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Envelope-function theory of inhomogeneous strain in semiconductor nanostructures
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Strain represents an ubiquitous feature in semiconductor heterostructures, and can be engineered by different
means in order to improve the properties of various devices, including advanced metal-oxide-semiconductor
field-effect transistors and spin-based qubits. However, its treatment within the envelope function framework is
well established only for the homogeneous case, thanks to the theory of Bir and Pikus. Here, we generalize this
theory to the case of inhomogeneous strain. By fully accounting for the relativistic effects and metric aspects of
the problem, we derive a complete envelope-function Hamiltonian, including the terms that depend on first and
second spatial derivatives of the strain tensor.
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I. INTRODUCTION

Strain represents a common feature in semiconductor
nanostructures. It develops spontaneously during their fab-
rication process, because of the lattice mismatch between
heterogeneous layers, and can be induced by cooling the
system to cryogenic temperatures, due to the presence of ma-
terials with different thermal-expansion coefficients [1–3]. As
an uncontrolled or unaccounted phenomenon, strain can result
in significant differences between the actual and the nominal
properties of the nanostructure. On the other hand, strain can
be intentionally engineered, in order to modulate the band
structure and increase the carrier mobility, an approach that is
actively pursued, e.g., with metal-oxide-semiconductor field-
effect transistors (MOSFETs) [4,5] or silicon nanowires [6].

These effects are particularly relevant in semiconductor-
based implementations of quantum computing. Silicon and
germanium quantum dots have emerged as promising hosts
of electron- or hole-spin qubits [7–27], whose properties can
be strongly affected by strain. In particular, it has been shown
that in these systems inhomogeneous strain can modify both
the localization of the confined particle and its coupling to
external fields, specifically through a modulation of the Rabi
frequency [28] and of the g factor [29].

The tool of election for simulating the properties of spin
qubits in semiconductor quantum dots is represented by
the Luttinger and Kohn (LK)’s envelope-function formalism
[30–32]. This applies to crystalline systems subjected to a
spatially slow-varying external potential, such as the one gen-
erated by the metal gates used in electrostatically defined
nanostructures. Describing the effects of strain on the electron
and hole states requires an extension of LK’s theory, which
was developed by Bir and Pikus (BP) for the case where
the strain tensor is small and homogeneous [33–37]. Even
in these conditions, the absolute displacements of the ions
(with respect to the unstrained crystal) may be comparable or
larger than the lattice constant. This makes the displacements
unsuitable as an expansion parameter for the electron-nuclei
potential, unlike for the theory of electron-phonon interactions
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[38]. BP’s key idea was to introduce a new set of electron
coordinates that make the power expansion of the electron-
nuclei potential in the strain tensor possible, thus enabling a
perturbative calculation of the electron and hole states.

In view of the above, a generalization of BP’s theory to the
case of inhomogeneous strain would be highly desirable, but
is far from trivial. In our understanding, the previous attempts
that have been made in this direction are affected by signifi-
cant shortcomings. These consist either in an incorrect treat-
ment of the Schrödinger equation in the required set of curvi-
linear coordinates, resulting in the non-Hermiticity of the par-
ticle Hamiltonian [39], or in the use of a nonpractical basis set
within a nonrelativistic treatment, which precludes from the
outset an accurate description of spin-orbit interactions [40].

In this article, we extend BP’s theory to the case of inhomo-
geneous strain in a rigorous and comprehensive way. This is
achieved by properly taking into account the modifications to
the quantum-mechanical formalism that arise when the metric
is non-Cartesian [41,42], and by including relativistic correc-
tions to the Schrödinger equation via a low-energy expansion
of the covariant Dirac equation [43]. Our central result —
applicable to a variety of semiconductor nanostructures, in
the presence of slowly-varying inhomogeneous strain and ex-
ternal electrostatic potential — is a set of equations, whose
solution gives the envelope functions within a manifold of
arbitrary dimension. From these we derive, as a relevant case,
the strain-related six-band Hamiltonian for the hole states in
silicon and germanium, and more generally in crystals with
diamond structure. For the sake of readability, the main logical
steps that have been followed are reflected in the structure of
the main text, which contains the main results. The complete
derivations are reported in the Appendices and in the Sup-
plemental Material (SM) [44], to which we provide detailed
reference at each step.

II. INHOMOGENEOUS STRAIN

The first step consists of the introduction of a curvilinear
coordinate system, which allows us to express the nuclei
potential in the strained system as a perturbative expansion in
the strain tensor. This approach, introduced by BP for the case
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of homogeneous strain and generalized to the inhomogeneous
case by Zhang [39], is recalled here for the reader’s conve-
nience. In the original Cartesian reference frame, let rC define
the electronic coordinates, while Ri,0 and Ri ≡ Ri,0 + ui are
the nuclei positions in the absence and in the presence of
strain, respectively. Generalizing BP’s approach to the case
of inhomogeneous strain, one introduces a set of curvilinear
coordinates r to describe the electronic position. These are
related to the rC by the equation [39]:

rα
C = rα + uα (r), (1)

where the Greek indices label vector components (α =
1, 2, 3). The continuous inhomogeneous displacement u(r) is
assumed to be an invertible and differentiable function of r
to all needed orders. It fulfills the conditions u(Ri,0) = ui and
|u(r)| � |r|. The former condition allows for the expansion of
the nuclei potential in powers of the strain in the transformed
coordinate frame, while the latter condition follows from the
assumption that the strain tensor is small everywhere.

Given the displacement functions uα , the components of
the strain tensor can be defined as follows:

εα
β (r) ≡ ∂βuα (r), (2)

where ∂β ≡ ∂/∂rβ . Provided that the strain tensor is small and
varies slowly over the scale of a unit cell, by applying the
transformation in Eq. (1), one can express the potential Un

generated by the nuclei in the strained system in the form:

Un(r) ≈ Un,0(r) + εα
β (r)U β

α (r). (3)

Here, Un,0 is the potential in the unstrained system and U β
α

is a strain-independent function that has the same periodicity
as the unstrained lattice, while the product εα

β (r)U β
α (r) is in

general not periodic. Further details on the nuclei potential
relations are provided in Appendix A. In Appendix B, in-
stead, we give a formal derivation of the relations between
Hamiltonians and wave functions in two coordinate systems
connected by a point transformation such as Eq. (1). Here and
in the remainder of this Article, we use Einstein’s summation
convention on repeated Greek indexes.

III. THE SCHRÖDINGER PROBLEM
IN CURVILINEAR COORDINATES

The second step consists in deriving the general expression
of the Schrödinger equation for an electron in curvilinear
coordinates, with the inclusion of the spin-orbit term. The
adoption of the curvilinear coordinates r implies the introduc-
tion of a nontrivial metric tensor, i.e., a gμν �= −δμν [41]. As
a result, the matrix element of a local operator Â between two
arbitrary electron (spinorial) states is given by

〈�|Â|	〉 =
∫

dr
√

−g(r) �†(r) · A(r) 	(r), (4)

where g(r) = det[gμν (r)]. The definition of inner products can
be obtained from the above equation simply by replacing the
generic operator A with the identity. As a technical but crucial
point, we note that, in a curvilinear coordinate system, the def-
inition in Eq. (4) should be used in evaluating the Hermiticity
of operators and the scalar products between states, rather than
its Cartesian counterpart, corresponding to

√−g(r) = 1 [39].

In order to obtain the correct Hamiltonian in curvilinear
coordinates and to include spin-orbit coupling, we generalize
the covariant formulation of the Schrödinger equation given
in Ref. [41], which applies to a non-relativistic Hamiltonian.
Starting from the covariant Dirac equation for the four-
component electron field in an electromagnetic potential [43],
which holds for arbitrary metric tensors, we take the nonrel-
ativistic limit and allow for a nontrivial metric in the spatial
sector only. The result is a Schrödinger equation for two
spinors that can be augmented with any order of relativistic
corrections, while inheriting the covariance of the initial Dirac
equation.

In the absence of magnetic field and up to the first order in
the relativistic corrections, the Hamiltonian can be written as:
H = Hkin + Hrel + U , where the kinetic term reads

Hkin = − h̄2

2m

[(∇2
Crν

)
∂ν − gμν∂μ∂ν

]
, (5)

U is a generic scalar potential, and the dominant component
in the relativistic term is given by the spin-orbit Hamiltonian

Hso = − ih̄2

4m2c2

(
∂rμ

∂rα
C

∂rν

∂rβ

C

σαβ

)
(∂μU )∂ν. (6)

Here, we adopt the notation ∇2
C ≡ ∂2/(∂rα

C∂rα
C). Besides,

σαβ = −̃ε αβγ σγ , where ε̃ αβγ is the invariant Levi-Civita
symbol and −σγ are the Pauli matrices.

Relying on the generalized expression of the matrix ele-
ments and of the inner product [Eq. (4)], one can write the
matrix elements of the Hamiltonian between two-component
spinors in a manifestly Hermitian way, assuming that the wave
functions either vanish at infinity, or satisfy the Born-von
Karman boundary conditions. Further details on the relativis-
tic terms of the Hamiltonian and on the boundary conditions
are provided in Appendixes C and D, respectively.

IV. CURVILINEAR COORDINATES
FROM THE STRAIN TENSOR

The equations reported in the previous paragraph provide
a general framework, which can be applied to the present
problem, where the non-Cartesian character of the coordinates
results from the presence of inhomogeneous strain. In fact the
strain tensor determines the Jacobian Jα

β ≡ ∂β∂rα
C = δα

β + εα
β ,

as can be deduced from Eqs. (1) and (2). As to the metric
tensor, to first order in the strain tensor, it can be expressed as

gμν ≈ −δμν − εν
μ − εμ

ν , (7)

under the assumption that ‖εi(r)‖ � 1, and thus J−1 ≈ 1 − ε.
From this it also follows that

√−g ≈ 1 + tr(ε).
The above relations provide the dependence of Hkin and

Hso on the strain tensor, mediated by the inverse Jacobian, ∇2
C

and gμν . To the first order in the strain tensor, the kinetic and
spin-orbit components of the Hamiltonian can thus be written
as follows:

Hkin = − h̄2

2m

[
∂2

∂rμ∂rμ
+ ←−

∂ μ

(
εν
μ + εμ

ν

)−→
∂ ν

]
, (8)

Hso = −iη( fμσμν−→∂ ν − ←−
∂ νσ

μν fμ + �ν−→∂ ν − ←−
∂ ν�

ν ),
(9)
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where

η ≡ h̄2/(8m2c2),

fμ ≡ ∂μUn,0,

�ν ≡ (
∂μεα

β

)
U β

α σμν + εα
β

(
∂μU β

α

)
σμν − εν

β fασ αβ − εα
μ fασμν,

(10)

and the arrows above the differential operators specify
whether these must be applied to the wave function on the left
or right sides of the Hamiltonian when evaluating its matrix
elements.

As to the potential induced by the nuclei, its expression is
given by the sum of the unstrained contribution and of a per-
turbation that depends linearly on the strain tensor [Eq. (3)].

The derivations of the above equations can be found in
Appendixes C and D.

V. GENERALIZED LUTTINGER-KOHN THEORY

In the LK solution scheme, the electron Hamiltonian
matrix is derived in an orthonormal basis, and then re-
duced to a block structure by means of a suitable canonical
transformation, which effectively separates the relevant man-

ifold from the others, while perturbatively accounting for the
intermanifold coupling. In the present section, this procedure
is generalized in order to include the case of a curvilinear
set of coordinates, with consistently defined orthonormality
relations.

In order to identify a complete basis set, we initially con-
sider the part of the Hamiltonian that is of order zero in the
strain. Because this is a periodic function of r, one can apply
Bloch’s theorem in order to derive its eigenfunctions ψn,k =
eik·run,k(r) and eigenvalues En(k). In view of an expansion
around, e.g., the � point, it is convenient to introduce also
the LK functions [30] χn,k ≡ eik·run,0(r). In the curvilinear
coordinates neither the Bloch nor the LK functions form an
orthonormal basis [45], according to the inner product defined
in Eq. (4). However, the orthonormality relations can be re-
covered by suitably modifying the LK functions, according to
the relations [38]:

χn,k ≡ χn,k

[−g(r)]1/4 ≈
[

1 − 1

2
tr ε(r)

]
eik·run,0(r). (11)

Analogous modifications can be applied in order to recover
the orthonormality relations for the Bloch functions.

In the modified LK basis, the matrix elements of the first-
order strain-dependent component of the Hamiltonian read:

〈χn,k|Ĥ (1)|χn′,k′ 〉 = − h̄2

4m
|k − k′|2ε̃ μ

μ (k − k′) δn,n′ + ε̃ μ
ν (k − k′)

(
Dν

μ + kαLν
α;μ + k′αL∗ν

α;μ + kαk′βQν
αβ;μ

)
n,n′ , (12)

where ε̃ μ
ν (q) is the Fourier transform of the strain tensor. The

last parentheses on the right include the deformation-potential
terms; in particular, the k- independent quantities D, L, and Q
are given, respectively, by

Dν
μ ≡ Dν

μ + �Dν
μ, (13a)

Lν
α;μ ≡ Lν

α;μ + �Lν
α;μ, (13b)

Qν
αβ;μ ≡ Qν

αβ;μ + �Qν
αβ;μ, (13c)

where the dominant nonrelativistic components are

Dν
μ ≡ U ν

μ − 1

m
pμ pν, (14a)

Lν
α;μ ≡ − h̄

2m

(
δν
α pμ + δμ

α pν

)
, (14b)

Qν
αβ;μ ≡ − h̄2

2m

(
δμ
α δν

β + δν
αδ

μ

β

)
, (14c)

while the relativistic corrections read

�Dν
μ ≡ iη

(
2
←−
∂ ασαβU ν

μ

−→
∂ β + ←−

∂ βσ νμ fβ

−←−
∂ βσ νβ fμ − σ νμ fβ

−→
∂ β + σ νβ fμ

−→
∂ β

)
, (15a)

�Lν
α;μ ≡ η

(
2σαβU ν

μ

−→
∂ β + σ νμ fα − σ να fμ

)
, (15b)

�Qν
αβ;μ ≡ iησαβU ν

μ, (15c)

in terms of the quantities defined in Eqs. (10). In the above,
pμ = −ih̄∂μ, and the quantities depending on the band indices

n and n′ in Eq. (12) are defined by the relation

(A)n,n′ ≡ (2π )3

�cry

∫
dr u†

n,0(r) · A un′,0(r), (16)

where �cry is the crystal (i.e., the normalization) volume.
The next step consists of decoupling the low-energy manifold
of interest (n � N) from the higher-energy states (n > N),
using Löwdin partitioning [31,32,39,46]. This amounts to ap-
plying a canonical transformation to the Hamiltonian, Ĥ =
e−Ŝ Ĥ eŜ ≡ Ĥ + �Ĥ , and to its eigenstates, |φ〉 = e−Ŝ |ψ〉.
The transformation is such that Ĥ is approximately block
diagonal in band space, and specifically displays negligible
coupling terms between the relevant manifold and the remote
bands. If intermanifold couplings related to the deformation-
potential terms can be neglected, then the correction �Ĥ
for the N-dimensional low-energy manifold has the standard
effective-mass form [31].

Further technical details on the derivation of Eq. (12) are
given in Appendix E and Sec. I of the SM [44]. Details on the
manifold decoupling are presented in Sec. II of the SM [44].

VI. ENVELOPE FUNCTIONS

The last step consists of the derivation of the confined par-
ticle states within the relevant N-dimensional manifold. The
electron Hamiltonian includes an external confining potential
Uext, such as that induced by metallic gates in electrostatically
defined quantum dots, which adds to the nuclear contribution:
U = Un + Uext. We remark that, for consistency, the external
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potential must be expressed in the curvilinear coordinates r;
i.e., if the potential is initially known as a function Uext; C(rC)
of the Cartesian electronic coordinates, then the expression
to be used here is Uext (r) = Uext; C[r + u(r)]. Therefore, this
quantity depends on the strain tensor through u(r). The ex-
ternal potential is assumed to be a slowly varying function
of r on the scale of the lattice constant, so as to justify an
envelope-function approach. In particular, the eigenfunctions
of H can be written as

φ(r) ≡ 〈r|φ〉 = 1

[−g(r)]1/4

∑
n�N

Fn(r) un,0(r), (17)

where the N quantities denoted as Fn(r) are the unknown
envelope functions. These are determined by diagonalizing in
band and position spaces the envelope-function Hamiltonian

ĤEF = Ĥ(0)
EF + Ĥ(1)

EF , where Ĥ(0)
EF is formally the standard

k · p term in the r coordinates, and Ĥ(1)
EF is given by

Ĥ(1)
EF = ε μ

ν (r)
[
Dν

μ + (
Lν

α;μ + L∗ν
α;μ

)
k̂α + Qν

αβ;μk̂α k̂β

]
− i

[
∂αε μ

ν (r)
](
Lν

α;μ + Qν
αβ;μk̂β

) + h̄2

4m

[∇2εμ
μ (r)

]
1,

(18)

with k̂α ≡ −i∂α . Here D, L, and Q are matrices in band
space, whose elements are defined according to Eqs. (16) and
(13)-(15); 1 is the identity matrix in band space.

It should be emphasized that Eq. (17) is the spinor wave
function in the curvilinear reference frame r, while the wave
function in the Cartesian frame is given by φC(rC) = φ[r(rC)],
where r(rC) is the inverse of the transformation Eq. (1).
Further details on the derivation of the envelope-function
Hamiltonian are given in Appendix F.

Equation (18) is the main result of this work. It contains
terms that have not been considered in the literature, and that
cannot be inferred from the homogeneous case by replacing
a constant strain tensor with a position-dependent one. These
terms can be either intra- (n = n′) or interband (n �= n′), and
depend on the first or on the second spatial derivatives of the
strain tensor. Besides, the terms linear in ε(r) and ∝ k̂α or ∝
k̂α k̂β are non-zero also in the case of homogeneous strain, but
have been neglected in previous analyses.

VII. VALENCE STATES IN DIAMOND STRUCTURES

As a specific but practically relevant application, we con-
sider the valence bands of a crystal with diamond structure,
such as silicon or germanium. In this case, the three relevant
orbital states are built from p-type atomic orbitals, and thus
carry an angular momentum l = 1. This, combined with the
s = 1/2 spin of the electron, gives rise to a j = 3/2 quartet
and a j = 1/2 doublet (N = 6). In this basis, the dominant
part of the spin-orbit is diagonal, and gives rise to a splitting
�SO between the j = 3/2 and j = 1/2 states at the � point
[47]. We here discuss the Hamiltonian that is obtained after
neglecting the other spin-orbit contributions. Then: L coin-
cides with L, which vanishes at the band maximum; D reduces
to the nonrelativistic deformation potentials D; Q equals Q,
which consists of purely intraband (n = n′) contributions.
The strain-dependent component of the envelope-function

Hamiltonian matrix, Eq. (18), thus becomes

Ĥ(1)
EF =

{
h̄2

4m

[∇2εμ
μ (r)

] − h̄2

m
ε

sym
αβ (r)k̂α k̂β

− h̄2

m

[
k̂αε

sym
αβ (r)

]
k̂β

}
1 + ε μ

ν (r) Dν
μ. (19)

Here, ε
sym
αβ ≡ (εα

β + εβ
α )/2 is the symmetric part of the strain

tensor, and Dν
μ is the matrix of nonrelativistic deformation

potentials.
The three main new terms in Eq. (19) are diagonal in

the band index. The first one, ∝ ∇2εμ
μ (r), is a function of

coordinates only, hence it represents an effective correction
to the electrostatic potential, which might affect the hole con-
finement in a nanostructure. Now, the trace of the strain tensor
is proportional to that of the stress tensor, and it can be shown
[48] that the Laplacian of the latter vanishes in an isotropic
system. However, crystals are not isotropic, and the deviation
from isotropy is responsible for the existence of this term. The
second term, ∝ k̂α k̂β , represents a spatially dependent correc-
tion to the effective-mass terms, where the spatial dependence
is due to the inhomogeneity of the strain tensor. This term is
also nonzero in the case of an homogeneous strain; however, it
has been ignored so far. The third term, ∝ k̂β , has a completely
new form, being linear in the momentum operator. It is not
analogous to a spin-orbit coupling, since it does not couple
different bands.

In order to provide an order-of-magnitude estimate of the
new terms, we consider the stress tensor used in Ref. [49],
adapted to describe a MOSFET with two stressors placed on
top of the source and drain regions [22] (details are given
in Appendix G). We find that, in such a system, the typi-
cal energy scales characterizing the new terms is 10−2 meV,
corresponding to frequencies of the order of 2 − 5 GHz.
In particular, the terms quadratic in the momentum induce
a spatial modulation of the hole effective masses in Si of
approximately 1% − 2%. The hard-to-control modulation of
the confinement induced by the term ∝ ∇2εμ

μ (r) is small and
mostly relevant far from the center of the channel (close to
the stressors); therefore, it likely has a small impact on the
effective confinement. However, the impact of all the derived
terms is ultimately device and material dependent: they should
thus be accounted for in order to obtain an accurate modeling
of all nanostructures where the strain tensor varies on the
length scale of the particle wave function.

VIII. CONCLUSIONS

By combining solid-state theory and relativistic quantum
mechanics in a non-Cartesian geometry, we have derived
the envelope-function Hamiltonian for a general semiconduc-
tor nanostructure subjected to a small and slowly varying
inhomogeneous strain. Our theory requires, as an input,
the strain tensor, which can be computed for each given
device via finite-element methods based on the minimization
of the elastic energy density [28]. Numerical calculations of
the electron/hole states based on our theory are expected to
provide an accurate modeling of the effects of inhomogeneous
strain on quantum-dot spin qubits. In particular, they will
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allow to engineer spin-orbit interactions and g-tensor modu-
lations aimed at improving the qubits’ manipulability.
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APPENDIX A: INHOMOGENEOUS STRAIN
AND EXPANSION OF THE NUCLEI POTENTIAL

In the literature, there are two definitions of the strain
tensor. The first one, which we adopt in the present work,
is given by Eq. (2) and is consistent with that used in other
envelope-function treatments [31,33,39]. The strain tensor re-
ported in the second definition is the symmetrized version of
that given in the first one:

ε
sym
αβ (r) ≡ 1

2

[
∂uα (r)

∂rβ
+ ∂uβ (r)

∂rα

]
= 1

2

[
εα
β (r) + εβ

α (r)
]
. (A1)

This is the quantity that enters the expression of the infinites-
imal variation in the distance between two points, in going
from an unstrained to a strained system [4]. The two defi-
nitions do not necessarily coincide, since in general εα

β (r) �=
εβ
α (r). Within the second convention, the quantity introduced

in Eq. (2) is termed the deformation tensor, the symmetric
quantity in Eq. (A1) is termed the strain tensor, while the
antisymmetric combination

ε
antisym
αβ (r) ≡ 1

2

[
εα
β (r) − εβ

α (r)
]
. (A2)

is called the rotation tensor.
The formal solution of Eq. (2), as noticed also in Ref. [39],

is

uα (r) = uα (r0) +
∫ r

r0

εα
β (r′)dr′β, (A3)

where the line integral is performed over any path connecting
r0 to r. In the specific case of an homogeneous strain, consid-
ered by BP [33], this reduces to

uα (r) = εα
βrβ. (A4)

In the absence of strain, the potential generated by the
nuclei is periodic, and is given by

Un,0(rC) =
∑

i

U1n(rC − Ri,0). (A5)

The same quantity can be rewritten as

Un,0(rC) =
∑

i

U 1n(rC − Ri,0) �[rC ∈ C0(Ri,0)], (A6)

where U 1n is a pseudopotential, and the contribution due to
the nucleus at Ri,0 goes to zero outside the unit cell C0(Ri,0),
centered on the same nucleus. This amounts to a mere resum-
mation of contributions due to all nuclei, and can be done in
the strained system as well. In the rigid-ion approximation,

with reference to the strained unit cells C[Ri,0 + u(Ri,0)], the
nuclei potential is written as

Un; C(rC) =
∑

i

U 1n[rC − Ri,0 − u(Ri,0)]

× �{rC ∈ C[Ri,0 + u(Ri,0)]}. (A7)

After the coordinate transformation rC = r + u(r) ≡ t (r), set-
ting Un; C(rC) = Un; C[t (r)] ≡ Un(r), one obtains

Un(r) =
∑

i

U 1n[r + u(r) − Ri,0 − u(Ri,0)]

× �{t (r) ∈ C[t (Ri,0)]}. (A8)

Since the strain, besides being small, varies slowly within a
unit cell, the condition imposed by the function � is satisfied
only when r is close to Ri,0 and, therefore, u(r) − u(Ri,0) is
small. Therefore, the following approximation holds:

uν (r) − uν (Ri,0) ≈ ∂uν (r)

∂rμ

(
rμ − Rμ

i,0

) ≡ εν
μ(r)

(
rμ − Rμ

i,0

)
.

(A9)

From this it follows that

U 1n[r + u(r) − Ri,0 − u(Ri,0)]

≈ U 1n
{[

δα
β + εα

β (r)
](

rβ − Rβ

i,0

)}
≈ U 1n(r − Ri,0) + ∂U 1n(r − Ri,0)

∂
(
rα − Rα

i,0

) εα
β (r)

(
rβ − Rβ

i,0

)
.

(A10)

Summing over the atoms, one obtains the total potential as in
Eq. (3), where

U β
α (r) ≡

∑
i

∂U 1n(r − Ri,0)

∂
(
rα − Rα

i,0

) (
rβ − Rβ

i,0

)
(A11)

has the same periodicity as the unstrained lattice.

APPENDIX B: CONCEPTS RELATED
TO POINT TRANSFORMATIONS

The Schrödinger equation,

Ĥ |ψ〉 = E |ψ〉, (B1)

can be written in position representation after introducing a
spatial coordinate frame. The purpose of this Appendix is to
compare the representations corresponding to two different
spatial coordinate frames R and R′, connected by a spatial
transformation. In the first (unprimed) frame, positions are
measured by the coordinates r, and a position eigenstate is
defined by

r̂|R; r〉 = r|R; r〉, (B2)

where r̂ is the position operator in R. The decomposition of
the identity in coordinate space is [41]∫

d�|R; r〉〈R; r| = 1̂, (B3)

where d� ≡ dr
√−g(r) is the elementary volume in coordi-

nate space, g(r) being the determinant of the metric tensor.
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The orthonormality relation between the position eigenstates
in the R reference frame is

〈R; r1|R; r2
〉 ≡ δ(r1, r2) ≡ 1√−g(r1)

δ(r1 − r2). (B4)

Multiplying Eq. (B1) by 〈R; r|, one obtains the usual
coordinate-space Schrödinger problem:

H (r) ψ (r) = E ψ (r), (B5)

where

ψ (r) ≡ 〈R; r|ψ〉, 〈R; r|Ĥ |ψ〉 ≡ H (r) ψ (r),

〈R; r1|Ĥ |R; r2〉 ≡ δ(r1, r2) H (r2), (B6)

and the eigenstate of the Hamiltonian in Hilbert space repre-
sentation is

|ψ〉 =
∫

d� |R; r〉ψ (r). (B7)

To solve the same Schrödinger problem as in Eq. (B1),
one can equivalently choose the different coordinate frame R′,
with coordinates r′, connected to the previous representation
via r = t (r′). It should be noted that this is a relation be-
tween the position eigenvalues measured in different reference
frames on the same position eigenstate. This means that the
following relations between the position eigenstates in the two
reference frames hold:

|R; t (r′)〉 = |R′; r′〉, |R; r〉 = |R′; t−1(r)〉. (B8)

In other words, if a position measurement on a position eigen-
state gives the result r′ in the reference frame R′, then the
result of the position measurement on the same state gives the
result t (r′) in the reference frame R:

r̂|R; t (r′)〉 = t (r′)|R; t (r′)〉, r̂′|R′; r′〉 = r′ |R′; r′〉, (B9)

where r̂′ is the position operator in R′.
In the primed representation, the identity decomposition is∫

d�′ |R′; r′〉〈R′; r′| = 1̂, 〈R′; r′
1|R′; r′

2〉 = δ′(r′
1, r′

2).

(B10)

The Schrödinger problem is represented in R′ as

H ′(r′) ψ ′(r′) = E ψ ′(r′), (B11)

with

|ψ〉 =
∫

d�′|R′; r′〉ψ ′(r′). (B12)

One should now derive the relation between ψ (r) and
ψ ′(r′), and that between H (r) and H ′(r′). The most direct way
to do so is to consider the scalar product between any two
states |	1〉 and |	2〉, which must be the same independently
of the reference frame where it is evaluated:

〈	1|	2〉 =
∫

d� [	1(r)]∗ 	2(r) =
∫

d�′ [	′
1(r′)]∗ 	′

2(r′).

(B13)

We now change variables in the first equality according to r =
t (r′), using the transformation property of the determinant of

the metric tensor,√
−g′(r′) = ∣∣J (r′)

∣∣√−g[t (r′)], (B14)

where J (r′) is the determinant of the Jacobian matrix. There-
fore, under this change of coordinates it holds that∫

d� {	1(r)}∗ 	2(r) =
∫

d�′ {	1[t (r′)]}∗ 	2[t (r′)]

=
∫

d�′ [	′
1(r′)]∗ 	′

2(r′). (B15)

Since this must hold for any couple of states |	1〉 and |	2〉,
one concludes that

	′(r′) = 	[t (r′)] if r = t (r′). (B16)

Therefore,

ψ ′(r′) = ψ[t (r′)] if r = t (r′), (B17)

which provides the relation between the wave functions in the
two reference frames.

In order to derive an analogous relation between the Hamil-
tonians, let us consider again Eq. (B8). Multiplying both sides
of the first equation by 〈R; r|, and using the orthonormality of
the position eigenstates in R, one obtains

〈R; r|R′; r′〉 = δ[r, t (r′)] = δ[r − t (r′)]√−g(r)
. (B18)

Analogously, multiplying both sides of the second equation by
〈R′; r′|, and using the orthonormality of the position eigen-
states in R′, one obtains

〈R′; r′|R; r〉 = δ′[r′, t−1(r)] = δ[r′ − t−1(r)]√−g′(r′)
. (B19)

The two transformation laws between position eigenstates in
the two reference frames are equivalent, due to the compo-
sition law of a Dirac delta with a function. Equipped with
Eqs. (B18) and (B19), it is now possible to compare the
quantities

H (r1, r2) ≡ 〈R; r1|Ĥ |R; r2〉 (B20)

and

H ′(r′
1, r′

2) ≡ 〈R′; r′
1|Ĥ |R′; r′

2〉. (B21)

Inserting twice the decomposition of the identity in the origi-
nal reference frame in Eq. (B21) and using the scalar product
relations derived above, one obtains

H ′(r′
1, r′

2)

=
∫

d�1

∫
d�2 〈R′; r′

1|R; r1〉 H (r1, r2) 〈R; r2|R′; r′
2〉

= H[t (r′
1), t (r′

2)], (B22)

which provides the relation between the Hamiltonians in the
Cartesian and in the curvilinear coordinates.

APPENDIX C: DERIVATION OF THE COVARIANT
SCHRÖDINGER EQUATION,

WITH RELATIVISTIC CORRECTIONS

In this Appendix, Greek indexes refer to the components
of vectors and tensors in a curvilinear reference frame, while
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Latin indexes refer to such components in a Cartesian (recti-
linear) reference frame, which coincides with the laboratory
reference frame of the main text (note that in the main text
Greek indexes are used for both frames). The four-component
space-time coordinate is denoted as x in the curvilinear frame,
and as xC in the Cartesian frame. The metric tensor in the x
frame is denoted as gμν , while the metric tensor in the xC

frame is ηab = diag(1,−1,−1,−1). The relation between the
two metric tensors is [43]

gμν = ea
μ eb

ν ηab, (C1)

where the tetrad fields eμ
a satisfy

eμ
a ea

ν = δμ
ν , eμ

a eb
μ = δb

a. (C2)

In the case at hand, since the two coordinate frames are con-
nected by a point transformation, one has

ea
μ = ∂xa

C

∂xμ
, eμ

a = ∂xμ

∂xa
C

, (C3)

i.e., the tetrad vectors coincide with the Jacobian matrix of the
transformation between the two coordinate systems. This en-
sures the conservation of the infinitesimal arc length squared,

ηab dxa
C dxb

C = gμν dxμ dxν, (C4)

which must be independent of the chosen coordinates.

1. Covariant Dirac equation

We start from the covariant Dirac equation [43] for the
four-component electron field �,

γ μ(ih̄∇μ − eAμ)� − mc� = 0, (C5)

where Aμ is the four-potential of the electromagnetic field, and
∇μ is the covariant derivative; the latter acts on the four-spinor
as follows:

∇μ� ≡ ∂μ� + �μ�, (C6)

where ∂μ is the ordinary derivative, and

�μ ≡ 1
2ηacec

ν

(
∂μeν

b + eρ

b�ν
ρμ

)
Gab,

Gab = 1
4 (γ aγ b − γ bγ a). (C7)

The coordinate-invariant Dirac matrices satisfy

γ aγ b + γ bγ a = 2ηab, (C8)

while the spacetime-dependent Dirac matrices (entering the
covariant Dirac equation) are defined as γ μ = eμ

a γ a; thus,
they satisfy

γ μγ ν + γ νγ μ = 2gμν. (C9)

In terms of the tetrads, the Christoffel symbols are written
as:

�ν
ρμ ≡ 1

2 gνβ
(
∂μgβρ + ∂ρgβμ − ∂βgρμ

)
= 1

2 eν
i

(
∂μei

ρ + ∂ρei
μ

) + 1
2ηklηi je

ν
k eβ

l

× [
ei
ρ

(
∂μe j

β − ∂βe j
μ

) + ei
μ

(
∂ρe j

β − ∂βe j
ρ

)]
. (C10)

In the case at hand, since Eq. (C3) holds, one has

∂μei
ρ = ∂2xi

C

∂xμ∂xρ
= ∂ρei

μ, (C11)

and Eq. (C10) simplifies as

�ν
ρμ = eν

i

(
∂ρei

μ

)
. (C12)

The combinations needed for the covariant derivative are
1
2ηacec

νeρ

b�ν
ρμGab = 1

2ηaceρ

b

(
∂ρec

μ

)
Gab, (C13)

and

γ μ�μ = 1
2ηac

[
ec
ν (∂d eν

b ) + eμ

d

(
∂bec

μ

)]
γ d Gab

= 1
2ηac

[
ec
μ

(
∂d eμ

b

) − (
∂beμ

d

)
ec
μ

]
γ d Gab = 0, (C14)

where we have used the fact that ∂μ(ec
νeν

b ) = 0, and thus
ec
ν∂μeν

b = −eν
b∂μec

ν . Therefore, the covariant Dirac equation,
when the tetrad coincides with the Jacobian matrix, reduces
to

ih̄eμ
n γ n∂μ� − eeμ

n Aμγ n� − mc� = 0. (C15)

In the following, we choose the coordinate-invariant Dirac
matrices in the Dirac form,

γ 0 =
(

12×2 02×2

02×2 −12×2

)
; γ a =

(
02×2 σ a

−σ a 02×2

)
, (C16)

where σ a, with a ∈ {1, 2, 3}, are the Pauli matrices.

2. Restriction to spatial-only transformation

In the problem at hand, the coordinate transformation only
involves the spatial coordinates (μ ∈ {1, 2, 3}), affecting the
corresponding sector of the metric tensor, while the time co-
ordinate (μ = 0) is untouched. Therefore, we specialize our
treatment to the cases where e0

μ = δ0
μ and ea

0 = δa
0 . All tetrads

are independent of time.
It is then convenient to write the Dirac equation in a way

that explicitly separates time from the spatial coordinates.
Equation (C15) can thus be transformed into(

1 0
0 −1

)
ih̄∂t� =

(
0 cσμPμ

−cσμPμ 0

)
�

+
(

mc2 + eV 0
0 mc2 − eV

)
�, (C17)

where x0 = ct , ∂0 = 1
c ∂t , A0 = 1

cV , Pμ ≡ −ih̄∂μ + eAμ, and
the coordinate-dependent Pauli matrices are defined as

σμ ≡ eμ
n σ n. (C18)

This is rephrased as an eigenproblem, by setting

� ≡ e−iEDt/h̄

(
�

	

)
, (C19)

where ED is the (Dirac) energy eigenvalue, while � and 	

are two-component spinors depending only on the spatial co-
ordinates (eigenstates). This results in the following coupled
equations for the two-component spinor eigenstates:

(ED − mc2 − eV )� = cσμPμ	,

(ED + mc2 − eV )	 = cσμPμ�. (C20)
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The spinor 	 is obtained as a function of � from the sec-
ond equation; substituting the resulting expression in the first
equation, one obtains an eigenvalue equation for the spinor �

alone:[
cσμPμ

1

2mc2 + E − eV
cσ νPν + eV

]
� = E �, (C21)

where the Schrödinger eigenenergy is E ≡ ED − mc2. This
equation is exact.

3. Schrödinger equation with relativistic
corrections, in curvilinear coordinates

In order to recover the Schrödinger equation and the
lowest-order relativistic corrections, one must perform an ap-
proximation based on the assumption that 2mc2 � |E − eV |,
namely,

1

2mc2 + E − eV
= 1

2mc2

(
1 + E − eV

2mc2

)−1

≈ 1

2mc2
− E − eV

4m2c4
. (C22)

Inserting this into Eq. (C21), one obtains[
(σμPμ)2

2m
− σμPμ

E − eV

4m2c2
σ νPν + eV

]
� ≈ E �. (C23)

To remove E from the left-hand side of the above equation (to
lowest order in v/c), we notice that

(E − eV )σ νPν� = σ νPν (E − eV )� − ih̄σ ν (∂νeV )�

≈ (σ νPν )3

2m
� − ih̄σ ν (∂νeV )�. (C24)

Equation (C23) can thus be written as an eigenvalue equation

H � ≈ E �, (C25)

where the Hamiltonian is given by

H = (σμPμ)2

2m
+ eV︸ ︷︷ ︸

nonrelativistic

− (σμPμ)4

8m3c2
+ ih̄(σμPμ)σ ν (∂νeV )

4m2c2︸ ︷︷ ︸
relativistic corrections

≡ Hnonrel + Hrel. (C26)

4. Hamiltonian in curvilinear coordinates

Finally, by making the electromagnetic potentials explicit,
and using the properties of the Pauli matrices, one can rewrite
the terms Hnonrel and Hrel appearing in Eq. (C26) as follows:

Hnonrel = 1

2m

{−h̄2(−gμν )∂μ∂ν − h̄2
(∇2

Cxν
)
∂ν

+ ih̄e
[
eμ

a

(
∂μea

ν

)
Aν + (∂μAμ) + 2Aμ∂μ

]
− e2AμAμ − eh̄ σcBc

} + eV, (C27)

Hrel = − 1

8m3c2

{ − h̄2(−gμν )∂μ∂ν − h̄2
(∇2

Cxν
)
∂ν

+ ih̄e
[
eμ

a

(
∂μea

ν

)
Aν + (∂μAμ) + 2Aμ∂μ

]
− e2AμAμ − eh̄ σcBc

}2

+ h̄2

4m2c2

(∇2
CeV

) − ih̄

4m2c2
(∂μeV )gμνPν

+ h̄

4m2c2

(
eμ

a eν
bσ

ab
)
(∂μeV )Pν . (C28)

In the above expressions, σa = ηabσ
b, where the implicit

summation on the Latin indices only involves the three spa-
tial coordinates. Besides, we have introduced σ ab ≡ −̃ε abcσc

and the components of the magnetic field with respect to
the rectilinear reference frame, Bc ≡ ε̃ abc(∂aAb); here, ε̃ abc

is the totally antisymmetric Levi-Civita symbol, which, unlike
the Levi-Civita tensor, takes the same values in all reference
frames. Finally, we have used the symbol ∇2

C, which can be
converted to curvilinear coordinates through:

∇2
C = ∂a∂a = −∂a∂

a = −eα
a ∂αea

β∂β

= −eα
a

(
∂αea

β

)
∂β − ∂α∂α

= −eα
a

(
∂αea

β

)
gβγ ∂γ − (∂αgαβ )∂β − gαβ∂α∂β. (C29)

Alternatively (and more simply), the relevant derivatives can
be computed in the rectilinear coordinate frame first, and
then the resulting expressions can be converted in curvilinear
coordinates.

In the main text, we consider the case where there is
no magnetic field (Aμ = 0), and only spin-orbit coupling is
retained among the relativistic corrections. In this case, the
Hamiltonian simplifies to the sum of the kinetic term given
in Eq. (5), the scalar potential U ≡ eV , and the spin-orbit
term given in Eq. (6). For notational convenience and self-
containedness, in the main text we have written the tetrads
explicitly in terms of the inverse Jacobian matrix, and we have
used Greek indices also for the components of the Cartesian
coordinates; since such coordinates themselves are indicated
explicitly by means of the subscript C, there is no ambiguity.

APPENDIX D: MATRIX ELEMENTS OF THE
HAMILTONIAN IN A MANIFESTLY HERMITIAN FORM

Using the definition of the matrix elements in the presence
of an arbitrary metric tensor [Eq. (4)], one can write the matrix
elements of the Hamiltonian between two-component spinors
|�n〉 in a manifestly Hermitian way, assuming that the wave
functions either vanish at infinity, or satisfy the Born–von
Karman boundary conditions (BvKBCs). The three terms of
the Hamiltonian [see Eqs. (5) and (6)] give the following
contributions:

〈�n|Ĥkin|�m〉 = − h̄2

2m

∫
dr

√−ggμν ∂�†
n

∂rμ
· ∂�m

∂rν
, (D1)

〈�n|Û |�m〉 =
∫

dr
√−gU �†

n · �m, (D2)

〈�n|Ĥso|�m〉 = − ih̄2

8m2c2

∫
dr

√−g
∂rμ

∂rα
C

∂rν

∂rβ

C

(∂μU )

× [�†
n · σαβ · (∂ν�m) − (∂ν�

†
n) · σαβ · �m].

(D3)

These forms are obtained by applying partial integration, us-
ing the boundary conditions, and exploiting the properties of
the metric tensor.
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As an example, we show the explicit derivation of the first
contribution. One starts from

〈�n|Ĥkin|�m〉

= − h̄2

2m

∫
dr

√−g�†
n ·

[(∇2
Crν

) − gμν ∂

∂rμ

]
∂�m

∂rν
, (D4)

which follows from Eq. (5). Now, partial integration with
respect to rμ is applied to the second term of this integral;
the boundary term vanishes due to the boundary conditions,
and the remaining term is

〈�n|Ĥkin|�m〉 = − h̄2

2m

∫
dr

[√−g
(∇2

Crν
)
�†

n

− ∂ (−gμν
√−g�†

n)

∂rμ

]
· ∂�m

∂rν
. (D5)

The derivative with respect to rμ at the second term inside
the square brackets is carried on by applying the following
identities:

∂μ(−gμν ) = −ηabec
μ

(
∂ceμ

a

)
eν

b + (∇2
Crν

)
,

∂μ

√−g = √−geα
a

(
∂μea

α

)
,

gμνeα
a

(
∂μea

α

) + ηab
(
∂ceμ

a

)
ec
μeν

b = 0, (D6)

which follow directly from the definitions of the metric tensor
and of the tetrads, and from the fact that ∂aeα

c = ∂ceα
a in

the case at hand, because the tetrads are defined via a point
transformation from a Cartesian reference frame. After this,
one directly obtains Eq. (D1). Equation (D3) follows from a
similar derivation.

The symmetry of the matrix elements in Eqs. (D1)–(D3)
can be made explicit by formally rewriting the operators them-
selves as follows:

Ĥkin = − h̄2

2m
←−
∂ μgμν−→∂ ν, (D7)

Ĥso = − ih̄2

8m2c2

[
∂rμ

∂rα
C

∂rν

∂rβ

C

(∂μU )σαβ−→
∂ ν

− ←−
∂ ν

∂rμ

∂rα
C

∂rν

∂rβ

C

(∂μU )σαβ

]
, (D8)

where the arrow above a derivative operator indicates the
direction along which the derivative operator acts, when
evaluating a matrix element; it is intended that, within this
convention, the derivatives do not act on the metric factor√−g inside the integrals. These two definitions are equivalent
to Eqs. (5) and (6); the same convention is used in Eqs. (8)
and (9), which are the expansions of Eqs. (D7) and (D8),
respectively, to the first order in the strain tensor.

APPENDIX E: SECULAR EQUATION UP TO FIRST
ORDER IN THE STRAIN TENSOR

We now derive the expressions of the matrix elements of
the Hamiltonian up to first order in the strain components
on the χ basis, i.e. we derive Eq. (12) by evaluating the
matrix elements of Eqs. (8) and (9). By construction, the χ

are orthonormal, i.e., they satisfy

〈χn,k|χn′,k′ 〉 =
∫

dr
√

−g(r) χ
†
n,k(r) · χn′,k′ (r)

= δn,n′ δ(k − k′). (E1)

with the representation of the scalar product in a curvilinear
reference frame, given by Eq. (4).

It is convenient to introduce the quantity

(�|Â|	) ≡
∫

dr �†(r) · A(r) 	(r), (E2)

which, as mentioned in the main text, is not a scalar product
in the curvilinear reference frame, which is given instead by
Eq. (4). The quantity in Eq. (E2), nevertheless, will appear
in the following derivation, due to the fact that the accuracy
of the theory up to the first order in the strain tensor also
requires the expansion of

√−g(r) in Eq. (4).
For the purposes of the present derivation, it is convenient

to rewrite the Hamiltonian H = Hkin + Un + Hso + Uext as
H = H0 + H1 + Uext, where

H0 ≡ Hkin,0 + Un,0 + Hso,0

= − h̄2

2m

∂2

∂rμ∂rμ
+ Un,0

− ih̄2

8m2c2
[(∂μUn,0)σμν−→∂ ν − ←−

∂ νσ
μν (∂μUn,0)] (E3)

and

H1 ≡ Hkin,1 + Un,1 + Hso,1

= − h̄2

2m
←−
∂ μ

(
εν
μ + εμ

ν

)−→
∂ ν + εα

βU β
α︸ ︷︷ ︸

H1,nonrel

− ih̄2

8m2c2
(�ν−→∂ ν − ←−

∂ ν�
ν )︸ ︷︷ ︸

H1,so

(E4)

collect the terms which are, respectively, independent of and
linear in the strain tensor; Uext is left untouched.

Using the equation

∂χn′,k′

∂rν
≈ ∂χn′,k′

∂rν
− 1

2

∂ε
γ
γ

∂rν
χn′,k′ − 1

2
εγ
γ

∂χn′,k′

∂rν
, (E5)

and keeping the BvKBCs into account, one obtains:

〈χn,k|Ĥ0|χn′,k′ 〉 =
∫

dr
√−gχ

†
n,kH0χn′,k′

≈ (χn,k|Ĥ0|χn′,k′ ) − h̄2

4m

∫
dr

∂ε
γ
γ

∂rμ

∂ (χ†
n,k · χn′,k′ )

∂rμ

= (χn,k|Ĥ0|χn′,k′ ) + h̄2

4m

∫
dr

∂2ε
γ
γ

∂rμ∂rμ
(χ†

n,k · χn′,k′ )

= (χn,k|Ĥ0|χn′,k′ ) + h̄2

4m
(χn,k|(∇2trε)|χn′,k′ ), (E6)

accurately to the first order in the strain tensor. Then, the
equation

〈χn,k|Ûext|χn′,k′ 〉 = (χn,k|Ûext|χn′,k′ ) (E7)
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holds exactly, because Ûext is a function of position only, and

〈χn,k|Ĥ1|χn′,k′ 〉 ≈ (χn,k|Ĥ1|χn′,k′ ), (E8)

because Ĥ1 is of order 1 in the components of the strain tensor.
As a result, one has that

〈χn,k|Ĥ |χn′,k′ 〉 ≈ (χn,k|Ĥ0|χn′,k′ ) + (χn,k|Ûext|χn′,k′ )

+ h̄2

4m
(χn,k|(∇2trε)|χn′,k′ )

+ (χn,k|Ĥ1|χn′,k′ ). (E9)

The detailed evaluation of the matrix elements appearing in
the right-hand side of Eq. (E9) is presented in Secs. I and II of
the SM [44].

APPENDIX F: ENVELOPE-FUNCTION HAMILTONIAN

Since the transformed Hamiltonian, obtained after the
manifold decoupling, is block-diagonal, its eigenstates are
combinations of the basis states belonging to a single block.
For the low-energy block, an eigenstate is written as

|φ〉 ≡
∑
n�N

∫
1BZ

dk Cn(k)|χn,k〉, (F1)

where the coefficients Cn(k) satisfy∑
n′�N

∫
1BZ

dk′ H(N )
n,n′ (k, k′) Cn′ (k′) = ECn(k). (F2)

The slowly-varying envelope functions are defined as

Fn(r) ≡
∫

1BZ
dk eik·rCn(k), (F3)

and they allow to write the spinorial wave function 〈r|φ〉 in
the form given by Eq. (17) of the main text. Equation (F2) is
rewritten in terms of the envelope functions as∑

n′�N

∫
1BZ

dk eik·r
∫

1BZ
dk′ H(N )

n,n′ (k, k′) Cn′ (k′) = EFn(r).

(F4)

To simplify the left-hand side of Eq. (F4), we distinguish
three types of matrix elements of the Hamiltonian:

(1) Those having the form δ(k − k′)�n,n′ (k): these give∑
n′�N

�n,n′ (−i∇ )Fn′ (r), (F5)

analogously to standard envelope-function theories;
(2) Those having the form Ũn,n′ (k − k′): these include

the external potential and formally analogous terms, for
which the standard treatment is applicable; under the as-
sumption that the envelope functions are slowly varying, they
contribute terms ∑

n′�N

Un,n′ (r)Fn′ (r) ; (F6)

(3) Those having the form ε̃ μ
ν (k − k′)[X ν

μ (k, k′)]n,n′ . This
is a new category of terms, which do not map onto those
related to homogeneous strain, because the Fourier transform
of the strain tensor is not a Dirac delta.

The contributions to the left-hand side of Eq. (F4) which
include the formally new terms are written as

∑
n′�N

∫
1BZ

dk eik·r
∫

1BZ
dk′ ε̃ μ

ν (k − k′)
[
X ν

μ (k, k′)
]

n,n′Cn′ (k′)

=
∑
n′�N

∫
dr′ε μ

ν (r′)
1

(2π )3

∫
1BZ

dk eik·(r−r′ )
∫

1BZ
dk′eik′ ·r′{(Dν

μ

)
n,n′ + kα

(
Lν

α;μ

)
n,n′ + k′α(

L∗ν
α;μ

)
n′,n + kαk′β(

Qν
αβ;μ

)
n,n′

}
Cn′ (k′).

(F7)

The first contribution to the right-hand side of Eq. (F7) is

∑
n′�N

(
Dν

μ

)
n,n′

∫
dr′ε μ

ν (r′)
1

(2π )3

∫
1BZ

dk eik·(r−r′ )
∫

1BZ
dk′eik′·r′Cn′ (k′) ≈ ε μ

ν (r)
∑
n′�N

(
Dν

μ

)
n,n′Fn′ (r), (F8)

the second contribution is

∑
n′�N

(
Lν

α;μ

)
n,n′

∫
dr′ε μ

ν (r′)
1

(2π )3

∫
1BZ

dk eik·(r−r′ )kα

∫
1BZ

dk′eik′ ·r′Cn′ (k′)

≈ −i
∑
n′�N

(
Lν

α;μ

)
n,n′

∫
dr′ε μ

ν (r′)Fn′ (r′)
∂δ(r − r′)

∂rα
= −i

∑
n′�N

(
Lν

α;μ

)
n,n′

∂
[
ε μ
ν (r)Fn′ (r)

]
∂rα

, (F9)

the third contribution is

∑
n′�N

(
L∗ν

α;μ

)
n′,n

∫
dr′ε μ

ν (r′)
1

(2π )3

∫
1BZ

dk eik·(r−r′ )
∫

1BZ
dk′eik′ ·r′

k′α Cn′ (k′) ≈ −i
∑
n′�N

(
L∗ν

α;μ

)
n′,nε

μ
ν (r)

∂Fn′ (r)

∂rα
, (F10)
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and the fourth contribution is∑
n′�N

(
Qν

αβ;μ

)
n,n′

∫
dr′ε μ

ν (r′)
1

(2π )3

∫
1BZ

dk eik·(r−r′ )kα

∫
1BZ

dk′eik′ ·r′
k′βCn′ (k′)

≈ −
∑
n′�N

(
Qν

αβ;μ

)
n,n′

∫
dr′ε μ

ν (r′)
∂Fn′ (r′)

∂r′β
∂δ(r − r′)

∂rα
= −

∑
n′�N

(
Qν

αβ;μ

)
n,n′

∂

∂rα

[
ε μ
ν (r)

∂Fn′ (r)

∂rβ

]
. (F11)

In deriving the expressions above, we have used
1

(2π )3

∫
1BZ

dk eik·(r−r′ ) ≈ δ(r − r′), (F12)

which is an approximate relation, only valid when this quantity is multiplied by a slowly-varying spatial function, such as
envelope functions and components of the strain tensor.

Collecting all terms, one obtains ∑
n′�N

[(
Ĥ(0)

EF

)
n,n′ + (

Ĥ(1)
EF

)
n,n′

]
Fn′ (r) = EFn(r), (F13)

where (
Ĥ(0)

EF

)
n,n′ ≡

[
En(0) + h̄2k̂

2

2m
+ Uext (r)

]
δn,n′ + h̄πα

n,n′

m
k̂α + h̄2�

αβ

n,n′

m2
k̂α k̂β (F14)

is formally the same as the standard k · p Hamiltonian [31],
but with the k̂α operators defined in curvilinear coordinates,
and (Ĥ(1)

EF )n,n′ is the strain-dependent term defined in Eq. (18).

APPENDIX G: NUMERICAL ESTIMATES

1. Strain model in a MOSFET

Here we provide quantitative estimates for the new
Hamiltonian terms that depend on the inhomogeneous strain
tensor and its derivatives. For simplicity, we refer to the ap-
proximate Hamiltonian of Eq. (19) and we apply it to describe
a model silicon nanostructure. We consider a system similar
to the one described in Ref. [49], consisting of a MOSFET
with two SiGe stressors placed, respectively, above the source
and the drain gates. An analytical model that approximately
describes the stress tensor in such a system can be derived
by solving the elasticity problem of a localized force on a
semi-infinite plate [48,49].

From the stress tensor, one should then obtain the strain
tensor εα

β (r) by applying the compliance relations [4], and the
displacement uα (r) by integrating the strain tensor according
to Eq. (A3), taking, e.g., r0 = 0 and u(0) = 0 (which is equiv-
alent to fixing the origin of the laboratory reference frame).
However, the expression of the stress tensor given in Ref. [49]
is notoriously an approximate one, which does not satisfy the
compatibility equations exactly [48]. A consequence of this

fact is that there exists no function uα (r) such that the strain
tensor derived from the given stress (let us call it εapprox.)
satisfies Eq. (2).

An equivalent alternative formulation of this statement is
that the line integral in Eq. (A3), when evaluated on εapprox.,
depends on the path connecting r0 to r. This can be verified by
comparing the results obtained with the following paths [with
r ≡ (x, y, z)]:

Path 1 : (0, 0, 0) → (x, 0, 0) → (x, y, 0) → (x, y, z),

Path 2 : (0, 0, 0) → (0, 0, z) → (0, y, z) → (x, y, z).

(G1)

We notice, however, that the displacements obtained by using
these two paths are nearly identical almost everywhere. The
discrepancies occur on small domains close to the stressors,
where the simplifying assumptions beyond the analytical so-
lution for the stress tensor apparently imply some nonphysical
behavior if Path 1 is used.

Therefore, we assume that the displacement obtained with
Path 2 is the physically correct one, and we adopt its ex-
pression for the function u(r). Inverting our perspective, we
now take this as our starting point, and we obtain the strain
tensor εα

β (r) analytically by applying Eq. (2). The strain tensor
obtained in this way, by construction, is uniquely defined and
obviously satisfies the compatibility conditions.

The displacement field that we adopt is then given by

ux(r) = σ0t

2π

4∑
i=1

si

{(
−s11 + s12 + s44

2

) z2

x2
i + z2

(
s11 − s12 + s44

2

) z2

(x − xi )2 + z2
+

(
s11 + s12 + s44

2

)
ln

(
(x − xi )2 + z2

x2
i + z2

)}
,

uy(r) = 0,

uz(r) = σ0t

π

4∑
i=1

si

{(
s11 − s12 − s44

2

) xiz

x2
i + z2

− s44

2

(x − xi )z

(x − xi )2 + z2
− (s11 + s12) arctan

(
z

xi

)

+ s44

2
arctan

(
xi

z

)
− s44

2
arctan

(
xi − x

z

)}
. (G2)
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Here: s11, s12 and s44 are the compliance constants of Si [4];
{xi; i = 1, 2, 3, 4} is the set of sidewall positions defining the
extension of the stressors; generalizing Ref. [49], we take

x1 = −w − d

2
, x2 = −d

2
,

x3 = d

2
, x4 = w + d

2
, (G3)

where w is the stressors’ width (along the x direction) and
d is their separation (d is larger than the MOSFET channel
length); si are signs that account for the orientations of the
forces applied by the stressors (taking s1 = s3 = +1 and s2 =
s4 = −1, one reproduces the configuration of Ref. [49]); t is
the thickness of the stressors in the z direction, and σ0 is the
biaxial stress parameter in the SiGe stressors.

2. Main new terms due to the inhomogeneity of strain

We focus on the approximate envelope-function
Hamiltonian given in Eq. (19) and discuss the three main
new terms resulting from our formulation, all of which are
diagonal in the band index:

T̂1 ≡ h̄2

4m

[∇2εμ
μ (r)

]
, T̂2 ≡ − h̄2

m
ε

sym
αβ (r)k̂α k̂β,

T̂3 ≡ h̄2

m

[
∂αε

sym
αβ (r)

]
i k̂β. (G4)

We start from the first term, T̂1. The trace of the strain
tensor is proportional to the trace of the stress tensor, and it
can be shown [48] that the Laplacian of the latter vanishes in
an isotropic system. Therefore, in such systems T̂1 vanishes
identically. However, crystals are not isotropic, and assuming
that they are is an approximation that might fail on small
spatial scales such as those pertaining to nanostructures (the
anisotropy of crystals is reflected in the values of the com-
pliance parameters, which connect stress and strain tensors).
Overall, T̂1 is a function of coordinates only, which appears
on the diagonal of the k · p matrix. Therefore, it represents a
correction to the slow-varying confinement potential.

The term T̂2 is a quadratic function of the momentum
operator acting on the envelope functions; it can be viewed as
a spatially dependent correction to the effective-mass terms,
where the spatial dependence is due to the inhomogeneity of
the strain tensor. This is the only term among those in Eq. (G4)
that survives if the strain is homogeneous; however, it has
been ignored so far.

The term T̂3 has a completely new form, being linear in the
momentum operator. It is not analogous to a spin-orbit term,
since it does not couple different bands.

3. Numerical values

We here present numerical estimates related to the quan-
tities T̂1, T̂2, and T̂3. For illustrative purposes, we use the
experimental values given in Ref. [49] to define the stressors
(σ0 = −1.9 GPa, w = 180 nm, t = 50 nm), but we assume
that the distance d between them can be changed. In partic-
ular, we apply this analysis to a hypothetical device based
on the 22-nm-FDSOI technology [50], and we take d = 30
nm. The resulting displacement field is displayed in Fig. 1.

FIG. 1. Components (a) ux and (b) uz of the displacement from
Eq. (G2), as functions of x and for selected values of z = 1 nm (gray),
2 nm (brown), 3 nm (blue), 4 nm (red), 5 nm (green). Parameters
(σ0 = −1.9 GPa, t = 50 nm, w = 180 nm) are taken from Ref. [49],
except for d = 30 nm. Vertical dashed lines correspond to the ex-
tremities of the channel at x = ±11 nm (black) and to the internal
borders of the stressors at x = ±15 nm (orange).

The following discussion is not meant to be exhaustive of all
possible cases; it rather illustrates the main physical features
of the new terms. Their actual values and the extent of their
impact on the physical properties of the confined hole states
are strongly device dependent, and a comprehensive analysis
of the parameter space is beyond the scope of the present
work.

In Fig. 2 we plot T1(r) as a function of position. As dis-
cussed in the main text, this quantity should be thought of
as an effective correction to the confinement potential. As
can be seen from Fig. 2(a), for values of z close to the top
of the channel, this correction develops attractive (repulsive)
pockets for electrons (holes), close to the ends of the channel
along the x direction. In certain geometries, this might be an
unwanted source of perturbation for the confinement, espe-
cially in the electron case, where the lateral attractive pockets
compete with the confinement at the center of the channel. In
the particular device discussed here, however, such an effect
seems to be minor, due to the small values achieved by T1 over
the channel and its near-uniformity close to the center of the
channel.

The operator T̂2 is determined by the coefficients of the
quadratic forms k̂α k̂β , which, apart from a multiplicative con-
stant, are the symmetric components of the strain tensor. They
are shown in Fig. 3. For the considered device, the diagonal
terms (xx) and (zz) are even functions of x, and they reach
values of the order of several meV nm2 close to the center of
the channel, while the (zx) term is an odd function of x, and
its values in the relevant region are smaller. For comparison,
the coefficients of k̂2

x and k̂2
z in the k · p Hamiltonian for heavy
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FIG. 2. Quantity T1(r) (a) as a function of x for selected values
of z (same colors and conventions as in Fig. 1), and (b) as a function
of z for selected values of x = 0 nm (gray), 2.5 nm (brown), 5 nm
(blue), 7.5 nm (red), and 10 nm (green).

FIG. 3. Prefactors of the quadratic forms of the momentum com-
ponents appearing in T̂2 as functions of x, for selected values of z
(same colors and conventions as in Fig. 1). (a) coefficient of k̂2

x ,
(b) coefficient of k̂2

z , (c) coefficient of k̂x k̂z.

FIG. 4. Prefactors of the linear forms of the momentum com-
ponents appearing in T̂3 as functions of x, for selected values of
z (same colors and conventions as in Fig. 1). (a) coefficient of k̂x ,
(b) coefficient of k̂z.

and light holes in silicon are

h̄2

2mx,H
= 176.174 meV nm2,

h̄2

2mx,L
= 150.342 meV nm2,

h̄2

2mz,H
= 137.426 meV nm2,

h̄2

2mz,L
= 189.089 meV nm2, (G5)

where mα,h is the effective mass along direction α, and h =
H/L denotes heavy/light holes. Therefore, the T̂2 term pro-
duces a sizable, spatially dependent correction to the effective
masses, which for the considered device can be of the order of
1% to 2%, depending on the hole species and on the direction.

Finally, the term T̂3 is determined by the spatially de-
pendent coefficients multiplying the components of the
momentum operator. For the case at hand, these are displayed
in Fig. 4. The considered geometry produces coefficients of
k̂x and k̂z that are, respectively, an odd and an even function
of x. Therefore, in this particular case, the k̂x term likely
has a minor impact on the states of the confined holes; the
k̂z term, instead, is associated with characteristic energies of

the order of 〈 h̄2

m ∂αε
sym
αz 〉k̂z ≈ h̄2

m ∂αε
sym
αz

1
Lz

, where Lz is a typical

confinement length along the z direction, and h̄2

m ∂αε
sym
αz is an

average value of the coefficient depicted in Fig. 4(b) close to
the center of the channel. Taking for the latter a representative
value of 0.1 meV nm, and Lz = 10 nm or 5 nm (as in cur-
rently available or downscaled MOSFETs, respectively [22]),
one obtains energy scales of the order of 0.01 − 0.02 meV,
corresponding to effective frequencies of 2.4 − 4.8 GHz.
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