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Flow of unitary matrices: Real-space winding numbers in one and three dimensions
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The notion of the flow introduced by Kitaev is a manifestly topological formulation of the winding number on
a real lattice. First, we show in this paper that the flow is quite useful for practical numerical computations for
systems without translational invariance. Second, we extend it to three dimensions. Namely, we derive a formula
of the flow on a three-dimensional lattice, which corresponds to the conventional winding number when systems
have translational invariance.
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I. INTRODUCTION

Topological classification of states in condensed matter
physics [1–6] has been extended to various systems that are
not necessarily so regular. For example, topologically pro-
tected edge modes were reported in geophysics as well as
biophysics [7,8]. In real circumstances such systems are far
from regular, which does not allow to calculate the Berry
curvature as a function of the wave vectors. Nevertheless,
topological protection ensures robustness of the topological
edge states. Accordingly, direct computational schemes of
topological invariants for various irregular systems have be-
come increasingly important.

For disordered and/or interacting systems, there are many
attempts at computing topological invariants in real spaces.
One way is the use of the twisted boundary conditions, where
twist angles play a role of the wave vectors [9]. However, note
that the integration of the Berry curvature over the twist angles
has no clear physical reason: Topological numbers should be
basically attributed to fixed boundary conditions. Indeed, in
the case of the Chern number, if one uses the discretized
plaquette method [10] for a sufficiently large system, just one
plaquette, in principle, reproduces the correct Chern number
[11]. The merit of this method is that it is always integral, and
for clean noninteracting systems, it reduces to the topological
invariants based on the Berry curvatures. Another way is
based on the direct real-space representations of topological
invariants [12–23]. The Zak phase is the typical example of
them [24], which is also the basis of the quantum mechanical
theory of electric polarization in crystalline insulators [25,26].
However, the topological nature of them seems unclear at first
sight.

In this paper, we restrict our discussions to winding
numbers of unitary matrices in odd dimensions, which are
topological invariants characterizing half-filled ground states
of systems with chiral symmetry. As mentioned above, real-
space representations of topological invariants are more or
less based on the quantum mechanical position operators.
However, Kitaev [12] has proposed a quite useful notion,
the flow of the unitary matrices. This is equivalent to the
Zak-like representation by the use of the position operators if
the systems have translational symmetry. Moreover, the flow

in one dimension is manifestly topological. The purpose of
the paper is firstly to show the usefulness of the flow also
in the practical computations, and secondly to present the
three-dimensional extension of the flow. Recently, a method
of computing a winding number in a discretized wave-vector
space in three dimensions has been proposed in Ref. [27]. The
three-dimensional flow in this paper is an alternative discrete
formulation of the three-dimensional winding number.

II. FLOW OF UNITARY MATRICES IN ONE DIMENSION

In condensed matter physics, topological invariants are
defined on the torus (the Brillouin zone) spanned by the
continuum wave vector, which implies that corresponding
real spaces are composed of infinite lattices. Indeed, the flow
introduced by Kitaev is basically defined by unitary matrices
Ui j specified by site indices i, j running from −∞ to +∞. In
other words, only for infinite dimensional matrices, the flow
is topological. Practically, this feature is rather problematic,
especially for numerical computations for finite size systems,
since the flow vanishes trivially. Keeping these points in mind,
we review in this section the flow of unitary matrices intro-
duced by Kitaev [12], using the Su-Schrieffer-Heeger (SSH)
model [28] as a typical example, stressing why the flow van-
ishes for finite systems, and how to overcome this difficulty
for numerical calculations using finite systems.

Before proceeding, let us fix our notation of unitary matri-
ces often denoted as Ui j . The indices i, j stand for the lattice
sites of unit cells, often referred to simply as sites, and if
the systems have any n internal degrees of freedom such as
orbitals, Ui j is a n × n matrix specified by i, j. The symbol tr
means the trace over the internal degrees of freedom, whereas
Tr stands for the trace including sites Tr U = ∑

i tr Uii.

A. SSH model

Let us start with the generalized SSH model described by
the Hamiltonian on an infinite lattice:

Ĥ= (c†
A, c†

B)

(
�

�†

)(
cA

cB

)
, (1)
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where c†
A = (. . . , c†

A,−1, c†
A,0, c†

A,1, c†
A,2, . . . ), and likewise for

cB, and the hopping matrix � is defined by

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

t1
t2 t1
t3 t2 t1

t3 t2 t1
t3 t2 t1

t3 t2 t1
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

The basic symmetry of the Hamiltonian Eq. (1) is chiral
symmetry. In addition, the model possesses time-reversal
symmetry, so that the model belongs to class BDI [1–4]. The
half-filled ground state is topologically characterized by the
winding number of the Fourier-transformed matrix �. Note
that t3 is a specific hopping for a nontrivial high winding num-
ber [16,21]. For the bulk system without disorder, the Fourier
transformation gives � = t1 + t2eik + t3e2ik . Now, let us try
to calculate the winding number in the lattice space, using the
flow of Kitaev. To this end, let us unitarize the matrix � by
using the singular value decomposition � = V GW † such that

U = VW †. (3)

We separate the one-dimensional lattice sites specifying the
positions of the unit cells as follows: Let j be the label of
the unit cell. Then, let us separate them into two regions, say,
j � 0 and j < 0, and let us call them region A = 1 and 2,
respectively. Now, according to Kitaev [12], we introduce the
flow of U as

F1(U ) =
∑

j�0,k<0

tr(U †
k jUjk − U †

jkUk j ), (4)

where in the present SSH model, tr is needless. Let us define
the projector onto region 1 as �1 ≡ �, where �i j = δi j for
i � 0 and �i j = 0 otherwise, and the projector onto region 2
as �2 ≡ 1l − �. Then, the flow can be written as

F1(U ) = Tr(εABU †�AU�B) = Tr(U †�U − �)

= TrU †[�,U ]. (5)

When a system has translational invariance, this reduces to
Eqs. (A3) and (A5),

F1(U ) = W1(U ) ≡ i

2π

∫
dq tr U †

q ∂qUq, (6)

where W1(U ) is the conventional winding number of the
unitary matrix U defined in the Fourier space. In the present
case of the SSH model, Uq is just a single complex number,
so that the trace in Eq. (6) is not necessary. Without transla-
tional symmetry, the winding number W1 cannot be defined,
whereas the flow F1 is well defined.

For an infinite system, two matrices inside Tr in Eq. (5) are
infinite dimensional, so that the Tr operation should be carried
out after the subtraction of the two matrices. It should be noted
that U †�U is a projector having 0 or 1 eigenvalues. Thus, F1

is integer valued. Moreover, it is manifestly topological, since
even if a unit cell in region 1 is assigned to region 2, i.e., even
if the regions 1 and 2 are deformed, the flow is invariant as

Kitaev showed [12]. (See also Appendix C.) While the flow
counts the difference of eigenvalue 1 between U †�U and
�, we can give an alternative formulation which counts the
difference of 0’s, as presented in Appendix B. This may be a
kind of the index theorem.

As proposed by Kitaev, the above trace can be evaluated as
if it were for finite dimensional matrices, when one introduces
the truncation projector �(L)

F1 = Tr�(L)U †�U − Tr�(L)�, (7)

where

�
(L)
i j =

{
δi j (−L � i � L − 1)

0 (otherwise)
. (8)

This formula may be useful for practical numerical applica-
tions, although it spoils the integer nature of F1. Below, let us
show some examples.

1. Topological phase

The topological phase of the conventional SSH model
(t3 = 0) is adiabatically deformed to the model with t1 = 0
and t2 = 1 [29]. In this case, � is already a unitary matrix
without using the singular value decomposition Eq. (3), and
we find for U = �,

U †�U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

0
0

1
1

1
1

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ diag(. . . , 0, 0, 1|1, 1, 1, . . . ),

� = diag(. . . , 0, 0, 0|1, 1, 1, . . . ), (9)

where the straight lines in the matrix stand for the boundaries
separated by �1,2. Thus, we have F1 = 1. This is very sharp
contrast to the trivial phase below in Sec. II A 2. One knows
that � in this case actually moves a particle to its neighbor.
Although nothing can be found in U †U = 1l, the boundary
introduced by the projector � in between U † and U reveals
the flow just at the boundary, as can be seen in Eq. (9). It
would be a kind of the bulk-edge correspondence.

2. Trivial phase

Let us set t2 = 0 and t1 = 1. Then, � = 1l is a unitary
matrix. In this case, U †�U = �. Thus, we have F1 = 0.

B. Finite systems with the periodic boundary condition

For numerical calculations, we inevitably use finite sys-
tems. With the periodic boundary condition, � in Eq. (2)
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becomes

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t3 t2
t2 t1 t3
t3 t2 t1

. . .

t2 t1
t3 t2 t1

t3 t2 t1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

Let us assume that the number of the unit cells of the SSH
model is finite, 2N . The matrix � is then 2N × 2N matrix.
Let us separate the sites into two sets 0 � j � N − 1 and
−N � j � −1, called region 1 and 2, respectively, and in-
troduce corresponding projectors �1 ≡ � and �2 ≡ 1l − �,
similarly in the infinite system.

1. Topological phase

As in the case of the infinite lattice, the matrix U with
winding number 1 is adiabatically deformed into

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0

1 0
. . .

0
1 0

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

The top right matrix element U−N,N−1 = 1 is due to the pe-
riodic boundary condition. This matrix U is unitary, and we
have

U †�U = diag(0, 0, . . . , 0, 1|1, 1, . . . , 1, 0). (12)

The finite-size effect is manifest as the matrix element
(U †�U )N−1,N−1 = 0 (the last 0 in the above): For the infi-
nite one-dimensional (1D) chain, the projector � chooses the
space j � 0 which has only one boundary at j = 0, whereas in
the periodic chain, the projector gives rise to two boundaries.
Since the flow occurs at one direction, a positive flow at one
boundary induces a negative flow at the other boundary, im-
plying vanishing total flow. Therefore, we have F1 = 0 for the
finite-size system even for the SSH model in the topological
phase. This is also expected from the conventional identity
associated with the trace, TrU †�U = TrUU †� = Tr� holds
for finite-dimensional matrices. Nevertheless, the truncation
projector �(L) in Eq. (8) is useful, in practice, even for finite
systems. Namely, we have for Eq. (12)

F1 = Tr�(L)(U †�U − �) = 1, (13)

where �(L) is defined by Eq. (8), if one chooses L as 1 �
L � N − 1. This truncation projector removes the flow at an
artificial boundary due to finite-size effects.

In Fig. 1, we show the flow as a function of the truncation
size L near the SSH transition point t1 = t2 (t3 = 0). It turns
out that the flow does not so strongly depend on L, and the size
L ∼ N/2 may be suitable to reproduce the correct topological
transition.

FIG. 1. The flow Eq. (13) as a function of the truncation size L
for the finite unitary matrix Eq. (10) under the periodic boundary
condition with t2 = 1.5, 1.05, 0.95, 0.5. The other parameters t1 = 1
and t3 = 0 and the system size 2N = 100 are fixed. F1 = 0 at L = N
reflects the fact that finite-size systems always show the trivial flow
without the truncation.

C. Application to the SSH model with disorder

As an example of the calculation of the flow, we examine
the generalized SSH model studied in Refs. [16,21], which
gives topological transition due to disorder. We set

t1, j = 0 + δt1, j, t2, j = 1 + δt2, j, t3 = −2, (14)

where δt1, j ∈ [−W/2,W/2] and δt2, j ∈ [−W/4,W/4] are ran-
dom parameters. In Fig. 2, we show the flow F1 as a function
of the disorder strength for the generalized SSH model. It
turns out that the flow can reveal the topological transi-
tions quantitatively, and thus the truncation scheme works
around the transition points of dirty systems. As discussed
in Ref. [16], the sequential topological transition F1 = 2 →
1 → 0 shows that the present model can be characterized
by the winding numbers rather than the polarizations (the
Berry phase) with Z2 nature. Although it may be difficult to
find the model in the real materials, the metamaterial such as
topoelectrical circuits could give an experimental platform for
observing the sequential topological transitions.

FIG. 2. The flow as a function of the disorder strength W of
the generalized SSH model with size 2N = 100, 200, 300, and 500
averaged over 100 ensembles.
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III. FLOW IN THREE DIMENSIONS

The flow introduced by Kitaev is basically for one di-
mension, but the same idea leads to the Chern number in
two dimensions, which is represented by the projectors to the
occupied states on a lattice [12]. In this section, we further
generalize the flow to three dimensions, and derive the real-
space winding number on a three dimensional lattice.

A. Winding number

Let Uq be a unitary matrix as a function of the wave vector
q = (qx, qy, qz ). Then, the winding number of Uq is defined
by

W3(U ) = 1

24π2

∫
d3qεμνρ tr(U †∂μUU †∂νUU †∂ρU ), (15)

where ∂μ ≡ ∂qμ
. On a lattice, the site dependence of the matrix

U is generically denoted as Ujk , where j = ( jx, jy, jz ) and k
label two sites. In the present case with translational invari-
ance, we assume Ujk = Uj−k . Then, Uj−k is related with Uq

via the Fourier transformation

Uj−k =
∫ π

−π

d3q

(2π )3
eiq·( j−k)Uq. (16)

Using Eq. (A5), the winding number Eq. (15) can be rewritten
in the real space as

W3(U ) = π i

3
tr(εμνρU †[Xμ,U ]U †[Xν,U ]U †[Xρ,U ]), (17)

where Xμ,i j = iμδi j is the position operator. Equation (A3)
further leads to

W3(U ) = π i

3
Tr(εμνρU †[�μ,U ]U †[�ν,U ]U †[�ρ,U ])

= −π i

3
Tr(εμνρU †�μU�νU †�ρU )

≡ −π i

3
w3(U,�x,�y,�z ), (18)

where �μ is the projector onto the non-negative μ direction,
(�μ) jk = δ jk for jμ � 0 and = 0 otherwise.

B. Flow

Let us separate the three-dimensional lattice spanned by
j = ( jx, jy, jz ) into four regions denoted by A = 1, 2, 3, 4
and introduce corresponding projectors �A. For example,
we can choose each region such that jx � 0, jy � 0, jz <

0 (A = 1), jx < 0, jy � 0, jz < 0 (A = 2), jz � 0 (A = 3),
and jy < 0, jz < 0 (A = 4). We assume �A�B = δAB�A and∑

A �A = 1l with A = 1, 2, 3, 4, for simplicity. Define the
flow by

F3(U ) = −2π iTr(εABCDU †�AU�BU †�CU�D). (19)

This may be a generalized definition of the flow Eq. (5)
to three dimensions. Using �4 = 1 − (�1 + �2 + �3),
we have

F3(U ) = −2π iTr(εABCU †�AU�BU †�CU ),

≡ −2π i f3(U,�1,�2,�3), (20)

where A, B,C are restricted to A, B,C = 1, 2, 3. What is im-
portant here is that any two regions among 1,2,3, and 4 share
not only lines but also finite areas around generic contact
point of all the regions 1,2,3, and 4. Then, the flow is kept
unchanged under the deformation of the regions, as shown
in Appendix C. In this sense, we claim that the flow defined
above is manifestly topological.

So far we have defined the winding number Eq. (18) and
the flow Eq. (20) in three dimensions. Next, we have to con-
sider the relationship between w3 and f3. The projector �x is
divided into

�x =
∑

i, j=±
�+i j, (21)

where �+++ is the projector onto jx � 0, jy � 0, and jz � 0,
�++− is the projector onto jx � 0, jy � 0, but jz < 0, and so
on. Then, we obtain

w3(U,�x,�y,�z ) =
∑

i, j,k,l,m,n=±
w3(U,�+i j,�k+l ,�mn+).

(22)

In this summation, contributions are three kinds, ± f3/2 and
zero. To be concrete, let us assign the vector vi jk = (i, j, k)T

for �i jk , where ± in �i jk mean ±1 in (i, j, k), and
calculate the determinant det(v+i j, vk+l , vmn+). If it vanishes,
corresponding w3 vanishes. For nonzero determinant,
let us define the sign of the determinant s. Then, we
have w3(�+i j,�k+l ,�mn+) = s f3/2. Exceptions are the
cases where three regions spanned by three projectors
�+i j,�k+l , and �mn+ separate the remaining region into two
disconnected regions such as �++−,�−++, and �+−+. These
are vanishing, even though the determinants are finite. Thus,
in the summation above, there are 15 positive-sign terms and
3 negative-sign terms which give finite contributions. We
finally reach

w3(U,�x,�y,�z ) = 6 f3(U,�1,�2,�3), (23)

from which it follows

F3(U ) = W3(U ). (24)

As in the one-dimensional case of Eq. (6), it turns out that the
winding number in three dimensions W3 can be represented
by the flow F3 defined on the real lattice space. Note that the
flow Eq. (20) is well defined in the absence of translational
symmetry. As in the case of one dimension, for numerical
computations using finite-size systems, the flow in three
dimensions also vanishes trivially. Nevertheless, as discussed
in Sec. II B, the truncation scheme enables to obtain an
approximate winding number. Namely,

F3(U ) = −2π iTr(εABC�(L)U †�AU�BU †�CU ) (25)

is useful for numerical computations, where for simplicity,
we assume the truncation projector �(L) as

�
(L)
i j =

{
δi j (−L � ix, iy, iz � L − 1)

0 (otherwise)
(26)

for a finite lattice system, −N � ix, iy, iz � N − 1.
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FIG. 3. The flow F3 for (N, L) = (3, 2), (4,3), (4,2), and (5,2)
systems. The blue straight lines show the exact winding numbers
W3 = −2, 1, 0 for |m| < 1, 1 < |m| < 3, and 3 < |m|, respectively,
where we have set t = b = 1.

C. Application to the Wilson-Dirac model

Recently, Shiozaki examined the Dirac operator on the
lattice for his discrete formula of the winding number [27]. Let
us compute the flow of the same model to check the validity
of Eq. (24). To this end, let us start with the Wilson-Dirac
model, a typical model of a topological insulator with chiral
symmetry in three dimensions, described by the following
Hamiltonian represented by the wave vector

H = tγ μ sin kμ + γ 4

(
m + b

∑
μ

cos kμ

)
. (27)

For the γ matrices defined by γ μ = σ 1 ⊗ σμ for μ = 1, 2, 3
and γ 4 = σ 2 ⊗ σ 0, where σ 0 stands for the unit matrix, it
turns out that this model has time-reversal symmetry de-
scribed by T = Kσ 1 ⊗ iσ 2, where K denotes the complex
conjugation, as well as chiral symmetry described by C =
σ 3 ⊗ σ 0, and hence, the model belongs to class DIII [1–4].
Thus, the topological property of the half-filled ground state
for this model is specified basically by the winding number
W3 in Eq. (15). With the choice of the γ matrices above, the
Hamiltonian is represented as

H =
(

D
D†

)
. (28)

Here, the so-called Wilson-Dirac operator D is defined by

D = tσμ sin kμ − iσ 0

(
m + b

∑
μ

cos kμ

)

= t

2i
σμ(δμ − δ∗

μ) − iσ 0

⎡⎣m + b

2

∑
μ

(δμ + δ∗
μ)

⎤⎦. (29)

The second line above is the operator represented on the real
lattice denoted by the forward and backward shift operators to
the μ direction, δμ f j = f j+μ̂ and δ∗

μ f j = f j−μ̂, where j stands
for a lattice site and μ̂ is the unit vector toward μ direction.

It is known that there appear three phases with winding
number −2, 1, and 0, depending on the parameters of the
model, obtained by the direct computation of the winding
number. Comparing this exact result, let us check the validity
of the three-dimensional flow derived in Sec. III B. In Fig. 3,
we show numerical results of the flow F3 calculated for D in

FIG. 4. The flow F3 as a function of the disorder strength W for
(N, L) = (3, 2) (circles) and (4,2) (squares) systems averaged over
10 ensembles. Upper two data are for m = 2, whereas the lower two
are for m = 0.

Eq. (29) represented in the real lattice space. Here, we have
firstly unitarized the operator D by the use of the singular
value decomposition, as in Eq. (3), and next computed the
three-dimensional flow F3 given by Eq. (20). Contrary to the
case of one dimension, the number of lattice sites to each
direction are very limited. Indeed, the system sizes demon-
strated in Fig. 3 are from 63 to 103. Nevertheless, it turns out
that the exact winding number is qualitatively reproduced as
a function of m. In particular, in the middle of each phase
apart from phase boundaries, the flow is saturated at the exact
winding number.

Let us introduce disorder into this model and compute the
flow F3, instead of the winding number W3, to see whether
topological transitions occur, since W3 is no longer well de-
fined due to broken translational symmetry. It should be noted
here that due to the limited system size, the flow is not very
exact, especially near the phase boundary. We replace the
hopping parameters t and b into site-dependent ones t j and
b j and set

t j = 1 + δt j, b j = 1 + δb j, (30)

where δt j ∈ [−W,W ] and δb j ∈ [−W,W ] are random pa-
rameters. In Fig. 4, the flow F3 is shown as a function of
the disorder strength W . In both cases m = 0 and 2, the
transition from topological to trivial phases are observed, but
the analysis of detailed behavior of the transition may need
more large systems. Experimentally, the Wilson-Dirac model
can be implemented by the topoelectrical circuits on the hy-
perbolic lattice. Indeed, the four-dimensional Wilson-Dirac
model has been realized on the hyperbolic {8, 8} lattice and
the second Chern number has been observed [30]. Freezing
one direction of such a circuit, one can obtain the three-
dimensional circuit corresponding to the Wilson-Dirac model
denoted by Eqs. (28) and (29).

IV. SUMMARY AND DISCUSSIONS

The flow of a unitary matrix introduced by Kitaev is a
manifestly topological formulation of the winding number
represented on a real lattice. Applying to a disordered model
with topological transitions, we showed that the flow is quite
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useful for numerical computations with a suitable trunca-
tion scheme. We also extended the notion of the flow into
three dimensions. In such a three-dimensional formulation,
our formula reproduces a qualitative feature of the winding
number for the Wilson-Dirac operator. However, to reveal the
quantitative properties, e.g., a topological transition of a dirty
system, requires numerical ingenuity.
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APPENDIX A: PROJECTORS AND POSITION OPERATORS

Let i denote a site on a lattice. For the time being, we
consider the one-dimensional case. Let θi be the discrete step
function defined by θi = 1 for i � 0 and θi = 0 for i < 0.
Then, the projection operator can be written as �i j = θiδi j .
Let X be the position operator defined by Xi j = iδi j . Let Ai j

and Bi j be matrices which depend on the i and j sites. Then,
we have

[�, B]i j = (θi − θ j )Bi j, [X, B]i j = (i − j)Bi j . (A1)

Thus,

(A[�, B])i j =
∑

k

Aik (θk − θ j )Bk j,

(A[X, B])i j =
∑

k

Aik (k − j)Bk j . (A2)

For a system with translational invariance, we assume Ai j =
Ai− j . Let Tr be the trace over the matrix Ai j as well as over the
site i, i.e., TrA = ∑

i trAii. Then,

Tr(A[�, B]) =
∑
i,k

trAi−k (θk − θi )Bk−i

=
∑
i,k

trA−k (θi+k − θi )Bk

=
∑

k

trA−kkBk = tr(A[X, B]), (A3)

where we have used
∑

i(θi+ j − θi+k ) = j − k. Note that the
last equation does not depend on i for translational invariance,
as can be seen from Eq. (A2) in the case of i = j.

Translational invariance also enables to make the Fourier
transformation

Aj =
∫ π

−π

dq

2π
eiq jAq. (A4)

It follows that

tr(A[X, B]) = i

2π

∫ π

−π

dqtrAq∂qBq. (A5)

The above �-X correspondence, Eq. (A3) is valid only in
the case of the trace of matrices including a single commu-
tator of � and X . In the three-dimensional case, the winding
number has three commutators of Xμ and �μ, but they are
different directions. Therefore, Eq. (A3) can be applied.

APPENDIX B: THE FLOW REPRESENTED
BY ZERO MODES

Given a unitary matrix, we can define a Hermitian matrix
in doubly extended space. In this section, we show that the
flow has an intimate relationship with the zero modes of such
a Hermitian matrix. It may be a kind of the index theorem.

From a unitary matrix Eq. (3), let us define the Hermitian
operator (or the SSH-like Hamiltonian but with the projector)
as

H =
(

�U
U †�

)
=

(
�

1l

)(
U

U †

)(
�

1l

)
.

(B1)

For a while, we consider the infinite system in Sec. II B. This
operator H has chiral symmetry

H−1 = −H,  ≡
(

1l
−1l

)
, (B2)

where 1l stands for the identity matrix in the space of U . Note
that

H2 =
(

�

U †�U

)
. (B3)

Then, the flow Eq. (5) can be written by

F1 = −T̃r H2, (B4)

where T̃r stands for the trace in the extended space. Using
T̃r  = 0, we have

F1 = T̃r (1 − H2). (B5)

The operator H has eigenvalues ±1 and 0. Let ϕn (n =
1, 2, . . . ,) be the wave function of H with eigenvalues 1. Then,
because of chiral symmetry, the wave functions with eigen-
value −1 denoted by ϕ−n can be given by ϕ−n = ϕn (n =
1, 2, . . . ). Namely, the ±1 energy states are always paired. Let
ϕ0m (m = 1, 2, . . . ) be the wave function of H with eigenvalue
0. Such zero-energy states can be chosen as the eigenstates
of . Therefore, the zero modes are classified as ϕ±

0m, where
ϕ±

0m = ±ϕ±
0m. To be concrete, they are solutions of

U †�ϕ+
0m = 0, �Uϕ−

0m = 0. (B6)

Using the eigenfunctions, the flow can be expressed as

F1 =
∑

m

ϕ
†
0mϕ0m = #(+) − #(−). (B7)

Namely, the flow is just the difference of the numbers of the
zero modes of H . However, note that this is just a formal
result, since #(±) are, respectively, infinite. Therefore, some
regularization should be needed. Moreover, the flow vanishes
for finite systems.

For practical purposes, the truncation scheme mentioned in
the text is also useful:

F1 = T̃r �̃(L)(1 − H2)

=
∑

m

ϕ0m�̃(L)ϕ0m

=
∑

m

ϕ+
0m�̃(L)ϕ+

0m −
∑

m

ϕ−
0m�̃(L)ϕ−

0m, (B8)
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where �̃(L) ≡ diag(�(L),�(L) ) stands for the projector �(L)

extended to the doubled space of H . This formula is valid for
finite systems.

APPENDIX C: FLOW AS A TOPOLOGICAL INVARIANCE

We show that the flow is manifestly topological. To begin
with, let us start in the case of one dimension to fix our
notations. In this Appendix C, a unitary matrix U is denoted
as Ui1i2 , where ia specifies the number of the unit cell as well
as the number of internal degrees of freedom inside the unit
cell such as ia = (i, s). Then, according to Kitaev, let us define
the current

fi1i2 ≡ U †
i1i2

Ui2i1 − U †
i2i1

Ui1i2 = εabU †
iaib

Uibia , (C1)

where a, b = 1, 2 are implicitly summed in the last equality.
Note that

fi1i2 = − fi2i1 . (C2)

The current is conserved: For a fixed i1, we have∑
i2

fi1i2 =
∑

i2

(
U †

i1i2
Ui2i1 − U †

i2i1
Ui1i2

) = 1 − 1 = 0, (C3)

where the sum over i2 = (i, s) means the sum over i and s, and
we have used the fact that U is unitary. The flow in Eqs. (4) or
(5) is given by

F1(U ) =
∑
i1∈1

∑
i2∈2

fi1i2 . (C4)

Now let us pick up a specific site i0 ∈ 1, and define the new
region 1′ excluding i0, i.e., 1 = 1′ + i0. Then, the above flow
can be written as

F1(U ) =
∑
i1∈1′

∑
i2∈2

fi1i2 +
∑
i2∈2

fi0i2 . (C5)

If one reassigns i0 to region 2, the flow changes into

F ′
1(U ) =

∑
i1∈1′

∑
i2∈2

fi1i2 +
∑
i1∈1′

fi1i0 . (C6)

The difference is

F1 − F ′
1 =

∑
i2∈2

fi0i2 −
∑
i1∈1′

fi1i0

=
∑
i2∈2

fi0i2 +
∑
i1∈1′

fi0i1 + fi0i0

=
∑

i2

fi0i2 = 0, (C7)

where we have used Eqs. (C2) and (C3). Thus, the flow is
invariant under the reassignment of a site into another region.
In the three-dimensional case, the invariance of flow can also
be shown in parallel with the one-dimensional case. Let us
define a current in three dimensions

fi1i2i3i4 = εabcdU †
iaib

UibicU
†
icid

Uid ia , (C8)

where ia (a = 1, 2, 3, 4) specifies a site in three dimensions.
By definition, fi1i2i3i4 is antisymmetric in all four indices ia.
We first show that the current is conserved at each site:∑

i4

fi1i2i3i4 = εabc
[
U †

iaib
UibicU

†
ici4

Ui4ia − U †
iaib

Uibi4U
†
i4ic

Uicia

+ U †
iai4

Ui4ibU
†
ibic

Uicia − U †
i4ia

UiaibU
†
ibic

Uici4

]
= εabc

[
U †

iaib
Uibiaδiaic − U †

iaib
Uibiaδibic

+ U †
iaic

Uiciaδiaib − U †
ibia

Uiaibδiaic

]
= εabcδiaic

[
U †

iaib
Uibia + U †

ibia
Uiaib

− U †
iaib

Uibia − U †
ibia

Uiaib

]
= 0, (C9)

where a, b, c are restricted to 1,2,3, and repeated i4 in the
unitary matrices are implicitly summed. Using the current, we
can write the flow F3 such that

F3(U ) = 2π i
∑
i1∈1

∑
i2∈2

∑
i3∈3

∑
i4∈4

fi1i2i3i4 , (C10)

where 1,2,3,4 stand for the regions in the three-dimensional
lattice introduce above Eq. (19).

Next, let us show that the flow Eq. (C10) is topological,
since the flow is invariant even if a site in a region is assigned
to another region, implying that the flow does not depend on
the detailed shapes of regions 1,2,3, and 4. Let i0 ∈ 1 be a site
in region 1, and let 1′ be the set of sites in region 1 except for
i0, i.e., 1 = i0 + 1′. Then,

F3 = 2π i f1234 ≡ 2π i
(

f1′234 + fi0234
)
, (C11)

where f1i jk = ∑
ł∈1 fli jk , and so on. Let us assign i0 in region

2. Then, the flow becomes

F ′
3 = 2π i

(
f1′234 + f1′i034

)
. (C12)

The difference is

F3 − F ′
3 = 2π i

(
fi0234 − f1′i034

) = 2π i
(

fi0234 + fi01′34
)
.

(C13)

On the other hand, the conservation of the current Eq. (C9)
can be written as

f1′ jkl + fi0 jkl + f2 jkl + f3 jkl + f4 jkl = 0, (C14)

for fixed j, k, l , when i0 ∈ 1. Sum over j ∈ 3 and k ∈ 4 in the
above conservation law yields

0 = f1′34l + fi034l + f234l + f334l + f434l

= f1′34l + fi034l + f234l . (C15)

Setting l = i0, we have

0 = f1′34i0 + fi034i0 + f234i0 = f1′34i0 + f234i0 . (C16)

It follows from Eq. (C13) that F3 = F ′
3.
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