
PHYSICAL REVIEW B 110, 045424 (2024)

Casimir-Lifshitz force variations across heterogeneous gapped metal surfaces
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The Casimir-Lifshitz force is calculated between a heterogeneous gapped metal surface and a silica (gold)
sphere attached to an atomic force microscope (AFM) cantilever tip. We demonstrate that heterogeneous surface
patches with different off-stoichiometry surface properties lead to changes in the predicted distances for a specific
force. This can incorrectly be interpreted as occurrences of surface roughness.
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I. INTRODUCTION

With the development of solid-state physics and quan-
tum theory, it becomes clear that the interaction between the
closely spaced objects originates from the fluctuation of the
electromagnetic field, defining the Casimir interaction [1].
The fundamental physics of this interaction has been devel-
oped for a range of simple geometries and is defined by the
dielectric properties of the interacting materials [2]. This foun-
dation formed the basis for our understanding of Casimir’s
effect for real metal surfaces [3–5], repulsive Casimir forces
with topological insulators [6], Casimir torque [7], and for
cylinders across magnetic fluids [8]. Force measurements
have, for instance, been carried out using a torsion pendulum
[9,10] and with the help of AFM [11], e.g., in sphere-plate
setups. It is widely believed that the dielectric properties of
many materials are weakly affected by the environmental
conditions, since, under standard conditions, the environ-
mental effect is predominantly limited to the concentration
of defects within a specific material [12]. However, with
the emergence of electronic structure theory, a new type of
materials—gapped metals—has been identified. What makes
these materials special is that they exhibit the superposition of
both insulating and metallic properties, i.e., having an internal
gap and larger free carrier concentration due to the Fermi level
residing in the principal conduction (i.e., n-type) or valence
band (i.e., p-type). Such a unique electronic structure not only
results in unique dielectric properties but also offers a knob
that can be used to tune materials properties [13]. Specifically,
gapped metals can develop spontaneous off-stoichiometry due
to Fermi level instability [14], resulting in the formation of a
range of off-stoichiometric compounds, all having different
electronic properties. Taking into account that the dielec-
tric properties of any given material are closely related to
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electronic structure, it becomes clear that such a knob can also
be used to tune the Casimir interaction.

Moving from this theoretical framework to practical in-
vestigation, AFM becomes the technique of choice when
the Casimir interaction plays a dominant role. Consider, for
instance, the case of AFM measurements of materials rough-
ness, where the typical materials profile is extracted based
on a specific physical model of the interactions involved.
In the case of homogeneous samples, such material profiles
can be well theoretically motivated. However, for commonly
observed heterogeneous samples, different regions of the sam-
ples can result in different interactions with the tip. The
observed force is highly sensitive to both surface roughness
and optical properties at separations less than 100 nm, as
reported by Broer et al. [15]. Motivated by this, in this paper,
we explore the fundamental theory of the Casimir interaction
for gapped metal surfaces. Notably, our results clearly demon-
strate how a change in stoichiometry can result in changes in
the Casimir forces, which can be misinterpreted as a change
of roughness when not properly accounting for heterogeneous
surface-specific properties.

II. THEORY

To study and model the dielectric properties of the relevant
materials, we performed first-principles calculations using the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional [16] with DFT+U correction for Nb (U = 1.5 eV)
d-like orbitals as implemented by Dudarev et al. [17], avail-
able within the Vienna Ab initio Simulation Package (VASP)
[18–21]. Our analysis focuses on two representatives sets
of gapped metals, (i) Ba1−xNb1−yO3 (with five different
compositions) and (ii) Ca6−xAl7O16 (with three different com-
positions), previously identified to be stable with respect to
decomposition into the competing phases [13]. We compute
the dielectric properties for each system, considering only the
Drude contribution and interband transitions. For the calcu-
lations of direct band transitions and plasma frequencies we
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FIG. 1. (a) Dielectric functions for imaginary frequencies from top to bottom for Ca6Al7O16, Ca5.75Al7O16, and Ca5.5Al7O16. (b) Dielectric
functions for imaginary frequencies from top to bottom for BaNbO3, BaNb0.88O3, Ba0.6NbO3, BaNb0.86O3, and Ba0.5NbO3. The results include
a superposition of interband transitions and Drude (free electron) contributions [with damping coefficient (�) set to 0.2 eV], both calculated
using DFT.

introduced a small Lorentzian broadening of 0.01 eV in the
Kramers-Kronig transformation [22]. To include the Drude
term in the optical properties, we utilize the kram code (which
is part of WIEN2k [23,24]), setting the damping coefficient
(�) to 0.2 eV. Additional details on computational parameters
can be found in our previous paper [13].

From the imaginary part (ε′′
i for material i) of the dielectric

function, the quantity related to forces can be obtained,

εi(iξm) = 1 + 2

π

∫ ∞

0
dω

ωε′′(ω)

ω2 + ξ 2
m

, i = 1, 2, 3 (1)

where the Matsubara frequency is ξm = 2πkT m/h̄, and the
subscript i indicates the medium. As seen in Fig. 7 below the
curves show strong dependence for the dielectric function on
off-stoichiometry for Ba1−xNb1−yO3 and Ca6−xAl7O16 going
from a metallic to insulator behavior. This behavior mainly
originated from the spontaneous formation of cation vacan-
cies, originating from energy lowering due to the decay of
conducting electrons into the acceptor defect states suggesting
that the tuning synthesis/environmental conditions allows to
stabilize different gapped metals [13]. To use the DFT calcu-
lated dielectric functions shown in Fig. 1 for Casimir-Lifshitz
interaction, we also develop the parametrization of the aver-
age dielectric function for each of the considered compounds
using a 13-mode oscillator model [25],

ε(iξ ) = 1 +
∑

j

Cj

1 + (ξ/ω j )2
. (2)

Here, ω j and Cj represent the characteristic frequencies and
the oscillator strength, respectively. The parameters for each
gapped metal are provided in Appendix B.

Let f (d ) be the force between a gapped metal (medium 1)
and a sphere with radius R (medium 3). For d << R the force
between a sphere and a planar surface can be deduced from
the free energy {F (d ) = f (d )/[2πR]} between two planar
surfaces using the so-called proximity force approximation

[3]. The sphere is taken to be made of SiO2 polymorph (with
a volume per SiO2 unit being 68.82 Å3 with the details in
Ref. [25] and including phonon contribution for low frequen-
cies as done by Boström et al. [26,27]). The intervening
medium 2 may be a diluted gas with ε2(iξm) = 1. The force
can be written as [2,3]

f (d )

2πR
= kBT

2π

∞∑
m=0

′
∫ ∞

0
dq q

∑
σ

ln
(
1 − r21

σ r23
σ e−2κ2d

)
, (3)

where σ = TE, TM, kB is Boltzmann’s constant, h̄ is Planck’s
constant, temperature T = 300 K, and the prime in the sum
above indicates that the first term (m = 0) has to be weighted
by 1/2. The Fresnel reflection coefficients between surfaces i
and j for the transverse magnetic (TM) and transverse electric

FIG. 2. The retarded Hamaker constant Aret(d ) = −12πd2 ×
F (d, T ) for several material combinations of Ba1−xNb1−yO3 − air −
SiO2 at temperature T = 300 K.
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FIG. 3. Distance vs Casimir-Lifshitz force (obtained from proximity force theorem and the expression for the Casimir-Lifshitz free energy)
using Eq. (3). In (a) the material combinations are Ba1−xNb1−yO3-air-SiO2. In (b), the material combinations are Ca6−xAl7O16-air-SiO2.

(TE) polarizations are given by

ri j
TE = κi − κ j

κi + κ j
; ri j

TM = ε jκi − εiκ j

ε jκi + εiκ j
. (4)

Here κi = √
q2 + εiξ 2

m/c2, with i = 1, 2, 3 and the Matsubara
frequency being ξm = 2πkBT m/h̄.

III. RESULTS

A. Silica systems

The relationship between the distance-dependent retarded
Hamaker constant Aret(d ) and the corresponding free en-
ergy F (d, T ) is expressed as Aret(d ) = −12πd2 × F (d, T ).
The retarded Hamaker constant between different silica-
air-gapped metal systems are illustrated in Fig. 2. This
figure illustrates how the interaction is tuned by using various
material combinations of Ba1−xNb1−yO3-air-SiO2.

TABLE I. The nonretarded Hamaker constant for gapped metal-
vapor-SiO2. With simple manipulation of equations the relative
surface correction in the nonretarded limit can be shown equal to
δo = 100 × (

√
ANR

s /ANR
o − 1) where s correspond to the stoichiomet-

ric system (i.e., BaNbO3 and Ca6Al7O16, respectively) and o are the
corresponding off-stoichiometric system. As a comparison, we show
the retarded relative surface correction at ds = 80 nm in the right
column.

Material ANR (eV) δNR
o δo at ds = 80 nm

BaNbO3 0.71
Ba0.88NbO3 0.66 3.71% 0.56%
Ba0.6NbO3 0.69 1.43% 3.11%
BaNb0.86O3 0.67 2.94% 3.68%
Ba0.5NbO3 0.63 6.15% 10.8%
Ca6Al7O16 0.50
Ca5.75Al7O16 0.48 2.06% 2.59%
Ca5.5Al7O16 0.44 6.6% 16.57%

This figure demonstrates how the interaction strength
changes for different material combinations as the distances
between particles vary. An attractive interaction can be de-
termined by a positive retarded Hamaker constant, which
decreases with increasing distance due to retardation. In the
nonretarded (NR) limit of small distances (d → 0) for each
material combination, ANR takes a constant value, as listed
in Table I. First, let us consider the limit of very small sep-
arations when retardation can be neglected. In this case, the
Hamaker constant is truly a constant allowing us to calculate
a relation between Hamaker constants and the deviations in
surface separation (
d),

As(ds)

d2
s

= Ao(do)

d2
o

→ 
d = ds − do ≈ do

⎛
⎝

√
As

Ao
− 1

⎞
⎠, (5)

FIG. 4. Distance vs Casimir-Lifshitz force (obtained from prox-
imity force theorem and the expression for the Casimir-Lifshitz free
energy). The material combinations are Ba1−xNb1−yO3-air-Au.
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FIG. 5. Distance vs Casimir-Lifshitz force (obtained from prox-
imity force theorem and the expression for the Casimir-Lifshitz free
energy). The material combinations are Ca6−xAl7O16-air-Au.

and the percentage correction relative to the stoichiometric
surface,

δo = (ds − do) × 100/do, (6)

δNR
o = 100 × (√

ANR
s /ANR

o − 1
)
. (7)

The resulting percentage corrections in the nonretarded
limit are given in Table I. The question is if these 1–7%
distance corrections can give rise to corrections of the same
order of magnitude as regular surface roughness.

To this aim, we plot, in a slightly unusual manner, the
distance versus force for different Ba1−xNb1−yO3-air-SiO2

in Fig. 3(a). Notably, the different distance curves corre-
spond to different spontaneously formed stoichiometric or

off-stoichiometric Ba1−xNb1−yO3 surface patches. Hence, for
the same force different surface separations are predicted,
corresponding to the tip (sphere) being above different surface
patches. To show the generality of the results we present
a similar set of curves for Ca6−xAl7O16-air-SiO2 systems
in Fig. 3(b). We observe a clear trend for both systems
when going from the most-metallic to the most-insulating
surface material.

B. Gold systems

In parallel with calculations for SiO2 spheres we also
consider the case with a gold sphere. The dielectric function
for gold was taken from Boström et al. [5]. The force curves
for gold-air-gapped metals are shown in Figs. 4 and 5. Our
proof-of-concept calculations considered a sphere made
from either SiO2 or gold. However, we stress that for an
insulating material, one cannot apply any potential to perform
electrostatic calibration. Hence, it is not possible to estimate
contact potentials allowing for the application of a com-
pensating potential during force measurements to minimize
electrostatic contributions. As a result, the forces measured
in an experimental setup with insulating materials can, in
principle, be contaminated from uncompensated electrostatic
contributions due to trapped charges [28]. This is a potential
problem that limits any experimental verification of the
theory predictions.

C. Inverse design

Our Fig. 6(a) is one main result, and we obtain very similar
results when the SiO2 sphere is replaced with a gold sphere.
The results for gold shown in Fig. 6(b) demonstrate the gen-
erality of our inverse design approach as a gold-air-gapped
metal system can be calibrated for potential electrostatic con-
tributions. The measured force is highly sensitive to both
surface roughness and optical properties at separations less

FIG. 6. Here 
 d = ds − do where s correspond to the stoichiometric system (i.e., BaNbO3 and Ca6Al7O16, respectively) and o are the
corresponding off-stoichiometric system. In this figure, the fitted functions are used to evaluate the value of 
 d as a function of ds. In (a) the
sphere is made of silicon and in (b) it is made from gold. While the predicted forces are sensitive to the material of the sphere, we find that the
distance variances have similar trends for silica and gold spheres.
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FIG. 7. Fitting curve for distance vs Casimir-Lifshitz force for
BaNbO3–air–SiO2 system.

than 100 nm [15]. The “inverse design” used in the current pa-
per means that we study functions d ( f ) rather than f (d ). The
fitting function for d as a function of x = f /[2πR] can thus
be written as d = xa log(x) xb ec where a, b, and c are unitless
fitted parameters given in Appendix A. These fitted functions
are used in Figs. 6(a) and 6(b) to evaluate the value of distance
variance 
 d as a function of ds, for different material com-
binations. This allows us to explore some surprisingly large
corrections for the predicted surface separations. Notably,
when comparing metallic patches with different stoichiome-
try, the corrections are around 1–4%. However, even larger
effects occur when we compare a stoichiometric metallic
patch with a patch with an off-stoichiometric insulating state.
We predict corrections up to 10–20%. These effects are large
enough to impact Casimir force measurements.

IV. CONCLUSIONS

In real-world applications, particularly for those involving
heterogeneous surfaces, it is clear that a sphere attached to an
AFM tip can result in significantly different measured forces
when scanning over various surface regions. One should per-
haps also mention that while gold systems also suffer from
patch potential problems there are experimental methods used
to work around that. Our key message is that differences in
predicted sphere-surface separation are not only due to surface
roughness or different electrostatic interactions but also partly
due to heterogeneous surface patches. In the case of gapped
metal systems, these patches can spontaneously form during
surface manufacturing.

ACKNOWLEDGMENTS

M.B., S.P., and O.I.M.’s research contributions are part
of the Project No. 2022/47/P/ST3/01236 cofunded by the
National Science Centre and the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 945339. The re-
search by M.B. and S.P. took place at the “ENSEMBLE3 -

TABLE II. The fitting function for silica–air–gapped metal sur-
face is y = xa log(x) xb ec with a, b, and c are unitless parameters given
in the table.

Material a b c

BaNbO3 −0.006247 −0.55217 −2.993454
Ba0.88NbO3 −0.006368 −0.554738 −3.033964
Ba0.6NbO3 −0.006260 −0.552784 −3.005466
BaNb0.86O3 −0.006389 −0.554454 −3.029188
Ba0.5NbO3 −0.006898 −0.562608 −3.093622
Ca6Al7O16 −0.005989 −0.554364 −3.184238
Ca5.75Al7O16 −0.006070 −0.555309 −3.203518
Ca5.5Al7O16 −0.007034 −0.569185 −3.297207

Centre of Excellence for nanophotonics, advanced materials
and novel crystal growth-based technologies” Project (Grant
Agreement No. MAB/2020/14) carried out within the Inter-
national Research Agendas programme of the Foundation for
Polish Science cofinanced by the European Union under the
European Regional Development Fund, the European Union’s
Horizon 2020 research and innovation programme Teaming
for Excellence (Grant Agreement. No. 857543) for support of
this work. S.O. thanks the National Science Centre, Poland
(Grant No. UMO/2020/39/I/ST4/01446) and the “Excel-
lence Initiative - Research University” (IDUB) Program,
Action I.3.3 - “Establishment of the Institute for Advanced
Studies (IAS)” for funding (Grant No. UW/IDUB/2020/25).
We gratefully acknowledge Poland’s high-performance com-
puting infrastructure PLGrid (HPC Centers: ACK Cyfronet
AGH) for providing computer facilities and support within
computational Grant No. PLG/2023/016228 and for award-
ing this project access to the LUMI supercomputer,
owned by the EuroHPC Joint Undertaking, hosted by
CSC (Finland) and the LUMI consortium through Grant
No. PLL/2023/4/016319.

APPENDIX A: FITTING FUNCTIONS AND THEIR
ANALYSIS

Here, we discuss the fitting curve and parameters for dis-
tance vs Casimir-Lifshitz force plot between different material
combinations of Ba1−xNb1−yO3 and Ca6−xAl7O16 with silica
(SiO2) and gold (Au) sphere where the intermediate medium
is air. We provide Tables II and III for the above combinations

TABLE III. The fitting function for gold–air–gapped metal sur-
face is y = xa log(x) xb ec with a, b, and c are unitless parameters given
in the table.

Material a b c

BaNbO3 −0.004965 −0.522436 −2.294606
Ba0.88NbO3 −0.005023 −0.523520 −2.307484
Ba0.6NbO3 −0.005355 −0.528101 −2.344180
BaNb0.86O3 −0.005421 −0.528405 −2.342667
Ba0.5NbO3 −0.006139 −0.538088 −2.410562
Ca6Al7O16 −0.005075 −0.529580 −2.498146
Ca5.75Al7O16 −0.005267 −0.531884 −2.523991
Ca5.5Al7O16 −0.006356 −0.545063 −2.614540
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TABLE IV. Parametrization of the average dielectric function of continuous media, ε(iξ ), at imaginary frequencies for Ca6−xAl7O16 as
calculated with first-principles calculations and a damping coefficient (�) set to 0.2 eV. The ω j modes are given in eV. The largest difference
between fitted and calculated ε(iξ ) is 0.08%.

Coefficients (Cj) for different Ca6−xAl7O16 compounds

Modes (ω j) Ca6Al7O16 Ca5.75Al7O16 Ca5.5Al7O16

0.0206 58.9601 0.6494 0.0001
0.0347 91.1774 1.797 0.0003
0.0587 57.4068 5.2997 0.001
0.1013 16.4729 15.4951 0.0221
0.1996 73.0451 29.8463 0.3283
0.3938 0.3949 2.1519 0.7511
0.9556 0.0706 0.2519 0.4345
2.2773 0.0987 0.0392 0.0
6.4732 0.4594 0.2384 0.2279
10.2048 0.7938 0.8189 0.0
18.2421 0.3705 0.474 0.0486
30.9018 0.1655 0.2388 0.0
54.455 0.0059 0.0283 0.001

for the fitted unitless parameters a, b, and c. These parameters
are used to illustrate surface variance 
 d as a function of
ds in Figs. 6(a) and 6(b). These data give us some informa-
tion on insulating and metallic surface patches for different
stoichiometries.

APPENDIX B: PARAMETERISED DIELECTRIC
FUNCTIONS OF THE GAPPED METALS

In order to link optical calculations from DFT with force
calculations, we parameterized the dielectric functions for the
different gapped metals used in Tables IV and V.

TABLE V. Parametrization of the average dielectric function of continuous media ε(iξ ) at imaginary frequencies for Ba1−xNb1−yO3 as
calculated with first-principles calculations and a damping coefficient (�) set to 0.2 eV. The ω j modes are given in eV. The largest difference
between fitted and calculated ε(iξ ) is 0.1%.

Modes (ω j) Coefficients (Cj) for different Ba1−xNb1−yO3 compounds

BaNbO3 BaNb0.88O3 Ba0.6NbO3 BaNb0.86O3 Ba0.5NbO3

0.0215 9.4105 69.1791 10.1195 0.6139 0.0
0.0438 17.6756 94.1209 15.8813 4.5368 0.0
0.0872 19.2732 66.833 17.5738 7.3998 0.0
0.1967 451.2032 351.9936 83.8965 80.6752 0.0
0.2227 53.9568 37.1564 35.407 0.0 0.0
0.6448 0.2725 1.3619 1.6775 6.027 0.0
2.5296 0.1729 0.1616 0.3952 0.6325 0.2161
5.0772 1.2805 1.5587 2.4751 1.2681 2.4029
8.4405 1.5742 1.3843 0.8565 1.7721 1.0033
16.0637 0.7289 0.7517 0.8088 0.5311 0.717
27.1476 0.2407 0.2107 0.1615 0.3452 0.1712
47.1511 0.0632 0.0695 0.0824 0.0074 0.0782
79.6918 0.0029 0.0 0.0 0.0114 0.0
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