disappears, leading to
a substantial dip. By varying the parameter VI , we analyze the
second-order nonlinear conductivity components σ+1,0

zxx and
σ+1,0

zzz as a function of the Fermi energy EF in Figs. 3(a) and
3(c). Notably, the amplitudes of σ+1,0

zxx or σ+1,0
zzz near the Weyl

node and VHS exhibit inconsistent changes with VI . This
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FIG. 4. The second-order nonlinear conductivities for the s =
+1 (dashed line) and s = −1 (dotted line) bands and their summation
(solid line), measured in units of e2vF κ1/8π 2 h̄2 as a function of
the Fermi energy at VI = 0.05 eV nm, R = 0.02 eV nm2, and Jex =
0.02 eV. The other parameters are the same as those in Fig. 2.

behavior markedly differs from that observed when adjusting
the tilt (as depicted in Fig. 2). This discrepancy stems from
the distinct evolution of the Fermi surface induced by R and
VI . Under variations in VI , the Weyl node and VHS move at
nearly identical rates, as illustrated in Fig. 3(b). Consequently,
the separation between the Weyl node and the VHS remains
constant, preserving the symmetric features of the Fermi
surface. Conversely, when influenced by R, the symmetry of
the Fermi surface is disrupted, indicated by the movement of
the Weyl node WR,+1 and the VHS towards each other [refer
to Fig. 2(b)].

Indeed, at Jex = 0, due to opposite chiralities, the contribu-
tions of the s = +1 and s = −1 bands to the second-order
conductivity tend to counteract each other. However, when
Jex �= 0, the chirality symmetry breaks, and the s = ±1 bands
are separated by Jex. Consequently, the total second-order
nonlinear conductivities display nonzero values and introduce
additional inflection points compared to the case of a single
s = +1 band (see Fig. 4). These intervals are determined
by the relative displacements between the Weyl nodes and
the VHS, showcasing the subtle relationship between band
structure and electron transport.

2. Second-order anomalous Hall conductivity σ
s,H
abc

Based on the parity of the velocity vs
α and Berry cur-

vature �s
α , alongside the involvement of the antisymmetric

FIG. 5. Depiction of second-order nonlinear conductivities
[σ+1,H

xyz in (a) and (b) and σ+1,H
xzy in (c) and (d)] for the s = +1

band, varying with R and VI . These conductivities, measured in
units of eκ2/8π 2 h̄, are presented as a function of the Fermi energy
at (a) and (c) VI = 0.03 eV nm and (b) and (d) R = 0.03 eV nm2.
The remaining parameters are consistent with those specified
in Fig. 2.

tensor εacd , the distinct component indices among x, y,
and z are requisite for the existence of σ s,H

abc . With a
straightforward calculation, the expressions are derived as
follows:

σ s,H
xyz = − seκ2

16π2h̄

∫
dkz

�′
s(kz )

r(kz )

[
1 − �2

s (kz )

r2(kz )

]
, (30)

σ s,H
xzy = seκ2

8π2h̄

∫
dkz

�s(kz )

r2(kz )

[
�s(kz )�′

s(kz )

r(kz )
+ 2Rkz

h̄vF

]
. (31)

Additional nonzero components adhere to the relations
σ s,H

zxy = −σ s,H
zyx = −σ s,H

yxz = σ s,H
xyz and −σ s,H

yzx = σ s,H
xzy . The fre-

quency dependence of conductivity, as expressed in Eqs. (30)
and (31), is encapsulated within the factor κ2. Under the trans-
port limit, where ωτ � 1, the conductivity components σ s,H

xyz

and σ s,H
xzy exhibit direct proportionality to the relaxation time

τ and remain invariant with respect to frequency. Conversely,
under the optical or pristine limit, these conductivities, σ s,H

xyz

and σ s,H
xzy , become purely imaginary and demonstrate pro-

portionality to 1/ω, thereby reflecting the characteristics of
second-harmonic generation. Figure 5 depicts the behavior
of the second-order anomalous Hall conductivities σ+1,H

xyz and
σ+1,H

xzy as a function of the Fermi energy for different values of
R and VI at Jex = 0. Both conductivities exhibit a plateaulike
structure. For σ+1,H

xyz , there is an increase at low energies
and a decrease at high energies with increasing R, while
σ+1,H

xzy exhibits an inverse dependence on R. However, with
an increase in VI , σ+1,H

xyz (σ+1,H
xzy ) maintains a nearly constant

plateau height at low energy and slightly decreases (increases)
at high energy. These distinct variations attributed to R and
VI are associated with the observed asymmetry in the Fermi
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FIG. 6. The second-order nonlinear conductivities for the s =
+1 (dashed line) and s = −1 (dotted line) bands and their summa-
tion (solid line), measured in units of e2vF κ1/8π 2 h̄2 as a function
of the Fermi energy at VI = 0.05 eV nm, R = 0.02 eV nm2, and
Jex = 0.02 eV. The other parameters are the same as those in
Fig. 2.

surface (as depicted in Fig. 1). The plateau widths are deter-
mined by the separation between the Weyl nodes and VHS;
hence, their changes with increasing R and VI display incon-
sistent behaviors. Upon the introduction of Jex, the s = ±1
bands split due to Jex, consequently altering the plateau struc-
ture and resulting in the emergence of new plateaus in the
total second-order nonlinear Hall conductivities, as illustrated
in Fig. 6.

B. Magnetic-field-induced contribution
to second-order conductivity

In the presence of a weak magnetic field, incorporating the
effect of the orbital magnetic moment modifies the distribu-
tion function, expressed as [58,59]

f0 = f s
0 − ms

α · B
∂ f s

0

∂εs
α

. (32)

By substituting Eqs. (10), (18), and (32) into Eq. (22), we keep
only the linear term in B:

j(B)s = − κ1

∫
[dk]

[
vs

α − ∇k(ms
α · B) + e(vs

α · �s
α )B

]
Ck�k

· ∇k

[
Ck�k · ∇k

(
f s
0 − ms

α · B
∂ f s

0

∂εs
α

)]

− κ2

∫
[dk]E × �s

αCk�k · ∇k

(
f s
0 − ms

α · B
∂ f s

0

∂εs
α

)
,

(33)

where �k = eE + e2

h̄ (E · B)�s
α and Ck = 1 − e

h̄ (B · �s
α ). Ob-

viously, in Eq. (33), the direction of the current density
contributed by the first integral term is governed by a com-
bination of the wave packet velocity vs

α , the Berry curvature
�s

α , and the orbital magnetic moment ms
α . However, the

direction of the current density contributed by the second
integral term is solely determined by the coupling term of
the electric field and Berry curvature E × �s

α , resulting in a
nonlinear Hall current. We also express Eq. (33) in the form
of j (B)s

a = σ
(B)s
abc EbEc, where σ

(B)s
abc represents the magnetic-

field-induced contribution to the second-order nonlinear
conductivity.

When the applied magnetic field B aligns with the electric
field E (i.e., E · B �= 0), evidently, the second integral term in
Eq. (33) does not contribute to the second-order conductiv-
ity. Substituting Eqs. (7) and (11) into Eq. (33), we derive
the following expressions from the first integral terms of
Eq. (33):

σ (B)s
xxx = σ1Bx

∫
[dk]

{
∂vs2

αx

2∂kx
	s

αx +
[

∂vs2
αx

2∂ky
+ ∂

(
vs

αxv
s
αy

)
∂kx

]
	s

αy

+
[
∂vs2

αx

2∂kz
+ ∂

(
vs

αxv
s
αz

)
∂kx

]
	s

αz + vs2
αx∇ · �s

α

+ vs
αxv

s
αy

∂	s
αy

∂kx
+ vs

αxv
s
αz

∂	s
αz

∂kx

− ∂2ms
αx

e∂k2
x

vs
αx + ∂2vs

αx

e∂k2
x

ms
αx

}
∂ f s

0

∂εs
α

, (34)

σ (B)s
zzz = σ1Bz

∫
[dk]

{
∂vs2

αz

2∂kz
	s

αz +
[

∂vs2
αz

2∂ky
+ ∂

(
vs

αzv
s
αy

)
∂kz

]
	s

αy

+
[

∂vs2
αz

2∂kx
+ ∂

(
vs

αxv
s
αz

)
∂kz

]
	s

αx + vs2
zα∇ · �s

α

+ vs
xαvs

zα

∂	s
xα

∂kz
+ vs

yαvs
zα

∂	s
yα

∂kz

− ∂2ms
αz

e∂k2
z

vs
αz + ∂2vs

αz

e∂k2
z

ms
αz

}
∂ f s

0

∂εs
α

, (35)

where σ1 = e4τ 2v2
F

(1−2iωτ )(1−iωτ )h2 . Notably, due to the symmetry of

the kx axis and the ky axis, σ (B)s
yyy (By)/By = σ (B)s

xxx (Bx )/Bx. All
other components are rendered as zero.
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By orienting the magnetic field B perpendicular to the
electric field E (i.e., E · B = 0), we determine the nonlinear
Hall conductivity components in the following manner:

σ (B)s
xyy = σ1Bx

∫
[dk]

[
∂vs

αx

∂ky
vs

αy	
s
αx − ∂

(
vs

αy	
s
αy + vs

αz	
s
αz

)
∂ky

vs
αy

− ∂2ms
αx

e∂kx∂ky
vs

αy + ∂2vs
αx

e∂k2
y

ms
αx

]
∂ f s

0

∂εs
α

, (36)

σ (B)s
xzz = σ1Bx

∫
[dk]

[
− ∂vs

αx

∂kz
vs

αz	
s
αx + ∂

(
vs

αy	
s
αy + vs

αz	
s
αz

)
∂kz

× vs
z − ∂ms

αx

∂kx∂kz
vs

zα + ∂2vs
αx

∂k2
z

ms
αx

]
∂ f s

0

∂εs
α

, (37)

σ (B)s
zyy = σ1Bz

∫
[dk]

[
−∂vs

αz

∂ky
vs

αy	
s
αz + ∂

(
vs

αx	
s
αx + vs

αy	
s
αy

)
∂ky

× vs
αy − ∂2ms

αz

e∂kz∂ky
vs

αy + ∂2vs
αz

e∂k2
y

ms
αz

]
∂ f s

0

∂εs
α

. (38)

The additional nonzero conductivity components conform to
the relationships σ (B)s

yxx /By = σ (B)s
xyy /Bx = −σ (B)s

zyy /Bz, σ (B)s
zxx =

σ (B)s
zyy , and σ (B)s

yzz /By = σ (B)s
xzz /Bx. Notably, Eqs. (36)–(38) stem

from the contributions of the primary integral terms in
Eq. (33). The contribution arising from the second inte-
gral term in Eq. (33) necessitates distinct component indices
(a, b, c) for the conductivity components σ

(B)s
abc . Through fur-

ther computation involving Eq. (33), we find

σ (B)s
zxy = −σ2Bz

∫
[dk]

(
∂	s

αx

∂kx
ms

αz + evs
αx	

s
αx	

s
αz

)
∂ f s

0

∂εs
α

,

(39)

where we define σ2 = e4τ

4π2 h̄3(1−iωτ )
. The other nonzero conduc-

tivity components are related as follows: σ (B)s
zxy = −σ (B)s

zyx and
σ (B)s

yzx /By = −σ (B)s
xzy /Bx = 2σ (B)s

zxy /Bz.
In the presence of tilt R and the splitting term Jex, the

energies of the four Weyl nodes exhibit discrepancies, as
illustrated in Fig. 1. Assuming a comparative scale between
the splitting energy Jex and the VHS energy, the ordering
of Weyl node energies remains consistent: EWR,+1 > EWL,−1 >

EWL,+1 > EWR,−1 . Figure 7 illustrates the dependence of the to-
tal second-order nonlinear conductivity of the s = ±1 bands,
σ

(B)
abc = σ

(B)+1
abc + σ

(B)−1
abc , induced by the magnetic field on

the Fermi energy EF for varying tilts. The second-order
conductivity components σ (B)

aaa(a = x, z) and σ (B)
xyy across the

Weyl nodes WR,+1 and WL,−1 display distinct sharp peaks.
The asymmetry in these peak structures concerning the Weyl
nodes indicates the influence of the magnetic moment, which
suppresses nonlinear electron transport while enhancing non-
linear hole transport, as detailed in Eqs. (34)–(37). Terms
related to the magnetic moment demonstrate positivity, while
other terms rely on the band index α (= ±1). For the con-
ductivity components σ (B)

xzz , σ (B)
zyy , and σ (B)

zxy , the dominance of
the magnetic moment becomes evident, resulting in a kinked
structure showing a sudden shift from positive to negative
values near the Weyl nodes WR,+1 and WL,−1, as depicted in
Figs. 7(d)–7(f). Further examination of the second-order con-
ductivity expressions [Eqs. (34)–(39)] reveals that the peak

FIG. 7. The total second-order nonlinear conductivity compo-
nents of the s = ±1 bands, namely, (a) σ (B)

xxx , (b) σ (B)
zzz , (c) σ (B)

xyy ,
(d) σ (B)

xzz , (e) σ (B)
zyy , and (f) σ (B)

zxy , as a function of Fermi energy for
two distinct values of R, R = 0.025 eV nm2 (solid line) and R =
0.035 eV nm2 (dashed line), at Jex = 0.02 eV and VI = 0.04 eV nm.
All other parameters remain consistent with those defined in Fig. 2.

structures follow the asymptotic relationship σ (B)
aaa, σ

(B)
xyy ∝

1
(EF −EWα,s )2 near the Weyl nodes Wα,s. Meanwhile, the kinked
structure [as shown in Figs. 7(d)–7(f)] adheres to the relation
σ (B)

xzz , σ (B)
zyy , σ (B)

zxy ∝ ± sgn(EF −EWα,s )
(EF −EWα,s )2 near the Weyl nodes Wα,s. As

the tilt R increases, these characteristic structures shift towards
higher energies while retaining their essential peak and kinked
features. However, near the VHS, the distinct feature induced
by the VHS is not clearly observed due to the suppressing
effect of the magnetic moment, overriding the influence of the
VHS. Even an enhancement in the VHS energy nearly fails
to amplify its influence. In analyzing the frequency depen-
dence of conductivity, we observe a similarity between the
magnetic-field-induced contribution to the second-order con-
ductivity and the case of zero magnetic field. Consequently,
in the transport regime where ωτ � 1, both σabb and σaaa

vary proportionally to τ 2, whereas σabc scales linearly with
τ . Conversely, in the optical limit where ωτ � 1, σabb and
σaaa scale inversely with the square of frequency (1/ω2),
and σaaa possesses an imaginary component, obeying the re-
lation σaaa ∝ 1/ω.

Moreover, from the aforementioned results, we can further
assess the scale of the nonlinear magneto-optical suscep-
tibility using the equation χ (2ω) = j/(iω)ε0E2 [30], where
ε0 represents vacuum permittivity. By adopting the parame-
ters EF = 8 meV, vF = 3.2 × 105 m/s, VI = 0.015 eV nm−1,
Jex = 0.01 eV, λ = 0.5 nm, R = 0.3 eV nm2, and QD =
0.8 nm−1, we derive χ (2ω) ≈ 5.6 × 103B pm/V at ω =
8π THz. Recent observations in WSMs demonstrated signif-
icantly enhanced nonlinear optical responses, encompassing
photocurrent [60], second- or third-harmonic generation [61],
and the optical Kerr effect [62]. Specifically, an extraor-
dinarily high coefficient for the linear magneto-optic Kerr
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effect was reported within a magnetic WSM [63]. These ob-
servations indicate the potential realization of our findings
concerning nonlinear magneto-optical features induced by the
magnetic moment within magnetic WSMs, particularly within
the infrared regime.

V. CONCLUSIONS

We studied the nonlinear magneto-optical transport prop-
erties within noncentrosymmetric magnetic WSMs. We
constructed an effective low-energy model that incorporates
essential elements: the VHS, a tilted term, and the presence
of broken space inversion and broken time inversion terms.
Using this model, we derived analytical expressions for the
second-order nonlinear conductivity components through the
semiclassical Boltzmann equation. We observed that in
the absence of a magnetic field, the second-order nonlin-
ear Drude conductivity components display inflection or dip
behaviors across the VHS. Conversely, the second-order non-
linear anomalous Hall conductivity, primarily influenced by
the Berry curvature dipole, showcases a subtle plateaulike
structure. Significantly, intensifying the tilt strength amplifies
these second-order conductivity features at the singularity
due to the increased VHS energy. Additionally, our inves-
tigation explored the magnetic-field-induced impact on the
second-order nonlinear conductivity, revealing that the result-
ing magnetic-moment-induced suppression and enhancement
of nonlinear electron and hole transport help counteract the
influence of the VHS. This effect specifically generates an
asymmetric peak or a kinklike structure near the Weyl nodes.
Upon our evaluation of the magnitude of these second-order
conductivity components, our findings suggest the poten-
tial observability of these phenomena in realistic magnetic
WSMs.
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APPENDIX: DENSITY OF STATES

The density of states for the s = +1 band can be
calculated by

ρ+1(ε) = 1

V

∑
kα

δ[ε − ε+1
α (k)]. (A1)

To solve Eq. (A1), we need to convert the summation over
k into an integral in the three-dimensional momentum space.
After a straightforward calculation, we get the analytical ex-
pression for DOS as follows: For ε > εc

VHS,

ρ+1(ε) = 1

4π2v2
F

[
(ε − Jex )(kz3 − kz1) − R

3
(kz3 − kz1)3

]
.

(A2)

For εWR,+1 < ε < εc
VHS,

ρ+1(ε) = 1

4π2v2
F

{
(E − Jex )(kz2 + kz3 − kz1 − kz4)

− R

3
[(kz2 − kz1)3 + (kz3 − kz4)3]

}
. (A3)

For εWL,+1 < ε < εWR,+1 ,

ρ+1(ε) = 1

4π2v2
F

{
(E − Jex )(kz2 + kz4 − kz1 − kz3)

− R

3
[(kz2 − kz1)3 + (kz4 − kz3)3]

}
. (A4)

For εv
VHS < ε < εWL,+1 ,

ρ+1(ε) = − 1

4π2v2
F

{
(ε − Jex )(kz1 + kz4 − kz2 − kz3)

− R

3
[(kz1 − kz2)3 + (kz4 − kz3)3]

}
. (A5)

For ε < εv
VHS,

ρ+1(ε) = − 1

4π2v2
F

[
(ε − Jex )(kz4 − kz2) − R

3
(kz4 − kz2)3

]
,

(A6)

where

kz1 =
vF λq −

√
(vF λq)2 + (vF λ + R)

(
ε − Jex + vF λQ2

D

)
R + vF λ

,

(A7)

kz2 =
−vF λq +

√
(vF λq)2 + (R − vF λ)

(
ε − Jex − vF λQ2

D

)
R − vF λ

,

(A8)

kz3 =
vF λq +

√
(vF λq)2 + (vF λ + R)

(
ε − Jex + vF λQ2

D

)
R + vF λ

,

(A9)

kz4 =
−vF λq −

√
(vF λq)2 + (R − vF λ)

(
ε − Jex − vF λQ2

D

)
R − vF λ

.

(A10)

Additionally, the VHS energies for the conduction band
and valence band are expressed as εc

VHS = (vF λq)2

vF λ−R +
vF λQ2

D + Jex and εv
VHS = − (vF λq)2

vF λ+R − vF λQ2
D + Jex. In the

presence of the tilt, the energies of the Weyl nodes are
modified to εWR,+1 = (

√
Q2

D + q2 + q)2 + Jex and εWL,+1 =
(
√

Q2
D + q2 − q)2 + Jex.
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