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In quantum dot junctions capacitively coupled to a resonator, electron tunneling through the quantum dot
can be used to transfer heat between different parts of the system. This includes cooling or heating the
electrons in electrodes and absorbing or emitting photons in the resonator mode. Such systems can be driven
into a nonequilibrium state by applying either a voltage bias or a temperature gradient across the electrodes
coupled to the quantum dot, or by employing an external coherent pump to excite the resonator. In this paper,
we present a semiclassical theory to describe the steady state of these structures. We employ a combination
of the Floquet–nonequilibrium Green’s function method and semiclassical laser theory to analyze a normal
metal–quantum dot–superconductor junction coupled to a resonator. Our paper focuses on key parameters such
as the average photon number and phase shift in the resonator, the charge current in the quantum dot, and the
heat fluxes among different components of the system. We explore how photon-assisted Andreev reflection and
quasiparticle tunneling in the quantum dot can refrigerate the resonator mode and the normal-metal electrode.
We also examine the influence of finite voltage and thermal biases on these processes.
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I. INTRODUCTION

In recent years, the manipulation of heat flows between
different parts of quantum circuits has sparked renewed inter-
est because of its wide-ranging applications, such as cooling
quantum circuits and qubit initialization processes [1–6]. Var-
ious proposals for quantum refrigerators [7–9], heat rectifiers
[10–12], and heat engines [13–16] have been put forth in the
circuit quantum electrodynamics (QED) architecture.

Quantum circuit cooling refers to a process aimed at re-
ducing the effective temperature of a quantum circuit. While
quantum circuits themselves do not have a temperature in
the classical sense, cooling in this context typically means
bringing the system closer to a state with lower energy. For
example, it has been shown that a voltage-biased normal
metal–insulator–superconductor junction can cool the nor-
mal metal due to the Peltier effect [17–22]. Simultaneously,
tunneling quasiparticles can also cool a nearby resonator ca-
pacitively coupled to the junction by absorbing photons from
the resonator [23–28]. This effect is due to the existence of
an energy gap in the density of states for the superconductor,
where quasiparticles with higher energy are more effectively
removed from the normal metal than those with lower energy
within the gap [29].

Solid-state quantum dot (QD) structures connected to
normal-metal or superconducting electrodes have also been
widely used as a platform for controlling heat flow in quantum
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circuits [30–41]. In these circuits, the QDs can be conve-
niently coupled to coplanar waveguide (CPW) resonators [42]
through capacitive interactions between the electric charges
on the QD and the electric field in the resonator [43–45].
The photon-assisted electron tunneling in the QD-resonator
coupled system has also been actively studied in recent years
[46–54]. It has been shown that energy exchange with the
resonator can enhance the charge current through the QD,
allowing the QD to operate as an efficient quantum heat
engine [13]. Interestingly, this behavior is expected even for
a QD system in equilibrium [55]. The physics behind these
heat exchanges becomes more exciting when at least one of
the electrodes connected to the QD is a superconductor. This
allows for heat exchange enhancement due to the photon-
assisted Andreev reflections between the normal-metal and
superconducting electrodes [56].

A useful tool for assessing the resonator cooling is the
average photon number in the resonator. Thus, by assuming
that the quantum circuit is initially populated with a finite
average photon number, circuit refrigeration corresponds to
the reduction in the average photon number of the circuit [57].
In practice, the average photon number in a CPW resonator
can be determined by measuring the transmission or reflec-
tion coefficients of the resonator in response to an incoming
microwave pulse from an external probe [58].

In this paper, we study a quantum circuit refrigerator based
on a hybrid QD that is coupled to a microwave resonator. The
hybrid QD subsystem consists of a single-level QD connected
to normal-metal and superconducting electrodes. We study
the photon absorption and emission in the resonator and the
thermoelectric behavior of the QD when either a finite thermal
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FIG. 1. A single quantum dot (QD), which is coupled to a normal
metal (NM) and a superconductor (SC) with an energy gap �, is ca-
pacitively coupled to a coplanar waveguide resonator with a resonant
frequency ω0.

gradient or a finite voltage bias is applied across the two
electrodes connected to the QD. To this end, we determine
the average photon number in the resonator by solving the
Heisenberg-Langevin equation in the semiclassical approx-
imation. Moreover, we calculate the nonequilibrium steady
state of the QD when it is coupled to both the electrodes
and the resonator by employing the Floquet–nonequilibrium
Green’s function (NEGF) method. Our results show that the
QD system can act as a circuit refrigerator or as an active
medium that emits photons into the resonator. These behaviors
can be controlled by changing the gate voltage on the QD as
well as by applying a finite electric voltage or thermal bias on
the QD.

The rest of this paper is structured as follows: In Sec. II A,
we present the model Hamiltonian for the system. In Secs. II B
and II C, we derive the equation of motion for the photon
mode in the resonator and present the Floquet-NEGF formal-
ism for the QD subsystem, allowing us to obtain a system of
equations describing the steady state of the QD-resonator cou-
pled system. We then present our numerical results regarding
cooling and photon emissions in the resonator in Sec. III A.
The charge and heat currents through the QD system, as well
as the cooling power of the resonator, are studied in Sec. III B.
Finally, we draw our conclusions in Sec. IV.

II. THEORETICAL FORMALISM

A. Model Hamiltonian

Our model system is composed of an electromagnetic res-
onator capacitively coupled to a single level QD as shown in
Fig. 1. The QD is coupled to superconducting and normal-
metal electrodes. The total Hamiltonian of this system is
given by

H(t ) = HD + HS + HN + HT + HC (t ) + HI (t ). (1)

The first term in Eq. (1) describes the QD, which is
assumed to have a single level with energy εd , and its

Hamiltonian is given by

HD =
∑

σ

εd nσ + Un↑n↓, (2)

where nσ = d†
σ dσ is the QD’s electron number operator with

spin σ =↑,↓ and U is the onsite Coulomb interaction energy
in the QD. We emphasize that the single-level assumption for
the QD is relevant in the situations where the broadening of
the energy levels in the QD due to coupling to the electrodes
and the thermal energy in the system are much smaller than
the energy difference between the discrete levels in the QD
[59,60].

The second term in Eq. (1), HS , is the Hamiltonian of the
superconducting electrode, which is given by

HS =
∑
k,σ

εS,kc†
S,kσ

cS,kσ +
∑

k

�(c†
S,k↑c†

S,k↓ + H.c.), (3)

where � is the superconducting order parameter. We assume
the chemical potential of the superconducting electrode to be
zero energy. In addition, the Hamiltonian of the normal-metal
electrode in Eq. (1) is

HN =
∑
k,σ

(εN,k + VB)c†
N,kσ

cN,kσ , (4)

where VB is the bias voltage on the normal metal. Furthermore,
the tunneling between electrodes and the QD is described in
the total Hamiltonian by

HT =
∑
α,k,σ

tα (c†
α,kσ

dσ + H.c.), (5)

where α = N, S denotes the normal-metal and superconduct-
ing electrodes, respectively, and tσ is the QD hybridization
energy with the corresponding electrode. Also, we consider
that the QD is capacitively coupled to a single-mode resonator
with frequency ω0, which is described by the Hamiltonian

HC (t ) = h̄ω0
(
np + 1

2

) − i
√

γ h̄E0 cos(ω0t )(a − a†), (6)

where np = a†a is the number operator for the photons in the
resonator, γ is the photon decay rate, and E0 is the amplitude
of an external drive on the resonator. Finally, the QD-resonator
coupling is described by

HI = −ih̄λ(a − a†)(n↑ + n↓), (7)

where λ is the strength of the capacitive coupling between the
QD and the resonator mode. We employ mean-field approxi-
mation to decouple the operators in Eq. (7). For the resonator’s
operators, this approximation is analogous to the semiclassical
approximation, where the single mode within the resonator
is considered to exhibit classical-field-like behavior. Conse-
quently, the photon annihilation operator a can be replaced
with its corresponding expectation value, denoted as 〈a〉 =
A(t )e−iφ(t )e−iω0t , where A(t ) and φ(t ) are the amplitude and
phase of the photon mode in the resonator, respectively. Using
this approximation the Hamiltonian HI in Eq. (7) can be
rewritten as

HI (t ) = 2h̄λIm
[
A(t )e−iφ(t )e−iω0t

]
(n↑ + n↓)

− ih̄λ(a − a†)(〈n↑〉 + 〈n↓〉). (8)
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B. Equation of motion for the resonator mode

In the Heisenberg representation, the equation of motion
for 〈a(t )〉 reads

i
d

dt
〈a(t )〉 = ω0〈a(t )〉 + iλ〈n↑(t ) + n↓(t )〉

+ iγ 〈a(t )〉 + i
√

γ E0 cos(ω0t ). (9)

By using 〈a〉 = A(t )e−iφ(t )e−iω0t , and assuming dA/dt =
dφ/dt = 0 [61], the steady state solution of the above equa-
tion determines the average photon number (〈nph〉 ≈ A2), and
the phase (φ) of the photon mode in the resonator. In order to
find the steady state solution of A and φ, we separate the real
and imaginary parts of Eq. (9) and take their time average. We
then obtain

Re{λeiφ〈eiω0t [n↑(t ) + n↓(t )]〉t } = γ A −
√

γ /2E0 cos(φ)

(10)

and

Im{λeiφ〈eiω0t [n↑(t ) + n↓(t )]〉t } =
√

γ /2E0 sin(φ), (11)

where 〈. . .〉t denotes time averaging over a time period of
oscillations T = 2π/ω0, and is defined by

〈O(t )〉t = 1

T

∫ T/2

−T/2
dt〈O(t )〉. (12)

The system of equations in Eqs. (10) and (11) has three
unknown variables A, φ, and 〈eiω0t nσ (t )〉t . So, in order to find
a nontrivial solution for these variables, we still need another
complementary equation. At this point, we may consider the
linear response of the QD in the presence of coupling to the
resonator. However, as we have discussed in Appendix B,
the linear response regime is only able to demonstrate the
single-photon absorption and emission processes, and it is not
reliable in strong coupling regimes where nonlinear effects
dominate. So, it is desirable to move beyond linear response
and calculate the expectation value 〈eiω0t nσ (t )〉t in the nonlin-
ear regime.

In the following, we will employ the Floquet-NEGF
method to calculate the expectation value 〈eiω0t nσ (t )〉t . This
way, all higher-order photon-assisted tunneling processes in
the QD are nonperturbatively included in our calculations.

C. Floquet-NEGF formalism for the QD subsystem

As we saw in Eq. (8), the coupling to the resonator renor-
malizes the QD’s energy level to εd → εd + 2h̄λA sin(ω0t +
φ), resulting in a harmonic modulation of the QD’s energy
level. The dynamics of a quantum dot with a harmonic time
dependence in its energy level, coupled to normal-metal and
superconducting electrodes, can be conveniently described by
the Floquet-NEGF method [62]. The advantage of this method
lies in its exactness, as both the QD-leads and QD-resonator
couplings are incorporated into the Green’s functions of the
QD to all orders of the interaction Hamiltonians HT and HI .

The key point in the Floquet-NEGF formalism is to under-
stand that in the presence of a harmonic modulation with a
constant frequency ω0, all two-time correlation functions like
G(t, t ′) will depend on the mean time (t + t ′)/2 only through
different harmonics of the fundamental frequency ω0 [63].

The periodicity in the mean time allows us to represent the
Fourier transform of G(t, t ′) in the Floquet representation as
[64,65]

G(t, t ′) =
∑
m,n

∫ ω0
2

− ω0
2

dω

2π
e−i(ω+mω0 )t ei(ω+nω0 )t ′

Gm,n(ω), (13)

where (m, n) correspond to various Floquet components of
the transformed function. The central quantities we need
in the forthcoming calculations are the retarded and lesser
Green’s functions of the QD, which are defined in the Nambu
basis �† = (d†

↑, d↓) by GR(t, t ′) = −iθ (t − t ′)〈�(t ), �†(t ′)〉
and G<(t, t ′) = i〈�†(t ′)�(t )〉, respectively. The other two
Green’s functions (advanced and greater) can be obtained
in the frequency domain from the relations GA = [GR]† and
G> = GR − GA + G<, respectively.

In the Floquet representation, the Floquet components of
the retarded Green’s function can be obtained from the cor-
responding element of a large matrix containing all Floquet
components of the retarded Green’s function. This matrix can
be calculated using Dyson’s equation in the Floquet-Nambu
basis, which is given by [66]

GR(ω) = {g0R(ω)−1 − R(ω)}−1, (14)

where g0R and R are the bare retarded Green’s function
and the retarded self-energy of the QD, respectively. Their
explicit expressions are given in Appendix A. In Eq. (14),
all quantities are square matrices in the Floquet-Nambu basis
with order 2(2NF + 1), where NF is the cutoff dimension for
the Floquet space [67,68].

Using the retarded and advanced Green’s functions ob-
tained above, the Floquet components of the lesser Green’s
function can be calculated using the Keldysh equation in the
Floquet-Nambu space by [66]

G<(ω) = GR(ω)<(ω)GA(ω), (15)

where < is the lesser self-energy of the QD, the expression
of which is given in Appendix A. With the Green’s functions
of the QD, the time-averaged occupation of the QD can be
calculated as follows (see Appendix D for the derivation):

〈nσ 〉t = δσ,↓ − i
∑

m

∫ ω0
2

− ω0
2

dω

2π
[τzG

<
m,m(ω)]σσ (16)

and

〈eiω0t nσ (t )〉t = −i
∑

m

∫ ω0
2

− ω0
2

dω

2π
[τzG

<
m+1,m(ω)]σσ . (17)

Moreover, the time-averaged charge current through the QD
into electrode α = N, S can be calculated by [66,69]

〈Iα (t )〉t = e

2h̄

∑
m

∫ ω0
2

− ω0
2

dω

2π
Tr

{
τz

[
GR

mm(ω)<
α,mm(ω)

+ G<
mm(ω)A

α,mm(ω) − <
α,mm(ω)GA

mm(ω)

− R
α,mm(ω)G<

mm(ω)
]}

. (18)
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Similarly, the heat flux from electrode α into the QD is given
by [70,71]

〈Jα (t )〉t = 1

2h̄

∑
m

∫ ω0
2

− ω0
2

dω

2π
(ω + mω0)

× Tr
{
τz

[
GR

mm(ω)<
α,mm(ω) + G<

mm(ω)A
α,mm(ω)

− <
α,mm(ω)GA

mm(ω) − R
α,mm(ω)G<

mm(ω)
]}

. (19)

III. NUMERICAL RESULTS

A. Photon absorption and emission in the resonator

In order to assess the resonator refrigeration, we investigate
the steady state of the resonator in the presence of its coupling
to the QD. We assume the resonator is initially populated
by an external pump, resulting in an average photon number
in the resonator equal to 〈np〉th, in the absence of coupling
to the QD. Accordingly, resonator cooling can be identified
when the average photon number in the resonator becomes
smaller than 〈np〉th. On the other hand, photon emission in
the resonator can be deduced whenever the average photon
number in the resonator becomes larger than 〈np〉th.

Our numerical calculations are performed using a self-
consistent procedure (see Appendix E). We have used
NF = 10 for the Floquet space cutoff dimension. Moreover,
the parameters which we have used in the numerical cal-
culations are chosen to be near those achievable in the
experimental setups [44,72]. Specifically, we set �/h̄ω0 = 5,
�S/h̄ω0 = 0.01 and 0.1, �N/h̄ω0 = 0.01 and 0.1, and U =
3� to characterize the QD system. For the resonator sys-
tem, we use γ /h̄ω0 = 10−4 for its photon damping rate and
consider 〈np〉th = 20 average photons present in the resonator
when the coupling to the QD is turned off. Also, for the QD-
resonator coupling strength, we take λ/h̄ω0 = 0.01 and 0.05.

Numerical results for the average number of photons and
their phase shift in the presence of a temperature gradient
TS = 0 and kBTN = 1.5h̄ω0 are shown in Fig. 2. These
quantities are easily measurable in a typical circuit-QED ex-
periment. The solid lines in Fig. 2 show the average photon
number and its phase shift calculated using the Floquet-NEGF
method. It is seen that the average photon number shown in
Fig. 2(a) exhibits cooling peaks at different gate voltages. As
we have discussed in Appendix B, a theoretical calculation in
the linear response regime allows us to find out that the sharp
cooling peaks at the gate voltages εd ≈ ± 1

2

√
(nh̄ω0)2 − �2

S
for n = 1, 2, 3 are due to photon absorptions mediated by the
Andreev reflections in the QD. In Fig. 2(a), there are also a
number of broad cooling peaks at gate voltages around |εd | ≈
� − nh̄ω0, which are indeed mediated by quasiparticles that
absorb some photons and tunnel through the QD to the super-
conductor or vice versa. This mechanism for photon-assisted
tunneling is experimentally observed in Ref. [44]. The linear
response analysis in Appendix B also helps us to identify the
nature of the small cooling peak at εd ≈ 0. This cooling peak
is mainly due to the photon absorptions caused by quasipar-
ticles at the Fermi energy tunneling from the normal metal
into the QD’s level. These quasiparticles absorb a number
of photons and then tunnel back to the normal metal [44].
Importantly, as we show later, this type of resonator cooling

FIG. 2. (a) Average photon number and (b) the phase of photons
in the resonator as a function of εd calculated using linear response
method (dashed lines) and Floquet-NEGF (solid lines) for TN =
1.5h̄ω0/kB and TS = 0. Other parameters are VB = 0, � = 5h̄ω0,
U = 3�, �S = 0.1h̄ω0, �N = 0.01h̄ω0, γ = 10−4ω0, λ = 0.05ω0,
〈np〉th = 20, and NF = 10. The linear response results are obtained
using Eqs. (B4) and (B5).

does not contribute to a finite charge current through the QD.
These charge fluctuations result in an effective damping of
the resonator photons, which scales with log[�N/h̄ω0]�N for
�N 
 h̄ω0.

It is important to note that the weights of cooling peaks in
Fig. 2 are asymmetric about εd = 0. This is due to the depen-
dence of the QD’s charge susceptibility on the QD’s average
occupation resulting from Coulomb interaction. Particularly,
at low temperatures, for εd > 0, the QD’s level is almost
empty (〈n〉 ≈ 0), resulting in a large charge susceptibility for
the QD, while for −U < εd < 0, the QD is in the Coulomb
blockade regime, where it is mostly half filled (〈n〉 ≈ 0.5),
giving rise to smaller values for χR(ω0) (by a factor ≈1/8).
The behavior of the phase shift of the photon mode in the res-
onator is shown in Fig. 2(b). We see that photon absorptions
due to Andreev reflections are accompanied by strong sign
changes in the phase of the photons, although the phase shifts
for photon absorptions induced by quasiparticle tunnelings are
not so severe.

Now, we investigate how the strength of coupling between
the QD and electrodes, as well as the different temperature
gradients over the QD, can influence the average photon num-
ber in the resonator. Figure 3(a) shows the average photon
number for different values of �N and �S , when the normal
metal has a higher temperature than the superconductor, i.e.,
kBTN = 1.5h̄ω0 and TS = 0. These results show that the An-
dreev cooling peaks at the central values for εd are strongly
suppressed for small values of �S [see solid and dash-dot lines
in Fig. 3(a)]. On the other hand, large values for �N result in
broadening the cooling peaks, which are evident in Fig. 3(a)
for �N = 0.1h̄ω0 (see dash-dot and dotted lines).

It is also interesting to determine how the cooling peaks in
Fig. 3(a) evolve as a function of normal-metal temperature.
Figures 3(b) and 3(c) show the average photon number as a
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FIG. 3. Average photon number for �S = �N = 0.01h̄ω0 (solid),
�S = 10�N = 0.1h̄ω0 (dash), �N = 10�S = 0.1h̄ω0 (dash-dot), and
�S = �N = 0.1h̄ω0 (dot), as a function of εd at TN = 1.5h̄ω0/kB

and TS = 0 in (a) and at TS = 1.5h̄ω0/kB and TN = 0 in (d). (b),
(c) Photon number as a function of TN at εd = 0.5 and 4.1, respec-
tively. (e), (f) Photon number as a function of TS at εd = 0.5 and
4.1, respectively. Other parameters are � = 5h̄ω0, U = 3�, VB = 0,
γ = 10−4ω0, and λ = 0.01ω0.

function of TN for two gate voltages, εd = 0.5h̄ω0 and 4.1h̄ω0,
respectively. As seen in Fig. 3(b), the Andreev cooling peaks
have maximum weight at TN = TS = 0, and become inef-
fective as the temperature of the normal metal is increased.
Conversely, the quasiparticle cooling peaks are absent at zero
temperature, and become visible only after the thermal energy
of thermally excited quasiparticles becomes comparable to the
continuum of the superconductor [see Fig. 3(c)].

In Fig. 3(d), we assume that the superconductor has a
higher temperature than the normal metal with kBTS = 1.5h̄ω0

and TN = 0, and study the resonator cooling as a function of
εd . Here, we see that for small values of �N = �S = 0.01ω0,
only a small Andreev cooling peak survives at εd = 0.5h̄ω0,
while for a larger �N value, this peak becomes broader [see
solid and dash-dot lines in Fig. 3(d)]. For larger values of
�S , the Andreev cooling peaks become very strong, but the
quasiparticle peak at εd = 4.1 shows emission instead of ab-
sorption. This emission peak can be easily understood by
noting that for TS > TN , there are some thermally excited
quasiparticles above the gap edge, which can emit a photon
into the resonator and tunnel into the QD’s level when its
energy is about h̄ω0 below the gap edge (this corresponds
to εd = 4.1h̄ω0 in our case). By the same reasoning, we
can understand the cooling peak at εd = 6h̄ω0, which is
approximately h̄ω0 above the gap edge and favors photon
absorption-assisted quasiparticle tunneling from the super-
conductor into the QD’s level.

The temperature dependence of the Andreev cooling peak
(at εd = 0.5h̄ω0) and the quasiparticle emission (at εd =
4.1h̄ω0) are shown in Figs. 3(e) and 3(f). As expected, the An-
dreev cooling peak is not largely affected by the temperature

FIG. 4. (a) Average photon number for �S = �N = 0.01h̄ω0

(solid), �S = 10�N = 0.1h̄ω0 (dash), �N = 10�S = 0.1h̄ω0 (dash-
dot), and �S = �N = 0.1h̄ω0 (dot), as a function of εd at VB =
10h̄ω0. (b), (c) Photon number as a function of VB at εd = 0.5 and 6,
respectively. Other parameters are � = 5h̄ω0, U = 3�, TS = TN =
0, γ = 10−4ω0, and λ = 0.01ω0.

of the superconductor because the Cooper pairs in the subgap
region are not influenced by the superconductor temperature.
On the other hand, the quasiparticle emission peaks are absent
at zero temperature and start to show up only at sufficiently
large values of TS .

Having clarified the behavior of the resonator-QD coupled
system in the presence of a finite temperature gradient over
the QD, we now investigate our model system when a finite
voltage bias is applied to the normal metal. Figure 4(a) shows
the Floquet-NEGF results when a large voltage bias VB =
10h̄ω0 is applied to the normal metal. Here, we assume that
both electrodes have the same temperatures (TN = TS = 0) to
ensure that thermoelectric effects do not affect the results. In
general, photon-assisted Andreev reflection in a QD in the
presence of a finite bias may lead to either photon absorption
or emission, depending on the value of εd [62]. This behavior
is evident in Fig. 4(a), where we observe resonator cooling
at εd = −0.5h̄ω0, while strong photon emission is present at
εd = 0.5h̄ω0. On the other hand, around the gap edge where
photon-assisted quasiparticle tunnelings are more probable,
we observe a combination of photon absorption at � − h̄ω0 <

ε < � and photon emission for ε > �.
The dependence of these photon absorptions and emissions

on different values of �N and �S has also been studied in
Fig. 4(a). It is observed that for small values of �S (�S =
0.01), the Andreev peaks are strongly suppressed, while
the quasiparticle absorptions and emissions are still present
around the gap edge. By increasing the value of �S , the
Andreev and quasiparticle peaks become more pronounced.
Especially, the Andreev peaks are stronger for �S > �N , while
the quasiparticle emission peaks become stronger with in-
creasing �N . We emphasize that the model parameters for the
experiment in Ref. [44] are very similar to the case of �S 

�N in Fig. 4(a), where both quasiparticle photon absorptions
and emissions are present around the gap edge, while the
Andreev contributions are absent.

The voltage dependence of the photon-assisted Andreev
and quasiparticle peaks at εd = 0.5h̄ω0 and 6h̄ω0 is shown
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in Figs. 4(b) and 4(c), respectively. As we saw previously, for
�S = 0.1h̄ω0, the Andreev absorption peaks are present even
at VB = TN = TS = 0. The results in Fig. 4(b) show that this
behavior persists for small bias voltages unless the voltage
bias reaches a threshold value (VB ≈ 0.5h̄ω0), above which
the absorption peak transforms into an emission peak. The
situation for the quasiparticle peak at εd = 6h̄ω0, as shown in
Fig. 4(c), is somewhat different. At small bias voltages, there
are no photon absorptions. When the bias voltage reaches
VB ≈ εd − h̄ω0, quasiparticle tunneling in the QD favors pho-
ton absorption. For larger bias voltages (VB > εd ), photon
emissions in the resonator become dominant.

B. Charge current and heat fluxes

In the previous section, we investigated cooling and photon
emission in the resonator due to the capacitive coupling to the
QD. From a thermodynamic point of view, the heat flux taken
from the resonator should be injected into the QD system. We
note that while charge conservation establishes I ≡ IN = −IS ,
the heat fluxes must obey the energy conservation rule as

VB = −
∑

α∈N,S

Jα − Q̇ph, (20)

where Q̇ph is the heat flux from the resonator. Therefore, in our
model system when we assumed zero bias voltage VB = 0, the
cooling power of the resonator is given by

Pcool ≡ Q̇ph = −
∑

α∈N,S

Jα. (21)

In Fig. 5, we consider VB = 0 and show the charge cur-
rent, heat flux, and the cooling power of the resonator as
functions of εd for the cases with λ = 0 and 0.05ω0, with
kBTN = 1.5h̄ω0 and TS = 0, respectively. When the QD is
decoupled from the resonator (λ = 0), the only contribution to
the thermoelectric current in Fig. 5(a) is due to quasiparticle
tunneling, where thermally excited quasiparticles can tunnel
from the normal metal into the continuum of the supercon-
ductor through the QD’s level. These tunneling events are
maximal around εd ≈ ±�. As expected, the charge current
changes sign depending on the value of εd [73].

By turning on the coupling between the QD and the res-
onator, new transport channels in the QD become available,
originating from photon-assisted electron tunneling through
the QD. This is shown in Fig. 5(a) for λ = 0.05ω0. Note
that the behavior of the average photon number in the res-
onator for this parameter configuration was shown in Fig. 4(c).
Importantly, the sign of the current enhancements is de-
termined by both the photon absorption mechanism that
enhances the current and the value of εd . Focusing on the gate
voltages around εd = 0, where photon absorptions give rise to
Andreev reflections in the QD, we observe in Fig. 5(a) that
for εd/h̄ω0 = 0.5, 1, and 1.5, current enhancements have a
negative sign, indicating that charge current flows from the
superconductor into the normal metal, while for εd/h̄ω0 =
−0.5 and −1, current enhancements are in the opposite di-
rection. This behavior of photon absorption-induced charge
current in the Andreev regime can be interpreted by noting
that, for example, when εd = h̄ω0/2, a Cooper pair from the
superconductor is broken into two electrons. These electrons

FIG. 5. (a) Charge current (I), (b) heat currents in both terminals
(JN and JS), and (c) cooling power of the resonator (Pcool) as func-
tions of εd for �S = 10�N = 0.1h̄ω0, TS = 0, and TN = 1.5h̄ω0/kB at
λ = 0 and 0.05ω0. Other parameters are as in Fig. 2.

can perform an Andreev reflection by absorbing one photon
from the resonator and injecting two electrons into the normal
metal, resulting in a negative charge current in Fig. 5(a).

A different mechanism is responsible for the charge cur-
rent enhancements around the superconducting gap edges at
|εd | > � − nω0 in Fig. 5(a). Here, quasiparticles in the QD’s
level can absorb photons from the resonator to reach energies
around the BCS peak and tunnel into the superconductor,
resulting in a charge current with a positive sign. Therefore,
the maximum enhancement of the quasiparticle current occurs
at |εd | ≈ � − nω0.

It is worth mentioning that the resonator cooling regions
around εd = 0 in Fig. 4 do not accompany any current en-
hancements in Fig. 5. This is because resonator coolings at
these regions are due to quasiparticles that tunnel from the
normal metal into the QD’s level, absorb a number of photons
from the resonator, and then tunnel back into the normal metal
without giving rise to a finite charge current between the
electrodes.

The heat fluxes in both terminals are depicted in Fig. 5(b).
For the case of λ = 0, a finite positive heat current is present at
the gate voltages around the superconducting gap edges. Here,
thermally excited quasiparticles tunnel between the normal
metal and the superconductor, carrying heat from the normal
metal with higher temperature toward the superconductor with
lower temperature. Thus, for λ = 0, as implied by the energy
conservation rule for TN > TS , which we considered here, the
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thermoelectric current through the QD always cools down the
normal metal (JN > 0), while the superconductor is heated up
by the same heat flux (JS = −JN < 0) [73].

For λ = 0, photon absorption-assisted tunneling can en-
hance the heat currents. As shown in Fig. 5(b), normal-metal
heat currents mediated by photon-assisted quasiparticle tun-
neling have a positive sign irrespective of the gate voltage
values. On the other hand, the superconductor is heated up by
a larger heat current, given by −JS = JN + Pcool, where Pcool

is the cooling power of the resonator, provided in Eq. (21)
and shown in Fig. 5(c). Interestingly, for gate voltages in
the Andreev regime, the superconducting heat current is zero
(JS = 0) because no heat currents can be carried by the Cooper
pairs. Thus, in the Andreev regime, all heat fluxes coming
from the resonator are consumed by the normal metal, result-
ing in a negative sign for the normal-metal heat flux (JN < 0).
This implies that in the Andreev regime, the resonator can
function as a heat pump, injecting heat into the normal metal
irrespective of the temperature difference between the two
electrodes.

IV. CONCLUSIONS

We have studied the photon absorption and emission in
an electromagnetic resonator which is coupled to a hybrid
quantum dot system. We have shown that in the weak cou-
pling limit, our results are consistent with the linear response
regime where the photon assisted tunneling processes in QD
are included up to the lowest order of interaction between the
resonator and the QD. In the nonlinear regime, multiphoton
processes are included in the calculations by employing the
Floquet-NEGF method. Using this formalism, we have stud-
ied the coupled QD-resonator system in the presence of either
a voltage bias or a temperature gradient over the QD.

We have found that two main photon-assisted charge tun-
neling mechanisms in the QD can be responsible for photon
absorption or emission in the resonator. First, the Andreev
mechanism manifests when the QD’s level energy is deep in
the subgap region, positioned around a point where a quasipar-
ticle can absorb or emit a number of photons to complete the
Andreev reflection process. We have shown that this mech-
anism is dominant when �S is large enough and the level
broadening due to coupling to the normal metal is small.
Additionally, it is found that this mechanism can lead to large
resonator coolings even under equilibrium conditions with
zero voltage and thermal biases. Furthermore, we have ob-
served that Andreev reflections can result in photon emissions
in the resonator when the QD is voltage biased.

The second photon-assisted tunneling mechanism is at-
tributed to quasiparticle tunnelings, which are predominantly
observed when the QD’s energy level is near the gap edge.
We have demonstrated that in the presence of a finite voltage
bias, this mechanism can result in both photon absorption
and emission, contingent upon the energy of the QD’s level.
Furthermore, under a thermal bias, it is illustrated that the QD
can either absorb or emit photons in the resonator, depending
on the value of εd and the direction of the thermal bias.
Additionally, we have investigated the dependence of these
photon absorption and emission processes on the voltage and
thermal bias.

We have also investigated the charge current in the QD and
the heat fluxes between the resonator and the electrodes. It
is demonstrated that photon absorption and emissions in the
resonator can enhance both the charge current and the heat
fluxes. This suggests that the heat flux of either part of the
system can be controlled by tuning the QD’s energy level, as
well as the voltage and thermal bias over the QD.

Our calculations rely on a combination of the Floquet-
NEGF method and semiclassical laser equations. The semi-
classical laser equations govern the dynamics of the photon
mode in the resonator, while the Floquet-NEGF method en-
ables us to calculate the response of the QD when it is
coupled to the resonator. One advantage of using the Floquet-
NEGF method is its ability to properly include all higher-order
photon-assisted electron tunnelings between the QD’s level
and the electrodes in the calculations. Particularly, this ap-
proach allows for the nonperturbative treatment of the finite
energy gap of the superconducting electrode.

It is worth mentioning that an alternative method for cal-
culating the multiphoton response of the QD is the Floquet
master equation formalism, as described in Ref. [74]. How-
ever, in this approach, the coupling between the QD and
electrodes is treated perturbatively, and thus the finite energy
gap of the superconductor cannot be exactly accounted for, as
we achieve using Dyson’s equation in the NEGF formalism.
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APPENDIX A: EXPRESSIONS FOR GR(ω) AND �R,<(ω)

The retarded Green’s function of the QD in Eq. (14) is
given by [66]

GR(ω) = {g0R(ω)−1 − R(ω)}−1. (A1)

Here, g0R(ω) is the matrix representing the bare retarded
Green’s function of the isolated QD in the infinite-U limit
[75]. Its matrix elements, given by 2 × 2 block matrices in
the Nambu space, are as follows:

g0R
mn(ω) = δmn

1 − 〈nσ 〉
ωm + iη − εdτz

, (A2)

where ωm = ω + mω0 for m ∈ Z, δmn is the Kronecker delta
and τz is the third Pauli matrix in the Nambu space. More-
over, in Eq. (A1), R(ω) represents the retarded self-energy,
given by

R
mn(ω) = �R

mn + δmn
[
R

S (ωm) + R
N (ωm)

]
. (A3)

Here, �R is the self-energy that accounts for the harmonic
modulation of the QD’s energy level, and its matrix elements
are given by

�R
mn = −iλA(e−iφδm,n+1 − eiφδm,n−1)τz. (A4)

Moreover, in Eq. (A3), the terms R
S (ω) and R

N (ω) are the
self-energies that account for the coupling between the QD
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and the electrodes, and their expressions are given respec-
tively by [76]

R
S (ω) = −i�Sβ(ω)

(
I + �

h̄ω
τx

)
(A5)

and

R
N (ω) = −i�N I, (A6)

where I is the 2 × 2 unit matrix, and the parameter β(ω),
which is related to the normalized BCS density of states,
is given by β(ω) = |ω|√

ω2−�2 θ (|h̄ω| − �) − i ω√
�2−ω2 θ (� −

|h̄ω|). We use the wide-band approximation, where the hy-
bridization of the QD’s energy level with the electrodes takes
the simple form �N,S ≡ π |tN,S|2ρN,S

0 , and ρN
0 and ρS

0 are
the frequency-independent densities of states of the normal
lead and the normal state of the superconducting electrode,
respectively.

We emphasize that the method used here to consider the
effects of both the Coulomb interaction and the coupling to
the electrodes in the Green’s function of the QD is known as
the Hubbard-I approximation. Within this approximation, the
Coulomb interaction in the QD is taken into account exactly,
while its coupling to the electrodes is considered through a
decoupling scheme in the equation of motion for the Green’s
functions [77,78].

Now, the lesser Green’s function of QD can be calculated
from the relation [66]

G<(ω) = GR(ω)<(ω)GA(ω), (A7)

where <(ω) is the lesser self-energy which is obtained by
using the Ng ansatz [79] as

<(ω) =
∑

α=S,N

[
A

α (ω) − R
α (ω)

]
fα (ω − τzμα ). (A8)

Here, fα (ω) is the Fermi-Dirac distribution function for the
superconducting and normal-metal electrodes, which is given
by fS(N )(ω) = (1 + exp[h̄ω/kBTS(N )])−1, and Tα∈N,S denotes
the temperature in electrode α.

APPENDIX B: LINEAR RESPONSE REGIME

We start with the calculation of 〈eiω0t n(t )〉t within the linear
response regime. In order to calculate the linear response of
the QD’s average occupation, one can expand G< to the linear
order in the QD-resonator coupling term in Eq. (8), which
gives

G<(t, t ) = g<(t, t ) − iλ(Ae−iφe−iω0t − H.c.)χR(ω0), (B1)

where g<(t, t ′) is the lesser Green’s function of the QD cal-
culated from Eq. (A7) for λ = 0, and χR(ω) is the Fourier
transform of the retarded charge susceptibility of the QD,
defined as χR(t − t ′) = −iθ (t − t ′)〈[n(t ), n(t ′)]〉λ=0. Here,
〈...〉λ=0 denotes averaging with respect to the state of the QD
when it is decoupled from the resonator [80]. Using analytical
continuation rules for contour-ordered correlation functions
[75], the expression for χR(ω) is obtained as

χR(ω) =
∫

dω1Tr{g<(ω1)

× τz[g
R(ω1 − ω) + gA(ω1 + ω)]τz}. (B2)

Now, multiplying Eq. (B1) by eiω0t , and taking its time
average, we obtain

〈eiω0t n(t )〉t = λAe−iφχR(ω0). (B3)

Then, by substituting Eq. (B3) into Eqs. (10) and (11), we
find the steady state solutions of the amplitude and phase of
the photon mode in the resonator as

A =
√

γ E0

2|λ2χR(ω0) + γ | , (B4)

φ = arccos

[
λ2Re[χR(ω0)] + γ

|λ2χR(ω0) + γ |
]
. (B5)

The integration required for calculating χR(ω0) is com-
plicated in the general case. However, it can be analytically
solved in some limiting cases. For example, by assum-
ing �S ≈ 0 and U → ∞, we find that the expression for
χR(ω0) at zero temperature and bias voltage is given by (see
Appendix C)

χR(ω0) = (1 − 〈n〉)3�N

πω0(2�N + iω0)
log

[
ε2

d + �2
N

ε2
d + (�N + iω0)2

]
. (B6)

This shows that even when the QD is in equilibrium and
is effectively coupled only to a normal-metal electrode, the
quasiparticle fluctuations between the normal metal and the
QD’s level around the Fermi energy can give rise to a fi-
nite damping of the photon mode in the resonator [44],
which scales with log[�N/h̄ω0]�N for �N 
 h̄ω0. In addition,
Eq. (B6) reveals that the charge susceptibility of the QD
depends on the average occupation of the QD through the term
(1 − 〈n〉)3, which is due to the Coulomb interaction in the QD.

Another limiting configuration for calculating χR(ω0) is
when �S is not negligible, but the superconducting energy gap
is large (� → ∞). In this case, the integration in χR(ω0) can
be solved analytically for T = VB = 0 and U → ∞, resulting
in a lengthy expression which we do not present here. How-
ever, it is worth mentioning that from this expression, we find
that the real part of χR(ω0) shows large enhancements at two
subgap gate voltages εd = ± 1

2

√
(h̄ω0)2 − �2

S , indicating the
possibility for resonator cooling at these gate voltages. In fact,
cooling at these gate voltages is mediated by electron tunnel-
ings in the QD that need to absorb one photon to complete the
process of Andreev reflection in the QD [62].

The numerical results obtained from Eqs. (B4) and (B5) are
shown by dashed lines in Fig. 2 in the main text. It is seen that
only the single photon cooling peaks due to either the quasi-
particle or the Andreev reflection-assisted photon absorption
are shown in the linear regime, while the Floquet-NEGF
method captures all higher-order cooling peaks because of its
nonperturbative nature.

APPENDIX C: CALCULATION OF χR(ω) IN THE LINEAR
RESPONSE REGIME

When the QD is decoupled from the resonator and is
only coupled to a normal electrode and in the limit of large
Coulomb interaction (U → ∞), the retarded, advanced, and
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lesser Green’s functions of the QD are given by (assuming
〈n〉 = 〈n↑〉 = 〈n↓〉)

gR(ω) = [gA(ω)]† = {[g0R(ω)]−1 + i�N }−1

= 1 − 〈n〉
ω − εd + i(1 − 〈n〉)�N

, (C1)

g<(ω) = 2i(1 − 〈n〉)2�N

(ω − εd )2 + (1 − 〈n〉)2�2
N

f (ω). (C2)

Note that the large Coulomb interaction limit is considered in
Eq. (C1), by substituting g0R(ω) with the expression given in
Eq. (A2).

Now, the integration in Eq. (B2) can be written as

χR(ω) =
∫ 0

−∞
dω1

2i(1 − 〈n〉)2�N

(ω1 − εd )2 + (1 − 〈n〉)2�2
N

×
(

(1 − 〈n〉)

ω1 − ω − εd + i(1 − 〈n〉)�N

+ (1 − 〈n〉)

ω1 + ω − εd − i(1 − 〈n〉)�N

)
. (C3)

This integration can be easily solved, giving the final result in
Eq. (B6).

APPENDIX D: CALCULATION OF TIME-AVERAGED
QUANTITIES USING FLOQUET-NEGF FORMALISM

We first derive Eq. (16) of the main text. The average elec-
tron occupation with spin σ in the QD is given by 〈nσ (t )〉 =
δσ,↓ − i[τzG<(t, t )]σσ , where G< is the lesser Green’s func-
tion of the QD in the Nambu basis. Then, the time-averaged
occupation of the QD is calculated by

〈nσ 〉t = 1

T

∫ T/2

−T/2
dt〈nσ (t )〉

= δσ,↓ − i
1

T

∫ T/2

−T/2
dt[τzG

<(t, t )]σσ

= δσ,↓ − i
∑

m

∫ ω0
2

− ω0
2

dω

2π
[τzG

<
m,m(ω)]σσ , (D1)

where the last line is obtained by using Eq. (13) and employ-
ing the relation

1

T

∫ T/2

−T/2
dtei(m−n)ω0t = δmn. (D2)

In the same way, by noting that 1
T

∫ T/2
−T/2 dteiω0tδσ,↓ = 0 and

1
T

∫ T/2
−T/2 dte−i(m−n−1)ω0t = δm,n+1, we can obtain the expres-

sion given in Eq. (17) for 〈eiω0t nσ (t )〉t .
Also, the time-averaged charge current from the QD into

electrode α = N, S can be written in the Nambu basis as [75]

〈Iα〉t = e

2h̄

1

T

∫ T/2

−T/2
dt

∫ ∞

−∞
dt ′Tr

{
τz

× [
GR(t, t ′)<

α (t ′, t ) + G<(t, t ′)A
α (t ′, t )

− <
α (t, t ′)GA(t ′, t ) − R

α (t, t ′)G<(t ′, t )
]}

. (D3)

By transforming Eq. (D3) to the Floquet representation, we
reach to Eq. (18) in the main text for the charge current.

APPENDIX E: NUMERICAL IMPLEMENTATION

We saw that Eqs. (10), (11), (16), and (17) form a closed
system of equations that must be solved self-consistently. Our
implementation to solve these equations is as follows.

We start with initial guesses A = √〈np〉th, φ = 0, and
〈nσ 〉 = 0.5, where 〈np〉th = E2

0 /2γ is the average photon
number in the resonator in the absence of resonator-QD cou-
pling. Then, we calculate the lesser Green’s function G<

in Eq. (15). From this, we can calculate 〈eiω0t nσ (t )〉 using
Eq. (17). Then, the new values for A and φ can be calculated
by employing Eqs. (10) and (11). Subsequently, we calculate
the new value for 〈nσ 〉 using Eq. (16). We then compare the
new values of these quantities with their previous ones and
repeat this procedure until convergence is reached. In our
calculations, the difference criterion needed for stopping the
iterations was set to 10−5.
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