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Surface-induced odd-frequency spin-triplet superconductivity as a veritable
signature of Majorana bound states
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We predict surface induced odd-frequency (odd-ν) spin-triplet superconducting pairing can be a veritable
signature of Majorana bound states (MBS) in a Josephson nodal p-wave superconductor (px)-spin flipper (SF)-
nodal p-wave superconductor (px) junction. Remarkably, in a px-SF-px Josephson junction three distinct phases
emerge: the topological phase featuring MBS, the topological phase without MBS, and the trivial phase devoid
of MBS. Surface odd-ν spin-triplet pairing is induced only in the topological regime when MBS appears. In
contrast, surface induced even-frequency (even-ν) spin-triplet pairing is finite regardless of the existence of MBS.
Importantly, we find the surface induced odd-ν spin-triplet pairing is immune to disorder in the topological phase
featuring MBS, while in the trivial phase the surface induced even-ν spin-triplet pairing is affected by disorder.
Our study offers a potential means for distinguishing the topological phase featuring MBS from both the trivial
phase as well as the topological phase devoid of MBS, primarily through the observation of induced surface
odd-ν spin-triplet superconductivity.

DOI: 10.1103/PhysRevB.110.045432

I. INTRODUCTION

Odd-ν pairing is a novel superconducting state wherein the
electrons in a Cooper pair have distinct time coordinates along
with distinct position coordinates. Generally, two electrons
in a Cooper pair are formed simultaneously, categorizing it
as an even-ν pairing state [1]. Even-ν pairing state can be
subdivided into two categories: even-ν spin-singlet (SS) and
even-ν spin-triplet (ST) pairing states. Even-ν SS pairing is
exemplified by s- and d-wave pairings, while p-wave pairing
serves as an illustration of even-ν ST pairing [2]. For odd-ν
pairing state, Cooper pair wavefunction or pair amplitude is
odd in relative time coordinate or frequency of the two Cooper
pair electrons [3–5]. An odd-ν pairing state can be further
categorized as odd-ν SS state and odd-ν ST state. ST states, in
turn, can be classified into two subcategories: equal ST (EST)
states, represented by |↑↑〉, |↓↓〉, and mixed ST (MST) states,
represented by |↑↓〉 + |↓↑〉.

In historical context, the concept of odd-ν ST pairing dates
back to Berezinskii’s 1974 proposal in 3He [6] and subse-
quent predictions in disordered systems [7,8]. Balatsky and
Abrahams later proposed the existence of odd-ν SS pairing
in superconductors with broken time-reversal and parity sym-
metries [9]. Subsequent investigations extended to various
systems, including a two-channel Kondo system [10], the
1D t − J − h model [11], the 2D Hubbard model [12], and
heavy fermion compounds [13]. The existence of bulk odd-ν
pairing has been suggested theoretically through the Majorana
scanning tunneling microscope [14]. Experimental indications
have also been observed through phenomena such as the Kerr
effect [15,16] and the paramagnetic Meissner effect [17–19].
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Moreover, the presence of bulk odd-ν pairing induced by
magnetic impurities has been demonstrated in s-wave super-
conductors [20,21]. Earlier, it was assumed that odd-ν state
was an intrinsic effect [9,22] but later it was discovered that
odd-ν state can be generated in superconducting junctions
[23–44] as well as under time-dependent fields [45,46].

Odd-ν pairing holds intrinsic significance owing to its
remarkable departure from conventional superconductivity.
Odd-ν spin-polarized Cooper pairs exhibit resilience against
both the Pauli limiting field and impurity scattering, in con-
trast to conventional even-ν Cooper pairs, which are only
robust against impurity scattering [3]. The exceptional robust-
ness of odd-ν pairing positions it as an attractive candidate for
applications in superconducting spintronics [47].

In this paper, we consider a px-SF-px Josephson junction
(JJ), with the nodal px superconductor featuring even-ν EST
pairing in its Cooper pair. Odd-ν EST pairing arises from the
breaking of spatial parity [25] at the px–px interface. We see
that spin flip scattering induces odd-ν MST pairing in our
setup. JJ’s with px superconductors are theoretically predicted
to harbor Majorana fermions [48]. The Majorana fermion is
a particle that is its own antiparticle and has attracted a lot of
attention for its potential application in topological quantum
computation [49–51]. In the case of px-SF-px JJ, there is a
sign change in energy-bound states when Majorana fermions
occur [52].

Our main motivation in this study is to distinguish MBS via
the surface induced odd-ν MST correlations in the presence of
spin flip scattering. Although surface odd-ν EST and surface
odd-ν MST correlations are finite and large in the topological
regimes when zero-energy MBS occur, they vanish in their
absence. Surface even-ν EST & MST correlations remain
finite in both the presence and absence of MBS, rendering
them ineffective for MBS detection. surface induced odd-ν
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ST correlations are a signature of MBS in px JJ’s with a spin
flipper.

In a recent paper [53], it was seen that both odd-ν EST and
even-ν EST correlations are induced in short px-N-px JJ. In
Ref. [53], neither even-ν MST nor odd-ν MST correlations
are present since spin flip scattering does not exist. In con-
trast, in our paper both odd-/even-ν EST and odd-/even-ν
MST correlations are induced via the spin flipper. In a related
study [54], the authors discuss the relation between Majorana
fermion and odd-ν Cooper pair in the case of a disordered
superconductor–metal–superconductor JJ of nanowires when
the nanowire is in the topologically nontrivial regime. In the
absence of spin-flip scattering, it was seen that odd-ν EST
pairing exists whenever MBS appears, while, odd-ν MST
pairing does not arise. Further, the connection between MBS
and odd-ν pairing has also been explored in Kitaev chain
systems [55] and in spin-polarized nanowires coupled to Ma-
jorana zero modes [56,57]. In all these studies [53–57], odd-ν
MST pairing vanishes, while in our paper, because of the inter-
play of both MBS and spin flip scattering, odd-ν MST pairing
is finite, thereby enhancing their utility in MBS detection.

The remainder of the paper is structured as follows: In
the subsequent section, we present our setup and discuss the
theoretical background. In Sec. III, we outline the method for
computing energy-bound states and Josephson currents. In the
same section, we also discuss the results for energy-bound
states and Josephson current. Moving on to Sec. IV, we delve
into the relationship between odd-ν ST superconductivity and
MBS in a px-SF-px JJ. Next in Sec. V, we discuss the impact
of disorder on surface induced odd-ν ST pairing. We analyze
the results in Sec. VI, offering a comparative summary of odd-
and even-ν correlations induced by the presence of MBS. In
Sec. VII, we present some tools to experimentally detect sur-
face odd-ν ST pairing via the local density of states (LDOS),
local magnetization density of states (LMDOS) and enhanced
total DC Josephson current and in the same section we also
summarize our paper. For completeness, we provide the wave-
functions and boundary conditions of our setup, along with
detailed calculations of Green’s functions, analytical formulas
for even- and odd-ν pairing amplitudes, and the details for
calculating the LDOS, LMDOS, and the total DC Josephson
current in Appendices A–E.

II. MODEL

We consider a JJ where a spin flipper (SF) is embedded
between two nodal px superconductors, as depicted in Fig. 1.
The SF’s Hamiltonian is described as [58–62]

HSF = −J0δ(x)�s · �S. (1)

We address this problem by solving a time-independent
Schrödinger equation, which has been adapted to incorpo-
rate a Bogoliubov-de Gennes (BdG) Hamiltonian. The BdG
Hamiltonian for px-SF-px JJ, as shown in Fig. 1, is expressed
as

H px-SF-px
BdG (x) =

(
HPÎ �J pσ̂x

�∗
J pσ̂x −HPÎ

)
, (2)

with HP = − h̄2

2m∗
∂2

∂x2 − J0δ(x)�s · �S − μ′
px

. − h̄2

2m∗
∂2

∂x2 represents
electron-like quasiparticle’s kinetic energy operator with an

FIG. 1. Josephson junction composed of a SF at x = 0 embedded
between two nodal px superconductors. Two px superconductors are
grounded. The scattering process of an incident spin-up electron-like
quasiparticle (qe) is depicted and SF’s spin being oriented along any
arbitrary direction.

effective mass denoted as m∗, J0 denotes the exchange inter-
action between the spins of the electron-like quasiparticle (�s)
and SF ( �S), and the third term corresponds to the chemical
potential of a px superconductor. Î represents identity matrix,
p = −ih̄ ∂

∂x is the momentum operator, and σ̂ being the Pauli
matrices. Further, the gap parameter �J has the form �J =
�′

px
[eiϕL θ (−x) + eiϕRθ (x)] with �′

px
the pairing potential for

px superconductor and θ (x) represents the unit step function.
ϕL is the superconducting phase for left superconductor, while
ϕR is the superconducting phase for right superconductor.
ϕ = ϕR − ϕL is the phase difference between two supercon-
ductors. In this paper, the SF’s spin magnetic moment m′ can
have possible values, m′ = −S,−S + 1, ...,S . For example,
if S = 1/2, then m′ has two possible values, m′ = 1/2,−1/2.
Similarly, if S = 3/2, then m′ = 3/2, 1/2,−1/2,−3/2. We
compute various measurable quantities like Josephson cur-
rent or the pairing magnitude or LDOS/LMDOS for each
of the 2S + 1 possible values of m′ for SF’s spin S and
finally take an average overall m′ values. When a spin-up
electron-like quasiparticle (ELQ) interacts with the SF with
a spin of S = 1/2, it results in a product state m′

2 (|↑〉ELQ ⊗
|↑〉SF) if the SF’s spin is in the up state (m′ = 1/2). How-
ever, if the SF is in the spin-down state (m′ = −1/2), an
entangled state may emerge after scattering, represented as

( Mutual spin flip︷ ︸︸ ︷
f

2
(|↓〉ELQ ⊗ |↑〉SF ) +

No flip︷ ︸︸ ︷
m′

2
(|↑〉ELQ ⊗ |↓〉SF )

)
. In the subsequent scattering

event at the SF, if a spin-down electron-like quasiparticle is
incident, it encounters the SF in either the spin-up or spin-
down state. If the SF is in the spin-up state, a spin flip occurs,
once again leading to the formation of an entangled state.
As a result, measurable quantities like Josephson current or
the pairing magnitude or LDOS/LMDOS are determined by
averaging over these two processes spin flip and no flip. This
approach applies similarly to SF’s spin states of S = 3/2 and
beyond, with measurable quantities calculated by averaging
over all possible values of m′. In this paper, we have used
dimensionless parameters J = 2m∗J0

kμpx
to quantify the exchange

coupling strength [58], where kμpx
=
√

2m∗μ′
px

h̄2 is the Fermi
momentum.

By diagonalizing the Hamiltonian (2), we obtain the wave-
functions in distinct regions of the px-SF-px JJ corresponding
to different scattering processes. The detailed wavefunctions
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FIG. 2. Energy bound states as a function of phase difference ϕ for (a) topological regime, (b) trivial regime. (c) Josephson current as
a function of phase difference ϕ. Parameters: S = 1/2, J = 3, μpx = 1 (for topological regime), μpx = −1 (for trivial regime), �px = √

2,
Ec = 1, I0 = eEc/h̄, T = 0. In (a) and (b) we choose the particular case of S = −m′ = 1/2.

are provided in Appendix A. The wavevectors qe,h in px superconductor can be found from

ν2 = (q2
e,h − μ′

px

)2 + (�′
px

qe,h
)2

, (assuming h̄ = 2m∗ = 1). (3)

The general solution of Eq. (3) for qe,h is given as

qe,h = ±

√√√√−�′2
px

+ 2μ′
px

±
√

4ν2 + �′4
px

− 4�′2
px

μ′
px

2
. (4)

In Eq. (4), qe and qh have two values. The positive value of qe (qh) represents the electron-like (hole-like) quasiparticle moving
from left (right) to right (left), while the negative value of qe (qh) represents the electron-like (hole-like) quasiparticle moving
from right (left) to left (right). Expressions for qe,h for different values of chemical potential μ′

px
� �′2

px
/4, �′2

px
/4 � μ′

px
�

�′2
px

/2, and μ′
px

� �′2
px

/2 and energy E (frequency ν) are provided in Table I of Ref. [63]. At μ′
px

= 0, the energy spectrum for
px superconductor is gapless (see Fig. 1 of Ref. [63]), which indicates the topological transition between the trivial (μ′

px
< 0)

and topological (μ′
px

> 0) phases. The gap in the energy spectrum of nodal px superconductor is given as

Ec =

⎧⎪⎪⎨
⎪⎪⎩

|μ′
px

|, μ′
px

< 0, (trivial regime)
μ′

px
, 0 < μ′

px
< �′2

px
/2,

�′
px

√
μ′

px
− �′2

px
/4, μ′

px
> �′2

px
/2. (topological regime)

(5)

In the subsequent sections, we will employ normalized pairing

potential, denoted as �px = 2m∗�′
px

h̄2kμpx

, and normalized chemical

potential, denoted as μpx = h̄2μ′
px

m∗�2
px

.

III. MAJORANA BOUND STATES
AND JOSEPHSON CURRENT

To compute energy-bound states in px-SF-px JJ we ne-
glect the contribution from incoming quasiparticles in the
wavefunctions [64,65], see Eq. (A1) in Appendix A and sub-
stitute these wavefunctions into the boundary conditions, see
Eq. (A2) in Appendix A. We will get eight equations with

Py = 0, (6)

wherein y = [re′e′
↑↑ , re′e′

↑↓ , re′h′
↑↑ , re′h′

↑↓ , t̃ e′e′
↑↑ , t̃ e′e′

↑↓ , t̃ e′h′
↑↑ , t̃ e′h′

↑↓ ]T is a
8 × 1 column matrix and P is a 8 × 8 matrix. For the non-
trivial solution of Eq. (6), the det P should be zero and
we obtain bound state energies El (l = 1, ..., 8) = ±En(n =
1, ..., 4). Since we consider a short JJ, the Josephson total
current is equal to the Josephson bound current, which can

be obtained from bound state energies [66],

I = −2e

h̄

4∑
n=1

tanh

(
En

2kBT

)
dEn

dϕ
. (7)

In Figs. 2(a) and 2(b), bound state energies are plotted as a
function of phase difference ϕ in both topological [Fig. 2(a)]
and trivial [Fig. 2(b)] regimes. From Fig. 2(a), we see that
in the topological regime at ϕ = ±π , energy-bound states
change their sign owing to their 4π periodicity, which indi-
cates the presence of Majorana zero modes inside the junction
[52]. These 4π -periodic energy-bound states occur because
of the coupling of two Majorana fermions at zero energy.
However, in the trivial regime energy-bound states do not
change their sign, see Fig. 2(b), and they are 2π periodic,
which indicates the absence of MBS. In Fig. 2(c), we plot
Josephson current versus phase difference (ϕ) for both topo-
logical and trivial regimes. We notice that in the topological
regime, Josephson current is also 4π periodic and becomes
maximum at ϕ = π when MBS occur. However, Josephson
current is 2π periodic and vanishes at ϕ = ±π in the trivial
regime when MBS do not occur.
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IV. ODD-FREQUENCY PAIRING AND MAJORANA
BOUND STATES

The primary objective of this study is to investigate the
potential correlation between the presence of MBS and the
emergence of odd-ν pairing correlations. For this reason, we
form retarded Green’s function, denoted as Gr (x, x̄, ν), for the
setup depicted in Fig. 1, incorporating the interface scatter-
ing processes [67]. We adopt the methodology established
in Refs. [68] and [69], and the details of Green’s functions
calculation are mentioned in Appendix B. We focus on the
anomalous component of Gr , which gives the pairing am-
plitudes. Anomalous component of Gr (x, x̄, ν) is expressed
as

Gr
eh(x, x̄, ν) = i

3∑
l=0

f r
l σlσ2. (8)

In Eq. (8), σ0 represents the identity matrix and σl (l =
1, 2, 3) denote the Pauli matrices. Further, f r

0 is spin-singlet
(↑↓ − ↓↑) pairing amplitude, f r

1,2 represent equal spin-triplet
(↓↓ ± ↑↑) pairing amplitudes, and finally f r

3 being the mixed
spin-triplet (↑↓ + ↓↑) pairing amplitude. The EST pairing
amplitudes ↑↑ and ↓↓ are calculated as f↑↑ = i f r

2 − f r
1 and

f↓↓ = i f r
2 + f r

1 , respectively. Even- and odd-ν pairing ampli-
tudes are obtained from

f E
l (x, x̄, ν) = f r

l (x, x̄, ν) + f a
l (x, x̄,−ν)

2
, and

f O
l (x, x̄, ν) = f r

l (x, x̄, ν) − f a
l (x, x̄,−ν)

2
, (9)

f a
l are related to the advanced Green’s function and deter-

mined from Ga(x, x̄, ν) = [Gr (x̄, x, ν)]† [68]. The even- and
odd-ν EST pairing amplitudes are calculated as

Even-ν EST: f E
↑↑ = i f E

2 − f E
1 and f E

↓↓ = i f E
2 + f E

1 ; Odd-ν EST: f O
↑↑ = i f O

2 − f O
1 and f O

↓↓ = i f O
2 + f O

1 . (10)

The even- and odd-ν MST pairing amplitudes are calculated as

Even-ν MST: f E
3 (x, x̄, ν) = f r

3 (x, x̄, ν) + f a
3 (x, x̄,−ν)

2
; Odd-ν MST: f O

3 (x, x̄, ν) = f r
3 (x, x̄, ν) − f a

3 (x, x̄,−ν)

2
. (11)

A. Equal spin-triplet (EST) superconducting correlations

We calculate even- and odd-ν pairing amplitudes using
Eqs. (8)–(11), see [70] for detailed calculations. Spin-singlet
(SS) pairing is zero in the setup considered in Fig. 1; however,
spin-triplet (ST) pairing is finite. ST pairing is of two kinds,
equal spin-triplet (EST) pairing and mixed spin-triplet (MST)
pairing. Since, in our paper, px superconductor has equal
spin-triplet Cooper pair, thus EST pairing already exists in
this setup; however, MST pairing is induced as a result of
the spin flipper. Here we show that even-ν EST and odd-ν
EST pairings are induced in our setup because of the px

superconductor. Similar to Fig. 2, we look at two cases: (a) the
trivial regime and (b) the topological regime. In the topologi-
cal regime, MBS appear at ν → 0 and ϕ = ±π as depicted

in Fig. 2(a). To understand the nature of even-ν EST and
odd-ν EST correlations when MBS appear in the topological
regime, we compute even-ν EST and odd-ν EST correlations
at the ν → 0 limit in both trivial and topological regimes.
However, the explicit expressions for even-ν EST and odd-ν
EST correlations at finite ν are provided in Appendix C. In the
trivial regime, for ν → 0, the coherence factors γe = γh = I ,
normal reflection amplitudes, re′e′

↑↑ = re′e′
↓↓ = rh′h′

↑↑ = rh′h′
↓↓ = 0,

and Andreev reflection amplitudes, re′h′
↑↑ = rh′e′

↑↑ and re′h′
↓↓ =

rh′e′
↓↓ , see Appendix C. We should mention that the Andreev

reflection amplitudes re′h′
↑↑ , rh′e′

↑↑ , re′h′
↓↓ , rh′e′

↓↓ are purely real and its
because of the perfect Andreev reflection seen at ν → 0 limit.
In ν → 0 limit, both bulk and surface even-ν EST pairing are
nonzero in the left superconductor and given as

Bulk even-ν EST: f E ,B
↑↑ (x, x̄, ν → 0) = η

2(qh − qe)
((eiqe|x−x̄| − e−iqh|x−x̄|)sgn(x − x̄)) = f E ,B

↓↓ (x, x̄, ν → 0), for x < 0, (12)

Surface even-ν EST: f E ,S
↑↑ (x, x̄, ν → 0) = η

4(qh − qe)
((re′h′

↑↑ + re′h′
↓↓ )(e−i(qex̄−qhx) − e−i(qex−qhx̄) )) = f E ,S

↓↓ (x, x̄, ν → 0),

for x < 0, (13)

where η = 2m∗
h̄2 , while bulk and surface components of odd-ν EST pairing vanishes. In the above equations, we have separated

the pairing amplitudes into bulk (B) and surface (S) components, where bulk components do not depend on interface scattering
amplitudes. In the topological regime, at ν → 0, γh = γ ∗

e , qeγe = (qhγh)∗, qhγe = (qeγh)∗, re′e′
↑↑ = rh′h′∗

↑↑ , re′e′
↓↓ = rh′h′∗

↓↓ and there
are two cases: MBS absent (ϕ �= π ), and MBS present (ϕ = π ). When MBS are absent (ϕ �= π ), normal reflection amplitudes,
re′e′
↑↑ = re′e′

↓↓ = rh′h′
↑↑ = rh′h′

↓↓ = 0, and Andreev reflection amplitudes, re′h′
↑↑ = re′h′

↓↓ = rh′e′
↑↑ = rh′e′

↓↓ (all are imaginary). Again there is
a perfect Andreev reflection at ν → 0 limit. We find that similar to the trivial regime, in the topological regime when MBS are
absent, both bulk and surface even-ν EST pairings are nonzero in the left superconductor and given as

Bulk even-ν EST: f E ,B
↑↑ (x, x̄, ν → 0) = η

8

[
1

Im[qeγe]
+ |γe|2

Im[qhγe]

]
[(e−iqh|x−x̄| − eiqe|x−x̄|)sgn(x − x̄)]

= f E ,B
↓↓ (x, x̄, ν → 0), for x < 0, (14)
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FIG. 3. The absolute values of the bulk and surface contributions to even-ν EST and odd-ν EST correlations within the left superconductor
vs position x for (a) trivial regime, (b) topological regime when MBS are absent (ϕ = π/5), and (c) topological regime when MBS are present
(ϕ = π ). Parameters: S = 1/2, J = 3, �px = √

2, μpx = −1 [for (a)], μpx = 1 [for (b) and (c)], x̄ = 0, ϕ = π/5 [for (a) and (b)], ϕ = π [for
(c)], ν → 0. In (a)–(c), x has been scaled by the superconducting coherence length ξ for dimensionless representation.

Surface even-ν EST: f E ,S
↑↑ (x, x̄, ν → 0) = η

8
re′h′
↑↑

([
1

Im[qeγe]
− (γ ∗

e )2

Im[qhγe]

]
e−i(qex̄−qhx) −

[
1

Im[qeγe]
− γ 2

e

Im[qhγe]

]
e−i(qex−qhx̄)

)

= f E ,S
↓↓ (x, x̄, ν → 0), for x < 0, (15)

while at ν → 0 limit odd-ν EST pairing vanishes when MBS are absent. In the topological regime, when MBS are present
(ϕ = π ), normal reflection amplitudes satisfy re′e′

↑↑ = rh′h′∗
↑↑ , re′e′

↓↓ = rh′h′∗
↓↓ , and Andreev reflection amplitudes satisfy re′h′

↑↑ = rh′e′∗
↑↑ ,

re′h′
↓↓ = rh′e′∗

↓↓ with Im[re′h′
↑↑ ] � 1, Im[re′h′

↓↓ ] � 1. We find that similar to the trivial regime and topological regime when MBS are
absent, in the topological regime when MBS are present, both bulk and surface even-ν EST pairing are nonzero in the left
superconductor and given as

Bulk even-ν EST: f E ,B
↑↑ (x, x̄, ν → 0) = η

8

[
1

Im[qeγe]
+ |γe|2

Im[qhγe]

]
[(e−iqh|x−x̄| − eiqe|x−x̄|)sgn(x − x̄)]

= f E ,B
↓↓ (x, x̄, ν → 0), for x < 0, (16)

Surface even-ν EST: f E ,S
↑↑ (x, x̄, ν → 0) = η

16

(
(rh′e′

↑↑ + rh′e′
↓↓ )

[
1

Im[qeγe]
+ γ 2

e

Im[qhγe]

]
e−i(qex−qhx̄) − (re′h′

↑↑ + re′h′
↓↓ )

×
[

1

Im[qeγe]
+ (γ ∗

e )2

Im[qhγe]

]
ei(qhx−qex̄)

)
= f E ,S

↓↓ (x, x̄, ν → 0), for x < 0. (17)

However, in contrast to the scenarios when MBS are absent, in the topological regime when MBS are present, surface odd-ν
EST correlations are finite with vanishing bulk odd-ν EST correlations.

Surface odd-ν EST: f O,S
↑↑ (x, x̄, ν → 0) = η

16

(
(re′e′

↑↑ + re′e′
↓↓ )

[
1

Im[qeγe]
+ |γe|2

Im[qhγe]

]
e−iqe(x+x̄) − (rh′h′

↑↑ + rh′h′
↓↓ )

×
[

1

Im[qeγe]
+ |γe|2

Im[qhγe]

]
eiqh (x+x̄) − (rh′e′

↑↑ + rh′e′
↓↓ )

[
1

Im[qeγe]
− γ 2

e

Im[qhγe]

]

× e−i(qex−qhx̄) + (re′h′
↑↑ + re′h′

↓↓ )

[
1

Im[qeγe]
− (γ ∗

e )2

Im[qhγe]

]
ei(qhx−qex̄)

)

= f O,S
↓↓ (x, x̄, ν → 0), for x < 0. (18)

This finite-surface odd-ν EST correlation can act as a signa-
ture of MBS. Both bulk and surface contribution of odd-ν EST
correlations vanish in the trivial regime and in the topological
regime when MBS are absent at ν → 0 limit, while only

bulk contribution of odd-ν EST correlations vanish in the
topological regime when MBS are present. Bulk and surface
contributions of even-ν EST and odd-ν EST correlations at
ν → 0 within the left superconductor are presented in Fig. 3.
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We choose three cases: (a) trivial regime, (b) topological
regime when MBS are absent, and (c) topological regime
when MBS are present. From Fig. 3, it is evident that in the
trivial regime, both bulk and surface contributions of even-
ν EST correlations are finite and exhibit a decay without
any oscillation with vanishing odd-ν EST correlations. How-
ever, in the topological regime when MBS are absent, both
bulk and surface contributions of even-ν EST correlations
are nonzero and exhibit an oscillatory decay with vanish-
ing odd-ν EST correlations. In the topological regime, when
MBS are present, surface induced odd-ν EST correlations
are enhanced with vanishing bulk odd-ν EST correlations.
However, bulk and surface contributions of even-ν EST cor-
relations are suppressed. In the trivial regime, at ν → 0, both
qe and qh are purely imaginary in Eqs. (12) and (13); there-
fore, even-ν EST and odd-ν EST correlations show a decay
without any oscillation. In the topological regime, at ν → 0,
both qe and qh have both real and imaginary components
(qh = q∗

e ) in Eqs. (14)–(18); therefore, even-ν EST and odd-ν
EST correlations exhibit a decay with oscillation inside the
superconductor. Even-ν EST correlations are finite both in
the presence as well as in the absence of MBS, and thus,

do not help in detecting MBS. However, surface odd-ν EST
correlations are finite only in the presence of MBS, making
them a crucial indicator in detecting MBS.

B. Mixed spin-triplet (MST) superconducting correlations

We now compute the induced even-ν MST and odd-ν MST
correlations in our setup. In our paper as mentioned before,
MST correlations are induced in the presence of spin flipper.
Similar to Fig. 2, we examine two scenarios: (a) the trivial
regime, and (b) the topological regime. To understand the
behavior of even-ν MST and odd-ν MST correlations when
MBS occur, we consider the ν → 0 limit for both trivial
and topological regimes. However, the analytical expressions
for even-ν MST and odd-ν MST correlations at finite ν are
mentioned in Appendix C. In the trivial regime, at ν → 0, the
coherence factors γe = γh = I , normal reflection amplitudes
re′e′
↑↓ = re′e′

↓↑ = rh′h′
↑↓ = rh′h′

↓↑ = 0, and Andreev reflection ampli-

tudes re′h′
↑↓ = rh′e′

↑↓ and re′h′
↓↑ = rh′e′

↓↑ . The Andreev reflection
amplitudes are purely real. We find that bulk MST correla-
tions vanish for both even-ν and odd-ν, and surface MST
correlations are nonzero for even-ν while for odd-ν, they too
disappear,

Surface even-ν MST: f E ,S
3 (x, x̄, ν → 0) = η

4(qh − qe)
((re′h′

↑↓ + re′h′
↓↑ )(e−i(qex̄−qhx) − e−i(qex−qhx̄) )), for x < 0. (19)

In the topological regime, at ν → 0, γh = γ ∗
e , qeγe = (qhγh)∗, qhγe = (qeγh)∗, re′e′

↑↓ = rh′h′∗
↑↓ , re′e′

↓↑ = rh′h′∗
↓↑ and when MBS are

absent (ϕ �= π ), normal and Andreev reflection amplitudes re′e′
↑↓ = re′e′

↓↑ = rh′h′
↑↓ = rh′h′

↓↑ = re′h′
↑↓ = re′h′

↓↑ = rh′e′
↑↓ = rh′e′

↓↑ = 0. We find
that all correlations, both bulk and surface, for either odd-ν or even-ν vanish. Finally, in the topological regime, at ν → 0, when
MBS are present (ϕ = π ), normal reflection amplitudes satisfy re′e′

↑↓ = rh′h′∗
↑↓ , re′e′

↓↑ = rh′h′∗
↓↑ , and Andreev reflection amplitudes

satisfy re′h′
↑↓ = rh′e′∗

↑↓ , re′h′
↓↑ = rh′e′∗

↓↑ with Im[re′h′
↑↓ ] � 1, Im[re′h′

↓↑ ] � 1. We find that surface MST correlations are finite for both
even-ν and odd-ν while bulk MST correlations vanish for both even-ν and odd-ν,

Surface even-ν MST: f E ,S
3 (x, x̄, ν → 0) = η

16

(
(rh′e′

↑↓ + rh′e′
↓↑ )

[
1

Im[qeγe]
+ γ 2

e

Im[qhγe]

]
e−i(qex−qhx̄) − (re′h′

↑↓ + re′h′
↓↑ )

×
[

1

Im[qeγe]
+ (γ ∗

e )2

Im[qhγe]

]
ei(qhx−qex̄)

)
, for x < 0, (20)

Surface odd-ν MST: f O,S
3 (x, x̄, ν → 0) = η

16

(
(re′e′

↑↓ + re′e′
↓↑ )

[
1

Im[qeγe]
+ |γe|2

Im[qhγe]

]
e−iqe(x+x̄) − (rh′h′

↑↓ + rh′h′
↓↑ )

×
[

1

Im[qeγe]
+ |γe|2

Im[qhγe]

]
eiqh (x+x̄) − (rh′e′

↑↓ + rh′e′
↓↑ )

[
1

Im[qeγe]
− γ 2

e

Im[qhγe]

]

× e−i(qex−qhx̄) + (re′h′
↑↓ + re′h′

↓↑ )

[
1

Im[qeγe]
− (γ ∗

e )2

Im[qhγe]

]
ei(qhx−qex̄)

)
, for x < 0. (21)

Surface and bulk components of even-ν MST and odd-ν MST
correlations, at ν → 0 in the left superconducting region, are
plotted as a function of position x in Fig. 4. Similar to Fig. 3,
we consider three cases: (a) trivial regime, (b) topological
regime when MBS are absent, and (c) topological regime
when MBS are present. From Fig. 4(a) we see that in the trivial
regime surface even-ν MST correlations are finite and show
a decay without any oscillation, but odd-ν MST correlations

vanish. In Fig. 4(b), in the topological regimes when MBS are
absent (ϕ = π/5), both even-ν MST and odd-ν MST correla-
tions are zero. Finally, in Fig. 4(c), we see that when MBS are
present, surface odd-ν MST correlations are finite with very
large magnitudes while surface even-ν MST correlations are
very small. Further, surface even-ν MST correlations are finite
in the trivial regime when MBS are absent, as well as in the
topological regime when MBS are present, and thus, do not

045432-6



SURFACE-INDUCED ODD-FREQUENCY SPIN-TRIPLET … PHYSICAL REVIEW B 110, 045432 (2024)

FIG. 4. The absolute values of the bulk and surface contributions to even-ν MST and odd-ν MST correlations within the left superconductor
vs position x for (a) trivial regime, (b) topological regime when MBS are absent (ϕ = π/5), and (c) topological regime when MBS are present
(ϕ = π ). Parameters: S = 1/2, J = 3, �px = √

2, μpx = −1 [for (a)], μpx = 1 [for (b) and (c)], x̄ = 0, ϕ = π/5 [for (a) and (b)], ϕ = π [for
(c)], ν → 0. In (a)–(c), x has been scaled by the superconducting coherence length ξ for dimensionless representation.

distinguish MBS. Surface odd-ν MST correlations are finite
in the topological regime when MBS are present but vanish in
the absence of MBS. Therefore, induced surface odd-ν MST
correlations imply presence of MBS. This is the main result
of our paper.

V. EFFECT OF DISORDER ON MAJORANA INDUCED
ODD-FREQUENCY CORRELATIONS

In this section we discuss the effects of disorder on our
results. To study the impact of disorder on our results, we
consider a finite-length JJ where two normal metals with
a spin flipper (SF) are sandwiched between two nodal px

superconductors, as shown in Fig. 5. Normal metal-px su-
perconductor interfaces are modeled with δ-like potential
barriers of strength V1 and V2. The scattering of an inci-
dent electron-like quasiparticle with spin-up is presented in
Fig. 5. In this double-barrier 1D system, multiple scattering
of electrons and holes occurs as a result of the interface
barriers. In Ref. [71], the authors demonstrate that conduc-
tance is enhanced in a 1D normal metal–insulator–normal
metal–insulator–superconductor (N-I1-N-I2-S) double-barrier
junction as a result of multiple scattering [72]. This phe-
nomenon is similar to what happens in a disordered normal
metal–insulator–superconductor (N-I-S) junction, where con-
ductance can be enhanced because of repeated scattering of
electrons by disorder, as shown in Ref. [73]. This enhance-
ment in conductance suggests that multiple scattering in a
double-barrier junction introduces disorder effects.

The BdG Hamiltonian for nodal p-wave superconductor
(px)–insulator (I1)–normal metal (N1)–spin flipper (SF)–
normal metal (N2)–insulator (I2)–nodal p-wave superconduc-
tor (px) junction, as shown in Fig. 5, is expressed as

H px-I1-N1-SF-N2-I2-px
BdG (x) =

(
HQÎ �L pσ̂x

�∗
L pσ̂x −HQÎ

)
, (22)

with HQ = − h̄2

2m∗
∂2

∂x2 + V1δ(x + L/2) + V2δ(x − L/2) −
J0δ(x)�s · �S − μ′

r . V1 represents the strength of δ-like potential
barrier at px-N1 interface, while V2 denotes the strength of
δ-like potential barrier at N2-px interface. We have used
dimensionless parameters Z1 = 2m∗V1

h̄2kμpx

and Z2 = 2m∗V2

h̄2kμpx

to

quantify interface transparencies [74]. μ′
r corresponds to

the chemical potential for normal metal (r = N) or px

superconductor (r = px) and μr = h̄2μ′
r

m∗�2
px

is the normalized

chemical potential. Further, the gap parameter �L has the fol-
lowing form �L = �′

px
[eiϕL θ (−x − L/2) + eiϕRθ (x − L/2)].

By diagonalizing the Hamiltonian (22), we obtain the
wavefunctions in distinct regions of the px-I1-N1-SF-N2-I2-px

JJ corresponding to different scattering processes. The de-
tailed wavefunctions are mentioned in Appendix A. In Sec. IV
we discuss in detail the method to calculate the retarded
Green’s function and induced even-/odd-ν ST pairing ampli-
tudes in different regions of the px-I1-N1-SF-N2-I2-px JJ. In
Fig. 6, we present the surface contributions of even-ν EST
and odd-ν EST correlations in the left superconductor as a
function of position x for different values of Z1 and Z2 in the
ν → 0 limit. The three phases: (a) the trivial phase, (b) the
topological phase without MBS, and (c) the topological phase
with MBS are then analyzed in Fig. 6. In the trivial phase,
the magnitude of surface even-ν EST correlations changes
with disorder as seen for different values of Z1 and Z2. In
contrast, in the topological phase when MBS are absent, their
magnitude remains independent of disorder. The magnitude of
surface odd-ν EST correlations is zero regardless of disorder
in the absence of MBS. In the topological phase when MBS
are present, both surface even-ν EST and surface odd-ν EST
correlations are finite and their magnitudes are very large as
well as independent of disorder as seen for different Z1 and Z2

values. Surface even-ν EST correlations are finite for various
values of Z1 and Z2 in both the trivial and topological phases,
regardless of the presence of MBS, but in topological phase
their magnitudes are independent of disorder. Surface odd-ν
EST correlations are nonzero only in the topological phase
when MBS are present and vanish in their absence. Therefore,
surface induced odd-ν EST correlations serve as an effective
detector of MBS, even in the presence of disorder.

Next, in Fig. 7, we plot the surface even-ν MST and sur-
face odd-ν MST correlations in the left superconductor as a
function of position x for different values of Z1 and Z2 in
the ν → 0 limit. Similar to Fig. 6, we consider three phases:
(a) the trivial phase, (b) the topological phase without MBS,
and (c) the topological phase with MBS. In the trivial phase,
the magnitude of surface even-ν MST correlations changes
with disorder as seen for different values of Z1 and Z2, while
the magnitude of surface odd-ν MST correlations is zero
regardless of disorder. In the topological phase when MBS
are absent, both surface even-ν MST and surface odd-ν MST
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FIG. 5. Josephson junction composed of two normal metals and a SF at x = 0 embedded between two nodal px superconductors. Normal
metal-px superconductor interfaces at x = ±L/2 are modeled with δ-like potential barriers of strength V1 and V2. Two px superconductors are
grounded. The scattering process of an incident spin-up electron-like quasiparticle (qe) is depicted and SF’s spin being oriented along any
arbitrary direction.

correlations are zero regardless of disorder. Finally, in the
topological phase when MBS are present, both surface even-ν
MST and surface odd-ν MST correlations are finite and their
magnitudes are huge as well as independent of disorder as
seen for different Z1 and Z2 values. Surface even-ν MST
correlations are finite for different values of Z1 and Z2 in both
the trivial and topological phases, irrespective of the presence
of MBS, but in topological phase they are independent of
disorder, and their magnitudes are enhanced multifold in topo-
logical phase with MBS. Surface odd-ν MST correlations are
nonzero only in the topological phase when MBS are present
and they vanish when MBS are absent. Thus, surface induced
odd-ν MST correlations can serve as a true detector of MBS
even in the presence of disorder. This indicates the robustness
of surface induced odd-ν ST pairing to the deleterious effects
of disorder.

VI. ANALYSIS

We compare our results in Table I both when SF is present
and when it is absent. Even-ν SS and odd-ν SS correlations
always vanish in both the trivial and topological regimes ir-
respective of spin flip scattering and therefore we do not put
them in Table I. We notice that only even-ν EST correlations
are finite in bulk in the presence as well as in the absence
of MBS irrespective of spin flip scattering. Thus, the bulk
component of EST correlations does not contribute to the
identification of MBS. Surface contributions of even-ν EST

correlations are finite both in trivial and topological regimes
in the presence of spin flip scattering. Surface components of
even-ν MST correlations are finite in the topological regimes
when MBS are present and also in the trivial regimes in
the presence of spin flip scattering. Thus, even-ν EST and
even-ν MST correlations cannot help in detecting MBS. Sur-
face contributions of odd-ν EST correlations are nonzero in
the presence of MBS; however, they vanish when MBS are
absent regardless of spin flip scattering. Surface components
of odd-ν MST correlations are present when MBS occur, but
they are absent when MBS are absent in the presence of spin
flip scattering. Thus, surface induced odd-ν EST and odd-ν
MST correlations can distinguish MBS in the presence of
spin flip scattering. In our study, when SF is absent, surface
odd-ν MST correlations will also be absent. Thus, spin flip
scattering helps in detecting MBS via inducing surface odd-ν
MST correlation in the presence of MBS.

Next, in Table II we explain the reasons behind our
results. In the trivial regime, for ν → 0, and for MBS ab-
sent, normal reflection amplitudes without spin flip are zero,
i.e., re′e′

↑↑ = re′e′
↓↓ = rh′h′

↑↑ = rh′h′
↓↓ = 0 while Andreev reflection

amplitudes without spin flip satisfy re′h′
↑↑ = rh′e′

↑↑ �= 0, re′h′
↓↓ =

rh′e′
↓↓ �= 0, which lead to finite-surface even-ν EST correlations

with vanishing surface odd-ν EST correlations, see Eq. (13).
Further, in the trivial regime, normal reflection amplitudes
with spin flip are zero, i.e., re′e′

↑↓ = re′e′
↓↑ = rh′h′

↑↓ = rh′h′
↓↑ = 0

while Andreev reflection amplitudes with spin flip satisfy

FIG. 6. The absolute values of the surface contribution to even-ν EST and odd-ν EST correlations within the left superconductor vs position
x for different values of interface transparencies Z1 and Z2. We consider three cases: (a) trivial regime, (b) topological regime when MBS are
absent (ϕ = π/5), and (c) topological regime when MBS are present (ϕ = π ). Parameters: S = 1/2, J = 3, �px = √

2, μpx = −1 [for (a)],
μpx = 1 [for (b) and (c)], μN = 10, L = 1.3ξ , x̄ = 0, ϕ = π/5 [for (a) and (b)], ϕ = π [for (c)], ν → 0.
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FIG. 7. The absolute values of the surface contribution to even-ν MST and odd-ν MST correlations within the left superconductor vs
position x for different values of interface transparencies Z1 and Z2. We consider three cases: (a) trivial regime, (b) topological regime when
MBS are absent (ϕ = π/5), and (c) topological regime when MBS are present (ϕ = π ). Parameters: S = 1/2, J = 3, �px = √

2, μpx = −1
[for (a)], μpx = 1 [for (b) and (c)], μN = 10, L = 1.3ξ , x̄ = 0, ϕ = π/5 [for (a) and (b)], ϕ = π [for (c)], ν → 0.

re′h′
↑↓ = rh′e′

↑↓ �= 0, re′h′
↓↑ = rh′e′

↓↑ �= 0, which lead to finite-surface
even-ν MST correlations and vanishing surface odd-ν MST
correlations, as evident from Eq. (19).

In the topological regime for ν → 0 and when MBS are
absent (ϕ �= π ), normal reflection amplitudes without spin
flip satisfy re′e′

↑↑ = re′e′
↓↓ = rh′h′

↑↑ = rh′h′
↓↓ = 0 while Andreev re-

flection amplitudes without spin flip are equal, i.e., re′h′
↑↑ =

re′h′
↓↓ = rh′e′

↑↑ = rh′e′
↓↓ �= 0, which lead to finite-surface even-ν

EST correlations and vanishing surface odd-ν EST correla-
tions, see Eq. (15). In the topological regime, when MBS
are absent, normal reflection amplitudes with spin flip satisfy
re′e′
↑↓ = re′e′

↓↑ = rh′h′
↑↓ = rh′h′

↓↑ = 0 while spin flip Andreev reflec-

tion amplitudes are again vanishing, i.e., re′h′
↑↓ = re′h′

↓↑ = rh′e′
↑↓ =

rh′e′
↓↑ = 0, which lead to vanishing surface even-ν MST and

surface odd-ν MST correlations.
Finally, in the topological regime for ν → 0 and when

MBS are present (ϕ = π ), normal reflection amplitudes with-
out spin flip satisfy re′e′

↑↑ = rh′h′∗
↑↑ , re′e′

↓↓ = rh′h′∗
↓↓ while Andreev

reflection amplitudes without spin flip satisfy re′h′
↑↑ = rh′e′∗

↑↑ ,

re′h′
↓↓ = rh′e′∗

↓↓ , which lead to finite-surface even-ν EST and
surface odd-ν EST correlations, see Eqs. (17) and (18). In
this regime, normal reflection amplitudes with spin flip satisfy
re′e′
↑↓ = rh′h′∗

↑↓ , re′e′
↓↑ = rh′h′∗

↓↑ while Andreev reflection amplitudes

with spin flip satisfy re′h′
↑↓ = rh′e′∗

↑↓ , re′h′
↓↑ = rh′e′∗

↓↑ , which lead
to finite-surface even-ν MST and finite-surface odd-ν MST

correlations, as evident from Eqs. (20) and (21). It is important
to note that both normal and Andreev reflection amplitudes
follow distinct conditions in the presence and absence of
MBS. These differing conditions lead to distinguishable re-
sults under these two scenarios.

In Table III, we analyze the impact of disorder on surface
induced odd-ν ST pairing. The effects of disorder have been
dealt with in detail in Sec. V and Figs. 6 and 7. In the trivial
regime, surface odd-ν EST and surface odd-ν MST correla-
tions vanish regardless of disorder, whereas surface even-ν
EST and surface even-ν MST correlations are finite and vary
in magnitude with disorder. In the topological regime when
MBS are absent, surface odd-ν EST and surface even-/odd-ν
MST correlations vanish regardless of disorder, while surface
even-ν EST correlations are finite and their magnitude is un-
affected by disorder. However, in the topological regime when
MBS are present, all four types of correlations (surface odd-ν
EST, surface even-ν EST, surface odd-ν MST, and surface
even-ν MST) are finite and their magnitudes are indepen-
dent of disorder. Therefore, even in the presence of disorder,
surface odd-ν EST and surface odd-ν MST correlations are
reliable indicators for MBS detection, as they are finite only in
the presence of MBS and vanish in their absence. This implies
that our results are robust against disorder.

In Ref. [55], it is found that within the topological phase,
the spatial variation of the odd-ν EST pairing amplitude coin-
cides with that of the LDOS at zero energy in a semi-infinite

TABLE I. Comparing odd- and even-ν correlations at ν → 0 in presence and absence of SF.

Topological (MBS present) Topological (MBS absent) Trivial

SF present SF absent SF present SF absent SF present SF absent

Odd-ν EST Bulk Absent Absent Absent Absent Absent Absent
Surface PRESENT PRESENT Absent Absent Absent Absent

Even-ν EST Bulk Present Present Present Present Present Present
Surface Present Present Present Present Present Absent

Odd-ν MST Bulk Absent Absent Absent Absent Absent Absent
Surface PRESENT Absent Absent Absent Absent Absent

Even-ν MST Bulk Absent Absent Absent Absent Absent Absent
Surface Present Absent Absent Absent Present Absent
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TABLE II. Normal and Andreev reflection amplitudes at ν → 0 in trivial and topological regimes (MBS absent and MBS present).

Normal reflection
amplitudes without

spin flip

Normal reflection
amplitudes with

spin flip

Andreev reflection
amplitudes without

spin flip

Andreev reflection
amplitudes with

spin flip

Trivial re′e′
↑↑ = re′e′

↓↓ = rh′h′
↑↑ =

rh′h′
↓↓ = 0, i.e., they are

vanishing

re′e′
↑↓ = re′e′

↓↑ = rh′h′
↑↓ =

rh′h′
↓↑ = 0, i.e., they are

vanishing

re′h′
↑↑ = rh′e′

↑↑ ,

re′h′
↓↓ = rh′e′

↓↓ , they are
finite (real)

re′h′
↑↓ = rh′e′

↑↓ ,

re′h′
↓↑ = rh′e′

↓↑ , they are
finite (real)

Topological (MBS
absent)

re′e′
↑↑ = re′e′

↓↓ = rh′h′
↑↑ =

rh′h′
↓↓ = 0, i.e., they are

vanishing

re′e′
↑↓ = re′e′

↓↑ = rh′h′
↑↓ =

rh′h′
↓↑ = 0, i.e., they are

vanishing

re′h′
↑↑ = re′h′

↓↓ = rh′e′
↑↑ =

rh′e′
↓↓ , they are finite

(imaginary)

re′h′
↑↓ = re′h′

↓↑ = rh′e′
↑↓ =

rh′e′
↓↑ = 0, i.e., they are

vanishing

Topological (MBS
present)

re′e′
↑↑ = rh′h′∗

↑↑ ,

re′e′
↓↓ = rh′h′∗

↓↓ , they are
finite (complex)

re′e′
↑↓ = rh′h′∗

↑↓ ,

re′e′
↓↑ = rh′h′∗

↓↑ , they are
finite (complex)

re′h′
↑↑ = rh′e′∗

↑↑ ,

re′h′
↓↓ = rh′e′∗

↓↓ , they are
finite (complex)

re′h′
↑↓ = rh′e′∗

↑↓ ,

re′h′
↓↑ = rh′e′∗

↓↑ , they are
finite (complex)

Kitaev chain. This suggests a direct link between the wave
function of Majorana fermions and the odd-ν EST pairing
amplitude at low frequencies. Further, in Ref. [56], the authors
propose that the interaction between Majorana zero modes
and a spin-polarized nanowire leads to the emergence of odd-ν
EST pairing in the nanowire. In addition, in Ref. [57], the
authors examine the stability of odd-ν EST pairing induced in
a nanowire coupled with Majorana zero modes, particularly
when the coupling between them exhibits complexity. Never-
theless, in Refs. [55–57], odd-ν MST pairing does not emerge,
and they do not offer any methodology for MBS detection
through odd-ν pairing. This distinction sets our work apart
from theirs.

VII. EXPERIMENTAL DETECTIONS AND SUMMARY

Our system as depicted in Fig. 1 can be implemented in a
laboratory setting. px-wave pairing is experimentally found in
the quasi-1D organic superconductors (TMTSF)2PF6 [75,76].
Replacing the spin flipper at the px–px superconductor in-
terface must be technically feasible. From an experimental
perspective, magnetic molecules such as the Mn4O3 complex,
featuring a spin quantum number of S = 9/2 [77], offer a
partial analog for the spin flipper. It is worth noting that the
interior dynamics of such a high-spin molecule may exhibit

notable distinctions from those of our spin flipper. Nonethe-
less, the spin flipper can effectively emulate half-integer spin
states, along with capturing the related spin magnetic moment
of the molecule. This enables a substantial approximation of
electron interactions with such entities.

Experimentally, the signature of surface odd-ν ST correla-
tions can be probed by observing the zero-frequency peak in
the LDOS and LMDOS. In the topological regime, energy-
bound states exhibit a crossing at ν → 0 limit and phase
difference ϕ = ±π , indicative of the presence of Majorana
zero modes within the junction. These energy-bound states
naturally manifest as a zero-frequency peak in the LDOS
and LMDOS. This is depicted in Figs. 8 and 9, where we
plot LDOS and LMDOS as a function of frequency for the
px-I1-N1-SF-N2-I2-px JJ (see Fig. 5) at the px-N1 interface,
considering different values of Z1 and Z2. The formula for
calculating LDOS and LMDOS is mentioned in Appendix D.
We choose three phases: (a) the trivial phase, (b) the topo-
logical phase without MBS, and (c) the topological phase
with MBS. We notice a zero-frequency (ν = 0) peak in both
LDOS and LMDOS in the topological phase when MBS are
present. However, no such peak is present in the topologi-
cal phase without MBS or in the trivial phase. Remarkably,
surface odd-ν ST pairing is finite and exhibits significantly
large magnitudes in the topological regime when MBS are
present, as illustrated in Figs. 3(c), 4(c), 6(c), and 7(c).

TABLE III. Effects of disorder on surface odd-/even-ν superconducting pairing at ν → 0 in trivial and topological regimes (MBS absent
and MBS present), see Sec. V and Figs. 6 and 7 for more details.

Trivial Topological (MBS absent)
Topological (MBS

present)

Surface odd-ν EST Vanishing regardless of disorder Vanishing regardless of disorder Finite and their magnitude
is independent of disorder

Suface even-ν EST Finite and their magnitude
changes with disorder

Finite and their magnitude is
independent of disorder

Finite and their magnitude
is independent of disorder

Surface odd-ν MST Vanishing regardless of disorder Vanishing regardless of disorder Finite and their magnitude
is independent of disorder

Surface even-ν MST Finite and their magnitude
changes with disorder

Vanishing regardless of disorder Finite and their magnitude
is independent of disorder
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FIG. 8. Frequency dependence of LDOS at px-N1 interface for different values of interface transparencies Z1 and Z2. We consider three
cases: (a) trivial regime, (b) topological regime when MBS are absent (ϕ = π/5), and (c) topological regime when MBS are present (ϕ = π ).
Parameters: S = 1/2, J = 3, �px = √

2, μpx = −1 [for (a)], μpx = 1 [for (b) and (c)], μN = 10, Ec = 1, L = 1.3ξ , x = x̄ = −L/2, ϕ = π/5
[for (a) and (b)], ϕ = π [for (c)].

Therefore, by observing the zero-frequency peak in LDOS
and LMDOS, one can detect surface odd-ν ST pairing in our
setup.

Further, the signature of surface odd-ν ST pairing can be
observed through the measurement of total DC Josephson
current [78]. This is shown in Fig. 10, where total DC Joseph-
son current is plotted as a function of junction length L in
case of px-I1-N1-SF-N2-I2-px JJ for different values of Z1 and
Z2. The formula for calculating the DC Josephson current
using the Furusaki-Tsukuda formalism [79–81] is provided in
Appendix E. Similarly, as before, we consider three phases:
(a) the trivial phase, (b) the topological phase without MBS,
and (c) the topological phase with MBS in Fig. 10. We see that
the magnitude of the total DC Josephson current is enhanced
almost fivefold in the presence of MBS, wherein surface odd-
ν ST pairing also exhibits multifold enhancement. Therefore,
the enhancement of the total DC Josephson current serves
as an indirect signature of surface odd-ν ST pairing in our
setup.

In summary, our investigation reveals that surface odd-ν
ST correlations provide a distinct signature of the presence of
MBS in px superconductor-SF-px superconductor Josephson
junction. Surface even-ν ST correlations, on the other hand,
remain finite irrespective of the existence of MBS, rendering
them unsuitable for MBS detection. In contrast, surface

odd-ν ST correlations exhibit finite values exclusively in the
presence of MBS, and they vanish in the absence of MBS.
spin flip scattering plays a crucial role in detecting MBS via
inducing surface odd-ν MST correlations in their presence.
While the relationship between MBS and odd-ν pairing is
explored in Refs. [53–57], odd-ν MST correlations do not
emerge, and they do not offer a method to detect MBS through
odd-ν pairing. This sets our paper apart from them. Finally,
the surface induced odd-ν ST pairing in presence of MBS
(topological regime) are immune to disorder and can be effec-
tively detected via LDOS/LMDOS zero-frequency peak and
multifold enhancement of the Josephson supercurrent in this
regime. Thus, our findings underscore the utility of surface
odd-ν ST correlations as an effective tool for discerning the
presence of MBS.
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FIG. 9. Frequency dependence of LMDOS at px-N1 interface for different values of interface transparencies Z1 and Z2. We consider three
cases: (a) trivial regime, (b) topological regime when MBS are absent (ϕ = π/5), and (c) topological regime when MBS are present (ϕ = π ).
Parameters: S = 1/2, J = 3, �px = √

2, μpx = −1 [for (a)], μpx = 1 [for (b) and (c)], μN = 10, Ec = 1, L = 1.3ξ , x = x̄ = −L/2, ϕ = π/5
[for (a) and (b)], ϕ = π [for (c)].
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FIG. 10. DC Josephson current as a function of junction length L for different values of interface transparencies Z1 and Z2. We consider
three cases: (a) trivial regime, (b) topological regime when MBS are absent (ϕ = π/5), and (c) topological regime when MBS are present
(ϕ = π ). Parameters: S = 1/2, J = 3, �px = √

2, μpx = −4 [for (a)], μpx = 8.5 [for (b) and (c)], μN = 1000, kμN L = π , ϕ = π/5 [for
(a) and (b)], ϕ = π [for (c)], Ec = 4, I0 = eEc/h̄, T → 0.

APPENDIX A: WAVEFUNCTIONS AND BOUNDARY CONDITIONS

In this Appendix, we present the detailed wavefunctions and boundary conditions for the px-SF-px junction and the px-I1-N1-
SF-N2-I2-px junction, as shown in Figs. 1 and 5, respectively.

1. px-SF-px junctions

We diagonalize Hamiltonian (2) and obtain the wavefunctions in distinct regions for px-SF-px junction. These wavefunctions
are


1(x) =
{

ψ
SL
e↑eiqexφS

m′ + re′e′
↑↑ ψ

′SL
e↑ e−iqexφS

m′ + re′e′
↑↓ ψ

′SL
e↓ e−iqexφS

m′+1 + re′h′
↑↑ ψ

SL
h↑eiqhxφS

m′ + re′h′
↑↓ ψ

SL
h↓eiqhxφS

m′+1 , x < 0

t̃ e′e′
↑↑ ψ

SR
e↑eiqexφS

m′ + t̃ e′e′
↑↓ ψ

SR
e↓eiqexφS

m′+1 + t̃ e′h′
↑↑ ψ

′SR
h↑ e−iqhxφS

m′ + t̃ e′h′
↑↓ ψ

′SR
h↓ e−iqhxφS

m′+1 , x > 0


2(x) =
{

ψ
SL
e↓eiqexφS

m′ + re′e′
↓↑ ψ

′SL
e↑ e−iqexφS

m′−1 + re′e′
↓↓ ψ

′SL
e↓ e−iqexφS

m′ + re′h′
↓↑ ψ

SL
h↑eiqhxφS

m′−1 + re′h′
↓↓ ψ

SL
h↓eiqhxφS

m′ , x < 0

t̃ e′e′
↓↑ ψ

SR
e↑eiqexφS

m′−1 + t̃ e′e′
↓↓ ψ

SR
e↓eiqexφS

m′ + t̃ e′h′
↓↑ ψ

′SR
h↑ e−iqhxφS

m′−1 + t̃ e′h′
↓↓ ψ

′SR
h↓ e−iqhxφS

m′ , x > 0


3(x) =
{

ψ
′SL
h↑ e−iqhxφS

m′ + rh′e′
↑↑ ψ

′SL
e↑ e−iqexφS

m′ + rh′e′
↑↓ ψ

′SL
e↓ e−iqexφS

m′+1 + rh′h′
↑↑ ψ

SL
h↑eiqhxφS

m′ + rh′h′
↑↓ ψ

SL
h↓eiqhxφS

m′+1 , x < 0

t̃ h′e′
↑↑ ψ

SR
e↑eiqexφS

m′ + t̃ h′e′
↑↓ ψ

SR
e↓eiqexφS

m′+1 + t̃ h′h′
↑↑ ψ

′SR
h↑ e−iqhxφS

m′ + t̃ h′h′
↑↓ ψ

′SR
h↓ e−iqhxφS

m′+1 , x > 0


4(x) =
{

ψ
′SL
h↓ e−iqhxφS

m′ + rh′e′
↓↑ ψ

′SL
e↑ e−iqexφS

m′−1 + rh′e′
↓↓ ψ

′SL
e↓ e−iqexφS

m′ + rh′h′
↓↑ ψ

SL
h↑eiqhxφS

m′−1 + rh′h′
↓↓ ψ

SL
h↓eiqhxφS

m′ , x < 0

t̃ h′e′
↓↑ ψ

SR
e↑eiqexφS

m′−1 + t̃ h′e′
↓↓ ψ

SR
e↓eiqexφS

m′ + t̃ h′h′
↓↑ ψ

′SR
h↑ e−iqhxφS

m′−1 + t̃ h′h′
↓↓ ψ

′SR
h↓ e−iqhxφS

m′ , x > 0


5(x) =
{

t e′e′
↑↑ ψ

′SL
e↑ e−iqexφS

m′ + t e′e′
↑↓ ψ

′SL
e↓ e−iqexφS

m′+1 + t e′h′
↑↑ ψ

SL
h↑eiqhxφS

m′ + t e′h′
↑↓ ψ

SL
h↓eiqhxφS

m′+1 , x < 0

ψ
′SR
e↑ e−iqexφS

m′ + r̃e′e′
↑↑ ψ

SR
e↑eiqexφS

m′ + r̃e′e′
↑↓ ψ

SR
e↓eiqexφS

m′+1 + r̃e′h′
↑↑ ψ

′SR
h↑ e−iqhxφS

m′ + r̃e′h′
↑↓ ψ

′SR
h↓ e−iqhxφS

m′+1 , x > 0


6(x) =
{

t e′e′
↓↑ ψ

′SL
e↑ e−iqexφS

m′−1 + t e′e′
↓↓ ψ

′SL
e↓ e−iqexφS

m′ + t e′h′
↓↑ ψ

SL
h↑eiqhxφS

m′−1 + t e′h′
↓↓ ψ

SL
h↓eiqhxφS

m′ , x < 0

ψ
′SR
e↓ e−iqexφS

m′ + r̃e′e′
↓↑ ψ

SR
e↑eiqexφS

m′−1 + r̃e′e′
↓↓ ψ

SR
e↓eiqexφS

m′ + r̃e′h′
↓↑ ψ

′SR
h↑ e−iqhxφS

m′−1 + r̃e′h′
↓↓ ψ

′SR
h↓ e−iqhxφS

m′ , x > 0


7(x) =
{

t h′e′
↑↑ ψ

′SL
e↑ e−iqexφS

m′ + t h′e′
↑↓ ψ

′SL
e↓ e−iqexφS

m′+1 + t h′h′
↑↑ ψ

SL
h↑eiqhxφS

m′ + t h′h′
↑↓ ψ

SL
h↓eiqhxφS

m′+1 , x < 0

ψ
SR
h↑eiqhxφS

m′ + r̃h′e′
↑↑ ψ

SR
e↑eiqexφS

m′ + r̃h′e′
↑↓ ψ

SR
e↓eiqexφS

m′+1 + r̃h′h′
↑↑ ψ

′SR
h↑ e−iqhxφS

m′ + r̃h′h′
↑↓ ψ

′SR
h↓ e−iqhxφS

m′+1 , x > 0


8(x) =
{

t h′e′
↓↑ ψ

′SL
e↑ e−iqexφS

m′−1 + t h′e′
↓↓ ψ

′SL
e↓ e−iqexφS

m′ + t h′h′
↓↑ ψ

SL
h↑eiqhxφS

m′−1 + t h′h′
↓↓ ψ

SL
h↓eiqhxφS

m′ , x < 0

ψ
SR
h↓eiqhxφS

m′ + r̃h′e′
↓↑ ψ

SR
e↑eiqexφS

m′−1 + r̃h′e′
↓↓ ψ

SR
e↓eiqexφS

m′ + r̃h′h′
↓↑ ψ

′SR
h↑ e−iqhxφS

m′−1 + r̃h′h′
↓↓ ψ

′SR
h↓ e−iqhxφS

m′ , x > 0
(A1)
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where

ψ
SL
e↑ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

γe

0
0
1

⎞
⎟⎟⎠, ψ

SL
e↓ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

0
γe

1
0

⎞
⎟⎟⎠, ψ

SL
h↑ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

γh

0
0
1

⎞
⎟⎟⎠, ψ

SL
h↓ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

0
γh

1
0

⎞
⎟⎟⎠,

ψ
′SL
e↑ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

−γe

0
0
1

⎞
⎟⎟⎠, ψ

′SL
e↓ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

0
−γe

1
0

⎞
⎟⎟⎠, ψ

′SL
h↑ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

−γh

0
0
1

⎞
⎟⎟⎠, ψ

′SL
h↓ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

0
−γh

1
0

⎞
⎟⎟⎠,

ψ
SR
e↑ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

γeeiϕ

0
0
1

⎞
⎟⎟⎠, ψ

SR
e↓ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

0
γeeiϕ

1
0

⎞
⎟⎟⎠, ψ

SR
h↑ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

γheiϕ

0
0
1

⎞
⎟⎟⎠, ψ

SR
h↓ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

0
γheiϕ

1
0

⎞
⎟⎟⎠,

ψ
′SR
e↑ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

−γeeiϕ

0
0
1

⎞
⎟⎟⎠, ψ

′SR
e↓ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

0
−γeeiϕ

1
0

⎞
⎟⎟⎠, ψ

′SR
h↑ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

−γheiϕ

0
0
1

⎞
⎟⎟⎠,

ψ
′SR
h↓ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

0
−γheiϕ

1
0

⎞
⎟⎟⎠,

and γe,h = (ν + q2
e,h − μ′

px
)/(�′

px
qe,h) with h̄ = 2m∗ = 1. In Eq. (A1), 
1, 
2, 
3, 
4 denote the wavefunctions when

electron-like quasiparticle with spin-up, electron-like quasiparticle with spin-down, hole-like quasiparticle with spin-up and
hole-like quasiparticle with spin-down are injected from left px superconductor, respectively, while 
5, 
6, 
7, 
8 denote the
wavefunctions when the corresponding quasiparticles are injected from right px superconductor, respectively. rnn

i j and r̃nn
i j are the

reflection amplitudes in left px superconductor and right px superconductor respectively, while t nn
i j and t̃ nn

i j are the transmission
amplitudes in left px superconductor and right px superconductor respectively with i, j ∈ {↑,↓} and n ∈ {e′, h′}. Further, in
Eq. (A1), φS

m′ denotes the eigenfunction of the SF, with S representing its spin and m′ corresponding to its magnetic moment.
The action of Sz is given as SzφS

m′ = h̄m′φS
m′ . After diagonalizing the Hamiltonian (H px-SF-px

BdG )∗(−k) instead of H px-SF-px
BdG (k), we

will obtain the conjugate process 
̃i necessary to construct the retarded Green’s function in the next section. For our model we
notice that

ψ̃
SL
e↑ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

−γe

0
0
1

⎞
⎟⎟⎠, ψ̃

SL
e↓ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

0
−γe

1
0

⎞
⎟⎟⎠, ψ̃

SL
h↑ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

−γh

0
0
1

⎞
⎟⎟⎠, ψ̃

SL
h↓ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

0
−γh

1
0

⎞
⎟⎟⎠,

ψ̃
′SL
e↑ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

γe

0
0
1

⎞
⎟⎟⎠, ψ̃

′SL
e↓ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

0
γe

1
0

⎞
⎟⎟⎠, ψ̃

′SL
h↑ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

γh

0
0
1

⎞
⎟⎟⎠, ψ̃

′SL
h↓ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

0
γh

1
0

⎞
⎟⎟⎠,

ψ̃
SR
e↑ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

−γee−iϕ

0
0
1

⎞
⎟⎟⎠, ψ̃

SR
e↓ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

0
−γee−iϕ

1
0

⎞
⎟⎟⎠, ψ̃

SR
h↑ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

−γhe−iϕ

0
0
1

⎞
⎟⎟⎠,

ψ̃
SR
h↓ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

0
−γhe−iϕ

1
0

⎞
⎟⎟⎠, ψ̃

′SR
e↑ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

γee−iϕ

0
0
1

⎞
⎟⎟⎠, ψ̃

′SR
e↓ = 1√

|γe|2 + 1

⎛
⎜⎜⎝

0
γee−iϕ

1
0

⎞
⎟⎟⎠,

ψ̃
′SR
h↑ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

γhe−iϕ

0
0
1

⎞
⎟⎟⎠, ψ̃

′SR
h↓ = 1√

|γh|2 + 1

⎛
⎜⎜⎝

0
γhe−iϕ

1
0

⎞
⎟⎟⎠.
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Further, ξ = h̄2/(m∗�′
px

) represents the superconducting coherence length [53]. We have verified that for each kind of incident
quasi-particle (electron-like/hole-like) the probability conservation |rnn

i j |2 + |t̃ nn
i j |2 = 1 and |r̃nn

i j |2 + |t nn
i j |2 = 1 both below and

above the gap.
At the px-px interface (x = 0), the boundary conditions are [53]


l |x<0 = 
l |x>0 and
d
l |x>0

dx
− d
l |x<0

dx
= im∗�′

px

h̄2

[
0 (1 − eiϕ )σx

(−1 + e−iϕ )σx 0

]

l |x=0

− 2m∗J0

h̄2 �s. �S
l |x=0, (l = 1, 2, ..., 8), (A2)

where �s. �S = szSz + (s+S− + s−S+)/2 is the exchange operator of the SF’s Hamiltonian [58] with s± = sx ± isy for electron-
like or hole-like quasiparticle and S± = Sx ± iSy for the SF. For wave functions involving electron-like quasiparticles with
spin-up and spin-down, actions of �s. �S are

�s. �Sψ
SL
e↑φS

m′ = h̄2m′

2
ψ

SL
e↑φS

m′ + h̄2 f

2
ψ

SL
e↓φS

m′+1, and �s. �Sψ
SL
e↓φS

m′ = − h̄2m′

2
ψ

SL
e↓φS

m′ + h̄2 f ′

2
ψ

SL
e↑φS

m′−1. (A3)

Similarly, for wave functions involving hole-like quasiparticles with spin-up and spin-down, actions of �s. �S are

�s. �Sψ
′SL
h↑ φS

m′ = h̄2m′

2
ψ

′SL
h↑ φS

m′ + h̄2 f

2
ψ

′SL
h↓ φS

m′+1, and �s. �Sψ
′SL
h↓ φS

m′ = − h̄2m′

2
ψ

′SL
h↓ φS

m′ + h̄2 f ′

2
ψ

′SL
h↑ φS

m′−1. (A4)

In Eqs. (A3) and (A4), f = √
(S − m′)(S + m′ + 1) represents the probability of spin flip for the incident process of a spin-up

electron-like or hole-like quasiparticle, where f ′ = √
(S + m′)(S − m′ + 1) represents the probability of spin flip for the incident

process of a spin-down electron-like or hole-like quasiparticle. By employing the equations above and solving the boundary
condition [Eq. (A2)], we obtain a set of eight equations for scattering processes, as shown in Eq. (A1). Various scattering
amplitudes rnn

i j , r̃nn
i j , t̃ nn

i j , t nn
i j for each kind of incident quasiparticle (electron-like/hole-like) are determined from these eight

equations. We have verified the detailed balance condition [79] for Andreev reflection, i.e.,
re′h′

i j (−ϕ,ν)
qe

= rh′e′
i j (ϕ,ν)

qh
and

r̃e′h′
i j (−ϕ,ν)

qe
=

r̃h′e′
i j (ϕ,ν)

qh
, which implies the accuracy of our calculation.

2. px-I1-N1-SF-N2-I2-px junctions

We diagonalize Hamiltonian (22) and obtain the wavefunctions in distinct regions for px-I1-N1-SF-N2-I2-px junction. These
wavefunctions are


1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
SL
e↑eiqe(x+L/2)φS

m′ + r′e′e′
↑↑ ψ

′SL
e↑ e−iqe(x+L/2)φS

m′ + r′e′e′
↑↓ ψ

′SL
e↓ e−iqe(x+L/2)φS

m′+1

+r′e′h′
↑↑ ψ

SL
h↑eiqh (x+L/2)φS

m′ + r′e′h′
↑↓ ψ

SL
h↓eiqh (x+L/2)φS

m′+1 , x < −L/2

ψN
e↑a′e′e′

↑↑ eike(x+L/2)φS
m′ + ψN

e↓a′e′e′
↑↓ eike(x+L/2)φS

m′+1 + ψN
e↑b′e′e′

↑↑ e−ikexφS
m′ + ψN

e↓b′e′e′
↑↓ e−ikexφS

m′+1

+ψN
h↑c′e′h′

↑↑ e−ikh (x+L/2)φS
m′ + ψN

h↓c′e′h′
↑↓ e−ikh (x+L/2)φS

m′+1 + ψN
h↑d ′e′h′

↑↑ eikhxφS
m′ + ψN

h↓d ′e′h′
↑↓ eikhxφS

m′+1 , −L/2 < x < 0

ψN
e↑e′e′e′

↑↑ eikexφS
m′ + ψN

e↓e′e′e′
↑↓ eikexφS

m′+1 + ψN
e↑ f ′e′e′

↑↑ e−ike(x−L/2)φS
m′ + ψN

e↓ f ′e′e′
↑↓ e−ike(x−L/2)φS

m′+1

+ψN
h↑g′e′h′

↑↑ e−ikhxφS
m′ + ψN

h↓g′e′h′
↑↓ e−ikhxφS

m′+1 + ψN
h↑h′e′h′

↑↑ eikh (x−L/2)φS
m′ + ψN

h↓h′e′h′
↑↓ eikh (x−L/2)φS

m′+1 , 0 < x < L/2

t̃ ′e′e′
↑↑ ψ

SR
e↑eiqe(x−L/2)φS

m′ + t̃ ′e′e′
↑↓ ψ

SR
e↓eiqe(x−L/2)φS

m′+1 + t̃ ′e′h′
↑↑ ψ

′SR
h↑ e−iqh (x−L/2)φS

m′

+t̃ ′e′h′
↑↓ ψ

′SR
h↓ e−iqh (x−L/2)φS

m′+1 , x > L/2


2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
SL
e↓eiqe(x+L/2)φS

m′ + r′e′e′
↓↑ ψ

′SL
e↑ e−iqe(x+L/2)φS

m′−1 + r′e′e′
↓↓ ψ

′SL
e↓ e−iqe(x+L/2)φS

m′

+r′e′h′
↓↑ ψ

SL
h↑eiqh (x+L/2)φS

m′−1 + r′e′h′
↓↓ ψ

SL
h↓eiqh (x+L/2)φS

m′ , x < −L/2

ψN
e↑a′e′e′

↓↑ eike(x+L/2)φS
m′−1 + ψN

e↓a′e′e′
↓↓ eike(x+L/2)φS

m′ + ψN
e↑b′e′e′

↓↑ e−ikexφS
m′−1 + ψN

e↓b′e′e′
↓↓ e−ikexφS

m′

+ψN
h↑c′e′h′

↓↑ e−ikh (x+L/2)φS
m′−1 + ψN

h↓c′e′h′
↓↓ e−ikh (x+L/2)φS

m′ + ψN
h↑d ′e′h′

↓↑ eikhxφS
m′−1 + ψN

h↓d ′e′h′
↓↓ eikhxφS

m′ , −L/2 < x < 0

ψN
e↑e′e′e′

↓↑ eikexφS
m′−1 + ψN

e↓e′e′e′
↓↓ eikexφS

m′ + ψN
e↑ f ′e′e′

↓↑ e−ike(x−L/2)φS
m′−1 + ψN

e↓ f ′e′e′
↓↓ e−ike(x−L/2)φS

m′

+ψN
h↑g′e′h′

↓↑ e−ikhxφS
m′−1 + ψN

h↓g′e′h′
↓↓ e−ikhxφS

m′ + ψN
h↑h′e′h′

↓↑ eikh (x−L/2)φS
m′−1 + ψN

h↓h′e′h′
↓↓ eikh (x−L/2)φS

m′ , 0 < x < L/2

t̃ ′e′e′
↓↑ ψ

SR
e↑eiqe(x−L/2)φS

m′−1 + t̃ ′e′e′
↓↓ ψ

SR
e↓eiqe(x−L/2)φS

m′ + t̃ ′e′h′
↓↑ ψ

′SR
h↑ e−iqh (x−L/2)φS

m′−1

+t̃ ′e′h′
↓↓ ψ

′SR
h↓ e−iqh (x−L/2)φS

m′ , x > L/2
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3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
′SL
h↑ e−iqh (x+L/2)φS

m′ + r′h′e′
↑↑ ψ

′SL
e↑ e−iqe(x+L/2)φS

m′ + r′h′e′
↑↓ ψ

′SL
e↓ e−iqe(x+L/2)φS

m′+1

+r′h′h′
↑↑ ψ

SL
h↑eiqh (x+L/2)φS

m′ + r′h′h′
↑↓ ψ

SL
h↓eiqh (x+L/2)φS

m′+1 , x < −L/2

ψN
e↑a′h′e′

↑↑ eike(x+L/2)φS
m′ + ψN

e↓a′h′e′
↑↓ eike(x+L/2)φS

m′+1 + ψN
e↑b′h′e′

↑↑ e−ikexφS
m′ + ψN

e↓b′h′e′
↑↓ e−ikexφS

m′+1

+ψN
h↑c′h′h′

↑↑ e−ikh (x+L/2)φS
m′ + ψN

h↓c′h′h′
↑↓ e−ikh (x+L/2)φS

m′+1 + ψN
h↑d ′h′h′

↑↑ eikhxφS
m′ + ψN

h↓d ′h′h′
↑↓ eikhxφS

m′+1 , −L/2 < x < 0

ψN
e↑e′h′e′

↑↑ eikexφS
m′ + ψN

e↓e′h′e′
↑↓ eikexφS

m′+1 + ψN
e↑ f ′h′e′

↑↑ e−ike(x−L/2)φS
m′ + ψN

e↓ f ′h′e′
↑↓ e−ike(x−L/2)φS

m′+1

+ψN
h↑g′h′h′

↑↑ e−ikhxφS
m′ + ψN

h↓g′h′h′
↑↓ e−ikhxφS

m′+1 + ψN
h↑h′h′h′

↑↑ eikh (x−L/2)φS
m′ + ψN

h↓h′h′h′
↑↓ eikh (x−L/2)φS

m′+1 , 0 < x < L/2

t̃ ′h′e′
↑↑ ψ

SR
e↑eiqe(x−L/2)φS

m′ + t̃ ′h′e′
↑↓ ψ

SR
e↓eiqe(x−L/2)φS

m′+1 + t̃ ′h′h′
↑↑ ψ

′SR
h↑ e−iqh (x−L/2)φS

m′

+t̃ ′h′h′
↑↓ ψ

′SR
h↓ e−iqh (x−L/2)φS

m′+1 , x > L/2


4(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
′SL
h↓ e−iqh (x+L/2)φS

m′ + r′h′e′
↓↑ ψ

′SL
e↑ e−iqe(x+L/2)φS

m′−1 + r′h′e′
↓↓ ψ

′SL
e↓ e−iqe(x+L/2)φS

m′

+r′h′h′
↓↑ ψ

SL
h↑eiqh (x+L/2)φS

m′−1 + r′h′h′
↓↓ ψ

SL
h↓eiqh (x+L/2)φS

m′ , x < −L/2

ψN
e↑a′h′e′

↓↑ eike(x+L/2)φS
m′−1 + ψN

e↓a′h′e′
↓↓ eike(x+L/2)φS

m′ + ψN
e↑b′h′e′

↓↑ e−ikexφS
m′−1 + ψN

e↓b′h′e′
↓↓ e−ikexφS

m′

+ψN
h↑c′h′h′

↓↑ e−ikh (x+L/2)φS
m′−1 + ψN

h↓c′h′h′
↓↓ e−ikh (x+L/2)φS

m′ + ψN
h↑d ′h′h′

↓↑ eikhxφS
m′−1 + ψN

h↓d ′h′h′
↓↓ eikhxφS

m′ , −L/2 < x < 0

ψN
e↑e′h′e′

↓↑ eikexφS
m′−1 + ψN

e↓e′h′e′
↓↓ eikexφS

m′ + ψN
e↑ f ′h′e′

↓↑ e−ike(x−L/2)φS
m′−1 + ψN

e↓ f ′h′e′
↓↓ e−ike(x−L/2)φS

m′

+ψN
h↑g′h′h′

↓↑ e−ikhxφS
m′−1 + ψN

h↓g′h′h′
↓↓ e−ikhxφS

m′ + ψN
h↑h′h′h′

↓↑ eikh (x−L/2)φS
m′−1 + ψN

h↓h′h′h′
↓↓ eikh (x−L/2)φS

m′ , 0 < x < L/2

t̃ ′h′e′
↓↑ ψ

SR
e↑eiqe(x−L/2)φS

m′−1 + t̃ ′h′e′
↓↓ ψ

SR
e↓eiqe(x−L/2)φS

m′ + t̃ ′h′h′
↓↑ ψ

′SR
h↑ e−iqh (x−L/2)φS

m′−1

+t̃ ′h′h′
↓↓ ψ

′SR
h↓ e−iqh (x−L/2)φS

m′ , x > L/2


5(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ′e′e′
↑↑ ψ

′SL
e↑ e−iqe(x+L/2)φS

m′ + t ′e′e′
↑↓ ψ

′SL
e↓ e−iqe(x+L/2)φS

m′+1 + t ′e′h′
↑↑ ψ

SL
h↑eiqh (x+L/2)φS

m′

+t ′e′h′
↑↓ ψ

SL
h↓eiqh (x+L/2)φS

m′+1 , x < −L/2

ψN
e↑ã′e′e′

↑↑ eike(x+L/2)φS
m′ + ψN

e↓ã′e′e′
↑↓ eike(x+L/2)φS

m′+1 + ψN
e↑b̃′e′e′

↑↑ e−ikexφS
m′ + ψN

e↓b̃′e′e′
↑↓ e−ikexφS

m′+1

+ψN
h↑c̃′e′h′

↑↑ e−ikh (x+L/2)φS
m′ + ψN

h↓c̃′e′h′
↑↓ e−ikh (x+L/2)φS

m′+1 + ψN
h↑d̃ ′e′h′

↑↑ eikhxφS
m′ + ψN

h↓d̃ ′e′h′
↑↓ eikhxφS

m′+1 , −L/2 < x < 0

ψN
e↑ẽ′e′e′

↑↑ eikexφS
m′ + ψN

e↓ẽ′e′e′
↑↓ eikexφS

m′+1 + ψN
e↑ f̃ ′e′e′

↑↑ e−ike(x−L/2)φS
m′ + ψN

e↓ f̃ ′e′e′
↑↓ e−ike(x−L/2)φS

m′+1

+ψN
h↑g̃′e′h′

↑↑ e−ikhxφS
m′ + ψN

h↓g̃′e′h′
↑↓ e−ikhxφS

m′+1 + ψN
h↑h̃′e′h′

↑↑ eikh (x−L/2)φS
m′ + ψN

h↓h̃′e′h′
↑↓ eikh (x−L/2)φS

m′+1 , 0 < x < L/2

ψ
′SR
e↑ e−iqe(x−L/2)φS

m′ + r̃′e′e′
↑↑ ψ

SR
e↑eiqe(x−L/2)φS

m′ + r̃′e′e′
↑↓ ψ

SR
e↓eiqe(x−L/2)φS

m′+1 + r̃′e′h′
↑↑ ψ

′SR
h↑ e−iqh (x−L/2)φS

m′

+r̃′e′h′
↑↓ ψ

′SR
h↓ e−iqh (x−L/2)φS

m′+1 , x > L/2


6(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ′e′e′
↓↑ ψ

′SL
e↑ e−iqe(x+L/2)φS

m′−1 + t ′e′e′
↓↓ ψ

′SL
e↓ e−iqe(x+L/2)φS

m′ + t ′e′h′
↓↑ ψ

SL
h↑eiqh (x+L/2)φS

m′−1

+t ′e′h′
↓↓ ψ

SL
h↓eiqh (x+L/2)φS

m′ , x < −L/2

ψN
e↑ã′e′e′

↓↑ eike(x+L/2)φS
m′−1 + ψN

e↓ã′e′e′
↓↓ eike(x+L/2)φS

m′ + ψN
e↑b̃′e′e′

↓↑ e−ikexφS
m′−1 + ψN

e↓b̃′e′e′
↓↓ e−ikexφS

m′

+ψN
h↑c̃′e′h′

↓↑ e−ikh (x+L/2)φS
m′−1 + ψN

h↓c̃′e′h′
↓↓ e−ikh (x+L/2)φS

m′ + ψN
h↑d̃ ′e′h′

↓↑ eikhxφS
m′−1 + ψN

h↓d̃ ′e′h′
↓↓ eikhxφS

m′ , −L/2 < x < 0

ψN
e↑ẽ′e′e′

↓↑ eikexφS
m′−1 + ψN

e↓ẽ′e′e′
↓↓ eikexφS

m′ + ψN
e↑ f̃ ′e′e′

↓↑ e−ike(x−L/2)φS
m′−1 + ψN

e↓ f̃ ′e′e′
↓↓ e−ike(x−L/2)φS

m′

+ψN
h↑g̃′e′h′

↓↑ e−ikhxφS
m′−1 + ψN

h↓g̃′e′h′
↓↓ e−ikhxφS

m′ + ψN
h↑h̃′e′h′

↓↑ eikh (x−L/2)φS
m′−1 + ψN

h↓h̃′e′h′
↓↓ eikh (x−L/2)φS

m′ , 0 < x < L/2

ψ
′SR
e↓ e−iqe(x−L/2)φS

m′ + r̃′e′e′
↓↑ ψ

SR
e↑eiqe(x−L/2)φS

m′−1 + r̃′e′e′
↓↓ ψ

SR
e↓eiqe(x−L/2)φS

m′ + r̃′e′h′
↓↑ ψ

′SR
h↑ e−iqh (x−L/2)φS

m′−1

+r̃′e′h′
↓↓ ψ

′SR
h↓ e−iqh (x−L/2)φS

m′ , x > L/2


7(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ′h′e′
↑↑ ψ

′SL
e↑ e−iqe(x+L/2)φS

m′ + t ′h′e′
↑↓ ψ

′SL
e↓ e−iqe(x+L/2)φS

m′+1 + t ′h′h′
↑↑ ψ

SL
h↑eiqh (x+L/2)φS

m′

+t ′h′h′
↑↓ ψ

SL
h↓eiqh (x+L/2)φS

m′+1 , x < −L/2

ψN
e↑ã′h′e′

↑↑ eike(x+L/2)φS
m′ + ψN

e↓ã′h′e′
↑↓ eike(x+L/2)φS

m′+1 + ψN
e↑b̃′h′e′

↑↑ e−ikexφS
m′ + ψN

e↓b̃′h′e′
↑↓ e−ikexφS

m′+1

+ψN
h↑c̃′h′h′

↑↑ e−ikh (x+L/2)φS
m′ + ψN

h↓c̃′h′h′
↑↓ e−ikh (x+L/2)φS

m′+1 + ψN
h↑d̃ ′h′h′

↑↑ eikhxφS
m′ + ψN

h↓d̃ ′h′h′
↑↓ eikhxφS

m′+1 , −L/2 < x < 0

ψN
e↑ẽ′h′e′

↑↑ eikexφS
m′ + ψN

e↓ẽ′h′e′
↑↓ eikexφS

m′+1 + ψN
e↑ f̃ ′h′e′

↑↑ e−ike(x−L/2)φS
m′ + ψN

e↓ f̃ ′h′e′
↑↓ e−ike(x−L/2)φS

m′+1

+ψN
h↑g̃′h′h′

↑↑ e−ikhxφS
m′ + ψN

h↓g̃′h′h′
↑↓ e−ikhxφS

m′+1 + ψN
h↑h̃′h′h′

↑↑ eikh (x−L/2)φS
m′ + ψN

h↓h̃′h′h′
↑↓ eikh (x−L/2)φS

m′+1 , 0 < x < L/2

ψ
SR
h↑eiqh (x−L/2)φS

m′ + r̃′h′e′
↑↑ ψ

SR
e↑eiqe(x−L/2)φS

m′ + r̃′h′e′
↑↓ ψ

SR
e↓eiqe(x−L/2)φS

m′+1 + r̃′h′h′
↑↑ ψ

′SR
h↑ e−iqh (x−L/2)φS

m′

+r̃′h′h′
↑↓ ψ

′SR
h↓ e−iqh (x−L/2)φS

m′+1 , x > L/2
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8(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ′h′e′
↓↑ ψ

′SL
e↑ e−iqe(x+L/2)φS

m′−1 + t ′h′e′
↓↓ ψ

′SL
e↓ e−iqe(x+L/2)φS

m′ + t ′h′h′
↓↑ ψ

SL
h↑eiqh (x+L/2)φS

m′−1

+t ′h′h′
↓↓ ψ

SL
h↓eiqh (x+L/2)φS

m′ , x < −L/2

ψN
e↑ã′h′e′

↓↑ eike(x+L/2)φS
m′−1 + ψN

e↓ã′h′e′
↓↓ eike(x+L/2)φS

m′ + ψN
e↑b̃′h′e′

↓↑ e−ikexφS
m′−1 + ψN

e↓b̃′h′e′
↓↓ e−ikexφS

m′

+ψN
h↑c̃′h′h′

↓↑ e−ikh (x+L/2)φS
m′−1 + ψN

h↓c̃′h′h′
↓↓ e−ikh (x+L/2)φS

m′ + ψN
h↑d̃ ′h′h′

↓↑ eikhxφS
m′−1 + ψN

h↓d̃ ′h′h′
↓↓ eikhxφS

m′ , −L/2 < x < 0

ψN
e↑ẽ′h′e′

↓↑ eikexφS
m′−1 + ψN

e↓ẽ′h′e′
↓↓ eikexφS

m′ + ψN
e↑ f̃ ′h′e′

↓↑ e−ike(x−L/2)φS
m′−1 + ψN

e↓ f̃ ′h′e′
↓↓ e−ike(x−L/2)φS

m′

+ψN
h↑g̃′h′h′

↓↑ e−ikhxφS
m′−1 + ψN

h↓g̃′h′h′
↓↓ e−ikhxφS

m′ + ψN
h↑h̃′h′h′

↓↑ eikh (x−L/2)φS
m′−1 + ψN

h↓h̃′h′h′
↓↓ eikh (x−L/2)φS

m′ , 0 < x < L/2

ψ
SR
h↓eiqh (x−L/2)φS

m′ + r̃′h′e′
↓↑ ψ

SR
e↑eiqe(x−L/2)φS

m′−1 + r̃′h′e′
↓↓ ψ

SR
e↓eiqe(x−L/2)φS

m′ + r̃′h′h′
↓↑ ψ

′SR
h↑ e−iqh (x−L/2)φS

m′−1

+r̃′h′h′
↓↓ ψ

′SR
h↓ e−iqh (x−L/2)φS

m′ , x > L/2

(A5)

where the expressions for ψ
SL(R)

e↑ , ψ
SL(R)

e↓ , ψ
SL(R)

h↑ , ψ
SL(R)

h↓ , ψ
′SL(R)

e↑ , ψ
′SL(R)

e↓ , ψ
′SL(R)

h↑ , ψ
′SL(R)

h↓ are mentioned below Eq. (A1) and

ψN
e↑ =

(
1
0
0
0

)
, ψN

e↓ =
(

0
1
0
0

)
, ψN

h↑ =
(

0
0
0
1

)
, ψN

h↓ =
(

0
0
1
0

)
. r′nn

i j and r̃′nn
i j represent the reflection amplitudes in left px superconductor and

right px superconductor respectively, while t ′nn
i j and t̃ ′nn

i j represent the transmission amplitudes in left px superconductor and right

px superconductor respectively with i, j ∈ {↑,↓} and n ∈ {e′, h′}. ke,h =
√

2m∗
h̄2 (μ′

N ± ν) represent the wavevectors in normal

metal. For |ν| � μ′
N , ke,h can be written as ke,h = kμN ± ν

ξkμN �′
px

, where kμN =
√

2m∗μ′
N

h̄2 . After diagonalizing the Hamiltonian

(H px-I1-N1-SF-N2-I2-px
BdG )∗(−k) instead of H px-I1-N1-SF-N2-I2-px

BdG (k), we will obtain the conjugate process 
̃i necessary to construct the
retarded Green’s function in next section. We find that ψ̃N

e↑ = ψN
e↑, ψ̃N

e↓ = ψN
e↓, ψ̃N

h↑ = ψN
h↑, ψ̃N

h↓ = ψN
h↓ and the expressions for

ψ̃
SL(R)

e↑ , ψ̃
SL(R)

e↓ , ψ̃
SL(R)

h↑ , ψ̃
SL(R)

h↓ , ψ̃
′SL(R)

e↑ , ψ̃
′SL(R)

e↓ , ψ̃
′SL(R)

h↑ , ψ̃
′SL(R)

h↓ are the same as those for the px-SF-px junction.
At the px-N1 interface (x = −L/2), the boundary conditions are


l |x<−L/2 = 
l |−L/2<x<0 and
d
l |−L/2<x<0

dx
− d
l |x<−L/2

dx
= im∗�′

px

h̄2

[
0 σx

−σx 0

]

l |x=−L/2

+ 2m∗V1

h̄2 
l |x=−L/2, (l = 1, 2, ..., 8). (A6)

Similarly, at the N1-N2 interface (x = 0), the boundary conditions are


l |−L/2<x<0 = 
l |0<x<L/2 , and
d
l |0<x<L/2

dx
− d
l |−L/2<x<0

dx
= −2m∗J0

h̄2 �s. �S
l |x=0, (l = 1, 2, ..., 8). (A7)

Finally, at the N2-px interface (x = L/2), the boundary conditions are


l |0<x<L/2 = 
l |x>L/2 and
d
l |x>L/2

dx
− d
l |0<x<L/2

dx
= im∗�′

px

h̄2

[
0 −eiϕσx

e−iϕσx 0

]

l |x=L/2

+ 2m∗V2

h̄2 
l |x=L/2, (l = 1, 2, ..., 8). (A8)

For wave functions involving electron with spin-up and spin-down, actions of �s. �S are

�s. �SψN
e↑φS

m′ = h̄2m′

2
ψN

e↑φS
m′ + h̄2 f

2
ψN

e↓φS
m′+1, and �s. �SψN

e↓φS
m′ = − h̄2m′

2
ψN

e↓φS
m′ + h̄2 f ′

2
ψN

e↑φS
m′−1. (A9)

Similarly, for wave functions involving hole with spin-up and spin-down, actions of �s. �S are

�s. �SψN
h↑φS

m′ = h̄2m′

2
ψN

h↑φS
m′ + h̄2 f

2
ψN

h↓φS
m′+1, and �s. �SψN

h↓φS
m′ = − h̄2m′

2
ψN

h↓φS
m′ + h̄2 f ′

2
ψN

h↑φS
m′−1. (A10)

By employing the equations above and solving the boundary conditions [Eqs. (A6)–(A8)], we obtain a set of 24 equations for
scattering processes, as shown in Eq. (A5). Different scattering amplitudes r′nn

i j , r̃′nn
i j , t̃ ′nn

i j , t ′nn
i j for each kind of incident

quasiparticle (electron-like/hole-like) are obtained from these 24 equations.
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APPENDIX B: GREEN’S FUNCTIONS

In this Appendix, we present the detailed calculations of Green’s functions. Following Refs. [68] and [69], the retarded
Green’s functions Gr (x, x̄, ν) can be expressed as

Gr (x, x̄, ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


1(x)[α11
̃
T
5 (x̄) + α12
̃

T
6 (x̄) + α13
̃

T
7 (x̄) + α14
̃

T
8 (x̄)]

+
2(x)[α21
̃
T
5 (x̄) + α22
̃

T
6 (x̄) + α23
̃

T
7 (x̄) + α24
̃

T
8 (x̄)]

+
3(x)[α31
̃
T
5 (x̄) + α32
̃

T
6 (x̄) + α33
̃

T
7 (x̄) + α34
̃

T
8 (x̄)]

+
4(x)[α41
̃
T
5 (x̄) + α42
̃

T
6 (x̄) + α43
̃

T
7 (x̄) + α44
̃

T
8 (x̄)] , x > x̄


5(x)[β11
̃
T
1 (x̄) + β12
̃

T
2 (x̄) + β13
̃

T
3 (x̄) + β14
̃

T
4 (x̄)]

+
6(x)[β21
̃
T
1 (x̄) + β22
̃

T
2 (x̄) + β23
̃

T
3 (x̄) + β24
̃

T
4 (x̄)]

+
7(x)[β31
̃
T
1 (x̄) + β32
̃

T
2 (x̄) + β33
̃

T
3 (x̄) + β34
̃

T
4 (x̄)]

+
8(x)[β41
̃
T
1 (x̄) + β42
̃

T
2 (x̄) + β43
̃

T
3 (x̄) + β44
̃

T
4 (x̄)] , x < x̄.

(B1)

In Eq. (B1), αi j and βmn (i, j ∈ 1, ...4 and m, n ∈ 1, ...4) are determined from the equation of motion of the Green’s function,[
ν − H px-SF-px

BdG (x)
]
Gr (x, x̄, ν) = δ(x − x̄). (B2)

If we integrate Eq. (B2) with respect to x over the vicinity of x = x̄, we get

[Gr (x > x̄)]x=x̄ = [Gr (x < x̄)]x=x̄,

[
d

dx
Gr (x > x̄)

]
x=x̄

−
[

d

dx
Gr (x < x̄)

]
x=x̄

= ητzσ0, (B3)

where η = 2m∗
h̄2 . Gr is represented as

Gr (x, x̄, ν) =
[Gr

ee Gr
eh

Gr
he Gr

hh

]
, (B4)

where Gr
ee, Gr

eh, Gr
he, Gr

hh are matrices. The normal and anomalous components of the Gr , necessary for calculating
LDOS/LMDOS and pairing amplitudes when spin flip scattering is considered, are given by

Gr
ee =

[[
Gr

ee

]
↑↑

[
Gr

ee

]
↑↓[

Gr
ee

]
↓↑

[
Gr

ee

]
↓↓

]
and Gr

eh =
[[

Gr
eh

]
↑↓

[
Gr

eh

]
↑↑[

Gr
eh

]
↓↓

[
Gr

eh

]
↓↑

]
respectively. (B5)

We calculate EST and MST correlations using Gr
eh. Retarded Green’s functions Gr are derived by substituting the wavefunctions

from Eq. (A1) [Eq. (A5)] into Eq. (B1) in case of px-SF-px (px-I1-N1-SF-N2-I2-px) junction, with rnn
i j (r′nn

i j ) determined using
Eq. (A2) [Eqs. (A6)–(A8)]. In case of px-SF-px junction, in the trivial regime for Gr

ee and Gr
eh, we get

[
Gr

ee

]
↑↑= iη

2(qhγh − qeγe)

(
γeeiqe|x−x̄| + γhe−iqh|x−x̄| − re′e′

↑↑ γee−iqe(x+x̄) − rh′h′
↑↑ γheiqh (x+x̄) + re′h′

↑↑ γh

√
1 − γ 2

e

1 − γ 2
h

ei(qhx−qex̄)

+ rh′e′
↑↑ γe

√
1 − γ 2

h

1 − γ 2
e

e−i(qex−qhx̄)

)
,

[
Gr

ee

]
↓↓= iη

2(qhγh − qeγe)

(
γeeiqe|x−x̄| + γhe−iqh|x−x̄| − re′e′

↓↓ γee−iqe(x+x̄) − rh′h′
↓↓ γheiqh (x+x̄) + re′h′

↓↓ γh

√
1 − γ 2

e

1 − γ 2
h

ei(qhx−qex̄)

+ rh′e′
↓↓ γe

√
1 − γ 2

h

1 − γ 2
e

e−i(qex−qhx̄)

)
,

[
Gr

ee

]
↑↓= iη

2(qhγh − qeγe)

(
− re′e′

↓↑ γee−iqe(x+x̄) − rh′h′
↓↑ γheiqh (x+x̄) + re′h′

↓↑ γh

√
1 − γ 2

e

1 − γ 2
h

ei(qhx−qex̄) + rh′e′
↓↑ γe

√
1 − γ 2

h

1 − γ 2
e

× e−i(qex−qhx̄)

)
,

[
Gr

ee

]
↓↑= iη

2(qhγh − qeγe)

(
− re′e′

↑↓ γee−iqe(x+x̄) − rh′h′
↑↓ γheiqh (x+x̄) + re′h′

↑↓ γh

√
1 − γ 2

e

1 − γ 2
h

ei(qhx−qex̄) + rh′e′
↑↓ γe

√
1 − γ 2

h

1 − γ 2
e

× e−i(qex−qhx̄)

)
,
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[
Gr

eh

]
↑↑ = iη

2(qhγe − qeγh)

(
− γeγheiqe|x−x̄|sgn(x − x̄) + γeγhe−iqh|x−x̄| + re′e′

↑↑ γeγhe−iqe(x+x̄) − rh′h′
↑↑ γeγheiqh (x+x̄)

− re′h′
↑↑ γ 2

h

√
1 − γ 2

e

1 − γ 2
h

ei(qhx−qex̄) + rh′e′
↑↑ γ 2

e

√
1 − γ 2

h

1 − γ 2
e

e−i(qex−qhx̄)

)
,

[
Gr

eh

]
↓↓ = iη

2(qhγe − qeγh)

(
− γeγheiqe|x−x̄|sgn(x − x̄) + γeγhe−iqh|x−x̄| + re′e′

↓↓ γeγhe−iqe(x+x̄) − rh′h′
↓↓ γeγheiqh (x+x̄)

− re′h′
↓↓ γ 2

h

√
1 − γ 2

e

1 − γ 2
h

ei(qhx−qex̄) + rh′e′
↓↓ γ 2

e

√
1 − γ 2

h

1 − γ 2
e

e−i(qex−qhx̄)

)
,

[
Gr

eh

]
↑↓ = iη

2(qhγe − qeγh)

(
re′e′
↓↑ γeγhe−iqe(x+x̄) − rh′h′

↓↑ γeγheiqh (x+x̄) − re′h′
↓↑ γ 2

h

√
1 − γ 2

e

1 − γ 2
h

ei(qhx−qex̄) + rh′e′
↓↑ γ 2

e

√
1 − γ 2

h

1 − γ 2
e

e−i(qex−qhx̄)

)
,

[
Gr

eh

]
↓↑ = iη

2(qhγe − qeγh)

(
re′e′
↑↓ γeγhe−iqe(x+x̄) − rh′h′

↑↓ γeγheiqh (x+x̄) − re′h′
↑↓ γ 2

h

√
1 − γ 2

e

1 − γ 2
h

ei(qhx−qex̄) + rh′e′
↑↓ γ 2

e

√
1 − γ 2

h

1 − γ 2
e

e−i(qex−qhx̄)

)
.

(B6)

In the topological regime for Gr
ee and Gr

eh, we get

[
Gr

ee

]
↑↑= iη

2(qhγh − qeγe)
(γeeiqe|x−x̄| + γhe−iqh|x−x̄| − re′e′

↑↑ γee−iqe(x+x̄) − rh′h′
↑↑ γheiqh (x+x̄) + re′h′

↑↑ γhei(qhx−qex̄)+rh′e′
↑↑ γee−i(qex−qhx̄) ),

[
Gr

ee

]
↓↓= iη

2(qhγh − qeγe)
(γeeiqe|x−x̄| + γhe−iqh|x−x̄| − re′e′

↓↓ γee−iqe(x+x̄) − rh′h′
↓↓ γheiqh (x+x̄) + re′h′

↓↓ γhei(qhx−qex̄)+rh′e′
↓↓ γee−i(qex−qhx̄) ),

[
Gr

ee

]
↑↓= iη

2(qhγh − qeγe)
(−re′e′

↓↑ γee−iqe(x+x̄) − rh′h′
↓↑ γheiqh (x+x̄) + re′h′

↓↑ γhei(qhx−qex̄) + rh′e′
↓↑ γee−i(qex−qhx̄) ),

[
Gr

ee

]
↓↑= iη

2(qhγh − qeγe)
(−re′e′

↑↓ γee−iqe(x+x̄) − rh′h′
↑↓ γheiqh (x+x̄) + re′h′

↑↓ γhei(qhx−qex̄) + rh′e′
↑↓ γee−i(qex−qhx̄) ),

[
Gr

eh

]
↑↑ = iη

2(qhγe − qeγh)

(− γeγheiqe|x−x̄|sgn(x − x̄) + γeγhe−iqh|x−x̄| + re′e′
↑↑ γeγhe−iqe(x+x̄) − rh′h′

↑↑ γeγheiqh (x+x̄)

− re′h′
↑↑ γ 2

h ei(qhx−qex̄) + rh′e′
↑↑ γ 2

e e−i(qex−qhx̄)
)
,[

Gr
eh

]
↓↓ = iη

2(qhγe − qeγh)

(− γeγheiqe|x−x̄|sgn(x − x̄) + γeγhe−iqh|x−x̄| + re′e′
↓↓ γeγhe−iqe(x+x̄) − rh′h′

↓↓ γeγheiqh (x+x̄)

− re′h′
↓↓ γ 2

h ei(qhx−qex̄) + rh′e′
↓↓ γ 2

e e−i(qex−qhx̄)
)
,[

Gr
eh

]
↑↓ = iη

2(qhγe − qeγh)

(
re′e′
↓↑ γeγhe−iqe(x+x̄) − rh′h′

↓↑ γeγheiqh (x+x̄) − re′h′
↓↑ γ 2

h ei(qhx−qex̄) + rh′e′
↓↑ γ 2

e e−i(qex−qhx̄)
)
,

[
Gr

eh

]
↓↑ = iη

2(qhγe − qeγh)

(
re′e′
↑↓ γeγhe−iqe(x+x̄) − rh′h′

↑↓ γeγheiqh (x+x̄) − re′h′
↑↓ γ 2

h ei(qhx−qex̄) + rh′e′
↑↓ γ 2

e e−i(qex−qhx̄)
)
. (B7)

In case of px-I1-N1-SF-N2-I2-px junction, in the trivial regime for Gr
ee and Gr

eh, we get

[
Gr

ee

]
↑↑ = iη

2(qhγh − qeγe)

(
γeeiqe|x−x̄| + γhe−iqh|x−x̄| − r′e′e′

↑↑ γee−iqe(x+x̄+L) − r′h′h′
↑↑ γheiqh (x+x̄+L) + r′e′h′

↑↑ γh

√
1 − γ 2

e

1 − γ 2
h

× ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↑↑ γe

√
1 − γ 2

h

1 − γ 2
e

e−i(qe(x+L/2)−qh (x̄+L/2))

)
,

[
Gr

ee

]
↓↓ = iη

2(qhγh − qeγe)

(
γeeiqe|x−x̄| + γhe−iqh|x−x̄| − r′e′e′

↓↓ γee−iqe(x+x̄+L) − r′h′h′
↓↓ γheiqh (x+x̄+L) + r′e′h′

↓↓ γh

√
1 − γ 2

e

1 − γ 2
h

× ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↓↓ γe

√
1 − γ 2

h

1 − γ 2
e

e−i(qe(x+L/2)−qh (x̄+L/2))

)
,
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[
Gr

ee

]
↑↓ = iη

2(qhγh − qeγe)

(
− r′e′e′

↓↑ γee−iqe(x+x̄+L) − r′h′h′
↓↑ γheiqh (x+x̄+L) + r′e′h′

↓↑ γh

√
1 − γ 2

e

1 − γ 2
h

ei(qh (x+L/2)−qe(x̄+L/2))

+ r′h′e′
↓↑ γe

√
1 − γ 2

h

1 − γ 2
e

e−i(qe(x+L/2)−qh (x̄+L/2))

)
,

[
Gr

ee

]
↓↑ = iη

2(qhγh − qeγe)

(
− r′e′e′

↑↓ γee−iqe(x+x̄+L) − r′h′h′
↑↓ γheiqh (x+x̄+L) + r′e′h′

↑↓ γh

√
1 − γ 2

e

1 − γ 2
h

ei(qh (x+L/2)−qe(x̄+L/2))

+ r′h′e′
↑↓ γe

√
1 − γ 2

h

1 − γ 2
e

e−i(qe(x+L/2)−qh (x̄+L/2))

)
,

[
Gr

eh

]
↑↑ = iη

2(qhγe − qeγh)

(
− γeγheiqe|x−x̄|sgn(x − x̄) + γeγhe−iqh|x−x̄| + r′e′e′

↑↑ γeγhe−iqe(x+x̄+L) − r′h′h′
↑↑ γeγheiqh (x+x̄+L)

− r′e′h′
↑↑ γ 2

h

√
1 − γ 2

e

1 − γ 2
h

ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↑↑ γ 2

e

√
1 − γ 2

h

1 − γ 2
e

e−i(qe(x+L/2)−qh (x̄+L/2))

)
,

[
Gr

eh

]
↓↓ = iη

2(qhγe − qeγh)

(
− γeγheiqe|x−x̄|sgn(x − x̄) + γeγhe−iqh|x−x̄| + r′e′e′

↓↓ γeγhe−iqe(x+x̄+L) − r′h′h′
↓↓ γeγheiqh (x+x̄+L)

− r′e′h′
↓↓ γ 2

h

√
1 − γ 2

e

1 − γ 2
h

ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↓↓ γ 2

e

√
1 − γ 2

h

1 − γ 2
e

e−i(qe(x+L/2)−qh (x̄+L/2))

)
,

[
Gr

eh

]
↑↓ = iη

2(qhγe − qeγh)

(
r′e′e′
↓↑ γeγhe−iqe(x+x̄+L) − r′h′h′

↓↑ γeγheiqh (x+x̄+L) − r′e′h′
↓↑ γ 2

h

√
1 − γ 2

e

1 − γ 2
h

ei(qh (x+L/2)−qe(x̄+L/2))

+ r′h′e′
↓↑ γ 2

e

√
1 − γ 2

h

1 − γ 2
e

e−i(qe(x+L/2)−qh (x̄+L/2))

)
,

[
Gr

eh

]
↓↑ = iη

2(qhγe − qeγh)

(
r′e′e′
↑↓ γeγhe−iqe(x+x̄+L) − r′h′h′

↑↓ γeγheiqh (x+x̄+L) − r′e′h′
↑↓ γ 2

h

√
1 − γ 2

e

1 − γ 2
h

ei(qh (x+L/2)−qe(x̄+L/2))

+ r′h′e′
↑↓ γ 2

e

√
1 − γ 2

h

1 − γ 2
e

e−i(qe(x+L/2)−qh (x̄+L/2))

)
. (B8)

In the topological regime for Gr
ee and Gr

eh, we get[
Gr

ee

]
↑↑ = iη

2(qhγh − qeγe)
(γeeiqe|x−x̄| + γhe−iqh|x−x̄| − r′e′e′

↑↑ γee−iqe(x+x̄+L) − r′h′h′
↑↑ γheiqh (x+x̄+L) + r′e′h′

↑↑ γh

× ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↑↑ γee−i(qe(x+L/2)−qh (x̄+L/2)) ),[

Gr
ee

]
↓↓ = iη

2(qhγh − qeγe)
(γeeiqe|x−x̄| + γhe−iqh|x−x̄| − r′e′e′

↓↓ γee−iqe(x+x̄+L) − r′h′h′
↓↓ γheiqh (x+x̄+L) + r′e′h′

↓↓ γh

× ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↓↓ γee−i(qe(x+L/2)−qh (x̄+L/2)) ),[

Gr
ee

]
↑↓ = iη

2(qhγh − qeγe)

(− r′e′e′
↓↑ γee−iqe(x+x̄+L) − r′h′h′

↓↑ γheiqh (x+x̄+L) + r′e′h′
↓↑ γhei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′

↓↑ γe

× e−i(qe(x+L/2)−qh (x̄+L/2))
)
,

[
Gr

ee

]
↓↑ = iη

2(qhγh − qeγe)

(− r′e′e′
↑↓ γee−iqe(x+x̄+L) − r′h′h′

↑↓ γheiqh (x+x̄+L) + r′e′h′
↑↓ γhei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′

↑↓ γe

× e−i(qe(x+L/2)−qh (x̄+L/2))),[
Gr

eh

]
↑↑ = iη

2(qhγe − qeγh)

(− γeγheiqe|x−x̄|sgn(x − x̄) + γeγhe−iqh|x−x̄| + r′e′e′
↑↑ γeγhe−iqe(x+x̄+L) − r′h′h′

↑↑ γeγheiqh (x+x̄+L)

− r′e′h′
↑↑ γ 2

h ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↑↑ γ 2

e e−i(qe(x+L/2)−qh (x̄+L/2))),
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[
Gr

eh

]
↓↓ = iη

2(qhγe − qeγh)

(− γeγheiqe|x−x̄|sgn(x − x̄) + γeγhe−iqh|x−x̄| + r′e′e′
↓↓ γeγhe−iqe(x+x̄+L) − r′h′h′

↓↓ γeγheiqh (x+x̄+L)

− r′e′h′
↓↓ γ 2

h ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↓↓ γ 2

e e−i(qe(x+L/2)−qh (x̄+L/2))
)
,[

Gr
eh

]
↑↓ = iη

2(qhγe − qeγh)

(
r′e′e′
↓↑ γeγhe−iqe(x+x̄+L) − r′h′h′

↓↑ γeγheiqh (x+x̄+L) − r′e′h′
↓↑ γ 2

h ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↓↑ γ 2

e

× e−i(qe(x+L/2)−qh (x̄+L/2))
)
,[

Gr
eh

]
↓↑ = iη

2(qhγe − qeγh)

(
r′e′e′
↑↓ γeγhe−iqe(x+x̄+L) − r′h′h′

↑↓ γeγheiqh (x+x̄+L) − r′e′h′
↑↓ γ 2

h ei(qh (x+L/2)−qe(x̄+L/2)) + r′h′e′
↑↓ γ 2

e

× e−i(qe(x+L/2)−qh (x̄+L/2))
)
. (B9)

APPENDIX C: ANALYTICAL FORMULAS FOR PAIRING AMPLITUDES

In this Appendix we present the analytical formulas for even- and odd-ν EST and MST correlations at finite ν in both trivial
and topological regimes. In the trivial regime, both bulk and surface even-ν EST pairing amplitudes are finite within the left px

superconductor and can be expressed as

Bulk even-ν EST: f E ,B
↑↑ (x, x̄, ν) = iη

8(qhγe − qeγh)
(4γeγh(e−iqh|x−x̄| − eiqe|x−x̄|)sgn(x − x̄))

= f E ,B
↓↓ (x, x̄, ν), for x < 0, (C1)

Surface even-ν EST: f E ,S
↑↑ (x, x̄, ν) = iη

8(qhγe − qeγh)

((
γ 2

h

√
1 − γ 2

e

1 − γ 2
h

(re′h′
↑↑ + re′h′

↓↓ ) + γ 2
e

√
1 − γ 2

h

1 − γ 2
e

(rh′e′
↑↑ + rh′e′

↓↓ )

)

× (e−i(qex−qhx̄) − e−i(qex̄−qhx) )

)
= f E ,S

↓↓ (x, x̄, ν), for x < 0, (C2)

while bulk odd-ν EST pairing amplitude vanishes even though surface odd-ν EST pairing amplitude is finite, and can be
expressed as

Surface odd-ν EST: f O,S
↑↑ (x, x̄, ν) = − iη

8(qhγe − qeγh)
(2γeγh((re′e′

↑↑ + re′e′
↓↓ )e−iqe(x+x̄) − (rh′h′

↑↑ + rh′h′
↓↓ )eiqh (x+x̄) )

+
(

−γ 2
h

√
1 − γ 2

e

1 − γ 2
h

(re′h′
↑↑ + re′h′

↓↓ ) + γ 2
e

√
1 − γ 2

h

1 − γ 2
e

(rh′e′
↑↑ + rh′e′

↓↓ )

)
(ei(qhx−qex̄) + ei(qhx̄−qex) ))

= f O,S
↓↓ (x, x̄, ν), for x < 0. (C3)

However, in the topological regime, both bulk and surface even-ν EST pairing amplitudes are finite within the left px

superconductor and can be expressed as

Bulk even-ν EST: f E ,B
↑↑ (x, x̄, ν) = iη

8(qeγe − qhγh)
(2(e−iqh|x−x̄| − eiqe|x−x̄|)sgn(x − x̄)) + iη

8(qhγe − qeγh)

× (2γeγh(e−iqh|x−x̄| − eiqe|x−x̄|)sgn(x − x̄)) = f E ,B
↓↓ (x, x̄, ν), for x < 0, (C4)

Surface even-ν EST: f E ,S
↑↑ (x, x̄, ν) = iη

8(qeγe − qhγh)
((re′h′∗

↑↑ + re′h′∗
↓↓ )e−i(qex−qhx̄) − (rh′e′∗

↑↑ + rh′e′∗
↓↓ )ei(qhx−qex̄) )

+ iη

8(qhγe − qeγh)

(−γ 2
h (re′h′

↑↑ + re′h′
↓↓ )e−i(qex̄−qhx) + γ 2

e (rh′e′
↑↑ + rh′e′

↓↓ )e−i(qex−qhx̄)
)

= f E ,S
↓↓ (x, x̄, ν), for x < 0. (C5)

But in contrast to the trivial regime wherein bulk odd-ν EST pairing amplitude vanishes, in the topological regime, both bulk
odd-ν EST pairing amplitude and surface odd-ν EST pairing amplitude are nonzero, and given by

Bulk odd-ν EST: f O,B
↑↑ (x, x̄, ν) = iη

8(qeγe − qhγh)
(−2(e−iqh|x−x̄| − eiqe|x−x̄|)sgn(x − x̄)) + iη

8(qhγe − qeγh)

× (2γeγh(e−iqh|x−x̄| − eiqe|x−x̄|)sgn(x − x̄)) = f O,B
↓↓ (x, x̄, ν), for x < 0, (C6)
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Surface odd-ν EST: f O,S
↑↑ (x, x̄, ν) = iη

8(qeγe − qhγh)
((re′e′

↑↑ + re′e′
↓↓ )e−iqe(x+x̄) − (rh′h′

↑↑ + rh′h′
↓↓ )eiqh (x+x̄) − (re′h′∗

↑↑ + re′h′∗
↓↓ )

× e−i(qex−qhx̄) + (rh′e′∗
↑↑ + rh′e′∗

↓↓ )ei(qhx−qex̄) ) + iη

8(qhγe − qeγh)
(γeγh(re′e′

↑↑ + re′e′
↓↓ )

× e−iqe(x+x̄) − γeγh(rh′h′
↑↑ + rh′h′

↓↓ )eiqh (x+x̄) − γ 2
h (re′h′

↑↑ + re′h′
↓↓ )e−i(qex̄−qhx)

+ γ 2
e (rh′e′

↑↑ + rh′e′
↓↓ )e−i(qex−qhx̄) ) = f O,S

↓↓ (x, x̄, ν), for x < 0. (C7)

From Eqs. (C1)–(C3), we notice that in the trivial regime, even-ν EST correlations survive both in bulk and surface, while odd-ν
EST correlations exist only in surface. In the topological regime, both even-ν EST and odd-ν EST correlations exist in bulk as
well as in surface as seen from Eqs. (C4)–(C7).

For MST correlations, the bulk components vanish; however, surface components are finite within the left superconductor
in both trivial and topological regimes. In the trivial regime, even-ν and odd-ν surface MST components within the left
superconductor are given by

Surface even-ν MST: f E ,S
3 (x, x̄, ν) = iη

8(qhγe − qeγh)

(
γ 2

h

√
1 − γ 2

e

1 − γ 2
h

(re′h′
↑↓ + re′h′

↓↑ ) + γ 2
e

√
1 − γ 2

h

1 − γ 2
e

(rh′e′
↑↓ + rh′e′

↓↑ )

)

× (ei(qhx̄−qex) − ei(qhx−qex̄) ), for x < 0, (C8)

Surface odd-ν MST: f O,S
3 (x, x̄, ν) = iη

8(qhγe − qeγh)

(
2γeγh((re′e′

↑↓ + re′e′
↓↑ )e−iqe(x+x̄) − (rh′h′

↑↓ + rh′h′
↓↑ )eiqh (x+x̄) )

+
(

−γ 2
h

√
1 − γ 2

e

1 − γ 2
h

(re′h′
↑↓ + re′h′

↓↑ ) + γ 2
e

√
1 − γ 2

h

1 − γ 2
e

(rh′e′
↑↓ + rh′e′

↓↑ )

)
(ei(qhx̄−qex) + ei(qhx−qex̄) )

)
,

for x < 0. (C9)

In the topological regime, surface even-ν and odd-ν MST correlations within the left superconductor are given as

Surface even-ν MST: f E ,S
3 (x, x̄, ν) = iη

8(qeγe − qhγh)
((re′h′∗

↑↓ + re′h′∗
↓↑ )e−i(qex−qhx̄) − (rh′e′∗

↑↓ + r′h′e′∗
↓↑ )ei(qhx−qex̄) )

+ iη

8(qhγe − qeγh)
(−γ 2

h (re′h′
↑↓ + re′h′

↓↑ )e−i(qex̄−qhx) + γ 2
e (rh′e′

↑↓ + rh′e′
↓↑ )e−i(qex−qhx̄) ),

for x < 0, (C10)

Surface odd-ν MST: f O,S
3 (x, x̄, ν) = iη

8(qeγe − qhγh)
((re′e′

↑↓ + re′e′
↓↑ )e−iqe(x+x̄) − (rh′h′

↑↓ + rh′h′
↓↑ )eiqh (x+x̄) − (re′h′∗

↑↓ + re′h′∗
↓↑ )

× e−i(qex−qhx̄) + (rh′e′∗
↑↓ + rh′e′∗

↓↑ )e−i(qex̄−qhx) ) + iη

8(qhγe − qeγh)
(γeγh(re′e′

↑↓ + re′e′
↓↑ )

× e−iqe(x+x̄) − γeγh(rh′h′
↑↓ + rh′h′

↓↑ )eiqh (x+x̄) − γ 2
h (re′h′

↑↓ + re′h′
↓↑ )e−i(qex̄−qhx)

+ γ 2
e (rh′e′

↑↓ + rh′e′
↓↑ )e−i(qex−qhx̄) ), for x < 0. (C11)

APPENDIX D: LDOS AND LMDOS

LDOS ρ(x, ν) and LMDOS �m(x, ν) can be computed [21] from Gr
ee,

ρ(x, ν) = − 1

π
lim
ε→0

Im
[
Tr
{
Gr

ee(x, x, ν + iε)
}]

, and �m(x, ν) = − 1

π
lim
ε→0

Im[Tr{ �σl .Gr
ee(x, x, ν + iε)}], (l = 1, 2, 3). (D1)

Using Eq. (B5), we can write LDOS and LMDOS as

ρ(x, ν) = − 1

π
lim
ε→0

Im
[([

Gr
ee

]
↑↑ + [Gr

ee

]
↓↓
)]

, (D2)

�m(x, ν) = − 1

π
lim
ε→0

Im
[([

Gr
ee

]
↑↓ + [Gr

ee

]
↓↑
)
x̂ + i

([
Gr

ee

]
↑↓ − [Gr

ee

]
↓↑
)
ŷ + ([Gr

ee

]
↑↑ − [Gr

ee

]
↓↓
)
ẑ
]
, (D3)

where the expressions for [Gr
ee]↑↑, [Gr

ee]↑↓, [Gr
ee]↓↑, and [Gr

ee]↓↓ are provided in Eq. (B8) for the trivial regime and in Eq. (B9) for
the topological regime in the case of the px-I1-N1-SF-N2-I2-px JJ. LMDOS is calculated for each of the 2S + 1 possible values
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of m′ for the spin S of the SF, and finally, an average is taken over all m′ values. We find that the y and z components of LMDOS
are zero, and LMDOS is aligned along the x direction.

APPENDIX E: DC JOSEPHSON CURRENT

The DC Josephson current can be calculated using the Furusaki-Tsukuda technique [79–81] as

I = eEckBT

2h̄

∑
νn

qe(iνn) + qh(iνn)√
ν2

n + E2
1

×
[

r′e′h′
↑↑ (iνn) + r′e′h′

↓↓ (iνn)

qe(iνn)
− r′h′e′

↑↑ (iνn) + r′h′e′
↓↓ (iνn)

qh(iνn)

]
, (E1)

where νn = (2n + 1)πkBT are fermionic Matsubara frequencies with n = 0,±1,±2,±3, ... and E1 = �px

√
μpx − �2

px
/4. kB

is the Boltzmann constant. qe,h(iνn), r′e′h′
↑↑ (iνn), r′e′h′

↓↓ (iνn), r′h′e′
↑↑ (iνn), and r′h′e′

↓↓ (iνn) are obtained from qe,h, r′e′h′
↑↑ , r′e′h′

↓↓ , r′h′e′
↑↑ , and

r′h′e′
↓↓ by analytically continuing ν to iνn. We perform a numerical summation over the Matsubara frequencies. There are various

methods to express the total DC Josephson current formula using the Furusaki-Tsukuda approach [64,80]. All these methods
yield the same total DC Josephson current. These different methods involve different scattering amplitudes. This is because the
Furusaki-Tsukuda procedure adheres to both detailed balance and probability conservation, allowing for multiple representations
of the same formula.
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