
PHYSICAL REVIEW B 110, 045429 (2024)
Editors’ Suggestion

Photonic cross-noise spectroscopy of Majorana bound states
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We propose a route to detect Majorana bound states (MBSs) by coupling a topological superconductor to
quantum dots (QDs) in a pnp junction. Here two MBSs are coherently coupled to electrons on two QDs,
which recombine with holes to photons. We focus on the spectroscopy of cross-correlated shot noise and
the polarization of the emitted photons. Our detection scheme allows us to probe the necessary condition for
the emergence of MBSs, specifically, the existence of nonlocal triplet superconducting correlations and also the
fundamental property that two MBSs comprise a single complex fermion. We compare our results to the ones
obtained from nontopological quasi-MBSs (qMBSs) and establish a correspondence between the number of
peaks in the cross-correlation with the number of MBSs in the system. Here we can identify a tunneling regime
that facilitates differentiation between topological MBSs and trivial qMBSs. Additionally, we test the robustness
of the detection scheme by the addition of uncorrelated quasiparticles.
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I. INTRODUCTION

In condensed-matter physics, Majorana bound states
(MBSs) are unique quasiparticles with neutral charge and an
undefined occupation number [1–3]. They emerge as zero-
energy excitations in topological superconductors (TSCs),
which establish themselves as bound states at boundaries
or in vortex cores. Particularly, they can be engineered by
proximitizing semiconductor systems with strong spin-orbit
interactions and in the presence of a Zeeman field [4–6].
Their interest lies not only at a fundamental level but also for
being building blocks of fault-tolerant quantum computation
[2,7–10]. For more extended reviews, see Refs. [7,9,11–15].

There is a plethora of detection schemes that can in prin-
ciple probe the presence of these exotic quasiparticles. For
example, the quantization of the zero bias conductance in a
NS junction [16–18] or the fractional Josephson effect [3,19],
which can be measured in the Shapiro experiment via the
disappearance of the odd Shapiro steps or in the Josephson
radiation via the presence of a fractional frequency emission
line. Unfortunately, the experimental results differ from ideal
predictions, showing a nonquantized value of the zero-bias
conductance that ranges from low conductance [20–23] to
close to the quantized value [24–26]. Also, in the fractional
Josephson effect, odd Shapiro steps [27–30] and integer emis-
sion line frequencies [31] appear for a finite range in the
parameter space. A plausible interpretation of these results can
be explained in terms of the presence of quasi-MBSs (qMBSs)
[17,32–36], appearing naturally in NS junctions, or nonadi-
abatic transitions [37–45]. Due to this uncertainty, a huge
effort has been put forward to distinguish MBSs from trivial
excitations, studying theoretically [46–53] and experimentally
[25,54] their nonlocal nature via nonlocal transport, and mea-
suring the spin-symmetry of the pairing amplitude [55–57].
Other proposals suggest to use local measurements [58,59]
or to study more specific properties, such as their triplet

correlations [60–62]. Furthermore, MBSs were investigated
by optical means by coupling MBSs to microwave photons
[63–73]. Another related idea is the coupling of a Majorana
nanowire to a quantum dot (QD) embedded within a mi-
crowave cavity investigating the nonlocality of the MBSs [74].

In this paper, we study the coherent coupling of MBSs to
optically active QDs embedded within a pn junction. Such
hybrid systems that combine semiconductor optics and su-
perconductivity were investigated theoretically [75–82] and
experimentally realized [83–85], especially the embedment of
QDs in pn junctions has been achieved [86,87]. Similarly to
recent charge transport measurements [55,56], the proposed
setup allows us to read off the spin-dependent superconduct-
ing correlations present in the TSC. However, in contrast to
those transport setups, here the spin information is directly
extracted from the polarization of the emitted photons. In our
previous work in Ref. [88], we investigated various signatures
of MBSs using a single optically active QD but could not
determine whether these excitations were topologically non-
trivial, as local probes are inadequate for this purpose [14]
(an exception being the probe of rotating MBSs [89]). In this
work, we have added another QD to have access to nonlocal
correlations that are necessary for distinguishing MBSs from
trivial excitations.

In particular, we calculate the photonic cross-correlated
noise of a pnp junction and highlight the spectroscopic fea-
tures that are specific for the presence of MBSs. The central
part (n) consists of a one-dimensional (1D) TSC featuring
MBSs at its ends, which are coherently tunnel-coupled to
electrons on QDs placed laterally on each side of the TSC.
When electrons populate the QDs, they recombine with holes
provided from a normal conducting part (p), yielding the
emission of a polarized photon; see Fig. 1. In this scenario, the
presence of nonlocal superconducting correlations on the TSC
allows for the correlated emission of one photon on each QD.
Thus, we propose to measure the nonlocal or cross-correlated
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FIG. 1. Sketch of a pnp junction to probe MBSs. The n side is a
TSC where MBSs emerge at the ends in the topologically nontrivial
phase. The p side is coupled to a normal conducting reservoir. In the
two pn junctions, QDs are formed that emit photons via electron-
hole recombination. As indicated in the figure, a possible realization
of this junction is a semiconducting nanowire that can host MBSs
when contacted to an s-wave superconductor in a magnetic field in z
direction. Thus, the Majorana angle � lies in the x − z plane. Photons
are emitted from the two QDs along the wire direction

noise of the photon emission processes, which is calculated
by studying the full counting statistics of a Markovian master
equation, which considers the coupling to the photon bath and
hole reservoirs as a perturbation. We show that the cross-noise
is robust to the presence of uncorrelated quasiparticles that
can populate the QDs. Moreover, we compare the resulting
cross-correlations from MBSs to those of qMBSs, where we
observe several features to discern both cases with our detec-
tion scheme.

The paper is organized in the following way. In Secs. II and
III we introduce the Hamiltonian and master equation of the
system, respectively. Then, in Sec. IV we show the numerical
results of the cross-correlations that probe the presence of
MBSs and compare these results with the ones provided by
qMBSs. In Sec. V, we provide the conclusion. More technical
aspects are presented in several Appendices.

II. MODEL

We consider a pnp setup shown in Fig. 1. Here the n side
with chemical potential μn = μe is a TSC with a pair of
MBSs at the ends. Moreover, on each side of the TSC, the pn
junctions contain QDs which have discrete levels for electrons
and holes separated by a bias voltage μn − μp = eV . In this
scenario, when electrons from the grounded superconductor
tunnel coherently into electronic levels of the QDs, they can
emit a photon after an electron-hole recombination process
occurs. The process repeats due to the out of equilibrium
situation produced by the coupling to a normal conducting
reservoir (p side) with chemical potential μh = −μp, which
provides holes on the QDs. We describe the system by means
of the Hamiltonian H = He + Hh + Hres + Vh + Hph + Vrec,
where He describes the coupling between the QD electrons
and the MBSs

He =
∑
D,σ

(εeD + σ�Z )d†
Dσ dDσ +

∑
D

UeDn̂dD↑n̂dD↓

+ i

2
ξγAγB +

∑
D,σ

(tDσ dDσ γD + H.c.), (1)

where d (†)
Dσ annihilates (creates) an electron with energy

εeD + σ�Z on QD D = A, B, spin σ =↑,↓, and Zeeman
energy �Z having a z component of the total angular mo-

mentum of jz,eσ = ±h̄/2. The second term accounts for the
intradot Coulomb repulsion, which suppresses double occu-
pation since UeD � �Z , εeD, tDσ , ξ , where n̂dDσ = d†

Dσ dDσ is
the occupation number operator [90]. Additionally, we assume
UeD � �S with the superconducting pairing potential �S , so
the usual proximity effect on the QDs is suppressed. The third
term describes the coupling between the MBSs γA and γB

with the amplitude ξ . The last term accounts for the coupling
between the electrons of the QD and MBSs with tunneling
amplitudes tDσ for MBS γD and electrons on QD D with
spin σ . Here the spin subindex of the tunneling amplitudes
is determined by the relative spin direction of the electrons in
the QD and the electronic components of the Majorana spinor
wave function.

We rewrite Eq. (1) in the basis of the nonlocal fermion c†,
which comprises two MBSs γA = c† + c and γB = i(c† − c),
yielding

He =
∑
D,σ

(εeD + σ�Z )d†
Dσ dDσ + ξ

(
n̂c − 1

2

)

+
∑

σ

[tAσ dAσ (c† + c) + itBσ dBσ (c† − c) + H.c.], (2)

where n̂c = c†c is the occupation number operator for the
nonlocal fermion.

We diagonalize Eq. (2) in the product basis |n̂dAσ 〉 × |n̂c〉 ×
|n̂dBσ 〉. Here the fermion parity, defined by the sum of occupa-
tion numbers in the QDs and wire (ndAσ + nc + ndBσ ) mod 2,
is conserved. Thus, the eigenstates |ψ〉e of He can be divided
into decoupled even- and odd-parity subspaces.

A possible realization of the phenomenological model, in-
troduced in Eqs. (1) and (2), is a semiconducting nanowire
with Rashba spin-orbit interaction perpendicular to the wire
axis and a magnetic field in z direction along the wire axis
[5,6], where the parameters ξ and tDσ can be obtained from.
In this case, the Majorana spin lies in the x − z plane, so
that we can parametrize it by a single angle �; see Fig. 1.
Furthermore, the spin polarization of the MBSs on both ends
is correlated [91–93], so that we can describe the tunneling
amplitudes by

tA↑ = −itB↑ = t cos(�/2),
(3)

tA↓ = itB↓ = t sin(�/2),

with the tunneling amplitude t and � ∈ [−π, π ].
The hole levels on the QDs are described by the

Hamiltonian

Hh =
∑
D,σ

(εhD + σ�Z )h†
Dσ hDσ + UhDn̂hD↑n̂hD↓, (4)

where h(†)
Dσ annihilates (creates) a hole on QD D with spin

σ =↑,↓ and energy εhD + σ�Z , UhD is the charging en-
ergy and n̂hDσ = h†

Dσ hDσ is the occupation number operator.
We consider heavy holes with the z component of the total
angular momentum jz,hσ = ±3h̄/2 [94]. Since the holes are
energetically separated from the superconducting ground state
by a large energy gap, we neglect a direct coherent coupling
between the holes and the MBSs. Thus, the hole eigenstates
are simply given by the occupation number states |ψ〉h =
|n̂hAσ , n̂hBσ 〉.

045429-2



PHOTONIC CROSS-NOISE SPECTROSCOPY OF MAJORANA … PHYSICAL REVIEW B 110, 045429 (2024)

The hole reservoirs and their couplings to the holes on the
QDs are given by

Hres =
∑

D,q,σ

εDqσ h†
Dqσ hDqσ , (5)

Vh =
∑

D,q,σ

VDqσ h†
Dqσ hDσ + H.c., (6)

respectively, where hDqσ annihilates a hole in reservoir D
with spin σ and energy εDqσ . The hole refilling rates are
given by 
hDσ (ε) = (2π/h̄)

∑
q |VDqσ |2δ(ε − εDqσ ), which

we consider to be energy independent and that 
hDσ = 
h.
Additionally, we assume that all hole states lie below μh such
that holes are refilled on the QDs but cannot tunnel back to the
reservoirs; see also Ref. [88].

The photon reservoirs are described by the Hamiltonian

Hph =
∑
k,D,P

h̄ωka†
kDPakDP, (7)

where a(†)
kDP annihilates (creates) a photon with wave number

k from QD D, polarization P = L, R, and energy h̄ωk . The
photons are circularly polarized with the z component of the
total angular momentum jz,ph = ∓h̄ corresponding to left (L)
and right (R) circular polarization, respectively.

Photons are emitted via electron-hole recombination,

Vrec = g
∑
k,D,ζ

dDζ hDζ̄ a†
kDζ

+ H.c., (8)

with the light-matter-interaction energy g and where we use
ζ for the electron and hole spins and the photon polarization
and identify σ =↑ with P = L and σ =↓ with P = R.

The Hamiltonian satisfies optical selection rules and holds
for photons emitted in wire direction, where the total angular
momentum commutes with the Hamiltonian; see for instance
Refs. [95,96]. The conservation of the angular momentum,
jz,e↑ + jz,h↓ = −h̄ (L photons) and jz,e↓ + jz,h↑ = +h̄ (R pho-
tons), leads to selection rules where ↑(↓) electrons recombine
with ↓(↑) holes to L(R) photons and thus allowing us to
establish a correspondence between the polarization of the
emitted photon and the electron spin. Photons emitted in other
directions would have a different polarization and we would
have to adjust Vrec accordingly [97,98]. We can enhance the
number of photons emitted in wire direction by integrating
the nanowire in a photonic waveguide [99].

Note that we focus on electron-hole recombination pro-
cesses rather than excitonic effects caused by electron-hole
interactions. The latter can be reduced by applying an elec-
tric field that spatially separates the electron and hole wave
functions [100,101]. Thereby, also the photon emission rate
can be decreased, ensuring that the dynamics of the setup is
governed by the coherent dynamics of electrons in the QD-
MBSs system (|tDσ /h̄| � 
ph).

Note that using a nanowire has a practical importance
on both the Majorana and optics sides. Indeed, previous
experiments have successfully demonstrated the coherent
tunnel-coupling of QDs to Rashba-nanowires in proximity to
an s-wave superconductor [102,103] and the combination of
superconductors with semiconductor optics [83–85] as well
as the embedment of optically active QDs within pn junctions

[86,87]. For these reasons, we believe that by combining these
elements, our setup is experimentally feasible.

III. MASTER EQUATION AND COUNTING STATISTICS

To investigate the dynamics of the system and its transport
properties, we use a Markovian master equation approach
[104–108]. To this aim, we trace out the photons and the hole
reservoirs from the total Hamiltonian, allowing us to study the
dynamics of the central part consisting of the MBSs and the
QDs, HS = He + Hh. Using standard approximations one can
arrive to

∂tρ
ψψ
S (χDζ , t ) =

∑
ψ ′

[−W Dζ

ψ ′ψρ
ψψ
S (χDζ , t )

+ eiχDζ W Dζ

ψψ ′ρ
ψ ′ψ ′
S (χDζ , t )

]
, (9)

where the counting field χDζ counts photons emitted from QD
D with polarization ζ . Here the diagonal elements of the den-
sity matrix in the system state ρ

ψψ
S = 〈ψ |ρS (t )|ψ〉 describe

the occupation probability of state |ψ〉 = |ψ〉e × |ψ〉h at time
t . Moreover, W Dζ

ψψ ′ are the electron-hole recombination rates

W Dζ

ψψ ′ = 
ph|〈ψ |dDζ hDζ̄ |ψ ′〉|2, (10)

with the photon rate 
ph = 2π
h̄ νph|g|2 and the photon density

νph. Here we consider no photons in the initial state, thus, pho-
tons can only be emitted; see further details of the calculations
in Appendix A.

We supplement the master equation by the additional rates,

LDσ
qp [ρS] = 
qp

(
d†

Dσ ρSdDσ − 1
2 {ρS, dDσ d†

Dσ }), (11)

LDσ
h [ρS] = 
h

(
h†

Dσ ρShDσ − 1
2 {ρS, hDσ h†

Dσ }). (12)

Here the rate 
qp describes a process, where uncorrelated
quasiparticles occupy the QDs, and the rate 
h, that can be
derived from Eqs. (5) and (6) [109], refills holes with spin
σ on QD D from the normal reservoir. We assume a large
hole refilling rate 
h � 
ph and |tDσ /h̄| � 
ph, such that the
dynamics of the system is fully governed by the processes in
the QD-MBSs system [110]. We include these processes in the
master equation by taking the expectation value in the system
state and adding them to the right-hand side of Eq. (9).

The time evolution of the occupations is calculated from
the master equation

∂tρS (χDζ , t ) = L(χDζ )ρS (χDζ , t ), (13)

where ρS (χDζ , t ) is a vector whose entries contain the occu-
pation of each state |ψ〉, i.e., ρ

ψψ
S (χDζ , t ). In this form, the

Liouvillian L(χDζ ) is a matrix containing all rates connecting
different states; see a schematic picture of the setup in Fig. 2.

The stationary state ρstat is obtained by solving ∂tρS (χDζ =
0, t ) = 0. This is equivalent to find the eigenvector |φ0〉〉 of
the Liouvillian L = L(χDζ = 0) with zero eigenvalue λ0 = 0.
The components of this column vector ρstat contain the sta-
tionary occupations of each state |ψ〉. From orthonormality
〈〈φ0|φ0〉〉 = 1, it follows that 〈〈φ0| is a row vector with entries
of 1, so that applying 〈〈φ0| from the left corresponds to taking
the trace.
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FIG. 2. Sketch of the dynamics in the model. We show the MBSs
γA and γB with splitting ξ coupled to electrons on the QDs with
energies εeD with amplitudes tDσ . The holes on the QDs with en-
ergies εhD get refilled by the hole refilling rate 
h. Via electron-hole
recombination photons are emitted with energy h̄ωk and polarization
P. Uncorrelated quasiparticles can occupy the electronic QD states
with rate 
qp.

Correlations of emission events are given by the noise
power spectrum [111]

SDζ ,D′ζ ′ (ω) = 1

2

∫ ∞

−∞
dteiωt 〈{δIDζ (t ), δID′ζ ′ (0)}〉, (14)

with D, D′ = A, B and the current fluctuations δIDζ (t ) =
IDζ (t ) − 〈IDζ (t )〉 of photons with spin ζ emitted from QD D.
Here curly brackets denote the anticommutator and ω and t
frequency and time, respectively. In Eq. (14), 〈...〉 = Tr[ρ0...]
with ρ0 the equilibrium density matrix of the system and bath.
The current operator IDζ (t ) = ṄDζ with NDζ = ∑

k a†
kDζ

akDζ

the number operator for photons associated with emission
from QD D. From Eq. (14), we can obtain the autocorrelation
function SDζ ,Dζ ′ for correlations in a single QD D = D′ =
A/B or the cross-correlation function SDζ ,D′ζ ′ with D = A
and D′ = B. In what follows, we restrict the calculations to
the zero-frequency noise (ω = 0) of the cross-correlations.
Therefore, we simplify the notation removing the D, D′ labels
and the ω dependence. In this way, we can express the cross-
correlation via the current superoperators JDζ as [104]

Sζ ζ ′ = −〈〈φ0|(JAζRJBζ ′ + JBζ ′RJAζ )|φ0〉〉, (15)

which describes the correlation between two photons emitted
from QD A with spin ζ and QD B with spin ζ ′. Here we have
introduced the jump superoperators,

JDζ = −i∂χDζ
L(χDζ )|χDζ =0, (16)

which describe the process of photon emission from QD D
with spin ζ [112]. Moreover, we have used the projectors
P0 = |φ0〉〉〈〈φ0| and Q = 1 − P0, and defined the pseudoin-
verse of the Liouvillian with R = QL−1Q.

If emission from the two QDs is correlated, then we have
Sζ ζ ′ �= 0; otherwise, Sζ ζ ′ = 0. In our model, the only coherent
coupling between the two QDs mediating such correlations
proceeds via the finite hybridization energy ξ . The size and
sign of Sζ ζ ′ further depends crucially on the QD energies as
well as on ζ and ζ ′. As we will discuss in detail below, the
coherent coupling of two electron spins (one in each QD)
via the superconducting condensate is reminiscent of crossed
Andreev reflection (CAR), i.e., the splitting of a Cooper pair
via the two QDs. Subsequent correlated emission of two pho-
tons with spins ζ and ζ ′ from the two QDs leads to Sζ ζ ′ > 0;
see Fig. 3(a). On the contrary, if only one electron is shared
between the two QDs, then the coherent tunneling between

(a)

(b)

(c)

FIG. 3. Types of resonances in the QD-MBSs system. We show
the electronic QD levels relative to the superconducting condensate
(μe = 0). For εeA = 0 and εeB = 2�Z , CAR processes lead to a pos-
itive cross-correlation S↓↓ > 0 (a), whereas ECT leads to a negative
contribution of S↑↓ (b). For εeA = −�Z , we show the mechanism of
local tunnel processes for ↑ electrons on QD A (c), which does not
contribute to the cross-correlations.

the two QDs via the two MBSs is reminiscent of elastic
cotunneling (ECT) and leads to negative cross-noise Sζ ζ ′ < 0
as only one photon is emitted from a QD, whereas the other
QD will not emit a photon at the same time; see Fig. 3(b).

In practice, photons emitted from one of the QDs can be
detected on both sides of the wire. The distinction of the
emission from the two QDs, necessary for measuring cross-
correlations, could be ensured by having different emission
energy ranges for the two QDs by shifting the hole states
on one side with a gate voltage. In that case the location of
emission is correlated with the energy of the photons that can
be readily measured by a photo detector.

IV. CROSS-CORRELATIONS SPECTROSCOPY

In this section, we first investigate the cross-correlations
spectroscopy for a pnp junction made of a 1D TSC coupled
to two QDs. We demonstrate that our detection scheme can
probe (i) the presence of nonlocal triplet superconducting cor-
relations, which is a necessary condition for the emergence of
MBSs, and (ii) establish a correspondence between the num-
ber of resonance peaks and the number of MBSs coupled to
the QDs. Second, we substitute the MBSs with trivial qMBSs
comprising four coupled MBSs and compare the results of the
cross-correlations spectroscopy.

Due to the different nature of CAR and ECT processes,
their resonances occur under different conditions: CAR pro-
cesses require that the energies of the electrons on the QDs
are compensated relatively to the superconducting condensate
(μe = 0) [113], i.e., εeA + σ�Z = −(εeB + σ ′�Z ), leading
to positive cross-correlations and the emission of a highly
correlated photon pair, whereas, ECT processes require an
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FIG. 4. Cross-correlations spectroscopy for MBSs. We show
∑

ζ Sζ ζ in (a) and
∑

ζ Sζ ζ̄ in (b) for parallel and antiparallel spin configura-
tions, respectively, as a function of the QD energies εeA and εeB in the intermediate tunneling regime (|t | ≈ |ξ |). The dashed lines correspond
to the line cut in (c), where Sζ ζ ′ is plotted along εeA = �Z . We give the energy spectrum at εeA = �Z as a function of εeB in (d), where even-
(solid lines) and odd-parity eigenstates (dashed lines) show anticrossings indicated by circles with colors that correspond to the peaks of Sζ ζ ′

in panel (c). We show two additional line cuts for the small (|t | < |ξ |) and large (|t | > |ξ |) tunneling regimes in panels (e) and (f), respectively.
The parameters are ξ = 0.2�Z , � = 0.75π , and 
qp = 0. The tunneling amplitude is t = 0.25�Z , except in (e) we use t = 0.05�Z and in (f)
t = 0.5�Z . Furthermore, we give schematic figures for the broad S↓↓ and the sharp S↑↑ resonances depending on the energy level position εeB

in panels (g) and (h).

alignment of the electron levels εeA + σ�Z = εeB + σ ′�Z ,
leading to negative cross-correlations.

Aside from CAR and ECT, local emission processes can
reduce the cross-correlations magnitude as they reduce the
number of nonlocal emission events. However, these pro-
cesses are resonant when the QD spin level is aligned with
the superconductor εeD + σ�Z = 0 [88]; see Fig. 3(c).

In summary, we expect CAR which leads to positive cross-
correlations along the antidiagonal εeA = −εeB for Sζ ζ̄ and
along εeA = −εeB ± 2�Z for Sζ ζ . On the other hand, ECT
gives rise to negative cross-correlation resonances along the
diagonal εeA = εeB for Sζ ζ and εeA = εeB ± 2�Z for Sζ ζ̄ . Be-
sides, these resonances can be reduced along εeB = ±�Z and
εeA = ±�Z due to local tunneling processes. Note that while
CAR and ECT processes leave the parity unchanged, local
emission processes change the parity.

A. Majorana bound states

We first explore the nonlocal superconducting correlations
by exploiting the spin texture in the analysis of the cross-
correlations spectroscopy. Thus, we split Sζ ζ ′ into its parallel
Sζ ζ and antiparallel Sζ ζ̄ spin components and represent them
as a function of the QD energies εeA and εeB; see Fig. 4.
In Figs. 4(a) and 4(b), we can observe three positive reso-
nance cross-correlation lines for the intermediate tunneling
regime (|t | ≈ |ξ |) that fulfill the condition for CAR; see
Fig. 3(a). In Fig. 4(a), we observe two resonance lines ex-
tending along εeA = −εeB ± 2�Z , which correspond to the
triplet QD states with spin ms = ∓1. In turn, the resonance
line along εeA = −εeB, observed in Fig. 4(b), emerges from
singlet and triplet states with spin ms = 0. As we mentioned
above, triplet correlations serve as a necessary condition for
the existence of MBSs in p-wave superconductors. However,
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we will observe later that trivial qMBSs lead to comparable
resonance lines, differing primarily in the number of reso-
nance peaks along a line cut, where one QD energy remains
constant.

In order to find more specific features in the spectroscopy
of Sζ ζ ′ that allow us to distinguish between MBSs and qMBSs,
we analyze Sζ ζ ′ along εeA = �Z in Fig. 4(c), where the ↓
electron on QD A is at the Fermi energy μe of the SC. Along
this line, we observe two types of CAR resonances, broad
and sharp, corresponding to strong and weak coupling to the
superconductor, respectively, which is effectively determined
by the arrangement of the QD energy levels: Broad (sharp)
resonances involve both (none) of the QD energy levels close
to resonance with the superconductor (μe = 0). For the linecut
along εeA = �Z , the ↓ electron on QD A is in resonance with
the superconductor, yielding broad resonances with S↓ζ ; see
Fig. 4(g). Sharp resonances correspond to the opposite spin
configuration S↑ζ ; see Fig. 4(h).

Broad and sharp resonances can be linked to the pres-
ence of an anticrossing on the energy spectrum; see circles
in the same color in Fig. 4(d). In general, we observe up
to 2#MBSs = 4 peaks for each component Sζ ζ ′ of the cross-
correlations resulting from the hybridization of the QD levels
and the two fermionic states that form the coupled MBSs.
Naturally, the number of resonances can be reduced due to
the presence of degeneracies or the overlapping of peaks in
larger tunneling regimes (|t | � |ξ |). Thus, having four peaks
per cross-correlation component serves as an upper bound
in the scenario when two MBSs are present in the system.
Note also that since we choose a spin angle of � = 0.75π ,
the tunneling of ↓ electrons is favored, and thus Sζ↓ exhibits
broader resonance peaks than Sζ↑.

To cover different scenarios, we analyze Sζ ζ ′ for different
tunneling amplitude strengths relative to the splitting energy
ξ of the MBSs. For |t | < |ξ | [see Fig. 4(e)], ξ determines the
energy splitting between eigenstates of even and odd parity
given in the product basis introduced in Sec. II (e.g., |0, 0, 0〉
and |0, 1, 0〉). Here the sharp resonances are hardly visible,
since they become very thin. Moreover, the broad resonances
exhibit a four-peak structure. For the S↓↓ component, the two
outer peaks are located at εeB = �Z ± ξ . They result from
emission cycles that involve the most contributing states,

|0, 0, 0〉 ↔ |↓, 1, 0〉 ⇔ |↓, 0,↓〉 2 ph−−→ |0, 0, 0〉, (17)

in the even-parity sector for εeB = �Z − ξ , whereas

|0, 1, 0〉 ↔ |↓, 0, 0〉 ⇔ |↓, 1,↓〉 2 ph−−→ |0, 1, 0〉, (18)

in the odd-parity sector at εeB = �Z + ξ . Here the hybridiza-
tion is denoted to be strong (⇔) or weak (↔). Then, the two
inner peaks close to εeB = �Z arise from both,

|0, 0, 0〉 ↔ |↓, 0,↓〉 2 ph−−→ |0, 0, 0〉, (19)

|0, 1, 0〉 ↔ |↓, 1,↓〉 2 ph−−→ |0, 1, 0〉, (20)

even- and odd-parity states. Remarkably, exactly at resonance
(εeB = �Z ), the cross-correlations become zero, since CAR

and ECT processes compensate each other. This is because the
eigenstates are equal superpositions, e.g., in the even parity,

|↓, 1, 0〉 ⇔ |0, 1,↓〉 (E > 0), (21)

|0, 0, 0〉 ⇔ |↓, 0,↓〉 2 ph−−→ |0, 0, 0〉 (E < 0), (22)

which are equally connected via ECT or CAR, respectively,
with the energy E of eigenstates of He in Eq. (2). In addi-
tion, local emission becomes dominant due to the presence
of degeneracies between even- and odd-parity states involved
in emission cycles for single-photon emission. Thus, at εeB =
�Z for E > 0, hybridization enables the emission cycles

|↓, 1,↓〉 1 ph−−→ |0, 1,↓〉 1 ph−−→ |0, 1, 0〉 ⇔ |↓, 1,↓〉, (23)

|↓, 1,↓〉 1 ph−−→ |↓, 1, 0〉 1 ph−−→ |0, 1, 0〉 ⇔ |↓, 1,↓〉. (24)

Furthermore, when we only take one spin species into
account, which is the case, for instance, when considering
a Majorana angle of � = 0, π , or in the limit of |tDσ | �
|�Z |, we can reduce the system to a spinless model. In the
limit of |tDσ |/|εeDσ − ξ | � 1, we can further provide an an-
alytical expression for the cross-correlations, by means of a
Schrieffer-Wolff transformation,

S̃σσ = 
ph
2�̃2

p

[
2�̃2

p + (εeAσ + εeBσ )2
]

[
4�̃2

p + (εeAσ + εeBσ )2
]2 , (25)

�̃p = itAσ tBσ

(
ξ

ε2
eAσ − ξ 2

+ ξ

ε2
eBσ − ξ 2

)
, (26)

with εeDσ = εeD + σ�Z . The cross-correlations S̃σσ exhibit
similar features to those of S↓↓ in the full model, as for the
latter, the photon emission process predominantly involves a
single spin species; see Eqs. (17)–(24). Further details of the
spinless model are presented in Appendix B.

In the limit of larger tunneling amplitudes (|t | � |ξ |), the
cross-correlation peaks broaden and separate; see Figs. 4(c)
and 4(f). The four-peak structure of the broad resonances
evolves into two peaks, as a result of the overlapping of
peaks caused by a larger hybridization. However, the sharp
resonances now exhibit four peaks, once again signifying the
maximum number of peaks for two MBSs. The emergence of
the two peaks in S↑↑ for energies εeB � −3�Z , for instance,
can be attributed to the emission cycles,

|0, 1, 0〉 ⇔ |↑, 1,↑〉 2 ph−−→ |0, 1, 0〉, (27)

|↓, 1, 0〉 ⇔ |↑, 0,↑〉 2 ph−−→ |0, 0, 0〉 ↔ |↓, 1, 0〉. (28)

Here the first emission cycle directly connects the CAR cou-
pled states, whereas the second cycle additionally includes
a spin-flip process. Thus, the peak closer to εeB = −3�Z is
larger and broader. The separation between the two peaks is
approximately given by ξ , since the corresponding anticross-
ings have a distance of �εeB ≈ ξ .

Comparing the large (|t | � |ξ |) and small (|t | < |ξ |) tun-
neling regimes, we observe that the latter constitutes the most
difficult regime to resolve all four sharp peaks. We can un-
derstand this observation by differentiating the roles played
by ξ and t . While ξ represents an energy difference between
the unoccupied and occupied nonlocal fermion level, t is the
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FIG. 5. Cross-correlations spectroscopy for MBSs with finite

qp. We show

∑
ζ Sζ ζ in (a) and

∑
ζ Sζ ζ̄ in (b) for parallel and

antiparallel spin configuration, respectively, as a function of the QD
energies εeA and εeB. The parameters are t = 0.25�Z , ξ = 0.2�Z ,
� = 0.75π , and 
qp = 
ph/2 � |tDσ /h̄|.

tunneling amplitude between QD electrons and the nonlocal
fermion. Thus, cross-correlation peaks, emerging at resonance
(when the CAR or ECT condition is fulfilled), decrease as
|t |2/|ξ | when detuning the QD levels from resonance. This
occurs because ξ increases the energy cost for virtually occu-
pying the nonlocal fermion. As a result, discerning resonances
is more challenging (easier) when |t | < |ξ | (|t | � |ξ |), be-
cause it gives rise to sharper (broader) peaks.

In reality, the finite size of the TSC also allows for nonlocal
tunnel couplings between QDs and MBSs on opposite sides
[93,114,115]. For the discussed regime of overlapping MBSs,
experimental data from Ref. [103] demonstrates that the ra-
tio between the nonlocal and local tunneling amplitudes is
small, yielding no qualitative differences compared to the case
without nonlocal couplings. Note that a higher ratio could po-
tentially lead to the emergence of additional resonance peaks,
which could be erroneously associated with trivial states; see
more details in Appendix C.

Now we perturb the system to check the robustness of the
nonlocal cross-correlations spectroscopy by adding a constant
rate of uncorrelated quasiparticles. The presence of additional
uncorrelated quasiparticles modifies the cross-correlation sig-
nal as local emission events are not limited to the resonance
condition between the QD levels and the condensate, but
they are present for all QD energies εeD. Furthermore, ECT
processes are enhanced, since uncorrelated quasiparticles can
tunnel between the QDs via the MBSs when the energy levels
are aligned, i.e., εeA + σ�Z = εeB + σ ′�Z . Note that the con-
stant rate changes the parity of the system and that it needs to
be small (
qp � |tDσ /h̄|), such that the system stays coherent.

We show in Fig. 5 the cross-correlations spectroscopy in
the presence of uncorrelated quasiparticles. We can observe
that positive cross-correlations are still present, although they
become reduced at all energies (εeA, εeB) due to the enhanced
local emission. By comparing Figs. 4 and 5, additional neg-
ative resonances (blue) appear along the diagonal that where
absent in the case of 
qp = 0, resulting from ECT. For parallel
spins at εeA = εeB, a spin can tunnel from one QD to the
opposite one [see Fig. 5(a)], whereas for antiparallel spins at
εeA = εeB ± 2�Z , a spin needs to flip while tunneling through
the system; see Fig. 5(b).

Note that adding uncorrelated quasiparticles directly on the
superconductor [116] has no significant effect on the cross-
correlation signal if the rate is smaller or comparable to 
ph,
as the emission of photon pairs occurs in both parity sectors.
Thus, the proposed effects of our system exhibit a certain
degree of immunity against various kinds of quasiparticle
poisoning.

In summary, the cross-correlations spectroscopy reveals
the presence of finite triplet correlations, which is a neces-
sary condition for the emergence of MBSs. Furthermore, we
observe up to 2#MBSs = 4 peaks for each component Sζ ζ ′ as
an upper bound, establishing a correspondence between the
number of MBSs and the number of peaks in the spectroscopy.
Additionally, the cross-correlations remain robust even in the
presence of uncorrelated quasiparticles, provided that the poi-
soning rate fulfills 
qp � |tDσ /h̄|.

B. Quasi-Majorana bound states

We now add two extra MBSs to the system studied above
to mimic a scenario where nontopological qMBS are present
in the system; see Fig. 6(a). We thus introduce the Ma-
jorana operators γD1 = c†

D + cD and γD2 = i(c†
D − cD) that

comprise a complex fermion c†
D coupled to QD D = A, B. To

compare our previous results for the MBSs case with those
of the qMBSs, we replace Eq. (2) by the model that describes
the qMBSs coupled to the QDs in the basis of the two complex
fermions,

HqMBS
e =

∑
D,σ

(εeD + σ�Z )d†
Dσ dDσ +

∑
D

ξD

(
n̂cD − 1

2

)

+ tAB(cAcB − c†
AcB) + H.c.

+
∑
D,σ

(tD1σ + itD2σ )dDσ c†
D

+ (tD1σ − itD2σ )dDσ cD + H.c. (29)

Here the first term describes the two QDs with energy εeD +
σ�Z and a Zeeman splitting �Z . The second term is the
coupling ξD of two MBSs γDi, i = 1, 2, on the same side D =
A, B with occupation number operator n̂cD = c†

DcD, where c(†)
D

annihilates (creates) a complex fermion on side D = A, B.
The third term accounts for the coupling tAB between the
two complex fermions on different sides that is necessary to
obtain finite cross-correlations. It results from the coupling
of the inner MBSs γA2 and γB1. The last term describes the
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FIG. 6. Cross-correlations spectroscopy for qMBSs. We give a schematic figure of the qMBS model in panel (a). We show
∑

ζ Sζ ζ in (b) and∑
ζ Sζ ζ̄ in (c) for parallel and antiparallel spin configurations, respectively, as a function of the QD energies εeA and εeB in the intermediate

tunneling regime (|t | ≈ |tAB|). The dashed lines correspond to the line cut in (d), where Sζ ζ ′ is plotted along εeA = �Z . We show two additional
line cuts for the small (|t | < |tAB|) and large (|t | > |tAB|) tunneling regimes in panels (e) and (f), respectively. The parameters are ξA = ξB = 0,
tAB = 0.1�Z , �A = �B = 0.75π , and 
qp = 0. The tunneling amplitude is t = 0.25�Z , except in (e) we use t = 0.05�Z and in (f) t = 0.5�Z .

tunneling between the MBSs and the QDs with the spin-
dependent tunneling amplitudes,

tD1↑ = −itD2↑ = t cos(�D/2), (30)

tD1↓ = +itD2↓ = t sin(�D/2), (31)

which we can parametrize by the angle �D for the complex
fermion on side D.

We diagonalize HqMBS
e in Eq. (29) in the basis

|ndAσ , ncA, ncB, ndBσ 〉 and calculate the cross-correlations.
Note that although it is possible to introduce additional
couplings between MBSs on different sides, the resulting
spectrum would differ significantly with respect to the topo-
logical case, and therefore it would be distinguishable. For
this reason, we employ a specific set of parameters to obtain a
cross-correlation spectrum closely resembling that of the two
MBSs case, emphasizing the significance of making differen-
tiation possible. Hence, we specifically maintain identical spin
angles �D = � and avoid overlap between MBSs on the same
side, i.e., ξD = 0, describing the scenario of coupled zero-
energy Andreev bound states. A related model for coupling a
single zero-energy Andreev bound state to a lead was studied
in Ref. [60].

We start the comparison with the cross-correlations spec-
troscopy in Figs. 6(b) and 6(c), where we observe similar
resonance lines with respect to the MBSs case (see Fig. 4),
since the tunneling terms in the qMBSs system also allow
for finite triplet resonance lines. However, there are some

qualitative differences relative to the cross-correlation res-
onance lines that allow us to differentiate between MBSs
and qMBSs. Therefore, we investigate line cuts for different
tunneling regimes, where we relate the tunneling amplitude
t between MBSs and QDs to the tunneling amplitude tAB

between MBSs on different sides.
Here we can also identify broad and sharp resonance peaks,

as can be seen from the line cut of the cross-correlations along
εeA = �Z for the intermediate tunneling regime (|t | ≈ |tAB|);
see Fig. 6(d). In this occasion, the number of both sharp and
broad resonances has increased. Moreover, broad peaks show
asymmetries and exhibit sharp resonances on top. Again, ev-
ery resonance corresponds to an anticrossing in the energy
spectrum, where the number of anticrossings around μe = 0 is
highly increased. This is because the number of eigenstates is
doubled compared to the case of two MBSs, since four MBSs
comprise two complex fermions.

In contrast to the previous 4 sharp resonances appearing
around εeB = −3�Z , here we observe 16 sharp resonances for
S↑↑, which serves as the upper boundary for four MBSs, since
2#MBSs = 16. These resonances originate from anticrossings
in the spectrum, 8 for the even and 8 for the odd parity.
The mechanism for the emission of two correlated photons
is similar to the emission cycles given in the MBSs case.
But the doubled number of complex fermions gives rise to
a fourfold number of anticrossings as well as resonance peaks
compared to the case of two MBSs. For instance, we now have
four possibilities for the hybridization between even-parity
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states, involving either both QDs being empty or both being
occupied,

|0, 0, 0, 0〉 ↔ |↑, 0, 0,↑〉, (32)

|0, 0, 0, 0〉 ↔ |↑, 1, 1,↑〉, (33)

|0, 1, 1, 0〉 ↔ |↑, 0, 0,↑〉, (34)

|0, 1, 1, 0〉 ↔ |↑, 1, 1,↑〉, (35)

resulting in 4 resonance peaks. In contrast, there is only one
anticrossing between |0, 0, 0〉 and |↑, 0,↑〉 for the case of
two MBSs. The same holds for the anticrossings between
states with both QDs occupied or only one being occupied
(|↑, nc, nc,↑〉 ↔ |↓, n′

c, n̄′
c, 0〉), that lead to other four reso-

nance peaks, and thus in total there are 8 peaks for the even
parity.

In the case of broad resonances, S↓↓ shows asymmetries,
and also tends to vanish at resonance at εeB = �Z . Unlike
the topological case, it exhibits sharp peaks on top. Here the
spectrum exhibits more anticrossings due to the increased
number of states, thereby enabling the occurrence of addi-
tional resonances. For instance, the peak close to εeB = 2�Z

results from the emission cycles involving highly hybridized
odd-parity states,

|0, 1, 0, 0〉 ⇔ |↓, 0, 0, 0〉 ⇔ |↓, 0, 1,↓〉 2 ph−−→ |0, 0, 1, 0〉,
(36)

|0, 1, 0, 0〉 ⇔ |0, 1, 1,↓〉 ⇔ |↓, 0, 1,↓〉 2 ph−−→ |0, 0, 1, 0〉.
(37)

Because of the weak hybridization between |0, 0, 1, 0〉 ↔
|0, 1, 0, 0〉, that is necessary to go back to the highly hy-
bridized states, the corresponding emission peak is small.

Examining different tunneling regimes, we observe for
small tunneling amplitudes (|t | < |tAB|) [see Fig. 6(e)], a de-
crease in the number of visible peaks and that these peaks shift
closer together. For instance, for S↑↑, the peaks are shifted to-
wards εeB = −3�Z . Conversely, in the large tunneling regime
(|t | > |tAB|) [see Fig. 6(f)], the peaks become broader and
move away from each other, which makes it difficult to ac-
curately count the number of peaks, as some may be missed.
Nevertheless, the number of visible peaks for S↑↑ remains
larger than four, thereby excluding the possibility of having
only two MBSs in the system.

V. CONCLUSIONS

We investigated theoretically signatures of MBSs that
appear in the photonic cross-noise spectroscopy in a pnp
junction. The system is composed of a TSC coherently tun-
nel coupled on each side to an optically active QD forming
a pnp junction. In this way, when an electron provided by
the TSC (n) via the MBS tunnels to a QD level with a
given spin direction, it can recombine with a hole provided
from a normal conducting part (p), resulting in the emission
of a photon, whose polarization is locked to the electron
spin. Thus, the presence of nonlocal superconducting corre-
lations allows for the correlated emission of a photon on each

QD. This phenomenon expresses itself as a finite photonic
cross-noise, whose polarization reflects the superconducting
spin texture. In this way, our detection scheme allows us to
probe nonlocal spin-triplet superconducting correlations by
the direct measurement of the photonic cross-noise polariza-
tion. Remarkably, this signature is robust even in the presence
of additional uncorrelated quasiparticles, which enhance local
emission processes.

Unfortunately, although nonlocal superconducting triplet
correlations are necessary for the presence of MBSs, they
are not specific to this system since, as we showed, triv-
ial qMBSs can also exhibit them due to the presence of
spin-orbit coupling, Zeeman field and superconductivity in
these systems. For this reason, we analyzed closely the cross-
noise spectroscopy and established a correspondence between
the number of complex fermions composed of the qMBSs
and the number of cross-correlation resonances. In the case
of a TSC junction, a pair of MBSs comprises a single com-
plex fermion and leads to up to 2#MBSs = 4 sharp resonances
arising along a line cut for each spin component. In contrast,
in the case of trivial qMBSs, with two complex fermions or
four MBSs, up to 2#MBSs = 16 peaks emerge for each spin
component of the cross-correlations.

In summary, our detection scheme allows us to differentiate
between MBSs and qMBSs by counting the number of sharp
resonances of one spin component of the cross-correlations.
Importantly, this detection method remains effective, even
when qMBSs closely mimic the scenario of two MBSs by ex-
amine the cross-correlations spectroscopy in the intermediate
tunneling regime. Further, the locking of the spin-information
of the QD-spin state to the polarization state of the emitted
photon that is readily measured by state of the art photode-
tectors provides a more direct spectroscopic tool of the spin
texture of the (nonlocal) superconducting correlations than
charge current measurements.
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APPENDIX A: DERIVATION OF THE MASTER EQUATION
FOR PHOTON EMISSION

To calculate the dynamics of the system, we use full count-
ing statistics and a Markovian master equation [104–108].
We discussed the refilling of holes in the main text after
Eq. (6). For the emission of photons, we split the model into an
exactly solvable part H0 = He + Hh + Hph and the coupling
Vrec between the system HS = He + Hh, which has the eigen-
value equation HS|ψ〉 = Eψ |ψ〉 with eigenstate |ψ〉 = |ψ〉e ×
|ψ〉h and the photon reservoir Hph with eigenvalues h̄ωk; see
Eqs. (2), (4), (7), and (8). The counting fields χDζ (conjugate
variable to the occupation number operator n̂kDζ = a†

kDζ
akDζ )

count photons emitted from QD D = A, B with polarization
ζ = L, R.
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For the dynamics of the full system, we use the von Neu-
mann equation

∂tρ(t ) = − i

h̄
[(H0 + Vrec), ρ(t )], (A1)

where ρ(t ) is the density matrix of the full system H0 + Vrec.
We add the counting fields with a Fourier transformation,

ρ(χDζ , t ) = ρ(t ) exp

⎛
⎝i

∑
n̂kDζ

χDζ n̂kDζ

⎞
⎠. (A2)

By inserting Eq. (A2) into Eq. (A1) we can derive a general-
ized von Neumann equation,

∂tρ(χDζ , t ) = − i

h̄
(H+(χDζ )ρ(χDζ , t )

− ρ(χDζ , t )H−(χDζ )), (A3)

where the Hamiltonian is given by

H±(χDζ ) = H0 +
(

g
∑

k

dDζ hDζ̄ a†
kDζ

e±iχDζ /2 + H.c.

)
.

(A4)

Thus, the time evolution of the density matrix is given by

ρ(χDζ , t ) = e−iH+(χDζ )t/h̄ρ(χDζ )eiH−(χDζ )t/h̄. (A5)

Now, we transform to the interaction picture, where operators
Ô and the density matrix are described by

ÔI (χDζ , t ) = eiH0t/h̄Ô(χDζ )e−iH0t/h̄, (A6)

ρI (χDζ , t ) = eiH0t/h̄ρ(χDζ , t )e−iH0t/h̄, (A7)

respectively, and the time derivative of the density matrix
simplifies to

∂tρI (χDζ , t ) = − i

h̄
V +

I (χDζ , t )ρI (χDζ , t )

+ i

h̄
ρI (χDζ , t )V −

I (χDζ , t ). (A8)

Here only the interaction

V ±
I (χDζ , t ) =

∑
k

ge±iχDζ /2dDζ (t )hDζ̄ (t )a†
kDζ

(t ) + H.c.,

(A9)

= SDζ (t )P†
±(χDζ , t ) + H.c., (A10)

appears, where we introduce two new operators SDζ (t ) =
dDζ (t )hDζ̄ (t ) and P±(χDζ , t ) = ∑

k g∗e∓iχDζ /2akDζ (t ), which
obey the commutation relation [SDζ (t ), P±(χDζ , t )] = 0. In-
tegrating Eq. (A8) and inserting it again, leads to

∂tρI (χDζ , t )

= − i

h̄
V +

I (χDζ , t )ρI (χDζ , t ) + i

h̄
ρI (χDζ , t )V −

I (χDζ , t )

+ 1

h̄2

∫ t

0
dt ′[−V +

I (χDζ , t )V +
I (χDζ , t ′)ρI (χDζ , t ′)

+ V +
I (χDζ , t )ρI (χDζ , t ′)V −

I (χDζ , t ′)

+ V +
I (χDζ , t ′)ρI (χDζ , t ′)V −

I (χDζ , t )

− ρI (χDζ , t ′)V −
I (χDζ , t ′)V −

I (χDζ , t )]. (A11)

In the further calculation, we neglect the reaction from the
photon reservoir to the system, such that the total density
matrix can be written as

ρI (χDζ , t ) = ρSI (χDζ , t ) ⊗ ρph, (A12)

and trace out the photon reservoir, which leads to
ρSI (χDζ , t ) = Trph[ρI (χDζ , t )],

〈P(†)
α (χDζ , t )〉 = 0, (A13)

and the correlators

〈Pα (χDζ , τ )Pβ (χDζ )〉 = 〈P†
α (χDζ , τ )P†

β (χDζ )〉 = 0, (A14)

〈P†
α (χDζ , τ )Pβ (χDζ )〉 = |g|2e(α−β )iχDζ /2

∑
k

eiτω〈n̂kDζ 〉,

(A15)

〈Pα (χDζ , τ )P†
β (χDζ )〉

= |g|2e−(α−β )iχDζ /2
∑

k

e−iτω(1 + 〈n̂kDζ 〉), (A16)

with α, β = +,−, τ = t − t ′, and 〈n̂kDζ 〉 = 〈a†
kDζ

akDζ 〉 =
Trph[a†

kDζ
akDζ ρph]. We assume that no optical photons are

present in equilibrium, so 〈n̂kDζ 〉 = 0.
Now we use the Markov approximation, such that

ρSI (χDζ , t ′) → ρSI (χDζ , t ) and extend the integral in
Eq. (A11) to infinity. We take all matrix elements in the
system state, perform the integration over τ and go back
to the Schrödinger picture, where we obtain in secular
approximation

∂tρ
ψψ
S (χDζ , t )

= 2π

h̄

∑
k

∑
ψ ′

|g|2[ − |〈ψ ′|SDζ |ψ〉|2ρψψ
S (χDζ , t )

× δ(Eψ − Eψ ′ − h̄ωk ) + eiχDζ |〈ψ |SDζ |ψ ′〉|2

× ρ
ψ ′ψ ′
S (χDζ , t )δ(Eψ ′ − Eψ − h̄ωk )

]
. (A17)

We integrate over k (
∑

k → 2π
L

∫
dk) to obtain Eq. (9).

APPENDIX B: SPINLESS MODEL

To get a further inside of the underlying processes in the
cross-correlations spectroscopy, we reduce the system to a
spinless model, that is applicable, when the Majorana spin
points in ±z direction (� = 0, π ) or when |tDσ | � |�Z |. By
replacing Eq. (2) with

Heσ =
∑

D

εeDσ d†
DdD + ξ

(
n̂c − 1

2

)

+ [tAσ dA(c† + c) + itBσ dB(c† − c) + H.c.], (B1)

where σ only appears as an index, we can investigate the
cross-correlation Sσσ ; see Fig. 7. The spinless model re-
sembles nonlocal triplet correlations for parallel spins, as it
leads to a positive resonance line along εeAσ = −εeBσ [see
Fig. 7(a)], where the CAR condition is fulfilled. Addition-
ally, when uncorrelated quasiparticles tunnel onto the QDs
(
qp > 0), the cross-correlation remains robust and a negative
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FIG. 7. Cross-correlations spectroscopy for the spinless model. We show Sσσ as a function of the QD energies εeAσ and εeBσ in the small
tunneling regime (|tDσ | < |ξ |) for 
qp = 0 (a) and 
qp = 
ph/2 (b). Additionally, we show line cuts of Sσσ from panel (a) (solid line) and the
analytical expression S̃σσ (dashed line) along εeAσ = 0 (c) and εeAσ = 0.5�Z (d). The parameters are ξ = 0.2�Z and tAσ = itBσ = t = 0.03�Z .

resonance line emerges along εeAσ = εeBσ due to ECT pro-
cesses; see Fig. 7(b).

The emergence of positive triplet correlations stems from
the emission of correlated photon pairs. For parallel spins, this
process can effectively be described by a triplet pairing on
two QDs,

HSC =
∑

D

εeDσ d†
DdD + (�pd†

Ad†
B + H.c.), (B2)

where �p ∈ R is the pairing amplitude of the effective super-
conductivity on the QDs due to the proximity effect. Note that
we effectively traced out the TSC hosting the MBSs. We can
diagonalize Eq. (B2) in the basis |nA, nB〉, where n̂D = d†

DdD

is the occupation number operator, and obtain an analytical
expression for the effective cross-correlations,

S̃σσ = 
ph
2�2

p

[
2�2

p + (εeAσ + εeBσ )2
]

[
4�2

p + (εeAσ + εeBσ )2
]2 , (B3)

by using Eq. (15) accordingly.
To include the contribution of the MBSs, we perform

a Schrieffer-Wolff transformation [117] on Eq. (B1) in the

limit |tDσ |/|εeDσ − ξ | � 1, so the occupation of the non-
local fermion only enters virtually. We can split Eq. (B1),
in an unperturbed part H0 = ∑

D=A,B εeDσ d†
DdD + ξ (n̂c − 1

2 )
and a small perturbation H ′ = [tAσ dA(c† + c) + itBσ dB(c† −
c) + H.c.]. We separate the eigenstates of H0 in low-energy
states |m〉 = |ψ〉e for n̂c = 0 with eigenenergy Em and high-
energy states |l〉 = |ψ〉e for n̂c = 1 with eigenenergy El , i.e.,
we assume the occupied nonlocal fermion as the high-energy
sector. The matrix elements of the effective Hamiltonian up to
second order are given by [118]

H̃mm′ = H0
mm′ + H ′

mm′ + 1

2

∑
l

H ′
ml H

′
lm′

×
[

1

Em − El
+ 1

Em′ − El

]
+ O(H ′3). (B4)

We obtain the effective Hamiltonian for the even and odd
parity,

H̃even =
[∑

D

(
εeDσ + |tDσ |2

εeDσ − ξ

)
− ξ

2

]
n̂An̂B −

[∑
D

( |tDσ |2
εeDσ + ξ

)
+ ξ

2

]
(1 − n̂An̂B)

+
[

itAσ tBσ

(
ξ

ε2
eAσ − ξ 2

+ ξ

ε2
eBσ − ξ 2

)
dBdA + H.c.

]
, (B5)

H̃odd =
∑

D

(
εeDσ + |tDσ |2

εeDσ − ξ
− |tD̄σ |2

εeD̄σ + ξ
− ξ

2

)
d†

DdD

+
[

it∗
Aσ tBσ

(
ξ

ε2
eAσ − ξ 2

+ ξ

ε2
eBσ − ξ 2

)
d†

AdB + H.c.

]
, (B6)
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respectively. The effective pairing amplitude �̃p in Eq. (B7)
can be extracted from Eq. (B5), which accounts for the pairing
between |0, 0〉 and |σ, σ 〉. Thus, we can deduce an effective
pairing amplitude

�̃p = itAσ tBσ

(
ξ

ε2
eAσ − ξ 2

+ ξ

ε2
eBσ − ξ 2

)
. (B7)

which we can insert into Eq. (B3) to obtain the analytical
expression for the cross-correlations S̃σσ in Eq. (25).

In Figs. 7(c) and 7(d), we investigate line cuts of Sσσ along
εeAσ = 0 and εeAσ = 0.5�Z , respectively, and compare them
to the effective S̃σσ . When one QD level is in resonance with
μe = 0, the cross-correlations Sσσ exhibit four peaks: two at
εeBσ = ±ξ and two close to resonance at εeBσ = 0. In this sce-
nario, the analytical prediction matches the width of the peaks
at resonance near εeBσ = 0. However, a discrepancy arises in
the peak heights, which is given by 
ph/4 in the analytical
model. Additionally, that Sσσ vanishes at εeBσ = 0 is due to
the fact that CAR and ECT processes compensate each other, a
feature not captured by the analytics since ECT processes are
not included. Traces of divergencies in the analytical model
appear at εeBσ ± ξ , aligning with the positions of the small
broad peaks at εeBσ ± ξ from the effective model. Conversely,
when the QD levels are detuned from resonance at μe = 0,
the cross-correlations exhibit a sharp peak, satisfying the
CAR condition (εeAσ = −εeBσ ) as predicted by the analytical
model. Additionally, observable flat peaks at εeBσ ± ξ coin-
cide with traces of divergencies from the analytical model.

APPENDIX C: INFLUENCE OF NONLOCAL TUNNEL
COUPLINGS BETWEEN MBSs AND QDs

In this section, we investigate the influence of nonlocal
tunneling amplitudes, i.e., the tunneling between QD lev-
els and MBSs on opposite sides [93,114,115]. To include
the nonlocal tunneling terms, we replace the second line in
Eq. (2) by

Hnl =
∑
D,σ

[(tD1σ + itD2σ )dDσ c†

+ (tD1σ − itD2σ )dDσ c + H.c.], (C1)

where tDiσ is the tunneling amplitude between electrons with
spin σ on QD D and MBS γi, where we set the new no-
tation γA = γ1 and γB = γ2, compared to Eq. (1). We can
parametrize the local and nonlocal tunneling amplitudes by

FIG. 8. Cross-correlations spectroscopy for MBSs including
nonlocal tunneling amplitudes. We show Sζ ζ ′ along εeA = �Z as a
function of εeB for (a) small, (b) intermediate, and (c) large tunneling
regimes. The parameters are tnl = 0.16t , ξ = 0.2�Z , � = 0.75π ,
�nl = π/2, and 
qp = 0. For the tunneling amplitude we use t =
0.05�Z in (a), t = 0.25�Z in (b), and t = 0.5�Z in (c).

the angles � and �nl, respectively,

tA1↑ = −itB2↑ = t cos(�/2),

tA1↓ = itB2↓ = t sin(�/2),

tB1↑ = −itA2↑ = tnl cos(�nl/2), (C2)

tB1↓ = itA2↓ = tnl sin(�nl/2),

with tunneling amplitudes t and tnl. We can estimate the
ratio of the tunneling amplitudes for overlapping MBSs with
tnl/t = 0.16 adapted from Ref. [103].

In Fig. 8, we show the results of the cross-correlations
spectroscopy for three different tunneling regimes. Compared
to the model without nonlocal couplings (see Fig. 4), we
observe no qualitative differences. Note that a higher ratio
could potentially lead to the emergence of additional res-
onance peaks, which could be erroneously associated with
trivial states.
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