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Theory of intrinsic acoustic plasmons in twisted bilayer graphene
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We present a theoretical study of the intrinsic plasmonic properties of twisted bilayer graphene (TBG) as a
function of the twist angle θ (and other microscopic parameters such as temperature and filling factor). Our
calculations, which rely on the random phase approximation, take into account four crucially important effects,
which are treated on equal footing: (i) the layer-pseudospin degree of freedom, (ii) spatial nonlocality of the
density-density response function, (iii) crystalline local field effects, and (iv) Hartree self-consistency. We show
that the plasmonic spectrum of TBG displays a smooth transition from a strongly coupled regime (at twist angles
θ � 2

◦
), where the low-energy spectrum is dominated by a weakly dispersive intraband plasmon, to a weakly

coupled regime (for twist angles θ � 2
◦
) where an acoustic plasmon clearly emerges. This crossover offers the

possibility of realizing tunable mid-infrared subwavelength cavities, whose vacuum fluctuations may be used to
manipulate the ground state of strongly correlated electron systems.

DOI: 10.1103/PhysRevB.110.045431

I. INTRODUCTION

Parallel two-dimensional electron systems (P2DESs) have
been at the center of a great deal of attention since they
were theoretically proposed in 1975 as ideal setups for
the study of superfluidity of spatially separated electrons
and holes [1]. They have been experimentally fabricated by
using two main experimental platforms: (i) one based on
GaAs/AlGaAs heterostructures realized by molecular beam
epitaxy [2–5] and (ii) one on atomically thin 2D materi-
als, such as graphene and transition-metal dichalcogenides
(TMDs), produced by mechanical exfoliation [6]. These sys-
tems harbor a wide set of spectacular electrical phenomena,
including Coulomb drag [7–12], exciton superfluidity in
strong [13–17] and zero [18] magnetic fields, and broken
symmetry states [19–24] driven by strong electron-electron
interactions.

More recently, the many-body physics of P2DEs has been
greatly enriched thanks to the discovery [25,26] of correlated
insulators and superconductors in twisted bilayer graphene
(TBG). TBG [27–34] is a P2DES comprising two graphene
sheets on top of each other, separated by a vertical distance
d on the order on ≈0.3 nm, and rotated by a twist angle θ .
In this system, interlayer tunneling changes significantly as a
function of θ , leading to a dramatic spectral reconstruction at
a small, magic angle on the order of ≈1.1◦ [35]. At this angle,
the (moiré superlattice) Brillouin zone is covered by a pair of
very weakly dispersing (so-called) “flat bands” centered on
the charge neutrality point [34,35]. The reduction of kinetic
energy due to band flattening strengthens the role of electron-
electron interactions and is believed to be responsible for

the exciting many-body physics that has been experimentally
unveiled (for recent reviews see, for example, Refs. [36,37]).

P2DESs are also intriguing setups from the point of view
of their plasmonic properties, which have been studied the-
oretically since the Eighties [38,39]. Indeed, a single 2DES
displays a plasmon mode [40], which, in the long wavelength
q → 0 limit, can be interpreted as a center-of-mass (COM)
oscillation dispersing as ωCOM(q) ∝ √

q, as a function of the
in-plane wave vector q. This mode is extremely well un-
derstood and its small-q behavior is highly constrained by
2D electrodynamics [40], posing practically no bounds on
approximate theories for the 2D interacting many-particle
problem. On the contrary, two P2DESs harbor an additional
collective mode, which behaves very differently from the
COM mode, depending on the amplitude of the interlayer
tunneling between the two layers where electrons roam. Let us
consider a P2DES realized via a GaAs/AlGaAs double quan-
tum well [2–5]. If the barrier between the two quantum wells
is sufficiently strong, the interlayer tunneling amplitude—
which in these systems is well described by a constant
quantity typically dubbed �SAS, physically representing the
splitting between the symmetric and anti-symmetric states in
the two adjacent wells—is negligible. In this weak interlayer
tunneling (i.e., �SAS → 0) limit, the additional collective
mode is acoustic [38,39], i.e., ω(q) ∝ q for q → 0. Vice versa,
in the limit of strong interlayer tunneling, the additional col-
lective mode is gapped [41], ω(q) ∝ �SAS for q → 0. The
many-body theory of this mode, either for �SAS = 0 [39] or
�SAS �= 0 [42], is much more subtle than that needed to de-
scribe the COM plasmon in a single 2DES. Gapless, acoustic
plasmons exist also in graphene double layers and topological
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insulator thin films [43], provided that the two P2DESs there
hosted are well isolated so that interlayer tunneling can be
neglected.

This paper focuses on a simple question. How is TBG
“placed” in this general context? This question is motivated by
the qualitative difference between the two interlayer tunneling
Hamiltonians in the systems mentioned above, i.e., TBG and
GaAs double quantum wells. While in the latter a constant
tunneling �SAS works very well, in the former interlayer tun-
neling is highly modulated in space on the moiré superlattice
length scale. Moreover, TBG too consists of two layers and in
principle should support two collective modes at low energies.
However, at small twist angles near the magic angle, only
one low-energy COM plasmon mode ωCOM(q) ∝ √

q is seen
in state-of-the-art theoretical calculations of the plasmonic
modes of TBG [44–47]. Where is the acoustic plasmon mode?

The technical point is that in order to find an intrin-
sic acoustic plasmon in TBG [48], one needs to deal with
the layer-pseudospin degree of freedom. This needs to be
included into the theoretical treatment of the plasmonic re-
sponse of TBG, while at the same time taking into account
three other important physical effects, namely spatial non-
locality of the density-density response function beyond the
Drude limit [39,43,49], Hartree self-consistency [47,50] and
crystalline local field effects [51,52].

Accurate theoretical predictions for the plasmonic modes
of TBG are important for a variety of fundamental and ap-
plied reasons. On the one hand, plasmons in TBG have been
suggested as potential candidates for the microscopic expla-
nation of superconductivity [53]. On the other hand, plasmon
polaritons in TBG (and many other twisted 2D materials either
with itinerant carriers or long-lived phonon modes) enrich
the polariton panorama [54], providing us with a system
with ultra-slow acoustic plasmons—see Sec. V. Finally, since
acoustic plasmons carry an electromagnetic field that is very
well confined between the two layers [55–58], they may have
important applications in the field of quantum nanophotonics
[59] and cavity QED of strongly correlated electron systems
[60–62].

This paper is organized as following. In Sec. II, we in-
troduce linear response theory for a P2DES consisting of
two layers, formulating it for a system with in-plane Bloch
translational invariance. In Sec. III, we summarize the theo-
retical approach we have used in this work, which we dub
“crystalline” random phase approximation, introducing local
field effects and the experimental observable we focus on,
i.e., the energy loss function. Section IV is devoted to a brief
summary of the TBG continuum model Hamiltonian we rely
on. Finally, in Sec. V, we present our main numerical results.
Section VI contains a brief summary and our main conclu-
sions. Sections I–V of Ref. [63] contain a wealth of additional
numerical results. In particular, Sec. IV deals with the role of
an applied perpendicular electric field while Sec. V discusses
the impact of heterostrain.

II. LINEAR RESPONSE THEORY
FOR TWO-LAYER P2DESS

In this section, we summarize linear response theory (LRT)
[40] for a P2DES consisting of two layers. The formalism
outlined here will be employed below in Sec. III to evaluate
the plasmonic spectrum of TBG.

The ordinary density-density response function for a single
2DES [40] can be easily extended to a P2DES consisting of
two layers by using a 2 × 2 matrix formalism:(

δn(1)(q, ω)

δn(2)(q, ω)

)
=

∫
d2q′

(2π )2

(
χ

(1,1)
n̂qn̂−q′ (ω) χ

(1,2)
n̂qn̂−q′ (ω)

χ
(2,1)
n̂qn̂−q′ (ω) χ

(2,2)
n̂qn̂−q′ (ω)

)

×
(

V (1)
ext (q′, ω)

V (2)
ext (q′, ω)

)
. (1)

Here, δn(1)(q, ω) and δn(2)(q, ω) are the Fourier components
of the densities in the two layers, which are linked to the
Fourier components of the two external scalar potentials
V (1)

ext (q′, ω) and V (2)
ext (q′, ω) by a 2 × 2 linear-response ma-

trix. Its matrix elements are the quantities χ
(i, j)
n̂qn̂−q′ (ω), where

i, j = 1, 2 are layer indices. For the sake of simplicity, we
start by neglecting intra- and interlayer electron-electron inter-
actions. In this case, the off-diagonal elements χ

(1,2)
n̂qn̂−q′ (ω) and

χ
(2,1)
n̂qn̂−q′ (ω) are nonzero only because of interlayer tunneling,

which couples layer 1 with layer 2 and vice versa. Electron-
electron interactions will be included below in Sec. III.

Good care needs to be exercised to correctly identify the
layer-resolved density operators n̂(i)

q that lead to Eq. (1). The
standard number density operator is defined by [40] n̂(r) =∑N

k=1 δ(r − r̂k ), where the sum runs over the k = 1, . . . , N
electrons. In a multilayer structure, this operator is generalized
to n̂(i)(r) = �̂(i)†n̂(r)�̂(i). In the previous equation, i = 1, 2
denotes the layer index and �̂(i) is the projector operator
onto the ith layer. In the case of two layers, the total density
operator is n̂(r) = �̂(1)†n̂(r)�̂(1) + �̂(2)†n̂(r)�̂(2). An explicit
construction of the projector operators is given below in
Sec. IV.

We now proceed to derive an expression for the quantity
χ

(i, j)
n̂qn̂−q′ (ω), which applies to the case in which the P2DES is

a crystal, i.e., a Bloch translationally invariant system. In this
case, the single-particle eigenstates are of the Bloch type, i.e.,
they are labeled by a crystal momentum k belonging to the
first Brillouin Zone (BZ) and a band index λ. A Bloch state
|k, λ〉, with eigenvalue εk,λ, is explicitly given by

〈r|k, λ〉 = 1√
S

∑
G

uG(k, λ)ei(k+G)·r, (2)

where S is the P2DES’s area and G denotes the reciprocal
lattice vectors of the crystal. Then, the elements χ

(i, j)
n̂qn̂−q′ (ω)

of the noninteracting density-density response matrix can be
expanded in a Bloch basis and the wave vectors q and q′
appearing in Eq. (1) can differ at most by a reciprocal lattice
vector (due to the periodicity of the lattice [40,47]):

χ
(i, j)
n̂q+G n̂−q−G′ (ω)

= gs

∫
BZ

d2k
(2π )2

∑
λ,λ′

fk,λ − fk+q−Q,λ′

εk,λ − εk+q−Q,λ′ + h̄ω + iη

× 〈k, λ|n̂(i)
q+G|k + q − Q, λ′〉

× 〈k + q − Q, λ′|n̂( j)
−q−G′ |k, λ〉. (3)
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Here, gs = 2 is a spin degeneracy factor, fk,λ is the
usual Fermi-Dirac distribution at chemical potential μ and
temperature T ,

fk,λ = 1

exp[(εk,λ − μ)/(kBT )] + 1
, (4)

and η → 0+ is a positive infinitesimal. A folding vector Q
belonging to the reciprocal lattice has been introduced in
Eq. (3) to ensure that k + q remains in the first BZ.

III. “CRYSTALLINE” RANDOM PHASE APPROXIMATION

Plasmons are self-sustained density oscillations that
emerge due to electron-electron interactions [40]. These need
to be treated at some level of approximation. Here, we employ
the time-dependent Hartree approximation [40], also known
as random phase approximation (RPA), and focus our at-
tention on the electron energy loss function L(q, ω). This
quantity represents the probability of exciting the electronic
system through the application of a scalar perturbation with
wave vector q and energy h̄ω. L(q, ω) contains valuable
information about self-sustained charge oscillations, which
appear as sharp peaks, as well as incoherent electron-hole
pairs, which induce a broadening of the peaks or, more
in general, produce a broadly distributed spectral weight in
the q-ω plane. The energy loss function can be in princi-
ple measured via electron energy loss spectroscopy [64] and
scattering-type near-field optical spectroscopy (see, for exam-
ple, Refs. [54–57] and references therein).

As stated in Sec. I, the loss function will be calculated by
including local field effects (LFEs) [51,52,65–67], naturally
arising out of the underlying crystalline nature of the system
under study. This is very naturally accomplished by retaining
the dependence of the quantity χ

(i, j)
n̂q+G n̂−q−G′ (ω) in Eq. (3) on the

reciprocal lattice vectors G, G′.
Finally, many-body effects, in general, and plasmons, in

particular, are sensitive to the dielectric environment sur-
rounding the P2DES under investigation. In this paper, we
assume that TBG is embedded between two homogeneous and
isotropic dielectric media described by the dielectric constants
ε1 (top) and ε3 (bottom)—see Fig. 1(a). The space between the
layers is filled by a third homogeneous and isotropic dielectric
characterized by a dielectric constant ε2. In a typical experi-
mental setup, the space between the layers is just a vacuum
gap (ε2 = 1) and TBG is encapsulated between two slabs of
hexagonal Boron Nitride (hBN), which is a homogeneous and
anisotropic dielectric (therefore beyond the isotropic model
introduced above). Such hBN slabs host hyperbolic phonon
polariton modes [54], which strongly couple to plasmons
[68]. We have therefore deliberately decided to neglect such
plasmon-phonon polariton coupling in order to access, once
again, the intrinsic plasmon modes of TBG. Including hBN
polaritons into the theory is straightforward and can be ac-
complished by following, for example, the theory of Ref. [68].

The loss function can be calculated from the following
expression:

L(q, ω) = −�{TrL[ε(q, ω)−1]G=0,G′=0}, (5)

where ε(q, ω) is the dynamical dielectric function, which, in
the present case, is a matrix with respect to layer indices

FIG. 1. (a) Sketch of the setup studied in this work. TBG (spa-
tial separation between the two graphene layers denoted by d) is
embedded in a dieletric environment described by three isotropic
and homogeneous dielectrics with dielectric constants, ε1 (top), ε2

(middle), and ε3 (bottom). (b) The first moiré BZ of TBG. The red
(black) dashed lines are the edges of the BZ of the graphene layer
“1” (“2”), K (1) (K (2)) being the corresponding K point. The path
K--M-K is highlighted.

and reciprocal lattice vectors. The trace TrL in Eq. (5) is
intended to be over the layer-pseudospin degrees of freedom.
We emphasize that, in order to evaluate the loss function via
Eq. (5), the matrix ε(q, ω) needs to be inverted before (a) the
trace over the layer degrees of freedom is taken and (b) the
G = 0, G′ = 0 element is selected.

Returning on the importance of LFEs, we remind the
reader that the G = 0, G′ = 0 element of the inverse of the
dynamical dielectric matrix ε(q, ω) produces the so-called
“macroscopic” dielectric function [65,66] εM(q, ω), which is
defined through the following equation:

ε−1
M (q, ω) ≡ [ε−1(q, ω)]G=0,G′=0. (6)

Inverting ε(q, ω) first, and then selecting the G = 0, G′ = 0
element, brings to the macroscopic dielectric function contri-
butions from nonzero reciprocal lattice vectors, i.e., G �= 0,
G′ �= 0. In solids, such LFEs are not negligible. As a result,
the macroscopic field, which is the average of the microscopic
field over a region larger than the lattice constant (but smaller
than the wavelength) is not equivalent to the effective or local
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field that polarizes the charge in the crystal [65,66]. This
phenomenon is expected to be more relevant in systems with
significant charge inhomogeneities, like moiré materials and
TMDs [67,69,70]. In particular, modifications to the plasmon
dispersion relation induced by LFEs tend to be important near
BZ edges [67]. Importantly, the authors of Ref. [67] have
recently shown that the inclusion of LFEs on the plasmon
dispersion relation is crucial to probe correlated states in
twisted hetero-bilayers of TMDs. More precisely, they argue
that a loss function different from the one introduced in Eq. (5)
and calculated by tracing over the reciprocal lattice vectors
gives profound information about the many-body properties
of the moiré material under investigation. While this is cer-
tainly true, standard plasmonic probes [54–57] usually access
the response of the system to long-wavelength perturbations.
Experimentally, therefore, the loss function defined in Eq. (5)
seems the more appropriate one to interpret plasmonic exper-
iments, as briefly pointed out by the authors of Ref. [67] too.

We now comment on the role of the layer degrees of
freedom. At a first superficial glance, one may be puzzled by
the definition of the loss function we gave above in Eq. (5)
and, in particular, by its ability to display peaks at the col-
lective modes of the layered structure. Indeed, in a layered
structure, plasmon modes are calculated by looking at the
zeros of the determinant of the layer-resolved dielectric tensor
[38,39]. How can we reconcile these two seemingly different
approaches to the collective modes of layered materials? The
answer is that the trace of the inverse dielectric tensor with
respect to the layer degrees of freedom is proportional to the
reciprocal of the determinant over the same degrees of free-
dom, i.e., TrL[ε(q, ω)−1]G=0,G′=0 ∝ 1/detL[ε(q, ω)]G=0,G′=0.
We therefore see that there is no contradiction between the
usual approach [38,39] and our loss-function based approach.

Approximate dynamical dielectric matrix

While the definition in Eq. (5) is totally general, we now
need to introduce a necessarily approximate model for the
dynamical dielectric matrix ε(q, ω), which includes electron-
electron interactions.

In the RPA [40], we have

[ε(q, ω)](i, j)
G,G′ = δ(i, j)δG,G′ − e2

∑
�

L(i,�)
G (q)χ (�, j)

n̂q+G n̂−q−G′ (ω),

(7)

where L(i, j)
G (q) = L(i, j)(q + G) is the Coulomb propaga-

tor relating the charge density fluctuations δn( j)
q+G(ω)

to the self-induced electrical potential, i.e., W (i)
G (q, ω) =

e2L(i, j)
G (q)δn( j)

q+G(ω).
The quantities L(i, j)(q) are given by [43]

L(1,1)(q) = 4π

qD(q)
[(ε2 + ε3)eqd + (ε2 − ε3)e−qd ] (8)

and

L(1,2)(q) = L(2,1)(q) = 8π

qD(q)
ε2, (9)

where

D(q) = (ε1 + ε2)(ε2 + ε3)eqd + (ε1 − ε2)(ε2 − ε3)e−qd .

(10)
The expression for the L(2,2)(q) component is obtained from
Eq. (8) by interchanging ε3 with ε1. In the presence of hBN
dielectrics, the Coulomb propagator acquires a frequency de-
pendence [68], L(i, j)

G (q, ω), due to the strong dependence of
the hBN dielectric permittivity tensor on frequency in the
mid-infrared spectral range.

It is now time to pause for a moment and discuss about
the statements we have made about the nonlocal nature of
the calculations reported in this paper. In the so called “local
approximation” for calculating the plasmon dispersion rela-
tion in a single 2DES, the density-density response function in
Eq. (7) is approximated with its value in the so-called “dynam-
ical limit” [40], i.e., in the limit q → 0 and ω  v∗

Fq, where
v∗

Fq represents the upper edge of the electron-hole continuum.
This approximation is extremely well suited to calculate the
leading order term of the dispersion relation ωCOM(q) of the
COM mode in the long-wavelength q → 0 limit. However, it
is very well known [39,43] that such local approximation fails
in predicting the correct acoustic plasmon dispersion, even in
the long wavelength q → 0 limit. This is why, in this paper,
we have decided to retain the full dependence of χ

(i, j)
n̂q+G n̂−q−G′ (ω)

in Eq. (3) on the wave vector q, without making the local
approximation (i.e., without taking the dynamical limit).

IV. TBG MODEL HAMILTONIAN AND HARTREE
SELF-CONSISTENT THEORY

Before illustrating our numerical results, we would like
to briefly summarize the single-particle band model we
have used to describe TBG and the self-consistent Hartree
procedure we have carried out to deal with the impor-
tant ground-state charge density inhomogeneities displayed
by TBG.

A. TBG bare-band model

The continuum model of TBG adopted in this work is the
same as the one used in Ref. [47], which was first derived in
Refs. [35,71].

Layer, sublattice, spin, and valley are the four discrete
degrees of freedom characterizing single-electron states in
TBG. We can take into account valley and spin degrees
of freedom by a degeneracy factor g = 4 = gvgs, where the
spin-degeneracy factor gs = 2 has been introduced earlier.
The single-particle Hamiltonian of TBG is written in the
layer/sublattice basis {|1A〉, |1B〉, |2A〉, |2B〉} as

Ĥ0 =
(
Ĥ(1) Û
Û † Ĥ(2)

)
. (11)

The state |�τ 〉 refers to layer � = 1, 2 and sublattice index
τ = A, B, Ĥ(�) is the intralayer Hamiltonian for layer �, and
the operator Û describes interlayer tunneling. For small twist
angles, the moiré length scale ∼a/θ is much larger than the
lattice parameter a of single-layer graphene. This allows us
to replace Ĥ(�) by its k · p massless Dirac fermion limit. This
low-energy expansion is done around one of the single layer
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valleys, K (�)/K ′(�):

Ĥ(�) = vD[R�(θ/2)( p̂ ∓ h̄K�)] · (±σx,−σy). (12)

Here, (±σx,−σy) is a vector of 2 × 2 Pauli matrices (the
± sign referring to the K and K ′ valleys, respectively), p̂
is the momentum operator, vD = √

3|t |a/(2h̄) ∼ 1 × 106m/s
is the Fermi velocity of single-layer graphene, |t | = 2.78 eV
being the usual single-particle nearest-neighbor hopping. The
vector K� appearing in Eq. (12) is the position of single layer
graphene’s valley K (�) measured from the moiré BZ center 

[Fig. 1(b)]:

K1,2 = 8π

3a
sin

(
θ

2

)(
−

√
3

2
,±1

2

)
. (13)

The rotation matrix R�(θ/2) appearing in (12) is given by

R�=1,2(θ/2) = cos(∓θ/2)I2×2 − i sin(∓θ/2)σy

=
(

cos θ/2 ± sin θ/2
∓ sin θ/2 cos θ/2

)
. (14)

The convention adopted is such that θ�=1 = −θ/2 and θ�=2 =
θ/2. The longitudinal displacement between the two layers
is taken as zero in order to obtain the AB-Bernal stacking
configuration for θ = 0.

The Û operator describes interlayer hopping and is given
by

Û =
(

u0 u1

u1 u0

)
+ e−i 2π

3 +iG1·r̂
(

u0 u1ei 2π
3

u1e−i 2π
3 u0

)

+ ei 2π
3 +iG2·r̂

(
u0 u1e−i 2π

3

u1ei 2π
3 u0

)
, (15)

where

G1,2 = 8π√
3a

sin

(
θ

2

)(
±1

2
,

√
3

2

)
, (16)

and u0 (u1) are the intrasublattice (intersublattice) hopping
parameters. In general u0 �= u1. The difference between these
two parameters can, in fact, take into account the lattice corru-
gation of TBG samples [71–74]. The intra- and intersublattice
hopping energies might also be affected in value by possible
stresses induced on the TBG sheet during the production
phase. Recently [75], it has been shown experimentally that
the difference between the intra- and intersublattice hopping
parameters is in the range of u1 − u0 ∼ 30 − 60 meV. In this
work, we take u1 = 97.5 meV and u0 = 79.7 meV. With this
choice, we have u1 − u0 ≈ 20 meV and the dimensionless
parameter u0/u1 ∼ 0.8 takes correctly into account relaxation
effects [71]. Within the continuum model described by the
single-particle Hamiltonian in Eq. (11), we can construct the
projector operators onto the ith layer �̂(i) by making explicit
their action on the basis |�τ 〉:

�̂(i)|�τ 〉 = |iτ 〉. (17)

In particular, their matrix form is given explicitly by

�̂(1) =
(
Î2×2 0

0 0

)
, (18)

�̂(2) =
(

0 0
0 Î2×2

)
, (19)

where Î2×2 is the identity operator acting on the sublattice
index.

The chemical potential μ in Eq. (4) can be calculated by
enforcing, as usual, particle-number conservation:

n = δn + n0 = g
∑

λ

∫
d2k

(2π )2
f reg
k,λ

(μ). (20)

Here, n0 is the total electron density at the charge neutrality
point (CNP) and δn is the electron density measured from
the CNP. We stress that a regularized Fermi-Dirac distribution
function f reg

k,λ
appears in Eq. (20). Indeed, since we are dealing

with a continuum model, the number of bands is formally infi-
nite below and above the CNP. In order to regularize the Dirac
sea below the CNP, one needs to introduce the regularized
Fermi-Dirac distribution function defined as following:

f reg
k,λ

(μ) ≡ f reg(εk,λ − μ)

= f (εk,λ − μ) − �(εCNP − εk,λ), (21)

where �(x) is the Heaviside step function and εCNP is the
energy of the CNP.

With these conventions, the filling factor ν is defined by

ν ≡ �u.c.δn, (22)

where �u.c. =
√

3
2 [ a

2 sin (θ/2) ]
2 is the area of the moiré unit

cell. With this definition of the filling factor, one has |ν| < 4
when the chemical potential is within the flat bands, at low
temperatures.

B. Hartree self-consistency

Inhomogeneities in the ground-state charge density distri-
bution of TBG create an inhomogeneous electrical potential
that depends on the filling factor. To capture this effect, we
need to add the so-called Hartree contribution V̂H to the bare
TBG Hamiltonian Ĥ0 [40,47,50]:

Ĥ = Ĥ0 + V̂H[nG], (23)

where

V̂H[nG] = I4×4

∑
G �=0

2πe2

ε̄|G| nGeiG·r̂. (24)

Here, ε̄ ≡ (ε1 + ε3)/2, nG is the Fourier component of the
ground-state electron density corresponding to the reciprocal
lattice vector G, and the identity matrix I4×4 is expressed
in the same basis of states of the Hamiltonian, namely,
{|1A〉, |1B〉, |2A〉, |2B〉}.

The problem posed by Eqs. (23) and (24) needs to be
solved self-consistently, i.e., one needs to solve the Hartree
equation

(Ĥ0 + V̂H[nG])|k, λ〉 = εk,λ|k, λ〉, (25)

together with the closure:

nG = g
∑

λ

∫
d2k

(2π )2
f reg
k,λ

〈k, λ|e−iG·r̂|k, λ〉. (26)
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Note that due to the real-space representation (2) of the Bloch
eigenstates, we have

〈k, λ|e−iG·r̂|k, λ〉

= 1

S

∑
K,K ′

u†
K (k, λ)uK ′ (k, λ)

∫
d2re−i(G+K+k−K ′−k)·r

=
∑
K,K ′

u†
K (k, λ)uK ′ (k, λ)δG+K,K ′

=
∑

K

u†
K (k, λ)uK+G(k, λ). (27)

Once the self-consistent problem has been solved, the
Hartree eigenstates |k, λ〉 and eigenvalues εk,λ can be used
in order to calculate the so-called Hartree density-density
response [40] matrix. This is simply obtained by using Eq. (3),
with the understanding that the two quantities |k, λ〉 and εk,λ

in there need to be interpreted as self-consistently calculated
Hartree quantities rather than single-particle, bare quantities.

V. NUMERICAL RESULTS

In this section, we present our main numerical results
obtained with the theory outlined above. For the sake of defi-
niteness, we set ε1 = ε3 = 4.9, ε2 = 1, and T = 5 K.

The dielectric tensor and hence the loss function are ob-
tained by using the calculated Hartree self-consistent bands
and corresponding Bloch states. These calculations take into
account the role of static screening in reshaping the electronic
bands and redistributing in space the carrier density. The
Hartree self-consistency effect on plasmons is more impor-
tant at small twist angles, since in this regime, the system
displays larger charge inhomogeneities [47]. This is true also
for the LFEs. Figure 2 shows the TBG loss function for fill-
ing factor ν = +1 and two values of the twist angle θ , i.e.,
θ = 1.05

◦
in panel (a) and θ = 5

◦
in panel (b). This filling

factor corresponds to a carrier density n = 0.64 × 1012 cm−2

for θ = 1.05
◦

and n = 1.5 × 1013 cm−2 for θ = 5
◦
. Chemical

potential values have been given in the caption of Fig. 2. Close
to the magic angle, Fig. 2(a), flat bands centered at the CNP
and separated by an energy gap from the higher-energy bands,
lead to intrinsically undamped slow plasmons [46]. We clearly
see this in Fig. 2(a), where a narrow, almost dispersion-less
plasmon is present at energies on the order of ∼20 meV.
In general, we find that, at small twist angles, TBG hosts
a standard intraband COM plasmon with a ωCOM(q) ∝ √

q
dispersion in the long-wavelength limit. No sign of other
collective modes is seen at small values of θ , neither gapless
[39,43] nor gapped [41,42]—further results are reported in
Sec. II of Ref. [63].

This is not the case for larger values of the twist angle, as
seen, for example, in Fig. 2(b) for θ = 5

◦
. For this value of the

twist angle, an acoustic plasmon is clearly visible. This mode
lies just above the upper edge of the particle-hole continuum
(Sec. I of Ref. [63]), which is identified by the line h̄ωθ (q) =
h̄v�

θq, v�
θ being the reduced Fermi velocity of the TBG Dirac

cones [32]:

v�
θ = vD

1 − 3α2(θ )

1 + 6α2(θ )
, (28)

FIG. 2. The TBG energy loss function L(q, ω) as a function of q
and ω. The dependence on q is displayed along the high-symmetry
path -K-M of the moiré BZ—see Fig. 1(b). Results in this plot refer
to filling factor ν = +1 and temperature T = 5 K. (a) Results for
θ = 1.05◦ (chemical potential μ = 22 meV). (b) Results for θ = 5◦

(chemical potential μ = 256 meV). In panel (b), an acoustic plasmon
mode is clearly visible at low energies, just above the upper edge
of the particle-hole continuum, i.e., ω = v�

θ q, v�
θ being the reduced

Fermi velocity—see Eq. (28) below and also Sec. I of Ref. [63].
High-energy interband plasmons have been discussed at length in
Refs. [45,47,75].

α(θ ) = u1[ 8π√
3a

h̄vD sin( θ
2 )]−1 being a dimensionless parame-

ter that depends on the twist angle (the parameters vD and
u1 have been introduced in Sec. IV A). For θ = 5

◦
, the Fermi

velocity (28) is v∗
θ ≈ 7.99 × 105 m/s, while the acoustic plas-

mon velocity in Fig. 2(b) is cs ≈ 8.43 × 105 m/s. For the
sake of comparison, we note that the acoustic plasmon veloc-
ity in two (tunnel-decoupled but Coulomb-coupled) graphene
layers at a distance d = 0.3 nm is cs ≈ 1.2 × 106 m/s (and
at the same density n = 1.5 × 1013 cm−2) [43]. A reduced
single-particle Fermi velocity in TBG leads to slower acoustic
plasmons with respect to other graphene-related systems [43].
A plot illustrating the dependence of cs on θ is reported in
Sec. I of Ref. [63]. (Further numerical results are reported in
Sec. II of Ref. [63]—where the plasmon dispersion relation
obtained with the inclusion of the layer-pseudospin degree
of freedom and LFEs is compared with that obtained by
neglecting the latter—and Sec. III of Ref. [63]—where the de-
pendence on the filling factor ν is discussed, for various twist
angles. In Sec. II of Ref. [63], we note that the introduction of
LFEs leads to a blue shift in the energy of the plasmon modes
around the edge of the moiré BZ, as already found out in other
systems [67,69,70]. This effect is even more pronounced at
small twist angles. In Sec. III of Ref. [63], we observe, for a
fixed value of θ , a weak dependence on ν. The impact of an
applied perpendicular electric field and heterostrain [76,77] on
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FIG. 3. The energy loss function L(q, ω) of TBG is plotted as
a function of the twist angle θ and frequency ω. Results in this
plot have been obtained by keeping fixed the wave number q and
filling factor ν, i.e., q = qθ ≡ 2|K1,2|/31 (see main text) and ν =
+1. Bright bands correspond to plasmons peaks. The white dashed
line indicates the upper edge of the particle-hole continuum, i.e.,
ω = v�(θ )qθ , v�(θ ) being the reduced Fermi velocity, above which
collective modes are well defined. The low-energy acoustic plasmon
mode, which “tracks” the upper edge of the particle-hole continuum,
disappears for θ � 2

◦
.

the plasmonic spectrum of TBG are discussed in Secs. IV and
V of Ref. [63], respectively.)

Figure 3 shows the loss function L(q, ω) as a func-
tion of the twist angle θ and frequency ω. Results in this
figure have been obtained by setting q = qθ ≡ ξ |K1,2|, where
|K1| = |K2| is the modulus of the θ -depending vector linking
 to K in the moiré BZ—see Eq. (13)—and ξ = 2/31 < 1.
The brightest feature in this figure corresponds to the usual
COM plasmon while the lower-energy feature corresponds
to the acoustic plasmon. At twist angles θ � 2

◦
, the acoustic

plasmon branch disappears. We conclude that, at small twist
angles, low energies, and long wavelengths, TBG behaves ef-
fectively as a single 2DES with an ordinary COM plasmon. A
weakly damped out-of-phase acoustic plasmon appears only
for twist angles larger than θ ≈ 2

◦
. As discussed in Sec. I,

this mode is typical of weakly coupled double layers, where
two spatially separated 2DESs interact only through the long-
range Coulomb interaction [39,43]. The gapless nature of the
extra mode emerging for θ � 2

◦
is reasonable since the moiré

potential that couples the two layers does not open a gap at the
K/K ′ points (Dirac cones are protected by symmetry).

Despite the apparent similarity with spatially separated
2DESs, acoustic plasmons in TBG offer a qualitative differ-
ence: in the latter system, they emerge only for sufficiently
large values of θ . In the former systems, instead, acoustic
plasmons exist for all values of the macroscopic parameters,
provided that the single-particle Fermi velocities in the two
2DESs are identical [39,43].

Regarding damping of the TBG acoustic plasmon, let us
recall that the upper edge of the particle-hole continuum in
TBG is given by

h̄ωθ (qθ ) ≡ h̄v∗
θ qθ = ξ

8π√
3a

h̄vD
sin2(θ/2) − 3α̃2

sin2(θ/2) + 6α̃2
sin(θ/2),

(29)

where α̃ = α(θ )/ sin(θ/2) and α(θ ) has been introduced
above in Eq. (28). If the plasmon dispersion lies above this
threshold value, it is a well-defined (i.e., long lived) mode (at
least within the RPA). Since the wave vector q is fixed at the
value qθ ≡ ξ |K1,2|, the expression on the right hand side of
Eq. (29) depends only on θ and is plotted in Fig. 3 (white
dashed line) for small values of θ (up to θ = 6

◦
). We clearly

see that, for sufficiently large values of θ (i.e., θ � 4
◦
) the

acoustic plasmon is a well-defined long-lived collective mode.
In order to better understand the disappearance of the

acoustic mode for θ � 2
◦
, we have calculated the layer po-

larization Pk,λ of the TBG Hartree self-consistent eigenstates
|k, λ〉. This quantity is defined as [78]

Pk,λ ≡ 〈k, λ|�̂(1)|k, λ〉 − 〈k, λ|�̂(2)|k, λ〉, (30)

where �̂(i) is the projector operator onto the ith layer in-
troduced in Sec. IV, Eq. (17). Figure 4 shows the layer
polarization (color bar) at the K valley and for two val-
ues of the twist angle, i.e., θ = 1.05

◦
—panel (a)—and θ =

5
◦
—panel (b). For the latter value of the twist angle, the

polarization is |Pk,λ| ≈ 1 for almost every value of the wave
vector k and throughout all the bands. At θ = 1.05

◦
, instead,

we observe a very low layer polarization stemming from a
strong interlayer hybridization. It is this transition from high
to low values of the layer polarization that, in our opinion,
leads to the disappearance of the acoustic plasmon mode at
twist angles θ � 2

◦
.

FIG. 4. Layer polarization Pk,λ of the Hartree self-consistent eigenstates, superimposed on TBG energy bands calculated with Hartree
self-consistency at filling factor ν = +1. (a) θ = 1.05

◦
. (b) θ = 5

◦
. At lower angles, the Hamiltonian eigenstates are less layer polarized,

resulting in more hybridization and the suppression of the bilayer acoustic plasmon mode. Bands are calculated at the K ′ valley.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a theoretical study of the
plasmonic response of twisted bilayer graphene as a function
of the twist angle θ . Our theory treats on equal footing four
important effects, namely the layer degree of freedom, nonlo-
cal effects in the density-density response function beyond the
dynamical long-wavelength limit, Hartree self-consistency,
and crystalline local field effects.

We have found that at small values of the twist angle
(θ � 2

◦
) and in the low-energy long-wavelength limit, the

2D electron system in twisted bilayer graphene responds to
a perturbation carrying wave vector q and energy h̄ω as a sin-
gle entity, displaying a center-of-mass mode ωCOM(q) ∝ √

q.
This is in agreement with all earlier studies [44–47]. As the
twist angle increases, however, interlayer tunneling decreases
and the layer-pseudospin becomes a quasi-good quantum
number. For θ � 2

◦
, the layer-pseudospin degree of freedom

needs to be taken into account and the plasmonic spectrum
of the system displays a qualitatively different behavior. In
this case, indeed, a weakly damped acoustic plasmon mode
appears, akin to the acoustic plasmon of other parallel 2D
electron systems of historical importance [38,39].

In the future, it will be interesting to feed our results to
an Eliashberg theory [79] of plasmon-mediated superconduc-
tivity in twisted bilayer graphene and to study the spatial
distribution of chirality associated to this mode [80,81].
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