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Electron-phonon coupling induced topological phase transition in an α-T3 Haldane-Holstein model
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We present impelling evidence of topological phase transitions induced by electron-phonon (e-ph) coupling in
an α-T3 Haldane-Holstein model that facilitates smooth tunability between graphene (α = 0) and a dice lattice
(α = 1). The e-ph coupling has been incorporated via the Lang-Firsov transformation which adequately captures
the polaron physics in the high-frequency (anti-adiabatic) regime, and yields an effective Hamiltonian through
zero phonon averaging at T = 0. While exploring the signature of phase transitions driven by polaron and its
interplay with the parameter α, we identify two regions based on the values of α, namely, the low to intermediate
range (0 < α � 0.6) and larger values of α (0.6 < α < 1), where the topological transitions host distinct
behavior. There exists a single critical e-ph coupling strength for the former, below which the system behaves
as a topological insulator characterized by edge modes, finite Chern number, and Hall conductivity, with all of
them vanishing above this value, and the system undergoes a spectral gap closing transition. Further, the critical
coupling strength depends upon α. For the latter case (0.6 < α < 1), the scenario is more interesting where there
are two critical values of the e-ph coupling at which trivial-topological-trivial and topological-topological-trivial
phase transitions occur. Our study shows a significant difference with regard to the well-known unique transition
occurring at α = 0.5 (or at 0.7) in the absence of the e-ph coupling, and thus underscores the importance of
interaction effects on topological phase transitions.
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I. INTRODUCTION

Upsurge in generating the topological phases in condensed
matter systems has been a modern trend for the last few
decades [1,2]. Although the concept of topology has been
prevalent in mathematics for a long time back, it gained enor-
mous attention in modern condensed matter systems thanks
to the pioneering work by Thouless et al. [3]. The TKNN for-
malism serves as the fundamental tool for understanding the
topological nature associated with the quantized plateaus of
the quantum Hall (QHE) [4] systems. In the subsequent years,
the interest in predicting new topological phases remains
unabated in two [5,6] and three [7–10] dimensions, topo-
logical semimetals [11,12], topological superconductors [13],
and many more. Moreover, with the discovery of symmetry-
protected topological phases in such systems, a continuous
phase transition can be realized between states with same
symmetry but different topology, has led to the study of exotic
topological materials [1,2,14,15]. The topological properties
of these phases are protected against disorder. Owing to
such robustness to external perturbations, these systems offer
potential applications in modern quantum devices, such as
quantum computers etc.

Apart from the QHE observed in the presence of an exter-
nal magnetic field, there have been efforts to realize similar
behavior even in the absence of a magnetic field [16–19].
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It was first claimed by Haldane [20] that a complex next-
nearest neighbor (NNN) hopping with a phase φ (also called
as the Haldane flux) in a two-dimensional honeycomb lattice
breaks the time-reversal symmetry (TRS) of the system and
the bands are indexed by a topological invariant, known as
the Chern number which is analogous to the quantization of
the Hall conductivity. Furthermore, the inclusion of a stag-
gered Samenoff mass (M) term in such systems results in the
breaking of the sublattice symmetry, which is responsible for
opening and closing a band gap at the Dirac points (commonly
denoted by the K and K ′ points) in the Brillouin zone (BZ).

Of late, the study of topology in multiband systems has
emerged as one of the fundamental areas that has reshaped the
overall scenario of modern condensed matter physics [21–30].
With the advent of two-dimensional (2D) graphene-like mate-
rials, immense interest has been drawn to studying electronic
and transport properties in honeycomb lattices and its variants
[31,32]. Unlike bare graphene, where the electronic properties
are characterized by the Dirac quasiparticles in the low-energy
limit, there exists a variant of the honeycomb lattice with
T3 symmetry, known as the T3 or the dice lattice [33–45],
where the low-energy spectrum of the lattice is governed by
the Dirac-Weyl quasiparticles. The T3 lattice exhibiting pseu-
dospin S = 1 states can be thought of as an extension to the
bare graphene (pseudospin S = 1/2), fabricated by an addi-
tional atom at the center of the hexagon and may be visualized
as comprising of a “C” sublattice as shown in Fig. 1.

It has been proposed that the dice lattice can be realized in
a cold-atom experimental setup by three counter-propagating
laser beams [40]. Furthermore, the realization of such lattice is
proposed by growing a heterostructure consisting of a trilayer
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FIG. 1. The schematic diagram of an α-T3 lattice is shown, where
the red, purple, and green circles represent the sublattices A, B, and
C sublattices, respectively. The NN hopping strength between A and
B sublattices (solid black line) is t , while it is t ′ = αt between A
and C sublattices (solid red line). The NNN hopping between A-B-A
(dashed red) or B-A-B (dashed purple) is λeiφi j , while through C, it is
λ′eiφ jk between A-C-A (dashed red) and C-A-C (dashed green). Here
λ′ = αλ and the phase φi j (−φi j) denotes the clockwise (anticlock-
wise) direction.

of cubic lattices, namely, SrTiO3/SrIrO3/SrTiO3 in the (111)
direction [41]. Interestingly, a smooth transformation from
pseudospin S = 1/2 state to pseudospin S = 1 can be appre-
hended using a more generalized version of the T3 system,
known as the α-T3 lattice [46–49], where α is the strength
of the nearest neighbor (NN) hopping from the central atom
(shown by the red line in Fig. 1). Therefore an α-T3 lattice
sets the two extreme limits, namely, α = 0 (graphene) and
α = 1 (dice), between which a continuous control is possible
by parametrizing α suitably through a variation of the Berry
phase, proportional to α. Raoux et al. [46] have explored
the role of the Berry phase in α-T3 lattice and shown that
the orbital susceptibility of the system undergoes a transition
from a diamagnetic (α = 0) to a paramagnetic (α = 1) at a
critical αc = 0.495 while the Berry phase changes from π

(graphene) to 0 (dice). Due to the presence of the additional
atom at the center, the low-energy spectrum of the α-T3 lat-
tice, governed by the tight-binding Dirac-Weyl Hamiltonian,
embodies two dispersive bands that are linear in momenta
and a dispersionless flat band at zero-energy. Malcolm et al.
[47] have shown that the bulk dispersion of a quantum well
structure made of Hg1−xCdxTe can be linked to the low-lying
dispersion of an α-T3 lattice with an effective α = 1/

√
3

at a critical Cd doping concentration, xc ≈ 0.17. In recent
times, such α-T3 lattices with enlarged spin states (S > 1/2)
have offered a series of studies on equilibrium [44–70] and
nonequilibrium [71–77] properties. To highlight a few, people
have investigated the role of Berry phase [46,48,56,71,77],
valley-polarized transport [52,74] that may be applicable
to valleytronics, Klein tunneling [53], optical conductivity

[48,51,58–60,64], magnetotransport properties, such as the
Shubnikov–de Hass oscillation and quantized Hall conductiv-
ity [48,50,54,56], floquet dynamics [72,75], Majorana corner
states [45], and other topological signatures [37,43,44,49] in
α-T3 or dice lattices. As there was evidence in the past which
demonstrated the topology of the multiband systems, such as,
kagomé [25,27,28], Lieb [30], and dice [35,37,39,41] lattices
could be turned into a Chern insulator by tuning the system
parameters, recently, Dey et al. [72] have attempted to show
the topological transition at a critical αc = 1/

√
2 via irradiat-

ing an α-T3 lattice with a circularly polarized light.
However, the role of many-body correlations like electron-

electron and electron-phonon interactions in inducing the
topological phase transition in an α-T3 lattice is left unno-
ticed. To the best of our knowledge, the previous proposals
of topological phase transition are mainly in noninteract-
ing systems (single-particle picture) where the topology
is solely described by the properties of the bands of the
electron [37,43,49,78] or by other external means [58,72].
Nevertheless, attempts were made to investigate the topo-
logical phase transitions driven by many-body interactions
in the past [26,44,45,79–88], most of which are devoted
to explaining the effects of electronic correlations on the
topological phases of matter. On the contrary, the role of
electron-phonon (e-ph) interaction in such contexts has been
scarce. Historically, the e-ph interaction has been proven
to deliver promising discoveries in solids [89–91] starting
from the inducing superconductivity [92–94], transport in
three-dimensional materials [95], low-dimensional polaronic
effects [96–100], Peierls transition [101–104], charge density
wave [105–113] formation in solids to the Fermi polarons in
ultracold gases [114–117], topological signatures in novel sys-
tems [118–121], etc. More recently, Bose polaron [122–125],
phonon-induced Floquet topological phases [126,127] and
several others have been actively explored. In a polar or an
ionic crystal, a propagating electron distorts the lattice struc-
ture. Consequently, a net polarization potential emerges due
to the interaction between the electron and the ‘oscillating’
lattice because of which the electron itself may get trapped.
The quasiparticles generated because of this interaction can be
identified as electrons dressed with phonon clouds, which are
commonly known as polarons. Depending on the strength of
the e-ph interaction, the polarons can be self-trapped (strong
coupling limit) or delocalized (weak coupling limit). In a tight
binding system, the electron is found to be strongly bound to
its own lattice site, and that electron can participate in forming
the polaron by interacting with the onsite phonons. Therefore
the radius of the polaron in such narrow-band systems is
short-ranged and does not spread over many lattice sites. The
polarons in such systems are often called as the small polarons
or the Holstein polarons [128,129]. The polaron formation in
tight binding systems can be realized through an interaction
between the “extra” fermionic impurity and the phonons in the
system. We shall include the “polaron” physics in a nontriv-
ially gapped system. As discussed earlier, breaking the TRS
via complex NNN hopping is a starting point for our study.
Specifically, we assume that this “impurity” moving in the
α-T3 lattice and interacting with the lattice vibrations, gives
rise to the nontrivial spectral gap arises by polarons formed in
a Haldane Chern insulator.

045426-2



ELECTRON-PHONON COUPLING INDUCED TOPOLOGICAL … PHYSICAL REVIEW B 110, 045426 (2024)

The main focus of this paper is whether e-ph interaction
in such a Haldane-Holstein model on an α-T3 lattice can
induce topological phase transitions. If yes, whether these
transitions are accompanied by the conventional wisdom, such
as (dis)appearance of conducting edge modes, abrupt change
in the topological invariant, the behavior of the anomalous
Hall conductivity etc. This interaction-driven topology may
provide a favorable platform to explore exotic phenomena
in the topological materials. It also serves to connect the
correlated phenomena in physics with topology. There are a
few studies which describe the importance of e-ph coupling
in determining the nontrivial phases in the Haldane Chern
insulator [130,131], graphene nanoribbons [132], topological
superconductivity [133], and in other two-dimensional mate-
rials [88,132,134–136]. Cangemi et al. [130] have proposed a
topological quantum transition in a Haldane Chern insulator
driven by the e-ph coupling, where they have shown the sys-
tem undergoes a nontrivial to trivial transition with increasing
e-ph coupling strength, where the average number of fermions
shows a sharp discontinuity at the transition point indicat-
ing a topological transition. Along the same line, Camacho
et al. [131] have calculated a phonon-induced transverse Hall
effect through the “composite Berry phase” and shown the
conductance jumps from zero to a finite value accompanied
by a nonzero Chern number. Using a diagrammatic technique
in the continuum Dirac model, Pimenov et al. [134] have
reported a similar observation as in Ref. [131]. These studies
largely encourage looking for systems that exhibit a nontrivial
phase and possible phase transitions upon suitably tuning the
strength of the e-ph coupling.

However, there is hardly any study revealing the effects
of e-ph interaction for an α-T3 system in the presence of a
topological gap. Therefore, in this study, we aim to explore
the role of e-ph coupling in stimulating the nontrivial topo-
logical phases in the α-T3 lattice, which may provide a fruitful
prescription to understand the interaction-driven topology in
other novel systems.

The remainder of this paper is organized in the following
manner. In Sec. II, we describe our system and present the
model Hamiltonian of a polaronic α-T3 lattice, which is writ-
ten in Sec. II A under the framework of the Haldane model
modified by a Holstein term accounting for the e-ph coupling.
In Sec. II B, we show the polaron formation in our system em-
ploying the Lang-Firsov technique, which works well for the
high-frequency (anti-adiabatic) optical phonons. Section II C
deals with the momentum space representation of the model
Hamiltonian, which we shall use to calculate the band spectra
and topological quantities. Section III is devoted to studying
the topological phase transition driven by polarons, where we
present our numerical results of the bulk and edge spectra in
Secs. III A and III B, respectively, while interpolating between
graphene and a dice structure. In these sections, we discuss
how the bulk bands behave and, consequently, the appear-
ance of the edge state and their vanishing below and above
a particular critical e-ph coupling strength as a function α.
The results will imply a plausible occurrence of topological
phase transitions. In Sec. III C, we confirm the topological
transitions induced by polaron via numerically computing the
polaronic Chern number and the Berry curvature. The results
show the discontinuous jumps in the Chern number diagram at

critical values of the e-ph coupling that depend on α. Further
proof, such as the quantized Hall plateaus below the critical
value of e-ph coupling obtained in Sec. III D also signifies
the topological transition driven by e-ph interaction in our
system. Finally, in Sec. IV, we conclude our results and briefly
summarize our findings.

II. α-T3 LATTICE WITH ELECTRON-PHONON
INTERACTION

The α-T3 lattice is schematically shown in Fig. 1. Each
hexagon of the lattice constituting A (red), B (purple), and C
(green) lattice site forms the unit cell of an α-T3 lattice where
A and B atoms construct the regular honeycomb (graphene)
lattice with NN hopping strength t and C is considered to
be the additional atom placed at the center of each hexagon
connected only to the A atoms via a hopping strength αt
(α � 1). The hopping between a C and a B atom is prohibited.
We introduce our model Hamiltonian below in the presence of
an e-ph interaction.

A. Haldane-Holstein model for α-T3 lattice

We formulate our system in the spirit of a tight-binding
Haldane-Holstein Hamiltonian, which is written as

H =
[

− t
∑
〈i, j〉

c†
i c j − αt

∑
〈 j,k〉

c†
j ck − λ

3
√

3

∑
〈〈i, j〉〉

eiφi j c†
i c j

− αλ

3
√

3

∑
〈〈 j,k〉〉

eiφ jk c†
j ck + H.c.

]
+ M

∑
i

c†
i Szci

+ h̄ω0

[ ∑
i

(
b†

i bi + 1

2

)
+ λeph

∑
i

c†
i ci(b

†
i + bi )

]
,

(1)

where c†
i, j,k (ci, j,k ) denotes the electronic creation (annihila-

tion) operator corresponding to A, B, and C sites with i, j,
and k indices, respectively. The first term represents the NN
hopping between the A and B sites with hopping amplitude t ,
while the second one stands for that between the A and C sites
with a different amplitude t ′ = αt , which is present due to the
C atoms of a typical α-T3 lattice. We denote the NN terms by
a single angular bracket, 〈. . . 〉. The third term is the Haldane
term designated for the next nearest-neighbor (NNN) complex
hoppings (denoted by the double angular bracket 〈〈. . . 〉〉)
between A-B-A or B-A-B with an amplitude λ and a phase
φi j , where it is φi j (−φi j) when the motion of the electron
is clockwise (anticlockwise). The effect of the C-atoms in
the NNN A-C-A and C-A-C hoppings is represented by the
fourth term with a different strength, λ′ = αλ. Therefore the
two limiting cases of our study are the results for graphene
(α = 0) and dice (α = 1) lattices. The fifth term of Eq. (1)
is the Samenoff mass term, M is the mass, and Sz is the z
component of the pseudospin-1 matrix. The effects of phonon
modes are incorporated in the sixth and seventh terms, where
the sixth term is the total onsite energy of the phonons denoted
by the phononic creation (annihilation) operators, b†

i (bi ) of
site i and the last term of this modified Haldane model is
the Holstein term that describes the onsite coupling between
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electrons and the longitudinal optical (LO) phonons with a
coupling strength λeph, h̄ω0 being the energy scale of phonons
with a dispersionless LO frequency, ω0.

B. Polaronic Hamiltonian: Lang-Firsov approach

The quasiparticles formed by the interaction between a
bosonic lattice field (a phonon) and a fermionic charge car-
rier (an electron) undergo emission and absorption of virtual
phonons by the electrons at T = 0. Owing to such an in-
teraction, a net polarization potential is generated in which
the electrons may get trapped. These quasiparticles dressed
with virtual phonon clouds are known as polarons. For a
tight-binding system, the size of a polaron is usually less
compared to the lattice constant and is known as a small
Holstein polaron. Here, we have only considered the onsite
e-ph interaction, and neglecting the interactions of electrons

with the NN and NNN site phonons, these being weak enough.
To study the effects of the e-ph coupling, we first employ the
much celebrated Lang-Firsov transformation (LFT), namely,

H̃ = eRHe−R, (2)

where the generator of the transformation is given by [137]

R = λeph

∑
i

c†
i ci(b

†
i − bi ). (3)

This is a coherent transformation of a displaced harmonic
oscillator that eliminates the phonon degrees of freedom
and transforms the Hamiltonian into that for an effective
electronic system. We must specify that this unitary trans-
formation works well in the high-frequency (non-adiabatic)
regime, meaning the LO frequency of the phonons is much
larger than the other electronic parameters of the system, i.e.,
when ω0 � t, t ′, λ, λ′, M and λeph. The LFT transforms the
total Hamiltonian (1) as (see Appendix for the derivation)

H̃ = −t

[ ∑
〈i, j〉

c†
i c je

[Xi−Xj ] + α
∑
〈 j,k〉

c†
j cke[Xj−Xk ]

]
− λ

3
√

3

[ ∑
〈〈i, j〉〉

eiφi j c†
i c je

[Xi−Xj ] + α
∑

〈〈 j,k〉〉
eiφ jk c†

j cke[Xj−Xk ]

]

+
∑

i

c†
i

(
MSz − λ2

eph h̄ω0I3
)
ci + h̄ω0

∑
i

b†
i bi, (4)

where I3 is a 3 × 3 identity matrix.
The X terms in the exponent contain the phonon operators

as

Xi = λeph(b†
i − bi ). (5)

At this stage, to eliminate the phonon degrees of freedom, one
can obtain a zero-phonon average (at T = 0), which reads for
the exponents as

〈0|e[Xi−Xj ]|0〉 = e−λ2
eph , (6)

The quantity in RHS of Eq. (6) is known as the Holstein reduc-
tion factor which causes the band narrowing. The last term in
Eq. (4) becomes zero after zero-phonon averaging. Therefore,
in the transformed Hamiltonian (4), all the parameters are
modified by the e-ph coupling and the effective Hamiltonian
becomes

H̃eff = 〈0|H̃|0〉 = −t̃

[∑
〈i, j〉

c†
i c j + α

∑
〈 j,k〉

c†
j ck

]

− λ̃

3
√

3

[ ∑
〈〈i, j〉〉

eiφi j c†
i c j + α

∑
〈〈 j,k〉〉

eiφ jk c†
j ck

]

+
∑

i

c†
i

(
MSz − λ2

eph h̄ω0I3
)
ci, (7)

where the reduced Holstein and Haldane amplitudes are
renormalized as

t̃ = te−λ2
eph , λ̃ = λe−λ2

eph . (8)

It is clear from Eq. (7) that the signatures of polaron in our sys-
tem are captured through t̃ and λ̃ (both contain λeph). As e-ph
interaction modifies system parameters, it will be interesting
to see how polaron induces a topological phase transition at
certain critical e-ph coupling strength. To investigate the same,
we need to transform the Hamiltonian (7) to the momentum
(k) space and calculate the band structures along with the
relevant topological properties.

C. Continuum α-T3-Holstein Hamiltonian

The modified k-space version of an α-T3 lattice in the
presence of e-ph interaction can be obtained by Fourier trans-
forming the effective Haldane-Holstein Hamiltonian (7) in a
triatomic sublattice basis as

H̃(k) = −t̃ (hxSx + hySy) − 2λ̃Im( fk )

3
√

3 cos ϕ
SzH

+ MSz − λ2
eph h̄ω0I3, (9)

with

Sx =
(

0 cosϕ 0
cosϕ 0 sinϕ

0 sinϕ 0

)
, Sy = −i

(
0 cosϕ 0

−cosϕ 0 sinϕ
0 −sinϕ 0

)
,

Sz =
(

1 0 0
0 0 0
0 0 −1

)
, SzH =

(−cosϕ 0 0
0 cosϕ − sinϕ 0
0 0 sinϕ

)
, (10)
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where Sx and Sy are the x and y components of the pseudospin-
1 matrix written in terms of an angle ϕ which is related to the
parameter α as ϕ = tan−1 α. Specifically, SzH arises due to the
presence of the NNN Haldane term. The parameter ν = ±1
denote the valleys K and K ′ located at K = (4π/3

√
3a, 0) and

K ′ = (−4π/3
√

3a, 0). The polaronic contributions to Eq. (9)
enter through t̃ , λ̃ [defined in Eq. (8)] and the last term in
Eq. (9). hx, hy, and fk in Eq. (9) are given as

hx =
3∑

i=1

cos(k.di), hy =
3∑

i=1

sin(k · di), (11)

fk =
3∑

i=1

e(ik.ai ), (12)

where the coordinates of the NN sites are d1 = (
√

3a/2, a/2),
d2 = (−√

3a/2, a/2), and d3 = (0,−a), while that of the
NNN sites are a1 = (

√
3a/2, 3a/2), a2 = (−√

3a/2, 3a/2),
and a3 = (

√
3a, 0), a being the lattice constant. Henceforth,

we shall use the k-space Haldane-Holstein Hamiltonian in
Eq. (9) extensively for the rest of the paper.

To obtain the low-energy limit of the above Bloch Hamil-
tonian, we must expand Eq. (9) in the vicinity of the Dirac
points around K and K ′ valleys and linearize it which takes
the form of a pseudospin-1 Dirac-Weyl Hamiltonian for the
polaronic α-T3 lattice as

H̃(q) = h̄ṽ f

⎛
⎝ M − λ2

eph h̄ω0 (νqx − iqy)cosϕ 0
(νqx + iqy)cosϕ −λ2

eph h̄ω0 (νqx − iqy)sinϕ

0 (νqx + iqy)sinϕ −M − λ2
eph h̄ω0

⎞
⎠ − λ̃ν

cos ϕ

⎛
⎝−cosϕ 0 0

0 cosϕ − sinϕ 0
0 0 sinϕ

⎞
⎠, (13)

with h̄ṽ f = 3at̃/2 cos ϕ and q = (qx, qy) = k − K or (k −
K ′).

It is well known that the Dirac-Weyl Hamiltonian (13) rep-
resents two dispersive bands, namely the valance band (VB)
and the conduction band (CB), along with a dispersionless flat
band (FB) for graphene (α = 0) and dice (α = 1) lattices, and
a distorted FB for 0 < α < 1 [49]. In our case, all of these are
modified by the polaronic factors through t̃ and λ̃ defined in
Eq. (8).

III. POLARON INDUCED TOPOLOGICAL FEATURES
IN AN α-T3 LATTICE

In this section, we present the numerical results of our
system and study the effects of e-ph interaction in the context
of topological phase transition.

A. Bulk spectral properties

In our study, all the energy parameters are taken in units of
t , which is set to unity. Further, we fix a = 1 (lattice constant),
φi j = π/2 (the Haldane flux), and h̄ = 1, for convenience.

Before delving into the specifics of the e-ph interaction, let
us briefly explore the bare Haldane α-T3 lattice. In the absence
of e-ph interaction and the mass term, and solely due to the
breaking of the time-reversal symmetry by the Haldane term,
the original zero-energy FB may get distorted. Additionally,
the electronic band structure experiences valley splitting. Fig-
ure 2 illustrates the low-energy bands for various values of α

within the first BZ. The red, green, and blue colors denote
the CB, FB, and VBs, respectively. In three-band systems,
there can be two distinct band gaps at the Dirac points: the
gaps between (i) the CB and the distorted FB (	K/K ′

c f ) and (ii)

the distorted FB and VBs (	K/K ′
v f ) at the K/K ′ points. The

middle band exhibits no dispersion at α = 0 (not depicted
here), but it gets more dispersive with increasing α. We see
a mild dispersive nature of the FB at α = 0.4 as shown in
Fig. 2(a). In Fig. 2(b), where α = 0.5, the distorted FB now
connects with the VB by closing the gap between them at

the K valley, while in the other valley (K ′), the distorted
FB connects to the CB. With further increase in α, the gap
reopens, as depicted in Fig. 2(c) for α = 0.6. In case of α = 1
(not shown here), the spectral gap attains its maximum value,
and the distorted FB regains its dispersionless behavior. No-
tably, at α = 0.5 one finds that, 	K

c f �= 0, but 	K
v f = 0, and

further 	K ′
c f = 0, whereas 	K ′

v f �= 0. These findings precisely
correspond with the previously reported results concerning
the α-T3 lattice [49,72]. Let us include e-ph interaction in
the ongoing discussion. We set the mass as M = 0.05t , NNN
hopping as λ = 0.1t and the phonon frequency as ω0 = 3t
which is greater than t , M, λ for nonadiabaticity to be valid. In
order to study the topological phases and transitions therein,

-π 0 π
kxa

-5
0

5
E

/t

(a)

α = 0.4

-π 0 π
kxa

(b)

α = 0.5

-π 0 π
kxa

(c)

α = 0.6

FIG. 2. The bulk band structures with energy E (in the units of t)
of the bare Haldane model are shown as a function of dimensionless
momenta, kx (multiplied by the lattice constant) at ky = 0 for various
values of α: (a) α = 0.4, (b) 0.5, and (c) 0.6. The red, green, and
blue colors represent the CB, FB, and VBs, respectively. Bands are
no longer symmetric under the exchange of valleys (K and K ′). The
Haldane term is taken as λ = 0.1t .
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FIG. 3. Plots of polaronic bulk band structure with energy E
(in the units of t) for lower α values are shown as a function of
dimensionless momenta, kx (multiplied by the lattice constant) at
ky = 0. (Left column) The dispersions are plotted in the λeph < λc

regime for (a) α = 0.1, (d) 0.2, and (g) 0.3, at λeph = 0.3. (Middle
column) Those are plotted at the critical λeph (= λc) for (b) α =
0.1, λc = 0.49; (e) α = 0.2, λc = 0.48; and (h) α = 0.3, λc = 0.47.
(Right column) The same are shown in the λeph > λc regime for
(c) α = 0.1, (f) 0.2, and (i) 0.3, at λeph = 0.6. The red, green, and
blue colors represent the CB, FB, and VBs, respectively. The param-
eters are taken as λ = 0.1t and M = 0.05t . Further, t and λ values
are modified as t̃ and λ̃ as mentioned in the text. The Chern number,
C (calculated in Sec. III C) corresponding to each band (however,
ill-defined for those exhibiting zero bulk gap) is shown. The values
of λc are mentioned in Table I.

we first present the bulk spectrum of the α-T3 system for a
few chosen values of α in Fig. 3 and examine the closing
and opening of bulk gaps at the valleys via tuning the e-ph
interaction strength λeph. As the bulk properties vary with
the parameter α, we segregate them into two classes of α,
namely, (i) 0 < α � 0.6 (from close to the bare graphene
to moderate α cases), (ii) 0.6 � α < 1 (from moderate α to
Dice lattice). The purpose of such distinction will be clear in
a moment. First of all, in Fig. 3, we show the bulk energy
bands for lower α values, namely, for α = 0.1, 0.2, and 0.3.
As expected, we get three different spectra, namely, the VB
(shown in blue), the FB (in green), and the CB (in red) as
a function of the dimensionless momentum kxa (ky is set to
be zero). The FBs are dispersive (especially for α > 0 cases)

TABLE I. Table of λc points for α in the range 0.1 < α � 0.6.

α λc

0.1 0.49
0.2 0.48
0.3 0.47
0.4 0.46
0.5 0.45
0.6 0.43

due to the presence of the NNN hopping λ. Further, we notice
a semi-Dirac dispersion, i.e., linear along ky and quadratic
along the kx direction. The variations of the bands are shown
in three different regimes of λeph, i.e., when λeph < λc (left
panel), at λeph = λc (middle panel), and then when λeph > λc

(right panel), where λc is the critical e-ph coupling strength
at which the gap closing (	K

v f = 0) occurs. These critical
points (λc) for different α values are listed in Table I and the
corresponding plot is shown in the inset (b) of Fig. 14(i).

Let us consider the α = 0.1 case [Figs. 3(a)–3(c)]. As
mentioned earlier, the mass term lifts the valley degeneracy.
Also, the overall band spectrum is shifted vertically down as
we increase λeph further (the FB not being at E = 0). Inter-
estingly, at the two valleys, K and K ′, the e-ph interaction
makes the behavior of the FBs contradictory (which other-
wise looks symmetric when λeph = 0 (see Fig. 2), especially
at λeph = λc points. We clearly notice that in the λeph < λc

regime [Fig. 3(a)], the FB almost touches the CB at both the
K and K ′ valleys. Although, a prominent gap between VB and
FB is maintained in the λeph < λc regime. However, as soon
as λeph reaches a critical value, i.e., when λeph = λc = 0.49,
the FB touches the VB [Fig. 3(b)] at one of the valleys (K)
and the band gap closes (	K

v f = 0), while at the other valley
(K ′), the spectrum remains gapped (	K

v f �= 0). The band gap
re-opens and the gap persists if we increase λeph further. Be-
yond λc (λeph > λc), the behavior of the FB is almost similar
at both the valleys [Fig. 3(c)], especially for larger values of
α. Therefore, both in λeph < λc and λeph > λc regimes, the
spectrum remains gapped, implying it to be an insulator, and
at λeph = λc the bands touch, signifying a semimetallic (SM)
behavior. We need to compute the topological properties for
different λeph regimes to confirm the topological nature of the
phase, which we shall show in the later sections (Secs. III B
and III C). This phenomenon of band closing and opening at
the Dirac points may give rise to a topological phase transition
that is solely caused by tuning the e-ph interaction strength.
This is the central result of the paper. Smaller values of α

in the range [0.1 : 0.3] demonstrate similar behavior (Fig. 3)
with different λc’s (listed in Table I).

The intermediate α cases (0.4 � α � 0.6) are shown in
Fig. 4 where we observe the same phenomena, except that one
notices for α = 0.6 case, the FB and VB nearly touch each
other even when λeph < λc [the values of λc are mentioned in
Table I) region (can be seen clearly if we zoom in Fig. 4(g)].
This feature persists for larger values of α (α > 0.6) and it
needs to be addressed carefully. To do so, we plot the band
structure in Fig. 5 for α = 0.7, where it is clearly shown that
the VB and the FB touch each other below a certain critical
value, namely, λc1 = 0.28 which may describe an SM phase
in the λeph < λc1 regime [Fig. 5(b)] and will hold even when
λeph = 0 [Fig. 5(a)]. Then, in the vicinity of λeph = λc1 , the
gap between VB and FB opens for the first time [can be
seen clearly in the inset of Fig. 5(c)], signaling an insulating
behavior, and the gap stays intact in the λc1 < λeph < λc2

regime [can be seen clearly in the inset of Fig. 5(d)] up to
a second critical point, namely, λc2 = 0.43, at which the gap
closes [Fig. 5(e)], referring a reonset of an SM phase. The bulk
spectrum is gapped beyond λc2 [Fig. 5(f)]. For α = 0.8 and
0.9, the scenario is a bit more interesting. Unlike α = 0.7, for
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FIG. 4. Plots of polaronic bulk band structure with energy E (in
the units of t) for intermediate α values are shown as a function of
dimensionless momenta, kx (multiplied by the lattice constant) at
ky = 0. (Left column) The dispersions are plotted in the λeph < λc

regime for (a) α = 0.4, (d) 0.5, and (g) 0.6, at λeph = 0.3. (Middle
column) Those are plotted at the critical λeph (= λc) for (b) α =
0.4, λc = 0.46; (e) α = 0.5, λc = 0.45; and (h) α = 0.6, λc = 0.43.
(Right column) The same are shown in the λeph > λc regime for
(c) α = 0.4, (f) 0.5, and (i) 0.6, at λeph = 0.6. The red, green, and blue
colors represent the CB, FB, and VBs, respectively. The parameters
are taken as λ = 0.1t and M = 0.05t . Further, t and λ values are
modified as t̃ and λ̃ as mentioned in the text. The values of λc are
mentioned in Table I.

FIG. 5. Plots of polaronic bulk band structure with energy E
(in the units of t) for α = 0.7 are shown as a function of dimen-
sionless momenta, kx (multiplied by the lattice constant) at ky = 0
for (a) λeph = 0, (b) λeph < λc1 (λeph = 0.2), (c) λeph = λc1 = 0.28,
(d) λc1 < λeph < λc2 (λeph = 0.35), (e) λeph = λc2 = 0.43, and (f)
λeph > λc2 (λeph = 0.6). The red, green, and blue colors represent the
CB, FB, and VBs, respectively. In the insets, a zoomed in view of the
regions near the band minima (Dirac) point is shown. The parameters
are taken as λ = 0.1t and M = 0.05t . Further, t and λ values are
modified as t̃ and λ̃ as mentioned in the text. The values of λc1 and
λc2 are mentioned in Table II.

FIG. 6. Plots of polaronic bulk band structure with energy E
(in the units of t) for α = 0.8 are shown as a function of dimen-
sionless momenta, kx (multiplied by the lattice constant) at ky = 0
for (a) λeph = 0, (b) λeph < λc1 (λeph = 0.15), (c) λeph = λc1 = 0.2,
(d) λc1 < λeph < λc2 (λeph = 0.35), (e) λeph = λc2 = 0.44, and (f)
λeph > λc2 (λeph = 0.6). The red, green, and blue colors represent the
CB, FB, and VBs, respectively. In the insets, a zoomed in view of the
regions near the band minima (Dirac) point is shown. The parameters
are taken as λ = 0.1t and M = 0.05t . Further, t and λ values are
modified as t̃ and λ̃ as mentioned in the text. The values of λc1 and
λc2 are mentioned in Table II.

α = 0.8, we observe in Figs. 6(a) and 6(b) that the bulk bands
remain gapped (can be seen clearly in the insets) in λeph < λc1

regime (including λeph = 0), signifying an insulating (not SM
as for α = 0.7) phase till λeph = λc1 = 0.2, where the FB and
VB touch each other for the first time [Fig. 6(c)] and the insu-
lating to SM transition takes place. As we tune λeph above λc1 ,
we observe the same phenomena as it is shown for α = 0.7
case (Fig. 5), that is, in λc1 < λeph < λc2 regime [Fig. 6(d)],
the FB and VB remain gapped (can be seen clearly in the
insets) denoting an insulating phase till λeph = λc2 = 0.44 at
which the system again shows a SM [Fig. 6(e)] nature and for
λeph > λc2 [Fig. 6(f)] it behaves like an insulator, alike it does
for α = 0.7 case. Similar observations hold for α = 0.9 (not
shown here). The values of λc1 and λc2 for 0.7, 0.8, and 0.9 are
listed in Table II. We wish to mention that for 0.8 � α < 1,
this feature of multiple phase transition becomes more promi-
nent as we approach the dice lattice (α = 1). Therefore, for
higher α cases (α > 0.6), we encounter two situations, one
is for 0.6 < α < 0.8 and another is for 0.8 � α < 1. In the
former case, we get two critical λc points, namely, λc1 and
λc2 , below (even when λeph = 0) and above which the system

TABLE II. Table of λc1 and λc2 points for higher values of α.

α λc1 λc2

0.7 0.28 0.43
0.8 0.20 0.44
0.9 0.26 0.39
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FIG. 7. Energy spectra (in units of t) of the edge states are shown for a zigzag edged semi-infinite ribbon as a function of dimensionless
momenta, kx (multiplied by the lattice constant) of α = 0.1 for (a) λeph = 0.3 (λeph < λc), (b) λeph = λc = 0.49, and (c) λeph = 0.6 (λeph > λc),
and of α = 0.2 for (d) λeph = 0.3 (λeph < λc), (e) λeph = λc = 0.48, and (f) λeph = 0.6 (λeph > λc). Other parameters are the same as those in
Fig. 3. The values of λc are mentioned in Table I.

respectively remains semi-metallic and insulating respec-
tively. In between λc1 and λc2 , it behaves like an insulator.
So, the system undergoes an SM-insulator-SM-insulator tran-
sition in the former case, while in the latter case, the
system inherits an insulator-SM-insulator-SM-insulator tran-
sition. The nature of the gap (topological or trivial), will be
ascertained in Secs. III B and III C. Hence, the band topology
in our study is substantially modified by the polaron for-
mation, which is governed by two factors: the renormalized
amplitudes t̃ and λ̃ [Eq. (8)] and also the interplay between
MSz and λ2

eph h̄ω0 [last two terms of Eq. (9)]. The former
causes the band narrowing and the latter is responsible for
the competitive effects between the mass term and the po-
laron shift energy. Moreover, these polaronic markers make
the variations of the band spectra (especially those of the FB
and VBs) different for different ranges of α. Specifically, for
higher values of α, the correlation between M, α, and λeph

becomes stronger, giving rise to multiple phase transitions.
In the case of the dice lattice (α = 1), the flat band remains
flat without any distortion and there is no occurrence of band
gap closing phenomena for any values of the e-ph coupling
λeph (not shown here). So, no λeph yields a topological phase
transition. It is worth mentioning that the values of λc are
different for different α cases (see Tables I and II), which
ensures that we shall have a phase transition for all α values
between α = 0 to 1, albeit with different λc values.

It may be a good idea to introduce an indexing scheme of
the bulk bands presented in Figs. 3–6. As our Hamiltonian is
devoid of the basic symmetry, such as time reversal (owing to
the complex second neighbor hopping), inversion (due to the

Samenoff mass), etc., we are left with indexing the bands by
their topological invariant, namely, the Chern number (calcu-
lated in Sec. III C).

B. Edge modes of a semi-infinite α-T3 ribbon

In this section, to provide support to the topological proper-
ties, we discuss the edge state characteristics of a semi-infinite
α-T3 ribbon in the presence of e-ph coupling. In order to envis-
age whether the bulk band gap is topologically nontrivial, we
inspect the crossings of the edge modes between CB and VB
through the FB. The ribbon geometry is considered to exhibit
zigzag edges [138]. Thus it is infinite along the x direction,
while finite along the y direction, breaking the translational
symmetry along one direction (ky in this case), while the same
is protected along the other direction (kx). We have taken
the width of the nanoribbon as N = 37, which satisfies the
condition of width N = 3q + 1 (q is an integer), and ensures
both the edges are composed of A and C sublattices only. The
nontrivial topological signatures are reflected in the edge state
spectrum, and the details depend upon the values of α. We
begin by referring to Fig. 7, where we show the edge states for
lower α values (α = 0.1 and 0.2 marked on the right edge). As
stated above in Sec. III A, the bulk gap closes at a critical λc

and it remains gapped corresponding to λeph < λc and λeph >

λc. We wish to ascertain the existence of edge states that dis-
tinguishes a topologically nontrivial phase from a trivial one
in both scenarios. Below a critical λc, Figs. 7(a) and 7(d) dis-
play a prominent set of edge states traversing from CB to VB
through FB (and vice versa) for α = 0.1 and 0.2, respectively
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FIG. 8. Energy spectra (in units of t) of the edge states are shown for a zigzag edged semi-infinite ribbon as a function of dimensionless
momenta, kx (multiplied by the lattice constant) of α = 0.7 for (a) λeph = 0, (b) λeph = 0.2 (λeph < λc1 ), (c) λeph = λc1 = 0.28, (d) λeph = 0.35
(λc1 < λeph < λc2 ), (e) λeph = λc2 = 0.43, and (f) λeph = 0.6 (λeph > λc2 ). Other parameters are the same as those in Fig. 5. The values of λc1

and λc2 are mentioned in Table II.

for the λeph < λc regime. We notice that a pair of edge states
emerge from different valleys in the bulk, gather at the FBs
and hence cross over to the CBs. By looking at the slope of the
edge states, that is, ∂E/∂k, which is a measure of the velocity
of the electron, we infer that the flow of the edge currents is
counterpropagating, as it should be. These edge states are the
chiral edge states of a Chern insulator, appearing in the regime
of λeph < λc. The nature of the edge states for the α = 0.2
case are distinct, in the sense that they are crossing the FB
at different points. It is also visible in Figs. 7(b) and 7(e)
that these chiral edges persist up to λeph = λc and disappear
beyond that. These are presented in Figs. 7(c) and 7(f), that for
values above λc, the edge states completely disappear and bulk
spectra become gapped, signifying the transition of the system
to a trivial phase. The critical values of λeph corresponding to
the transitions for the α = 0.1 and α = 0.2 cases are listed
in Table I. Therefore, in α-T3 systems (with smaller α values),
one can generate topological insulating phases via only tuning
λeph for a particular value of α below a certain λc, beyond
which the system goes into a trivial insulating phase. Next,
let us study the characteristics of the edge states for higher α

values, and as a specific case, consider α = 0.7, presented in
Fig. 8. In reference to its bulk properties displayed in Fig. 5,
we shall examine the edge states for different regimes of λeph.
As discussed in Figs. 5(a) and 5(b), the bulk FB and VB
remain in contact with each other for the λeph � λc1 region,
we notice its signature in Figs. 8(a) and 8(b), where a pair
of counterpropagating edge states emerge near each K valley,
passing through the FB for the λeph � λc1 regime. However, in
this regime of λeph, the notion of edge states is not important
as the system does not have any bulk gap, inferring it to be a

usual semimetal. The edge states connecting the VB and CB
through the FB are gapped till λeph = λc1 at which the edge
states at one K-valley touch for the first time [can be seen
clearly if we zoom in Fig. 8(c)], thereby generating a conduct-
ing edge mode. In the intermediate region [see Fig. 8(d)], i.e.,
for λc1 < λeph < λc2 , the system clearly exhibits the presence
of edge states indicating a topologically nontrivial (Chern
insulating) phase. It is evident in Fig. 8(d) that the edge
states are counterpropagating, and they cross the FB at the
two edges for λc1 < λeph < λc2 . Therefore, for α = 0.7, there
seems to be a re-entrant mechanism to the SM phase, which
may be achieved entirely by tuning the e-ph coupling strength.
Around λeph = λc2 , the edge states start fading out [shown in
Fig. 8(e)] at one K valley and is completely disappear above
λc2 [see Fig. 8(f)]. Undoubtedly, the λeph > λc2 region refers
to a trivial insulator with no sign of edge states. As suggested
in the discussion of the bulk spectra (Sec. III A) that mul-
tiple phase transitions (insulator-SM-insulator-SM-insulator)
can occur for α > 0.7, we explicitly plot the edge states for
α = 0.8 in Fig. 9 which ascertains whether the insulating
phases are topological. In Fig. 9(a), we notice that in the
absence of e-ph coupling, a pair of prominent edge states cross
the FB at K or K ′ valley, signifying a topologically nontrivial
Chern insulating phase (unlike for α = 0.7 where it is SM),
which remain intact in the λeph < λc1 regime [Fig. 9(b)] till
λeph = λc1 . At this value one pair of edge states becomes
gapped at one valley, while in the other valley it remains
gapless [Fig. 9(c)]. However, such as for the α > 0.7 case, it
is vividly seen in Figs. 9(d)–9(f) that the counterpropagating
edge states resurface in the λc1 < λeph < λc2 regime, persist
up to λeph = λc2 and completely vanish beyond λc2 . So, for
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FIG. 9. Energy spectra (in units of t) of the edge states are shown for a zigzag edged semi-infinite ribbon as a function of dimensionless
momenta, kx (multiplied by the lattice constant) of α = 0.8 for (a) λeph = 0, (b) λeph = 0.15 (λeph < λc1 ), (c) λeph = λc1 = 0.2, (d) λeph = 0.35
(λc1 < λeph < λc2 ), (e) λeph = λc2 = 0.44, and (f) λeph = 0.6 (λeph > λc2 ). Other parameters are the same as those in Fig. 6. The values of λc1

and λc2 are mentioned in Table II.

α = 0.8 as well, the re-entrant scenario to the SM phase still
holds (also true for α = 0.9, not shown here). To confirm
that the edge modes indeed correspond to a Chern insulating
phase, we compute the topological properties and discuss
them for each of the regions of λeph (as indicated above) in
the following section (Sec. III C). The phase transition points,
namely λc1 and λc2 for α = 0.7, 0.8, and 0.9 are listed in
Table II.

C. Berry curvature and Chern number

To ascertain the topological signatures in the α-T3 induced
by the e-ph coupling, we numerically compute the topological
ingredients, namely, the (polaronic) Berry curvature and the
Chern number. We also obtain the phase diagram containing
the Chern number and e-ph coupling strength. In a usual α-T3

lattice, due to the TRS breaking NNN Haldane term, the sys-
tem exhibits a nonzero Chern number. The onsite Samenoff
mass term that breaks the valley degeneracy also plays a
crucial role in band opening at high symmetry Dirac points.
However, our main aim is to investigate how e-ph interaction
mediates a nonzero Chern number in the system for a fixed
set of other system parameters, namely, λ and M. We expect
that there should exist an interplay between the mass term and
the e-ph coupling. Therefore we may achieve a topological
transition only by tuning the strength of e-ph coupling, λeph.

The Chern number (C) can be calculated as

C = 1

2π

∫∫
BZ

�(kx, ky)dkxdky, (14)

where �(kx, ky) is the Berry curvature of our system
expressed as

�(kx, ky) = −2iIm

[〈
∂ψ (kx, ky)

∂kx

∣∣∣∣∂ψ (kx, ky)

∂ky

〉]
, (15)

where ψ (kx, ky) refers to the eigenstate of the modified Hal-
dane model, which is the polaronic bulk band and Im denotes
the imaginary part. The topological phase transition is char-
acterized by a topological invariant. In our study, it is the
(polaronic) Chern number, C, displayed in Eq. (14). In order
to calculate so, we first compute the Berry curvature, �(kx, ky )
using Eq. (15) corresponding to the VB and integrate it over
the entire BZ. We plot �(kx, ky) in Figs. 10–12 and C in
Fig. 14 to investigate the topological phase transition explic-
itly mediated through the e-ph coupling.

In Fig. 10, we show the Berry curvatures in three dif-
ferent regions of λeph i.e., λeph < λc, λeph ∼ λc (“∼” sign
refers to values close to it, but not at it), and λeph > λc in
left, middle and right panels, respectively for smaller values
of α, namely, α = 0.1, 0.2, and 0.3 (marked on the right
edge). It is generally true that a nonzero Berry curvature is
a direct consequence of a nontrivial topology present in the
system. The corresponding values seen to be concentrated at
the high symmetry points K and K ′. However, the change
in the concentration of the Berry curvatures shown by col-
ormaps in Figs. 10–12 sets the precursor for any topological
transition happening in the system. For α = 0.1 [Fig. 10(a)],
we clearly observe that below the critical λc (i.e., λeph < λc

regime) the Berry curvatures are equally distributed in the
six corners of the hexagon which defines a topologically
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FIG. 10. The Berry curvature corresponding to the VB is pre-
sented for lower α-values in different regimes of λeph. (Left column)
Those are plotted in the λeph < λc regime for (a) α = 0.1, (d) 0.2,
and (g) 0.3, at λeph = 0.3. (Middle column) At the critical λeph (= λc)
for (b) α = 0.1, λc = 0.49; (e) α = 0.2, λc = 0.48; and (h) α = 0.3,
λc = 0.47. (Right column) The same are shown in the λeph > λc

regime for (c) α = 0.1, (f) 0.2, and (i) 0.3, at λeph = 0.6. Other
parameters are mentioned in Fig. 3. The values of λc are mentioned
in Table I.

nontrivial phase with a nonzero Chern number. However, as
λeph is increased, the concentration changes. As the Berry
curvature is singular at the critical point, we plot it in the
vicinity of the critical point (λeph ∼ λc) shown in Fig. 10(b).
Interestingly, as λeph approaches λc, we notice a clear distinc-
tion in the concentration of the Berry curvatures at K and K ′

FIG. 11. The Berry curvature corresponding to the VB is pre-
sented for α = 0.7 in different regimes of λeph for (a) λeph = 0,
(b) λeph < λc1 (λeph = 0.2), (c) λeph ∼ λc1 (λeph = 0.26), (d) λc1 <

λeph < λc2 (λeph = 0.35), (e) λeph ∼ λc2 (λeph = 0.41), and (f) λeph >

λc2 (λeph = 0.6). Other parameters are mentioned in Fig. 5. The
values of λc1 and λc2 are mentioned in Table II.

points. At the K point, the concentrations are predominantly
higher compared to those at the K ′ point. This observation can
also be explained via Fig. 3(b) where at λeph = λc, we see a
sharp mismatch in the behavior of the bulk bands at K and
K ′ points, where at one K point, the FB and VB touch each
other, while they remain gapped at the K ′ point, displaying
the contrasting effects of the e-ph coupling on the FB at two
valleys. For other α values (α = 0.2 and α = 0.3) that are
plotted in Figs. 10(e) and 10(h), the distinction between the
Berry curvatures at K and K ′ points is much more prominent.
In Fig. 10(c), we show that the Berry curvatures above the
critical e-ph coupling strength are almost equal and opposite
at K and K ′ points thereby canceling each other resulting in a
topologically trivial phase with a zero Chern number. Hence,
till the critical λc, the system remains in the topologically non-
trivial phase exhibiting a nonzero Chern number. We wish to
mention that we have also observed almost similar variations
of the Berry curvature by varying the e-ph coupling for the
intermediate range of α, namely, α = 0.4, 0.5, and 0.6 (not
shown here).

To show the variations of the Berry curvature of α = 0.7,
we plot Fig. 11 that can be explained with the help of the bulk
and edge spectra displayed in Figs. 5 and 8, respectively. Let
us first look at Figs. 11(a) and 11(b), which is for λeph = 0
and λeph < λc1 , respectively. In this regime, as we have dis-
cussed, the spectral gap between the FB and VB vanishes even
at λeph = 0, and remains so till λeph = λc1 , manifesting the
chiral edge states [see Figs. 8(a) and 8(b)] at the boundaries.
However, in this regime, the Berry curvature shows singular
behavior as there is no bulk gap, and consequently, the Chern
number is ill-defined. However, as we tune λeph further, a
bulk gap opens up for the first time at around λeph ∼ λc1

[see Fig. 5(c)], where we see that the concentrations at the K
points start behaving differently than that at K ′ points and are
shown in Fig. 11(c). Beyond λc1 , this signature is much more
noticeable [can be seen in Fig. 11(d)] and the edge states are
prominent [see Fig. 8(d)] in λc1 < λeph < λc2 regime. In the
vicinity of λeph = λc2 , the bulk gap closes showing high values
for the Berry curvature [see Fig. 11(e)]. Finally beyond λc2

[Fig. 11(f)], the variation of the Berry curvature is reminiscent
of Figs. 10(c), 10(f), and 11(i) enunciates the onset of a trivial
insulating phase.

The Berry curvature plots for α = 0.8 are displayed in
Fig. 12. Although the variations in the λeph < λc1 regime
(Fig. 12(b)) may look similar to those for α = 0.7 show-
ing higher values of the Berry curvatures even for λeph = 0
[Fig. 12(a)], but with the support of the findings of Figs. 6
and 9 described in Sec. III A and III B respectively, it is en-
sured that in the 0 � λeph < λc1 regime, they may correspond
to some topological phase (unlike the usual SM phase for
α = 0.7) with conducting edge modes [see Figs. 9(a) and
9(b)] associated with higher Chern numbers. The observations
of Figs. 12(c)–12(f) are almost same as α = 0.7 case. How-
ever, a noticeable dissimilarity with the α = 0.7 variation in
the Berry curvature can be observed for the λc1 < λeph < λc2

regime [Fig. 12(d)], where the disparity between the concen-
trations of the Berry curvature at two valleys is much more
significant compared to that for α = 0.7. This makes the vari-
ation of Fig. 12(d) distinguishable from Figs. 12(a) and 12(b)
denoting different topological phases.
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FIG. 12. The Berry curvature corresponding to the VB is pre-
sented for α = 0.8 in different regimes of λeph for (a) λeph = 0,
(b) λeph < λc1 (λeph = 0.15), (c) λeph ∼ λc1 (λeph = 0.18), (d) λc1 <

λeph < λc2 (λeph = 0.35), (e) λeph ∼ λc2 (λeph = 0.42), and (f) λeph >

λc2 (λeph = 0.6). Other parameters are mentioned in Fig. 6. The
values of λc1 and λc2 are mentioned in Table II.

To confirm the topological phase transition induced by the
polaronic interaction in the system, we numerically compute
the Chern number C using Eq. (14) and examine the variation
with the e-ph coupling strength λeph.

However, before going into the intricacies of the electron-
phonon interaction, let us take a moment to briefly examine
the topological phase transition of the bare Haldane α-T3

lattice. In Fig. 13, we illustrate how a Haldane term on an
α-T3 lattice renders the system a Chern insulating phase that
is characterized by a nonzero Chern number. Tuning the pa-
rameter α, a topological phase transition occurs at α = 0.5.
This transition alters the Chern number of the VB (CB) from
C = −1(1) to a larger Chern number, C = −2(2). These find-
ings precisely align with previously reported results regarding
topological phase transitions in α-T3 lattices [49].

Now let us examine the dependency of the Chern number
on α in the presence of the e-ph interaction. Figure 14 displays

0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.5

1.0

1.5

2.0

2.5

C

FIG. 13. Chern number, C as a function of α for the bare (without
e-ph coupling and mass term) Haldane model of an α-T3 lattice.

FIG. 14. The Chern number C corresponding to the VB as a
function of e-ph coupling strength λeph for (i) lower to intermediate α

values (0 < α � 0.6) is shown, while in inset (a) a zoomed in picture
of the transition regions, and in the inset (b), the variation of λc as a
function of α is shown. In (ii), the variations of C for larger α values
(0.6 < α � 0.9) are shown. Inset (a) represents a zoomed in picture
of the transition regions, while insets (b) and (c), respectively, display
the variations of λc2 and λc1 as a function of α. The values of λc are
mentioned in Tables I and II.

the variations of the Chern number as a function of λeph. Here,
we display the variations of C separately in two diagrams
for lower to intermediate values of α (α = 0.1, 0.2, . . . , 0.6)
[see Fig. 14(i)] and larger values of α (α = 0.7, 0.8, 0.9) [see
Fig. 14(ii)]. Starting from the α = 0.1 case to the interme-
diate values, such as α = 0.6, we notice that C = −1 up to
a critical λc, at which C abruptly falls to C = 0 showing a
sharp discontinuity. Therefore, for lower to intermediate cases
of α [Fig. 14(i)], the system initially behaves like a Chern
insulator designated by a nonzero Chern number until the e-ph
coupling reaches a certain critical value, λc (λc’s are listed in
Table I) at which the system undergoes a topological transition
accompanied by the closing of the bulk gap and emerging
signatures of the edge states. While, beyond λc, the system
ceases to host edge states which is a typical signature of a
trivial insulator for which C = 0. We display a zoomed in
picture of the transition points in the inset (a) of Figs. 14(i)
and 14(ii). In inset (b) of Fig. 14(i), we depict the variation
of the critical λc with respect to α, illustrating a nearly linear
decrease with increasing α.

It is understood by now that such variations at higher α

values are in contrast to those at lower values of α. Let us
first consider the variation corresponding to α = 0.7 which
is represented via a solid blue line in Fig. 14(ii). Unlike the
lower α values, there exist two transition points, namely, λc1

and λc2 for higher α values (listed in Table II). Below the
former, the system inherits a conventional SM phase (where
C is ill-defined), and above the latter, the system becomes
a trivial insulator. Understandably, the λc1 < λeph < λc2 re-
gion is our main interest for α = 0.7, where we find that the
Chern number is fixed at C = −1 that underscores the emer-
gence of a topologically nontrivial insulating phase, driven
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entirely by the e-ph coupling. As expected, beyond λc2 , C
becomes zero confirming the onset of a trivial phase. Thus
the e-ph coupling favors a transition from a semi-metal to a
topological insulator, and to a trivial insulator for α = 0.7.
However, the 0 � λeph < λc1 regime becomes interesting for
α > 0.7 as described earlier in the findings of Figs. 9(a) and
9(b) that the conducting edge modes exist (specifically for
0.8 � α < 1) in that regime of λeph indicating a topologi-
cally nontrivial insulating phase. In Fig. 14(ii), we plot C as
a function of λeph for α = 0.8 denoted by the solid orange
line, where higher Chern number, namely C = −2 in 0 �
λeph < λc1 regime is noted, confirming emergence of a distinct
(other than C = −1) topological phase. Nevertheless, as we
tune λeph further, the scenario becomes exactly the same as
α = 0.7, that is, C changes from C = −2 to −1 at λeph = λc1

signifying a different topological phase that persists in the
λc1 < λeph < λc2 regime, which finally vanishes beyond λc2 .
A similar observation is also shown for α = 0.9 (marked by
the solid green line). Therefore, for the 0.7 < α < 1 regime,
the system undergoes a transition from one topological phase
(C = −2) to another (C = −1) and hence transits to a trivial
(C = 0) phase, purely mediated all the while by the e-ph
coupling. The emergence of |C| = 2 topological phase in an
α-T3 is a familiar phenomenon obtained by others [43,49,72]
in the absence of e-ph interaction. For our case, the results
completely match with those in Ref. [49] corresponding to
λeph → 0 and M → 0 (shown in Fig. 13). Moreover, due to
the e-ph interaction, we obtain a |C| = 2 topological phase
for lower values of λeph, even at λeph = 0 (in 0 � λeph < λc1

regime) for 0.8 � α < 1, that is for α values close to the
dice lattice limit (α = 1). As earlier, in insets (b) and (c) of
Fig. 14(ii), we show the variation of the critical λc2 and λc1 ,
respectively as a function of α. We observe that λc1 initially
decreases and then increases with increasing α, whereas an
opposite trend is observed for λc2 , namely, it increases first and
hence decreases with increasing α. We should mention that the
findings of Chern number plots are completely consistent with
those of bulk and edge spectra for different regimes of λeph. As
stated in Sec. III A, although we have shown a few cases of α,
it is also important to note that this kind of transition can occur
for any value of α (0 < α < 1). Therefore it seems robust that
the polaron formation in α-T3 lattices induces a topological
phase transition generated solely due to the presence of e-ph
coupling.

So far we have discussed the topological transitions for
different α-T3 lattices taking discrete values of α in the
range [0 : 1]. A phase diagram is hence computed in the
λeph − α plane to show the exact locations of different
(topological/SM/trivial) phases in the parameter space. The
phase diagram containing the Chern number (C) correspond-
ing to the VB, in the parameter space defined by e-ph
interaction (λeph) and α for fixed values of λ and M, is de-
picted in Fig. 15. It is evident that the teal area represents
a topological phase of the system with a Chern number as
C = −1 in the λeph < λc regime for 0 < α � 0.65 and in the
λc1 � λeph � λc2 regime for 0.65 � α < 1. Furthermore, for
0.65 � α � 0.75 regime, there exists an SM region (where C
is ill-defined due to the closing of the bulk band gap) denoted
by the grey color corresponding to λeph values in the 0 �
λeph � λc1 regime, signifying that the system behaves like a

FIG. 15. The topological phase diagram based on the Chern
number (C) corresponding to the VB in the λeph − α plane. The
nonzero C corresponding to the teal region is denoted as C = −1,
while the yellow region represents the vanishing Chern number
(C = 0), signifying a (topologically trivial) CDW phase. The grey
region denotes the SM phase for 0.65 � α � 0.75, while the deep
purple region stands for a distinct topological phase with C = −2
for 0.75 � α < 1. Other parameters remain the same as mentioned
in Fig. 3.

conventional semimetal. While in the same regime of λeph, an
α-T3 lattice with 0.75 � α < 1 exhibits a distinct topological
phase with C = −2 (the deep purple region). The yellow
region denotes a trivial phase with C = 0 for all values of α

(0 < α < 1) above their respective critical λc points (listed in
Tables I and II). It may be noted that varying the parameters λ

and M can significantly alter the phase diagram. However, we
do not show them here for brevity. Let us explore the possi-
bility of charge ordering in our system. In a 2D tight-binding
Holstein model, a charge density wave (CDW) ordered state is
an intriguing phenomenon [105–113]. In our case, due to the
presence of e-ph interaction, the electrons interact with the
dispersionless (optical) phonons, and as a result, the lattice
gets distorted, giving rise to polarons, which may drive the
system towards the formation of a CDW state. The direct con-
sequence of e-ph interaction in our system can be understood
mathematically from Eq. (7), where the hopping terms (t and
λ) are renormalized by the Holstein factor, plus an additional
term is added to the onsite energy as the polaron shift energy
(−λ2

eph h̄ω0) that further lowers the energy of the system. In
the high e-ph coupling (λeph � t, λ) regime, these effects
dominate over those due to the other parameters of the system,
and may eventually favor the formation of the CDW ordered
state. To confirm the existence of the charge ordering in our
system, we proceed as follows. The density in the momentum
space can be expressed as ρ(k) = ∑

i e−ik.ri〈ni〉, where 〈ni〉
is the expectation value of the electron density operator with
respect to the ground state of the system for the ith site,
with k and ri denoting the wave vector and the real space
lattice vector, respectively. As our system comprises of three
sublattices, namely, A, B, and C, we numerically calculate
ρ(k) for the individual sublattice in the momentum space and
symbolize them as ρA, ρB, and ρC corresponding to the A,
B, and C sites, respectively. We further show the variations
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FIG. 16. For α = 0.3: the contour plots of the CDW order pa-
rameter, ρ corresponding to individual sites, namely ρA, ρB and ρC

for A, B, and C sites, respectively are plotted in the kx-ky plane.
(a)–(c) (top panel) display those in the λeph < λc (λeph = 0.1) regime,
while (d)–(f) (bottom panel) display the same for the λeph > λc

(λeph = 0.6) regime, λc = 0.47 for α = 0.3. The parameters are the
same as mentioned in Fig. 3.

of ρA, ρB and ρC in the kx-ky plane (Fig. 16) in the form
of a contour plot for low (λeph < λc) and high (λeph > λc)
e-ph coupling regimes to investigate the distribution of the
electron densities at these individual lattice sites as a function
of the e-ph coupling strength. The plot displays the variation
of the densities, ρA, ρB, and ρC for α = 0.3. The low and
high e-ph coupling regimes are designated as λeph < λc (top
panel) and λeph > λc (bottom panel), respectively, where λc

denotes the (topological) transition point. In Figs. 16(a) and
16(b), one may notice that electron densities ρA and ρB are
distributed almost equally for A and B sublattices when the
e-ph coupling is small (λeph < λc). The density at the C site,
namely, ρC [Fig. 16(c)] is not significant here, which makes
sense as the hopping amplitude between A and C (αt) sites is
small (α = 0.3). However, with the densities at A and B being
equal, any charge ordering appears to be absent. Interestingly,
for the high e-ph coupling regime (λeph > λc), we observe
an interesting feature as displayed in Figs. 16(d)–16(f). It
shows that the electron density for the A sublattice [ρA in
Fig. 16(d)]is distributed almost in the entire k space, while the
contributions of the B [ρB in Fig. 16(e)] and C [ρC Fig. 16(f)]
sites are minimal. The prominent instability of the electron
densities should result in a significantly high (spanning almost
the entire BZ) concentration only at the A-site in the λeph > λc

regime, indicating a charge ordered state.
A better visualization of the modulation of the charge order

in the momentum space can be achieved if we plot the varia-
tions of ρA, ρB, and ρC along a particular direction in k-space,
namely, kx, while keeping ky = 0 in λeph < λc [Figs. 17(a)–
17(c) in the left panel] and λeph > λc [Figs. 17(d)–17(f) in
the right panel] regimes. It can be clearly observed from
Figs. 17(a)–17(c) that ρA and ρB exhibit peaks with their
extrema of almost equal magnitudes and occurring at the same
kx values, while those for ρC being negligibly small [can
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FIG. 17. For α = 0.3: the modulation of CDW order parameter
as a function of dimensionless momenta, kx (multiplied by the lattice
constant) is shown at ky = 0. (a)–(c) (left panel) respectively repre-
sent the modulation of ρA (blue), ρB (black), and ρC (green) in the
λeph < λc regime, while (d)–(f) (right panel) display the same for the
λeph > λc regime. All the parameters are kept the same as those in
Fig. 3.

also be understood from Figs. 16(a)–16(c)] for the λeph < λc

regime. However, these peaks are not periodically modulated
over the BZ and thus there is no evidence of charge ordering in
the λeph < λc regime. Interestingly, for λeph > λc, the electron
density is not only concentrated entirely at the A sublattice
at a particular value of kx where it shows a high peak (ρB

and ρC being negligibly small), it also modulates periodically
as a function of kx [Fig. 17(d)]. Along with, we observe the
periodic modulations in ρB [Fig. 17(e)] and ρC [Fig. 17(f)]
(albeit much weaker), which elucidates formation of a CDW
ordered state. It is important to mention that the variations of
the density for other α value in range [0 : 1] are similar to
those in Figs. 16 and 17, with the density of C sublattice scal-
ing with α values. Thus our system facilitates a CDW ordered
phase only in the high e-ph coupling (λeph > λc) regime.

As in our study, the system displays topological signa-
tures in the lower e-ph coupling regime (λeph < λc), and not
at higher values of λeph, we therefore, infer that the charge
ordered phase is present only in the trivial regime and a
coexistence of charge order and topology does not occur in
our system. Hence, in the phase diagram (Fig. 15), the trivial
insulating phase marked by the yellow region (designated as
C = 0) hosts a CDW ordered phase, while the teal (C = −1)
and the deep purple (C = −2) regions do not demonstrate any
charge ordering.

D. Hall conductivity

In this section, we numerically compute the polaronic Hall
conductivity using the following expression:

σxy = e2

2πh

∑
γ

∫
dkxdky

4π2
f
(
Eγ

kx,ky

)
�(kx, ky), (16)
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FIG. 18. The Hall conductivity, σxy as a function of Fermi energy,
Ef is presented for various values of α: (a) α = 0.1, (b) 0.3, (c) 0.7,
and (d) 0.8 for different λeph values that are shown in the inset. Other
parameters are the same as mentioned in Fig. 3.

where e2/h = σ0 is the scale in which σxy is measured, Eγ

kx,ky

is the energy band with the band index γ = −1, 0, and
+1 corresponding to the VB, FB, and CB, respectively, f
denotes the Fermi-Dirac distribution function: f (E ) = [1 +
e(E−EF )/kBT ]−1, EF and T being the Fermi energy and the
absolute temperature, respectively, �(kx, ky) being the Berry
curvature. Figure 18 display the variations of the polaronic
Hall conductivities at T = 0 as a function of E f for differ-
ent values of e-ph interaction strength, λeph for α = 0.1 [see
Fig. 18(a)], α = 0.3 [Fig. 18(b)], α = 0.7 [Fig. 18(c)], and
α = 0.8 [Fig. 18(d)].

As shown in Fig. 18(a), the Hall conductivity (σxy) is
plotted as a function of the Fermi energy (E f ) for λeph =
0.3, 0.4, and 0.5 marked by solid blue, black and red colors,
respectively. It is observed for α = 0.1, the Hall conductivities
initially increase and show tiny plateaus [can also be seen in
Figs. 18(b) and Fig. 18(c) for α = 0.3 and 0.7, respectively],
which are quantized at a value e2/h for the λeph < λc regime.
In other words, these quantized plateaus occurring at |C|e2/h
(here, |C| = 1) presented in Fig. 18(a) reconfirm that up to
a critical e-ph coupling λc = 0.49, the system behaves like
a topological insulator. Beyond the critical λc (denoted by
solid red), it becomes a trivial insulator with σxy = 0 (that is,
C = 0). Similar observation is noted in Fig. 18(c) for α = 0.7
where the plateaus at values |C|e2/h exist for λeph values that
are in the λc1 < λeph < λc2 regime.

In a scenario where λeph = 0 = M, the Hall conductivity
shows plateaus (but with small kinks on the plateaus due to
the presence of the distorted FB) as long as the Fermi level
lies in between the bulk gap [43]. However, in our case (with
λeph �= 0 and M �= 0), the nature of the Hall conductivity de-
viates significantly as there exists a cumulative effect arising
from the interplay of the three parameters, namely the Fermi
energy (E f ), the mass term (M) and the e-ph coupling strength
(λeph). The reason for the plateaus to become tinier can be
explained with the help of the bulk spectra, which are mainly

affected by M and λeph for different α values. It is understand-
able that a significant width of the plateau is dependent on
how accurately we fix the Fermi level in the bulk gap. As
discussed in Sec. III A, the individual bulk bands shrink due
to the Holstein factor [Eq. (8)], and the whole band structure
shifts vertically down by the polaron shift energy (λ2

eph h̄ω0).
Due to the band narrowing caused by the Holstein factor, the
gap between the distorted (because of the Haldane term, λ) FB
and VB decreases, makes it difficult for the Fermi level to lie
‘properly’ in between the bulk gap, making the plateaus less
prominent, especially for higher values of λeph. Additionally,
we find that the increase in σxy as a function of E f can be
explained as follows. As observed in Sec. III A, M breaks
the valley degeneracy and the interplay between M and λeph

renders contrasting behavior of the bulk bands at two valleys,
that is, well-gapped at one valley and almost gapless at the
other for λeph < λc. As E f is increased, it is possible that at
one valley, E f may lie well in the gap, while it may lie in the
CB as well at the other valley, which will contribute to higher
σxy. The unusual behavior of the Hall conductivity due to the
presence of a distorted FB has also been reported by Singh
et al. [56] (in the absence of e-ph coupling). Certainly, all of
the above discussions become unimportant for λeph > λc.

Interestingly, for α = 0.8, the quantized (tiny) Hall
plateaus in Fig. 18(d) are located at e2/h (where, |C| = 1)
and 2e2/h (where, |C| = 2) for λc1 < λeph < λc2 (shown for
λeph = 0.3 and 0.4, denoted by solid blue and black, respec-
tively) and 0 � λeph < λc1 regimes (shown for λeph = 0.1,
denoted by solid green), respectively, confirm existence of two
distinct topological insulating phases with a nonzero σxy (also
true for any α in 0.75 � α < 1 regime), while these plateaus
vanish beyond λc2 , ascertaining emergence of a trivial insu-
lating phase (C = 0) with σxy = 0. Thus the polaronic Hall
conductivity ensures that the system undergoes a transition
from a nontrivial insulating phase with quantized plateaus at
|C|e2/h in the λeph � λc regime to a trivial insulating phase
with zero Hall conductivity in the λeph > λc regime.

IV. CONCLUSION

To summarize, we have studied the effect of e-ph in-
teraction on inducing a topological phase transition in a
Haldane-Holstein model on an α-T3 lattice. The NN and the
complex NNN Haldane hopping amplitudes get renormalized
by the Holstein reduction factor showing the signature of
polaron formation in the system. The cases of our study are
majorly divided into two scenarios, namely lower to interme-
diate α (0 < α � 0.6) and higher (0.6 < α < 1) values of α.
With the help of the effective Hamiltonian in k space, we have
computed the bulk and the edge spectra where it is observed
that for the first case, as we increase the e-ph coupling strength
λeph, the bulk gap between the flat and valance bands closes
at a critical coupling strength, namely λc at one K valley
and reopens beyond λc. This feature explains that the system
is characterized by two distinct insulating states below and
above λeph = λc. Consequently, the conducting edge modes
emerge in the λeph < λc regime, which are preserved up to
λeph = λc, and disappear for λeph > λc, signifying a topologi-
cally nontrivial to trivial phase transition. In the second case,
we encounter a different scenario where the flat and valance
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bands in the bulk remain gapless for the 0.65 � α � 0.75
regime and gapped for 0.75 � α < 1, till λeph reaches a first
critical value, namely λc1 and become gapped till λeph as-
sumes another critical value, namely λc2 where similar gap
closing transition takes place. The explicit emergence of con-
ducting edge modes in the λc1 < λeph < λc2 regime both for
0.65 � α � 0.75 and 0.75 � α < 1, and also in 0 � λeph <

λc1 regime for 0.75 � α < 1 that traverse through the FB
around the K and K ′ valleys makes the latter case more in-
triguing. It indicates that for 0.65 � α � 0.75 (0.75 � α <

1), the system re-enters from a conventional (topological) SM
phase (in the λeph < λc1 regime) to a (another) topological one
(in the λc1 < λeph < λc2 regime) upon tuning the e-ph cou-
pling strength. The above discussions for both the cases, either
with a unique λc or with two λcs, namely λc1 and λc2 , strongly
indicate possibilities of inducing topological phase transition
via e-ph coupling in an α-T3 Haldane-Holstein model. Fur-
thermore, we have numerically computed the Berry curvature
and the topological invariant, namely the (polaronic) Chern
number (C), for different values of α. In our study, the evi-
dence of a discontinuous change in C from |C| = 1 to |C| = 0
for 0 < α � 0.75 regime, and from |C| = 2 to |C| = 1 and
finally to |C| = 0 for 0.75 � α < 1 regime exhibiting a jump
in the C vs λeph diagram at different critical values of the
e-ph coupling for different values of α directly confirms the
topological phase transition solely caused by the e-ph inter-
action, while interpolating α between corresponding lattice
structures of graphene to a dice lattice. More specifically, the
system under investigation possesses a topological insulating
phase accompanied by |C| = 1 or |C| = 2 (depending on the
range of α) below certain critical values of the e-ph coupling
strength, and becomes a trivial insulator (C = 0) above the
critical point. We, furthermore, incorporate the above obser-
vations in a phase diagram plotted for C in the λeph − α plane.
To confirm such phases, and phase transitions from one phase
to another, we have calculated the Hall conductivity for a
few values of α (both small and large) as a function of λeph.
The existence (vanishing) of Hall plateaus at |C|e2/h below
(above) a certain critical λc for a particular value of α further
substantiates the evidence of topological phase transitions

induced by e-ph coupling in our α-T3 Haldane-Holstein
model. We have also explored the possibility of charge or-
dering in our system and infer that a CDW phase is only
feasible at large values of e-ph coupling, thereby precluding
any possibility of the coexistence of topological and charge
ordered phases. We wish to motivate that our study may serve
as a powerful tool for understanding the interaction-driven
topology in novel quantum systems.
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APPENDIX: DERIVATION OF THE MODIFIED
HALDANE-HOLSTEIN HAMILTONIAN

FOR AN α-T3 LATTICE

In this section, we briefly derive the major steps to obtain
the Hamiltonian [Eq. (4) of Sec. II B] modified by the e-ph
coupling, employing LFT via the generator of the transforma-
tion mentioned in Eq. (3). The transformed Hamiltonian in
Eq. (2) can equivalently be expressed by the Baker-Campbell-
Hausdorff formula as

H̃ = eRHe−R = H + [R,H] + 1

2!
[R, [R,H]]

+ 1

3!
[R, [R, [R,H]]] + . . . (A1)

Let us label the terms of Hamiltonian (1) as H(1),H(2), . . . ,

etc. for the first till the seventh term of Hamiltonian (1),
respectively. Now, we transform each individual term as in
the following. Combining the NN (〈. . . 〉) terms that are sym-
bolized as H(1) and H(2) we can calculate the commutator for
H(12) ≡ H(1) + H(2) as

[R,H(12)] =
[
λeph

∑
i

c†
i ci(b

†
i − bi ),

[
− t

∑
〈i′, j′〉

c†
i′c j′ − αt

∑
〈 j′,k′〉

c†
j′ck′

]]
= −(1 + α)t

∑
i,δ

c†
i ci+δ[λeph[(b†

i − bi ) − (b†
i+δ − bi+δ )]],

(A2)

and consequently the successive commutators can be obtained as

[R, [R,H(12)]] = −(1 + α)t
∑
i,δ

c†
i ci+δ[Xi − Xi+δ]2, [R, [R, [R,H(12)]]] = −(1 + α)t

∑
i,δ

c†
i ci+δ[Xi − Xi+δ]3. (A3)

where Xi ≡ λeph(b†
i − bi ) and δ is the NN index, that is, j = i + δ. Therefore, collecting terms in Eqs. (A2) and (A3) and using

Eq. (A1), the NN terms are transformed as

H̃(12) =−(1 + α)t
∑
i,δ

c†
i ci+δ

[
1+[Xi − Xi+δ]+ 1

2!
[Xi − Xi+δ]2+ 1

3!
[Xi − Xi+δ]3 + . . .

]
=−(1 + α)t

∑
i,δ

c†
i ci+δ e[Xi−Xi+δ ]. (A4)

The NNN (〈〈. . . 〉〉) Haldane terms denoted by H(3) and H(4) can be transformed in a similar fashion with the NNN index, η as

H̃(34) = −(1 + α)
λ

3
√

3

∑
i,η

c†
i ci+η e[Xi−Xi+η]eiφi,i+η , (A5)
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while the onsite mass term, H(5)(≡ ∑
i c†

i MSzci) remains unchanged by the transformation, that is,

H̃(5) =
∑

i

c†
i MSzci. (A6)

The phonon energy, H(6)(≡ h̄ω0
∑

i b†
i bi) and the e-ph interaction term, H(7)(≡ λeph h̄ω0

∑
i c†

i ci(b
†
i + bi )) can respectively be

transformed by Eq. (A1) as

H̃(6) = h̄ω0

∑
i

[
b†

i bi − λephc†
i ci(b

†
i + bi ) + λ2

ephc†
i ci

]
, (A7)

H̃(7) = h̄ω0

∑
i

[
λephc†

i ci(b
†
i + bi ) − 2λ2

ephc†
i ci

]
, (A8)

where in Eqs. (A7) and (A8), we have used the identity, namely, n2
i = ni(≡ c†

i ci ) for the fermionic number operator. Hence,
summing Eqs. (A4)–(A8), we obtain Eq. (4).
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