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Toward high-fidelity quantum information processing and quantum simulation
with spin qubits and phonons
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We analyze the implementation of high-fidelity, phonon-mediated gate operations and quantum simulation
schemes for spin qubits associated with silicon vacancy centers in diamond. Specifically, we show how the
application of continuous dynamical decoupling techniques can substantially boost the coherence of the qubit
states while increasing at the same time the variety of effective spin models that can be implemented in this way.
Based on realistic models and detailed numerical simulations, we demonstrate that this decoupling technique
can suppress gate errors by more than two orders of magnitude and enable gate infidelities below ∼10−4

for experimentally relevant noise parameters. Therefore, when generalized to phononic lattices with arrays of
implanted defect centers, this approach offers a realistic path toward moderate- and large-scale quantum devices
with spins and phonons at a level of control that is competitive with other leading quantum-technology platforms.
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I. INTRODUCTION

A significant amount of research effort is currently devoted
to the development of quantum devices based on electronic
and nuclear spin qubits associated with defect centers in
solids. Combined with optical readout capabilities, the excel-
lent coherence properties of the spins and their fixed location
in a solid-state matrix make such systems an exquisite tool for
various nanoscale sensing schemes [1,2] but also for coherent
light-matter interfaces [3–7] and building blocks for future
quantum networks [8–11]. While most of the initial work in
this direction was focused on the nitrogen-vacancy center in
diamond [12,13], an equivalent level of control has now been
demonstrated for many more defects in diamond and other
materials [14]. However, in all those systems it is still an
open challenge to identify reliable techniques for coupling
two or more separated electron-spin qubits in a controlled and
scalable manner.

Apart from direct magnetic [15] and photon-mediated
[4,8,9,11] coupling schemes, where first important steps
have already been experimentally demonstrated, the use of
phononic quantum channels [16–18] is currently. discussed as
a promising alternative to overcome this scalability problem.
While in a solid-state environment phonons are often a source
of decoherence, the ability to fabricate high-Q mechanical
resonators in diamond [19–23] and other materials offers
completely new possibilities for using isolated phonon modes

as a coherent quantum bus between spatially separated spin
qubits. In the classical regime, it has already been demon-
strated that static and dynamic strain fields in nanostructures
provide versatile tools to control individual defect centers
[24–33]. It has further been proposed that at the level of
single phonons, the same coupling mechanisms can be used
to mediate spin-squeezing [34,35], to realize quantum gates
[36–39] and quantum communication protocols [40,41], or to
engineer unconventional spin-spin and spin-phonon interac-
tions [42–45] for quantum simulation applications.

Among many possible defects, the negatively charged
silicon-vacancy (SiV) center in diamond [46–48] has been
identified as a very promising candidate to implement
such quantum spin-phonon interfaces [40,49]. The electronic
ground state of this center has both spin and orbital degrees
of freedom, where the two lowest spin-orbit coupled states
serve as a long-lived quantum memory [50]. At the same
time, microwave fields or optical Raman beams can be used
to drive transitions to higher orbital states [40], which cou-
ple very strongly to phonons via strain. Hence, the level
structure of this center provides a natural setting to obtain
both strong and tunable spin-phonon interactions, which un-
derlie the implementation of various quantum information
processing and quantum simulation schemes. However, the
theoretically estimated gate fidelities that are achievable with
this basic coupling scheme are in the range of F ≈ 0.9–0.99
and potentially lower in actual experimental systems. While
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sufficient for many proof-of-concept demonstrations and basic
entanglement operations, these values are not yet enough for
high-fidelity and large-scale quantum information process-
ing, for which significantly lower gate errors in the range of
E ≈ 10−4 will be required.

In this work we propose and analyze improved protocols
for phonon-mediated gate operation between SiV centers. The
main purpose of this study is to show how the remaining
limitations of this approach can be overcome and how gate
fidelities in the range of F � 0.999–0.9999 can be achieved
under realistic conditions. To do so we consider, first, the
direct coupling of the long-lived qubit states to phonon modes
with frequencies of about 1–5 GHz [32,49]. Compared to a
Raman process involving phonon modes at ∼50 GHz [40],
this scheme relaxes the nanofabrication constraints for high-Q
diamond resonators and it is also more convenient for accu-
rate microwave control. However, for this direct interaction,
the maximum achievable coupling strength is reduced, the
spin-phonon coupling can no longer be tuned in situ and
the temperature requirements to avoid thermal excitation of
the phonon mode become more stringent.

To overcome these problems, we consider as a second
ingredient the encoding of quantum information in dressed
qubit states in the presence of a strong microwave field. This
driving field induces a built-in spin echo effect, which con-
siderably extends the coherence time of the qubit states, as
it has already been demonstrated for individual solid-state
spins [51–56] or other qubit systems [57–59]. Here we show
that this decoupling technique is fully compatible with the
phonon-mediated interactions between the SiV centers and
can be further generalized to suppress thermal decoherence
effects. It also enables a fast tunability of the effective qubit
frequency in order to control the coupling to the phonons
with sufficiently high accuracy and to generate different types
of spin-spin interactions for quantum simulation. We present
detailed numerical calculations based on realistic system and
noise parameters and verify that these ingredients are suf-
ficient to reach the desired operation accuracy. Therefore,
although strong spin-phonon interactions at the quantum level
have not been experimentally demonstrated yet, these findings
lay out a realistic roadmap for a scalable and high-fidelity
quantum processing platform with defect spin qubits in solids.

II. A SPIN-PHONON INTERFACE IN DIAMOND

We start our discussion by considering the basic setup
depicted in Fig. 1, where N = 2 SiV centers are coupled to
a single isolated phonon mode of the surrounding diamond
structure. In this setup, quantum states can be encoded in
long-lived sublevels of the electronic ground state of the
SiV centers [50], while the phonon mode serves as a quan-
tum bus to implement gate operations between the otherwise
noninteracting defects. We model the whole system by the
Hamiltonian

H (t ) =
N∑

i=1

H (i)
SiV(t ) + Hph + He-ph + Hnoise(t ), (1)

where HSiV(t ) describes the dynamics of a single SiV
center under the influence of external control fields and

FIG. 1. Schematic of the setup. Two SiV centers are coupled to
the strain of a quantized vibrational mode of frequency ωph, which
is localized in a phononic crystal structure made out of diamond.
The lowest states |0〉 and |1〉 in the ground-state manifold of the
SiV center are split by a frequency ω10 ∼ ωph, which results in a
near-resonant spin-phonon interaction with coupling strength g. As
indicated in the inset at the bottom, this coupling can be enhanced by
identifying a phonon mode with a strain field that is concentrated
in a small region around the SiV centers. In addition, a strong
microwave field is used for a continuous dynamical decoupling of
the spin qubits from low-frequency noise, while preserving a strong
phonon-mediated interaction (see text for more details).

Hph = h̄ωpha†a is the Hamiltonian of the phonon mode with
frequency ωph and annihilation operator a. The phonon mode
is coupled to both SiV centers via the strain interaction He-ph.
Finally, Hnoise(t ) accounts for the effect of low-frequency
magnetic field fluctuations, which represent one of the domi-
nating decoherence channels in this setup.

A. The SiV ground state

The SiV center is an anisotropic defect in diamond with a
D3d point group symmetry and a high-symmetry axis aligned
along the crystal axis 〈111〉, which is assumed to lie along
ez in what follows. We are solely interested in the electronic
ground state of this center, which is represented by an un-
paired hole of spin S = 1/2 in two degenerate orbital states
|ex〉 and |ey〉. In the presence of intrinsic strain and an external
magnetic field, Bext (t ) = B + B(t ) cos(ωdt )ex, the Hamilto-
nian for the ground-state manifold reads

HSiV(t ) = HSO + Hstrain + HZ + Hdrive(t ). (2)

A more detailed derivation of this Hamiltonian can be
found, for example, in Refs. [46–48]. The first term in
Eq. (2), HSO = −h̄λSOLzSz, is the spin-orbit coupling, where
Lz and Sz are the z components of the dimensionless orbital
and spin angular momentum operators, L and S. The spin-
orbit coupling, λSO/(2π ) ≈ 46 GHz, is the dominant energy
scale and splits the four ground states into the two doublets
{|e−,↓〉, |e+,↑〉} and {|e+,↓〉, |e−,↑〉}. Here Sz|↑,↓〉 =
±1/2|↑,↓〉, and |e±〉 = (|ex〉 ∓ i|ey〉)/

√
2 are the eigenstates

of the orbital angular momentum operator, i.e., Lz|e±〉 =
±|e±〉.

The bare spin-orbit doublets are further split and mixed by
static strain in the host material, Hstrain, and via the Zeeman
effect, HZ . The strain only affects the orbital states and can be
written as

Hstrain = h̄[(ϒx + iϒy)L− + (ϒx − iϒy)L+], (3)
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where L+ = L†
− = |e+〉〈e−| induces transitions between the

orbital states. Here the coupling constants ϒx,y/(2π ) ∼
10 GHz account for both the intrinsic Jahn-Teller effect as
well as random lattice distortions, which will vary for ev-
ery center. The Zeeman term, HZ = geμBB · S + qμBBzLz,
includes both the spin and the orbital Zeeman effect, where
ge � 2 is the electron gyromagnetic ratio and q ∼ 0.1 is the
Ham reduction factor for the orbital states [47,48]. Finally, the
last term in Eq. (2), Hdrive(t ) = geμBB(t ) cos(ωdt − φd )Sx,
accounts for the effect of an oscillating microwave field with
frequency ωd and phase φd , which is used for the implemen-
tation of gate operations, as discussed below.

B. Qubit states

In the absence of the driving field, B(t ) = 0, the Hamil-
tonian HSiV can be diagonalized, and in the following we
identify the two lowest eigenstates with the qubit states |0〉 ≈
|e−,↓〉 and |1〉 ≈ |e+,↑〉 (see the inset in Fig. 1), which are
separated in frequency by ω10. In the examples below we con-
sider a Zeeman splitting of about ω10/(2π ) ≈ 3 GHz, such
that the qubits states are in resonance with a phonon mode
of similar frequency. Under this condition, the remaining two
states |2〉 ≈ |e+,↓〉 and |3〉 ≈ |e−,↑〉 are still far separated in
energy and can be neglected in the dynamics.

Due to the orthogonality of both the orbital and the spin
components, the bare spin-orbit states, |e−,↓〉 and |e+,↑〉,
are neither coupled by phonons nor by the microwave driving
field. It is thus important to bear in mind that the actual
qubit states are superpositions of all four basis states, with the
mixing and phase angles depending on the static strain, ϒx,y,
and the applied magnetic field, B (see Appendix A for more
details). Of specific relevance for the following discussion are
the matrix elements,

ηS,x = 〈0|Sx|1〉, ηS,z = 〈1|Sx|1〉 − 〈0|Sx|0〉, (4)

which describe the coupling of the qubit states to the magnetic
driving field along ex, as well as the matrix elements,

ηL,x = 〈0|Lx|1〉, ηL,z = 〈1|Lx|1〉 − 〈0|Lx|0〉, (5)

where Lx = L+ + L−. These quantities enter in the coupling
to the quantized phonon mode, as discussed in Sec. II C. In
Fig. 2 we plot |ηS,x| and |ηL,x| together with the qubit fre-
quency ω10 as a function of the static magnetic field angle
θB = arctan(Bx/Bz ), assuming By = 0. For these plots, the
values for the static strain couplings ϒx,y are randomly drawn
from an interval [−ϒmax, ϒmax] and the solid lines (shaded
areas) indicate the average values (variances) of the consid-
ered quantities. We see that for typical strain fields [60,61]
and magnetic fields in the range of |B| ∼ 0.1–0.3 T, we can
tune the qubit frequency between ω10/(2π ) ≈ 2–5 GHz while
achieving sizable matrix elements of about |ηS,x| ∼ |ηL,x| ∼
0.1. This requires a static magnetic field applied mainly along
the x direction and either intrinsic or externally applied strain
[49]. By assuming that the qubits can be locally tuned to
the same frequency of ω10/(2π ) = 3 GHz, Fig. 2(d) shows
the expected distribution of matrix elements when we assume
only a random intrinsic strain. The behavior of the less rele-
vant matrix elements ηS,z and ηL,z is shown in Appendix A.

FIG. 2. Qubit parameters. Plots of (a) the qubit frequency split-
ting ω10, (b) the absolute values of the strain-coupling matrix element
ηL,x and (c) the spin transition matrix element ηS,x as a function
of the rotation angle θB = arctan(Bx/Bz ) and different values of
the static magnetic field, |B|. In all plots, the respective quantities
represent the average values obtained for a random distribution of
static strain components ϒx,y ∈ [−ϒmax, ϒmax], and the shaded areas
indicate their variation (one standard deviation). (d) For θB = 1.2
and randomly chosen ϒx,y the value of |B| is adjusted to fix the
qubit frequencies toω10/(2π ) = 3 GHz. The plot shows the resulting
distribution of matrix elements ηL,x and ηS,x .

Restricted to the two qubit states |0〉 and |1〉 the Hamilto-
nian for a single SiV center reduces to (h̄ = 1)

HSiV(t ) = Hq + δω(t )

2
σz cos(ωdt − φd )

+�(t )(σ−eiφS + H.c.) cos(ωdt − φd ), (6)

where Hq = ω10σz/2, and we have introduced the Pauli
operators σ− ≡ |0〉〈1| and σz ≡ |1〉〈1| − |0〉〈0|. In Eq. (6),
�(t ) = |ηS,x|geμBB(t )/h̄ is a time-dependent Rabi frequency,
and δω(t ) = ηS,zgeμBB(t )/h̄. Note that here the complex
phase factor in ηS,x translates into eiφS , as ηS,x = |ηS,x|eiφS .
In the following we are interested in conditions where
|�(t )|, |δω(t )|  ωd ≈ ω10. In this case we can make a
rotating wave approximation (RWA) and obtain the qubit
Hamiltonian

HSiV(t ) � ω10

2
σz + �(t )

2
(σ+e−iωd t + σ−eiωd t ), (7)

where we choose φd = φS for convenience. Note that by going
from Eq. (6) to Eq. (7) we have neglected off-resonant con-
tributions, which can induce relevant corrections to the qubit
dynamics. However, these corrections are deterministic, and
in Appendix B we show how they can be systematically taken
into account without compromising the following predictions
of gate fidelities obtained from Eq. (7).
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C. Strain coupling to phonons

Apart from any static strain fields already included in
Hstrain, the orbital states of the SiV center are also affected
by the oscillating strain associated with the quantized phonon
modes. The resulting electron-phonon interaction term adopts
the same form as in Eq. (3) but with the corresponding strain
fields (ϒx, ϒy) → (υx, υy) being quantized. More precisely,
υx = d (εxx − εyy) + f εzx and υy = −2dεxy + f εyz are pro-
portional to the strain tensor elements defined as

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (8)

Here x1 = x (x2 = y, x3 = z) and �u denotes the quantized dis-
placement field at the position of the SiV center. The strain
susceptibilities for the SiV center, d ≈ − f ≈ 1.5 PHz, have
been measured in Ref. [49].

In general, the quantized displacement field can be
written as

�u(t, �r) =
∑

n

√
h̄

2ρωn

�ζn(�r)(ane−iωnt + H.c.), (9)

where an is the annihilation operator for a phonon with fre-
quency ωn and mode function �ζn(�r). The latter is normalized
to

∫
d3r �ζ ∗

n (�r) · �ζm(�r) = δn,m. For diamond nanostructures
with dimensions �5 µm, the spacing between the mode fre-
quencies is �ω � 1 GHz, which allows us to address only
a single mode with frequency ωph ≈ ω10 and mode function
�ζph(�r). Restricted to this mode and projected onto the qubit
basis states |0〉 and |1〉, the spin-phonon coupling is given by

He-ph � h̄(ga†σ− + g∗aσ+), (10)

where we have already made the RWA and omitted the longi-
tudinal coupling terms ∼ηL,z. Note that those contributions are
not strictly negligible in the context of high-fidelity two-qubit
interactions, but they can be reabsorbed into a redefinition
of effective parameters and do not affect any of the main
conclusions discussed below. Therefore, for the sake of clarity,
we proceed with Eq. (10) and refer to Appendix B for further
details. The coupling constant g depends on the details of the
chosen phonon mode function but can be written as

g = dεphηL,x, (11)

where εph is the characteristic strain amplitude per phonon.
For a basic estimate, we consider the fundamental com-
pression mode in a rectangular box of length � and cross
section A, with a frequency ωph = cπ/� and a maximal strain
per phonon of

εph ≈
√

h̄ωph

c2ρ�A
. (12)

Here ρ ≈ 3500 kg/m3 is the density and c ≈ 1.7 × 104 m/s
the speed of sound in diamond. For � = 3 µm, A =
(200 nm)2, and |ηL,x| = 0.1, we obtain ωph/(2π ) ≈ 3 GHz,
εph ≈ 4 × 10−9, and g/(2π ) ≈ 0.6 MHz. This coupling can
be further enhanced by designing phononic crystals as de-
picted in Fig. 1, where the strain field is strongly localized in
an effective volume Veff  �A, while retaining approximately

the same frequencies. Exact numerical simulations [62,63]
of such modes predict single-phonon strain amplitudes up to
εph ≈ 10−7 and, correspondingly, effective spin-phonon cou-
plings up to g/(2π ) ≈ 15 MHz.

D. Qubit-phonon interface

In summary, by changing into a frame rotating with the
driving frequency ωd , the coupling between the SiV centers
and a single isolated phonon mode can be accurately described
by a Jaynes-Cummings model of the form

H (t ) � h̄
N∑

i=1

[
�

2
σ z

i + �i(t )

2
σ x

i

]
+ h̄�pha†a

+ h̄
N∑

i=1

(gia
†σ−

i + g∗
i aσ+

i ) + Hnoise(t ), (13)

where we have introduced the detunings � = ω10 − ωd and
�ph = ωph − ωd .

Note that in the following we assume full local control
of static and microwave fields in order to compensate for
strain-induced inhomogeneities in the qubit frequencies and
transition matrix elements. For a separation of the SiV centers
of about ∼1 µm, this can be achieved by using submicron-
scale gate electrodes, similarly to what is used for the control
of spin qubits in gate-defined quantum dots [64].

Apart from the coherent dynamics and the magnetic field
noise, we must also take into account the coupling of the
phonon mode to its thermal surrounding. We do so by model-
ing the dynamics of the system density operator ρ in terms of
the master equation

ρ̇ = − i

h̄
[H (t ), ρ] + κ (nth + 1)D[a]ρ + κnthD[a†]ρ. (14)

Here D[a]ρ = aρa† − 1
2 {a†a, ρ}+, and κ = ωph/Q and nth =

1/(eh̄ωph/(kBT ) − 1) are the decay rate and the thermal occupa-
tion number of the phonon mode for a given quality factor
Q and support temperature T . Note that phononic crystal
resonators with mechanical quality factors Q � 105 have al-
ready been demonstrated [23] and in view of the continued
advances in diamond nanofabrication, further improvements
are expected.

III. DYNAMICALLY PROTECTED SPIN-SPIN
INTERACTIONS

The Hamiltonian in Eq. (13) is familiar from cavity QED
systems with atoms and various other quantum technology
platforms, such as trapped ions or superconducting circuits. In
such settings, by choosing a large detuning, |�−�ph| � gi

and �i(t ) = 0, the bosonic mode is only virtually populated
but mediates an effective flip-flop interaction between the
qubits. This interaction is enough to entangle the otherwise
spatially separated spins or, more generally, implement a
universal two-qubit gate. In this detuned regime and after op-
timizing the detuning, the minimal gate error (see discussion
below),

Emin ≈ 3

2

(
π

4
√
C

) 4
3

∼ C− 2
3 , (15)
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depends only on a single parameter, the so-called
cooperativity

C = g2T ∗
2

κ (2nth + 1)
, (16)

where T ∗
2 is the bare decoherence time of the spin qubits.

While for mechanical quality factors Q = 104–106 and the
couplings estimated above already very high values of C ∼
103–104 are theoretically achievable, it is not yet enough to
reach gate errors below 10−3. One of the remaining sources
of error comes from the short spin decoherence time, which
in solids is typically limited to T ∗

2 ∼ 1–10 µs [50], due to
ubiquitous sources of magnetic field noise or other processes
that cause slow but unknown frequency drifts.

To overcome dephasing in single-qubit control, one usu-
ally applies spin-echo and related dynamical decoupling
sequences, where the evolution of the spin is interrupted by
a discrete set of fast π pulses [50]. These spin flips cancel
any static frequency shifts but also interfere with the cou-
pling to the phonon mode and must be fast compared to
all the relevant system timescales. Therefore, here we con-
sider an alternative decoupling strategy, named continuous
dynamical decoupling (CDD), where the spin is rotated all the
time by applying a strong continuous driving field [51–59].
Note that the use of CDD schemes has already been sug-
gested in initial proposals for achieving strong spin-phonon
interactions [65] and has also been analyzed in connection
with cavity-mediated gate operations in different systems
[66–69], including experimental demonstrations with trapped
ions [70,71] and superconducing circuits [72]. Compared to
those systems, the influence of quasistatic noise on defect
centers in solids is even more detrimental, and, therefore, even
greater benefits can be expected from CDD schemes. The
purpose of the following analysis is to demonstrate that this
is indeed the case and that this approach is sufficient to reach
the targeted gate errors of � 10−4 in a spin-phonon system.

A. Low-frequency noise

While the precise origin and details of the noise are often
not known and may depend on the specific experimental set-
ting, it has been demonstrated that the bare dephasing time
T ∗

2 of SiV centers at low temperatures can be dramatically
enhanced to values of about T2 ≈ 1 ms by applying pulsed
spin-echo techniques [50]. This observation shows that the
decoherence of SiV qubits is primarily induced by slowly
varying fluctuations of the transition frequency ω10, and for
the following analysis it is enough to consider the noise
Hamiltonian

Hnoise = h̄
N∑

i=1

ξi(t )

2
σ z

i . (17)

Here the ξi(t ) are independent stochastic processes, which we
model by a set of Ornstein-Uhlenbeck processes [73] with
zero mean and variance,

〈ξi(t )ξ j (0)〉 = δi jσ
2e−t/τc . (18)

The parameters σ and τc describe the strength of the noise and
its correlation time, respectively. Within this noise model, we

obtain

T ∗
2 �

√
2

σ
, and T2 � 3

√
12τc

σ 2
, (19)

which can be used to relate σ and τc to the experimentally
measurable values of the bare dephasing time T ∗

2 and the
spin-echo coherence time T2. From the parameters cited above
we obtain typical values of σ/(2π ) ∼ 100 kHz and τc > 1 s,
indicating that the noise is to a good approximation quasistatic
over the timescale of the gate operations considered in this
work.

B. Dressed qubit states

We now assume that the qubits are driven by a continuous
microwave field, �i(t ) = �. In this case, the Hamiltonian of
an individual SiV center can be written as

Hq = h̄�̃

2
σ̃z + h̄ξ (t )

2
[cos(θ )σ̃z + sin(θ )σ̃x], (20)

where �̃ = √
�2 +�2 and the σ̃k are Pauli operators in the

dressed qubit basis defined as

|0̃〉 = cos(θ/2)|0〉 − sin(θ/2)|1〉, (21)

|1̃〉 = cos(θ/2)|1〉 + sin(θ/2)|0〉, (22)

with a mixing angle θ given by tan(θ ) = �/�.
Equation (20) shows that increasing the ratio �/� reduces

the parallel noise component affecting the decoherence of the
dressed qubit states, which should lead to an increase of the
coherence time by T ∗

2 → T ∗
2 / cos2(θ ). Obviously, this scaling

does not hold near resonance, � = 0. In this limit, the noise is
purely transverse, but because ξ (t ) is slowly varying, it cannot
efficiently induce transitions between |0̃〉 and |1̃〉 when the
splitting � � σ, τ−1

c is sufficiently large. The dominant effect
of the noise then arises from a second-order shift,

Hq � h̄�

2
σ̃z + h̄ξ 2(t )

4�
σ̃z. (23)

This suppression of the noise by a factor of σ/� can be in-
terpreted as a continuous spin-echo effect, where the original
qubit states are continuously interchanged.

Starting from an initial superposition state |ψ0〉 = (|0̃〉 +
|1̃〉)/

√
2, the subsequent evolution of the expectation value

〈σ̃−〉(t ), averaged over all noise realizations, determines the
loss of coherence of the dressed states. For general � and �,
the full form of this decoherence function has been derived in
Ref. [74], but in the limit of interest, � = 0 and τc → ∞, it
simplifies to

〈σ̃−〉(t ) �
√

1

1 + iσ 2t/�
〈σ̃−〉(0). (24)

From this expression we can identify a characteristic decoher-
ence time,

T�
2 = 2�

σ 2
, (25)

for a continuously decoupled qubit. In addition, the argument
of 〈σ̃−〉(t ) reveals a phase shift that can be interpreted as a
small correction to the Rabi frequency, � → �+ 1/T�

2 .
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FIG. 3. Phonon-mediated spin-spin interactions. (a) Level
scheme for two dressed qubits dispersively coupled to a cavity mode.
(b) Sketch of the Rabi frequency �(t ) during the implementation
of a two-qubit gate operation. At the beginning (end) of the pulse
the Rabi frequency is ramped up (down) over a time tramp, where
tramp  tg in all the numerical examples.

C. Effective qubit-qubit interactions

The change from the bare to the dressed qubit states not
only suppresses the noise but also modifies the interaction
with the phonon mode. By assuming identical frequencies and
driving parameters for both quits and after moving into the in-
teraction picture with respect to H0 = �̃

∑
i σ̃

z
i /2 +�pha†a,

the strain-coupling Hamiltonian in the dressed qubit basis
reads

HI,e-ph(t ) =
N∑

i=1

gi[a
†ei�pht�i(t ) + H.c.], (26)

where

�i(t ) = sin (θ )

2
σ̃ z

i − sin2(θ/2)σ̃+
i ei�̃t + cos2(θ/2)σ̃−

i e−i�̃t .

(27)

In the limit �  |�| we recover the usual Jaynes-Cummings
interaction. However, for maximally protected qubits, � = 0,
the coupling to the phonon mode involves additional longi-
tudinal and anti-Jaynes-Cummings terms. As long as all these
contributions are off-resonant, i.e., gi  |�ph|, |�ph ± �̃|, we
can treat them in perturbation theory and derive the effective
Hamiltonian [see Fig. 3(a) and Appendix C]

HI,eff = − J⊥(σ̃+
1 σ̃

−
2 + σ̃−

1 σ̃
+
2 ) − J‖

2
σ̃ z

1 σ̃
z
2

−
2∑

i=1

�i(a
†a + 1/2)σ̃ z

i . (28)

Here we have introduced the spin-spin couplings

J⊥ = g1g2

{
cos4(θ/2)

�ph −�
+ sin4(θ/2)

�ph +�

}
, (29)

J‖ = g1g2 sin2(θ )

�ph
, (30)

and

�i = g2
i

[
cos4(θ/2)

�ph −�
− sin4(θ/2)

�ph +�

]
(31)

is the strength of the Stark shift. This effective model shows
that the use of dressed spin qubits is fully compatible with

the implementation of phonon-mediated gates. Moreover, this
coupling scheme is flexible enough such that even for max-
imal protection, � = 0, the ratio between � and �ph can
be varied to select between XY-type (J⊥ � J‖), ZZ-type
(J⊥  J‖), and fully symmetric (J⊥ = J‖) Heisenberg interac-
tions. See also Refs. [68,69] for closely related proposals for
realizing spin-spin interactions by combining dressed qubits
with the Jaynes-Cummings model.

D. Effective decoherence sources

While the use of dressed qubit states suppresses the effect
of low-frequency noise down to a residual spin coherence
time of about T�

2 , the small admixing between the qubits
and the lossy phonon mode introduces an additional collective
decoherence channel for the qubits. As shown in Appendix C,
this decoherence mechanism can be described in terms of an
effective master equation for the qubits,

ρ̇ =
∑

μ=+,−,z

∑
i, j

�
μ
i jDi, j[σ̃μ], (32)

where Di, j[c]ρ = ciρc†
j − 1

2 {c†
i c j, ρ}+. The corresponding

rates are

�+
i j = gig jκ

[
(nth+ 1)

cos4(θ/2)

(�ph−�)2
+ nth

sin4(θ/2)

(�ph+�)2

]
, (33)

�−
i j = gig jκ

[
nth

cos4(θ/2)

(�ph−�)2
+ (nth+ 1)

sin4(θ/2)

(�ph+�)2

]
, (34)

and

�z
i j = gig jκ

4�2
ph

(2nth + 1) sin2 θ. (35)

In addition, as can be seen from the last term of HI,eff

in Eq. (28), the phonon mode also induces a Stark shift
proportional to the phonon occupation number a†a. For any
finite temperature, nth > 0, this shift takes a random value in
each experimental run and fluctuates on a timescale κ−1. In
the following, we discuss in more detail how these residual
imperfections limit the implementation of gate operations and
under which conditions the highest fidelities can be achieved.

Note that the effective model given in Eqs. (28) and (32)
is based on coupling with a single mechanical mode, which
we justify by the large mode spacing of about ∼1 GHz in
a micrometer-sized diamond structure. However, all deriva-
tions in this section can be easily generalized to multiple
phonon modes with frequencies ωn

ph, leading to corrections
∼1/(ω10 − ωn

ph ) for the effective spin-spin coupling and cor-
rections of ∼1/(ω10 − ωn

ph)2 for the effective decay rates.
Provided that no random resonances occur, such a multi-
mode generalization would not significantly change the model
parameters or the ratio between coherent and incoherent cou-
plings. Therefore, we continue with the single-mode model
for now but consider the case of a multiphonon lattice system
in Sec. VI.

IV. HIGH-FIDELITY ENTANGLEMENT GENERATION

We start by assuming g1 = g2 for simplicity and set � = 0
(θ = π/2) for maximal protection. According to our effective

045419-6



TOWARD HIGH-FIDELITY QUANTUM INFORMATION … PHYSICAL REVIEW B 110, 045419 (2024)

model in Eq. (28), we define the ideal gate Hamiltonian

Hg = −J⊥(σ̃+
1 σ̃

−
2 + σ̃−

1 σ̃
+
2 ) − J‖

2
σ̃ z

1 σ̃
z
2 − δ�

2

2∑
i=1

σ̃ z
i , (36)

which includes the expected average frequency shift δ� =
�(2nth + 1) − 1/T�

2 . For a gate time tg = π/(4J⊥) and up to
a global phase, the resulting evolution operator reads

Ug =

⎛
⎜⎜⎜⎜⎝

ei(γ+β ) 0 0 0

0 1/
√

2 i/
√

2 0

0 i/
√

2 1/
√

2 0

0 0 0 ei(γ−β )

⎞
⎟⎟⎟⎟⎠, (37)

where γ = πJ‖/(4J⊥) and β = πδ�/(4J⊥). This operation
equals the product of an

√
iSWAP and a C-PHASE gate,

which is also known as the fSim gate [75].
In the presence of noise, but also due to small inaccuracies

of our effective model, the actual evolution of the two-qubit
system will slightly deviate from this ideal evolution. In the
following we aim to quantify and minimize these residual
errors under realistic experimental conditions.

A. Preparation of a Bell state

In a first step, we are interested in the generation of a max-
imally entangled Bell state |�̃〉 = 1√

2
(|1̃0̃〉 + i|0̃1̃〉), which is

generated by Ug when starting from the initial product state
|1̃0̃〉. To evaluate the expected error of this operation in a re-
alistic system, we define the state fidelity F = 〈�̃|ρq(tg)|�̃〉,
where ρq(tg) = Trph{ρ(tg)} is the reduced qubit state at the end
of the gate. To facilitate an analytical treatment, we assume the
error E = 1 − F  1 to be small. Then, using perturbation
theory, we can write the total gate error in the form (see
Appendixes D and E)

E� = Eϕ + Eκ + Emin
s-ph. (38)

Here the first term,

Eϕ = 1

2

(
tg

T�
2

)2

, (39)

represents the residual error caused by the original low-
frequency noise. The second term

Eκ = 1
2 (�+

11 + �+
22 + �−

11 + �−
22)tg, (40)

accounts for the phonon-induced decoherence described by
Eq. (32). Finally, there is a third source of error, Emin

s-ph, which
arises from the fact that at the end of the gate, the qubits are
still slightly entangled with the phonon mode. By switching
the Rabi frequency on and off adiabatically at the beginning
and end of the gate, this error can be reduced to

Emin
s-ph � (2nth + 1)

g2

�2
ph

, (41)

but not completely avoided. Note that in all our numeri-
cal simulations below, we assume an adiabatic ramp �(t ) =
� sin2[π (t − tm)/(2tramp)] at the beginning (tm = 0) and at the
end (tm = tg) of the gate [see Fig. 3(b)] and optimize the ramp

FIG. 4. Preparation of a Bell state. (a) Plot of the residual error
E versus the Rabi frequency � for the initial two-qubit state |�̃〉.
The dotted (solid) lines represent Eq. (38) including (without) the
contribution Emin

s-ph for T ∗
2 = 10 µs (blue) and 3 µs (red). The mark-

ers indicating the result of exact master equation simulations fall
between the two lines, showing a good correspondence between
analytic and numerical results. Each point is the result of 100 in-
dependent noise realizations, where the ξi were randomly selected
from the probability distribution P(ξ ) = (2πσ 2)−1/2 exp (−ξ 2/2σ 2).
Other relevant parameters are Q = 106, T = 100 mK, g/(2π ) ≈
0.75 MHz, and �ph/(2π ) ≈ 150 MHz. (b) Plot of the minimal error
Emin
� in Eq. (42) versus Q and T ∗

2 . The two dashed lines indicate the
boundary in this parameter space above which �opt/(2π ) surpasses
the values of 50 and 100 MHz, respectively. This becomes relevant
when there are additional experimental constraints on the maximal
value of �.

duration tramp  tg. The gate errors are evaluated using the
reduced qubit state after the second ramp.

B. Parameter optimization

Figure 4(a) shows examples of the simulated errors for the
entanglement generation operation as a function of the Rabi
frequency � and for two different values of T ∗

2 . In this plot the
square markers represent the results obtained from an exact
simulation of the full master equation in Eq. (14), starting
from the initial state ρini = |1̃0̃〉〈1̃0̃| ⊗ ρth and averaged over
many noise realizations. The solid and dotted lines correspond
to the analytic formula in Eq. (38), including and without
including the contribution of Emin

s-ph. While even for a highly
coherent system it is not always possible to reach errors as low
as 10−4, this threshold is achievable within a certain parameter
range and under optimized driving conditions.

To identify these conditions we can use the approximate
analytic expression for E� given in Eq. (38), which is in
excellent agreement with the exact numerical results. From
this expression, it first follows that we must choose a minimal
phonon detuning of about �ph � 102g

√
2nth + 1 in order to

suppress the residual spin-phonon entanglement to a level
of Emin

s-ph < 10−4. Once this detuning is fixed, the remaining
error, Eϕ + Eκ , can be minimized by choosing an optimal
value �opt � �ph/(1 + r) for the Rabi frequency (see Ap-
pendix F). Here r = 1

2 (Emin
κ /E0

ϕ )1/3 with Emin
κ = πκ (2nth +

1)/(4�ph ) and E0
ϕ = π2

8 (gT ∗
2 )−4. For a given r, the resulting

expression for the minimal total error is

Emin
� =

(π
4

) 4
3 G(r)

[C�(1 + r)]2/3
+ Emin

s-ph, (42)
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with G(r) = (1+r)2+1
(2+r) + 1

23
(2+r)2

(1+r)2 . Here we have introduced the
effective cooperativity,

C� = (�optT
∗

2 /4)C∗, (43)

which is enhanced by the Rabi frequency. For small r we then
obtain the error scaling

Emin
� ≈ 3

2

(
π

4
√
C�

) 4
3

∼ C− 2
3

� , (44)

which is similar to the scaling for unprotected qubits but
with an enhanced cooperativity that is boosted by a factor
�optT ∗

2 /4. Note, however, that this limit is in practice not
always attainable, for example, due to constraints on the max-
imal Rabi frequency �opt ∼ �ph. In this case the minimally
achievable error will be dominated by phonon losses and
spin-phonon entanglement, i.e.,

Emin
� ≈ Emin

κ + Emin
s-ph. (45)

As a specific example, we consider a phonon mode with
ωph/(2π ) ≈ 3 GHz, Q = 106, and T = 100 mK (nth ≈ 0.3),
T ∗

2 = 10 µs, and g/(2π ) ≈ 0.75 MHz. For a detuning of
�ph/(2π ) ≈ 150 MHz we then obtain Emin

� ≈ 7 × 10−5, with
�opt/(2π ) ≈ 45 MHz and a gate time tg ≈ 60 µs. For the
same coupling strength, we plot in Fig. 4(b) the resulting
minimal gate error as a function of the mechanical Q factor
and the bare spin coherence time. While we see that reaching
a level of 10−4 is challenging, the required parameters are well
within reach of near-term experiments.

V. UNIVERSAL TWO-QUBIT GATES

In the previous example, the evolution from the initial state
to the final entangled state was constraint to the subspace
{|0̃1̃〉, |1̃0̃〉}. For g1 = g2, these states are insensitive to the
common Stark shift appearing in Hamiltonian (28). Therefore
this term does not contribute to the error budget in Eq. (38).
However, this is not true for the states {|0̃0̃〉, |1̃1̃〉} or, more
generally, when g1 �= g2. To assess the fidelity of a universal
two-qubit gate independently of the input states, the additional
decoherence channel arising from a finite thermal population
of the resonator mode must be taken into account.

A. Thermal Stark-shift dephasing

Since the average thermal frequency shift has already been
taken into account in our target gate Hamiltonian in Eq. (36),
thermal decoherence arises from the remaining fluctuating
contribution,

HStark = �(a†a − nth )
(
σ̃ z

1 + σ̃ z
2

)
, (46)

assuming �i = �. In order to determine an upper bound for
the influence of this shift on the implementation of universal
two-qubit gates, we consider the same evolution as above but
starting from the initial state |�̃〉 = 1√

2
(|1̃1̃〉 + i|0̃0̃〉). For this

state, which is maximally sensitive to this shift, we obtain an
additional contribution to the total gate error, which is of the
form (see Appendix D)

E� ≈ nth(nth + 1)
4�2

κ2
[e−κtg − (1 − κtg)]. (47)

FIG. 5. High-fidelity two-qubit gate. (a) Plot of the error E versus
the phonon temperature T . The blue dotted (solid) line represents
E� including (without including) the contribution from Emin

s-ph. The
blue markers correspond to the results obtained from exact master
equation simulations with an initial two-qubit state |�̃〉, averaged
over 50 random static-noise realizations. The red square (round)
markers are the results from exact numerical simulations for the
initial state |�〉 (|�〉) and using the CCDD method. (b) Sketch of
the relevant frequency components of Bx (t ) in the CCDD scheme. In
addition to the central driving frequency at ω10, the phase modulation
generates two weaker sidebands at ω10 ±�. (c) Plot of the gate
error E for the CCDD scheme as a function of �ε and for an initial
state |�〉. Note that for this plot only the Hamiltonian evolution has
been taken into account and for each value of �ε , tramp has been
slightly adjusted to minimize the error. The dotted line is a guide to
the eye. In (a), �ε/� = 8 × 10−3 and tramp = 2.15 × 2π/�ph were
chosen based on the most favorable values identified in (c). The other
relevant parameters are T ∗

2 = 10 µs, Q = 106, g/(2π ) = 0.75 MHz,
�ph/(2π ) ≈ 150 MHz, and �/(2π ) ≈ 37 MHz.

For κtg  1, we obtain the scaling E� ∼ �2t2
g , which reflects

the static uncertainty in the initial phonon occupation number.
In the opposite regime, κtg � 1, the number fluctuations are
correlated only for a short time and the resulting dephasing
error, E� ∼ (�2/κ )tg, scales more favorably. Note that for
the parameters considered in Fig. 4(a), κtg ≈ 1 and we are
therefore between these two limits. Importantly, the dephasing
is thermally activated and is strongly suppressed for nth  1.
Therefore, this mechanism is usually not considered in optical
cavity QED systems, where the thermal population of the
cavity mode is negligible. For phononic cavities, this is not
necessarily the case.

In Fig. 5(a) we simulate the implementation of the two-
qubit gate Ug in Eq. (37) for the initial state |�̃〉 and plot the
total error of this operation as a function of the temperature T .
The blue solid curve represents the analytic prediction

E� = E� + E�, (48)

while the blue markers are the results of exact numerical sim-
ulations. For T = 100 mK, which corresponds to nth ≈ 0.3
in the current example, the error is well above 10−2 and
dominates over all other contributions discussed above. Since
in practice it might be difficult to cool the sample significantly
below this temperature, these simulations show that thermal
frequency shifts are a major limitation for realizing phonon-
mediated gate operations with sufficiently high fidelity.
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B. Concatenated decoupling

To overcome this problem, we propose to use a
method called concatenated continuous dynamical decoupling
(CCDD) [76–84], which is known to effectively improve the
coherence times of dressed qubits affected by low-frequency
fluctuations of the Rabi frequency. The basic idea behind
this method is to replace the constant microwave field by a
phase-modulated field,

Bx = B cos [ω10t − 2ε sin(�t )]. (49)

By assuming that ε  1 and moving into a rotating frame with
respect to ω10, the bare qubit Hamiltonian then reads

Hq = �

2
σx −�ε sin(�t )σy, (50)

where �ε = ε�. We see that the dominant energy splitting
of the dressed states is still determined by � and small qua-
sistatic shifts ∼σz are suppressed as discussed above. The
second term ∼σy is modulated with exactly this transition
frequency and induces oscillations between the dressed states
|0̃〉 and |1̃〉 with Rabi frequency �ε. We can therefore repeat
the idea of continuous dynamical decoupling and use a suf-
ficiently large �ε to suppress small quasistatic contributions
∼δ�σx, which correspond to a term ∼δ�σ̃z in the dressed-
state basis. Since the Stark-shift Hamiltonian in Eq. (46) is of
that form, we expect the CCDD method to be applicable in
this case as well.

Let us now combine these ideas with phonon-mediated
spin-spin-interactions. In the following, we restrict ourselves
to the case � = 0 and assume that �ε  �,�ph does not
considerably change the qubit-phonon detunings. In this case
we can simply repeat the adiabatic elimination of the phonon
mode and obtain the following effective spin model in the
interaction picture:

HI,eff (t ) � �ε

2

∑
i

σ̃ x
i −

∑
i

�i(a
†a + 1/2)σ̃ z

i

−J⊥(σ̃+
1 σ̃

−
2 + σ̃−

1 σ̃
+
2 ) − J‖

2
σ̃ z

1 σ̃
z
2 . (51)

We see that, compared to Eq. (28), we have an additional
local driving term that we use to suppress the Stark-shift fluc-
tuations. To do so, we make another unitary transformation
into an interaction picture with respect to H0 = �ε

2

∑
i σ̃

x
i and

neglect all terms that oscillate with e±i�εt . This leaves us with
the ideal gate Hamiltonian,

H ′
g � −J ′

⊥(σ+
1 σ

−
2 + σ−

1 σ
+
2 ) − J ′

‖
2
σ z

1σ
z
2 , (52)

where J ′
⊥ = (J⊥ + J‖)/2 and J ′

‖ = J⊥. Note that due to this
second basis transformation, the final effective interaction is
expressed in terms of the original Pauli operators, but the
overall strength of the interaction and the degree of tunability
is similar to the nonconcatenated driving scheme.

C. Example

Note that in the derivation of Eq. (52) we implicitly as-
sumed that the additional modulation sidebands ω10 ±� �=
ωph do not accidentally match the phonon frequency, and we

have neglected many terms that oscillate at various different
frequencies. To justify the validity of all these approximations
and to verify that the CCDD scheme is indeed able to suppress
thermal fluctuations, we compare in Fig. 5(a) the dynamics
generated by H ′

g with exact numerical simulations of the full
system in Eq. (14) (see Appendix H for further details). The
square red markers represent the results of the numerical
simulations for the initial state |�〉 = 1√

2
(|11〉 + i|00〉). The

round markers represent the result for the initial state |�〉 =
1√
2
(|10〉 + i|01〉). Contrary to the gate using only CDD, the

gate using the CCDD method achieves errors below 10−4 even
at T = 100 mK. For the other parameters in this simulation
we considered T ∗

2 = 10 µs, Q = 106, g/(2π ) = 0.75 MHz,
�/�ph = 1/4 (�/(2π ) ≈ 37 MHz), �ε/� = 8 × 10−3, and
tramp = 2.15 × 2π/�ph. The value of � was chosen close to
�opt, while �ε was chosen based on the results from numer-
ical Hamiltonian simulations shown in Fig. 5(c). Simulations
starting with other initial states yield similar results. Based on
our results, we conclude that two-qubit gates below the error
threshold of 10−4 are realistically achievable with a CCDD
scheme.

VI. SCALABILITY

In Sec. III, we investigated the implementation of high-
fidelity two-qubit gates between two SiV centers that are
coupled to a single localized phonon mode, as sketched in
Fig. 1. The same protocol can in principle be extended to mul-
tiple spins coupled to the same mode. However, due to a finite
mode volume and the need to address qubits individually, such
an approach is not scalable to tens or hundreds of spins.

A. Spin-phonon superlattices

As a way to scale up this spin-phonon platform, one
can make use of multiple coupled phononic cavities within
the crystal structure. Figure 6(a) shows a sketch of such a
phononic crystal, where multiple localized phonon modes are
coupled to neighboring modes via a small evanescent overlap
between the strain profiles. Note that more specific designs for
such coupled phononic cavity arrays have been discussed, for
example, in Refs. [62,85]. For the current analysis, we simply
assume that this coupled phonon array is well described by
a tight-biding lattice Hamiltonian with a tunneling amplitude
λ  ωph and that each cavity hosts only a single SiV spin with
the same type of spin-phonon coupling introduced in Sec. II.
The resulting Hamiltonian for the whole lattice with N sites
reads

H = ωph

N∑
j=1

a†
j a j − λ

N−1∑
j=1

(a ja
†
j+1 + a†

j a j+1)

+
N∑

j=1

ω10

2
σ z

j +
N∑

j=1

� j cos (ω jt − φ j )σ
x
j

+
N∑

j=1

g j (a
†
jσ

−
j + a jσ

+
j ). (53)
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FIG. 6. Effective spin-spin interactions in phononic crystals (a) Schematic representation of SiV centers embedded in a one-dimensional
phononic crystal. Each center interacts with a localized phonon mode, ideally at a position where the amplitude of the strain field (indicated
by the orange line) is the largest. At the same time, the localized mode couples (∼λ) to neighboring modes via a small evanescent overlap
between the strain profiles. This leads to the formation of extended Bloch waves, which mediate spin-spin interactions over a range of lattice
sites, controlled by the detuning �0. (b) Dispersion relation of the phononic modes (solid red), where 4λ is phononic bandwidth and �0 is the
detuning between the k = 0 mode frequency and the qubit frequency. (c) Characteristic length d‖ and spin-spin couplings Jn=1,2,3 ≡ J‖

i,i+n/Ji,i

versus 2λ/�0. The nearest-neighbor coupling J1 achieves its largest value (J1 ≈ 0.17) at 2λ/�0 = 2.42. (d) Characteristic nearest-neighbor
couplings J‖

1 ≡ J‖
i,i+1/Ji,i and J⊥

1 ≡ J⊥
i,i+1/Ji,i for different values of the Rabi frequency� and for 2λ/�0 = 2.42. (e) Value of the Rabi frequency

�ISO, for which J⊥
1 equals J‖

1 , versus the tunneling rate to the neighboring lattice sites λ.

In a normal-mode or Bloch-state basis the first line in Eq. (53)
becomes Hph = ∑kmax

k=kmin
ω

ph
k c†

kck . Here

ω
ph
k = ωph − 2λ cos (k) (54)

and ck = ∑
j b jka j , with b jk =

√
2

N+1 sin (k j) and k =
πm/(N + 1) with m ∈ N going from 1 to N for open
boundary conditions. Also, from now on,

∑
k ≡ ∑kmax

k=kmin
. On

resonance, ω j = ω10, in a rotating frame with respect to∑
k ω10c†

kck + ∑N
j=1

ω10
2 σ z

j , and after neglecting fast rotating
terms, Hamiltonian (53) reduces to

H �
∑

k

�kc†
kck +

N∑
j=1

� j

2
σ x

j +
N∑
j,k

g jb jk (c†
kσ

−
j + ckσ

+
j ),

(55)
where �k = ωph − ω10 − 2λ cos k. For N � 1, the lowest de-
tuning is given by �0 = ωph − ω10 − 2λ. Similarly to the
case of a single mode discussed above, we assume |bjkg j | 
min{�0 −� j} to ensure a purely dispersive coupling between
spins and phonons; see Fig. 6(b).

B. Engineering spin models

Following the same procedure as in Sec. III C, we can elim-
inate the phonon modes and obtain the effective Hamiltonian

HI,eff =
∑
i< j

−J⊥
i j (σ̃+

i σ̃
−
j + σ̃−

i σ̃
+
j ) − J‖

i j

2
σ̃ z

i σ̃
z
j

+
∑

j

δ j

2
σ̃ z

j −
∑

j,k

� jkc†
kck σ̃

z
j , (56)

where

J⊥
i j =

∑
k

gig jbikb jk

4

[
1

�k −�
+ 1

�k +�

]
, (57)

J‖
i j =

∑
k

gig jbikb jk

�k
, (58)

� jk = g2
jb

2
jk

4

[
1

�k −�
− 1

�k +�

]
, (59)

and δ j = � j −�− ∑
k � jk .

The first line of Eq. (56) represents a generic spin model,
where the relative strength between the transverse (∼J⊥) and
longitudinal (∼J‖) interactions, as well as their range, depend
on λ, �0, and �. To analyze these dependencies, we take the
mode-continuum limit N → ∞, in which case we obtain

J⊥
i j

Ji j
≈ α+

4d |i− j|
+

+ α−
4d |i− j|

−
,

J‖
i j

Ji j
≈ α‖

d |i− j|
‖

. (60)

Here Ji j = gig j/(2�0) and

αμ = 1

(1 + xμ) cos θμ
, dμ = sin θμ

1 − cos θμ
, (61)

with x‖ = 2λ/�0, x± = x‖ ±�/�0, sin θ‖ = x‖/(1 + x‖),
and sin θ± = x‖/(1 + x±). For more details, see Appendix I.

In Fig. 6(c), we plot the characteristic length d‖, which de-
scribes the decay length of the interactions and the couplings
Jn=1,2,3 ≡ J‖

i,i+n/Ji,i as a function of 2λ/�0. First, we observe
that the range of spin-spin interactions depends strongly on
2λ/�0. For 2λ/�0  1 we have short-range spin-spin in-
teractions, while for 2λ/�0 � 1 these are long range. The
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behavior for J⊥
i, j is qualitatively similar. In addition, we find

that for 2λ/�0 = 2.42, the nearest-neighbor coupling strength
achieves the largest value J‖

i,i+1 ≈ 0.17Ji,i. For this value of

λ, we plot in Fig. 6(d) the values of J⊥
i,i+1 and J‖

i,i+1 as a
function of �/�0. This plot shows that, as in the single-mode
case, the ratio between the XY (J⊥) and the longitudinal Ising
couplings (J‖) can be tuned over a large parameter range
by simply varying the Rabi frequency �. Furthermore, this
property is found for any value of 2λ/�0, such that the range
of interactions can be tuned independently. The latter is il-
lustrated in Fig. 6(e), where the Rabi frequency � for which
J⊥

i,i+1 = J‖
i,i+1 is achieved, i.e., �ISO, is plotted as a function of

2λ/�0.

C. Protected spin qubits in a scalable phononic lattice

The previous discussion shows that even in a phononic
lattice systems, the same continuous dynamical decoupling
approach can be used to engineer protected spin-spin inter-
actions of varying range and type. When only neighboring
spins are addressed, this can in principle be used to im-
plement high-fidelity quantum gates in a scalable quantum
register. Alternatively, when coupling all spin qubits simulta-
neously, the same setup realizes a flexible quantum simulator
for Heisenberg-type spin models. Note that for both applica-
tions, a generalization to two-dimensional lattice systems is
possible.

While for a large phononic lattice it is no longer possible
to simulate the exact dynamics, we argue that the transition
to a multimode phononic crystal setting does not signifi-
cantly degrade the high-fidelity operations predicted for the
single-mode case. First, the continuous dynamical protection
mechanism does not change due to the transition from a single
mode to a multimode system, and all the results presented in
Fig. 6 have been obtained for maximally protected qubits with
� = 0. Therefore, the suppression of local low-frequency
noise can be ensured independently of the engineered spin
model. Also, under the same conditions (with �0 replacing
�ph), the errors related to a finite admixture of the lossy
phonon modes will be similar or even reduced compared to
the single-mode case, since for λ � �0 the hybridization with
the higher-frequency modes is suppressed. Note, however,
that the effective coupling strength between nearest-neighbor
spins is slightly smaller than in the single-mode case [see
Fig. 6(c)], which overall might require a slightly higher spin
phonon coupling strength g to obtain the same gate fidelities.

Finally, let us also address the effect of thermal Stark
shifts, which we have identified above as a major source of
error. In the single mode case, we see from Eq. (47) that this
error is caused by thermal fluctuations of the mode occupa-
tion number, which are correlated over a timescale κ−1. In
Appendix I we repeat the same analysis for the case of a
single spin qubit coupled to an infinite phononic lattice and
find that the corresponding Stark-shift dephasing error E� is
reduced by a factor of about (κ/πλ) × 100 ≈ 10−3. Apart
from the numerical factors, this reduction can be explained
by the fact that in a lattice system the relevant correlation time
for local thermal fluctuations is set by the tunneling rate to
the neighboring lattice sites, λ, and not the phonon loss rate

κ . Therefore, thermal fluctuations affect the qubit frequency
for a much shorter time and the accumulated phase errors are
significantly suppressed compared to a single isolated mode.
Interestingly, this means that in the regime of interest, i.e.,
λ ∼ �0, the thermal Stark-shift errors in a large phononic
lattice decrease to a level of E� � 10−4, such that the use of
the CCDD technique is no longer necessary.

VII. CONCLUSION

In summary, we have analyzed the implementation of
phonon-mediated interactions between spin qubits associated
with the SiV defect center in diamond. Specifically, we have
shown how the use of CDD techniques can be used to suppress
the effect of ubiquitous low-frequency noise, while still per-
mitting a flexible design of effective spin-spin interactions. A
detailed analysis of all the relevant noise sources predicts that
by using this approach quantum gate operations with residual
errors in the range of 10−4 can be implemented in either a
single mode setting or in a scalable phononic lattice scenario.

While a quantum coherent coupling between individual
spins and phonons has not been achieved in experiments
yet, our results show that already with demonstrated me-
chanical quality factors and moderate spin-phonon interaction
strengths, quantum operations with fidelities comparable to
other quantum computing platforms become feasible. These
high fidelities are directly related to the extremely large (pro-
tected) cooperativities C� ∼ 105–107 that can be realistically
obtained for phononic modes but are currently far out of reach
for alternative coupling schemes based on optical cavities.
Therefore, despite many obstacles that still need to be over-
come, this unique property makes phononic quantum channels
a promising approach to scale up spin-qubit-based quan-
tum computing and quantum simulation schemes in the near
future.
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APPENDIX A: SPIN QUBIT

The qubit states are obtained by a numerical
diagonalization of the full ground-state Hamiltonian
H = HSO + Hstrain + HZ . Using the basis of spin-orbit
eigenstates {|e−,↓〉, |e+,↑〉, |e+,↓〉, |e−,↑〉}, its matrix
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form reads [48,49] (h̄ = 1)

H =

⎡
⎢⎢⎢⎢⎣

−λSO/2 − (γS + γL )Bz 0 ϒx + iϒy γSBx

0 −λSO/2 + (γS + γL )Bz γSBx ϒx − iϒy

ϒx − iϒy γSBx λSO/2 − (γS − γL )Bz 0

γSBx ϒx + iϒy 0 λSO/2 + (γS − γL )Bz

⎤
⎥⎥⎥⎥⎦, (A1)

where γL = qμB and γS = geμB/2. Each of the eigenstates
{|0〉, |1〉, |2〉, |3〉} of H is, in general, a combination of all
spin-orbit eigenstates. Our qubit will be defined by the two
lowest eigenstates |0〉 and |1〉, whose energy difference ω10

is on the order of a few GHz, while ω20 or ω30 are on
the order of λSO � ω10. As both the driving field (with
frequency ωd ) and the phonon mode (with frequency ωph)
are far off resonant to the |0〉 ↔ |2〉 and |0〉 ↔ |3〉 transi-
tions, these states can be neglected from the dynamics using
the RWA. Formally, for this RWA to be valid we require
the conditions �n0(t )  ωn0 and δωn0(t )  ωn0 to hold for
n = 2 and n = 3. Here �n0(t ) = |〈0|Sx|n〉|geμBB(t )/h̄ and
δωn0(t ) = |〈0|Sz|n〉|geμBB(t )/h̄. For typical parameters as-
sumed in this paper, �n0(t )/(2π ) ∼ δωn0(t )/(2π ) � 50 MHz
while ωn0/(2π ) ∼ 50 GHz. Thus, these conditions are fully
satisfied.

APPENDIX B: EFFECT OF LONGITUDINAL
AND COUNTER-ROTATING TERMS

When approximating Eq. (6) with the final qubit Hamilto-
nian in Eq. (7), but also when deriving the Jaynes-Cummings-
type spin-phonon coupling given in Eq. (10), we have made
a RWA by neglecting the counter-rotating terms. In general,
this approximation is valid for �, g  ω10, ωd , but for the
considered parameters, these terms might still induce rele-
vant corrections to the gate fidelities at the level of 10−4. In
addition, in both steps of the derivation we have omitted lon-
gitudinal interactions ∼ηS,z, ηL,z. In Fig. 7(a) and 7(b) we plot
those matrix elements under the same conditions as assumed
in Fig. 2 in the main text. We see that for the same values
of strain and magnetic fields, the longitudinal strain-coupling
matrix element ηL,z achieves values similar to ηL,x ∼ 0.1,
while the longitudinal spin transition matrix element ηS,z can
reach values of up to about five times ηS,x. Therefore, also
these contributions give rise to off-resonant interactions that
must be taken into account.

To evaluate the potential corrections from all those effects
on the predicted gate fidelities, we consider the full Hamilto-
nian Hfull = ωpha†a + ∑

i=1,2 H (i)
SiV + H (i)

e-ph, where H (i)
SiV is the

qubit Hamiltonian without RWA given in Eq. (6) and

H (i)
e-ph = (

gxσ
x
i + gzσ

z
i

)
(a + a†). (B1)

Here gx = dεphηL,x and gz = dεphηL,z, assuming identical pa-
rameters for both qubits and ηL,x ∈ R for simplicity.

Based on this full Hamiltonian, we resimulate the im-
plementation of a phonon-mediated two-qubit gate under
similar conditions as in Sec. III. In Fig. 7(c) we show, first,
the evolution of the concurrence C for different ratios of

ηL,z/ηL,x but assuming ηS,z = 0. Already for ηL,z = 0 we see
small differences between the predictions of the full model
(solid dark line) and Hamiltonian (13) (dotted line), which
is based on a RWA. Although these deviations are barely
visible on the scale of this plot, they clearly lead to devia-
tions far above the targeted level of 10−4. More strikingly,
for the case ηL,z/ηL,x = 2, the time to produce a Bell state
(C = 1) is almost a factor of two shorter than predicted by
Eq. (13).

These simulations show that in the regime of interest, the
off-resonant contributions we neglected in the main text result
in significant corrections to the two-qubit dynamics. Fortu-
nately, these deviations are not essential and can be reabsorbed
into a renormalization of the parameters of the effective qubit
Hamiltonian using second-order perturbation theory. After
a lengthy calculation we find that in an interaction picture
with respect to H0 = ∑

i ω10σ
z
i /2 this corrected effective

FIG. 7. Influence of longitudinal terms in two-qubit gates. The
plots in (a) and (b) are analogous to the plots in Figs. 2(b) and
2(c), respectively, but for the longitudinal matrix elements ηS,z and
ηL,z. (c) Concurrence versus time, calculated using Hfull for values
of gz/gx = 0 (dark solid line) and gz/gx = 2 (bright solid line). In
addition, we plot the concurrence according to Hamiltonian (13)
and the corrected effective model in Eq. (B2) (for gz/gx = 2). Note
that the longitudinal coupling term going with ηL,z can significantly
affect the instant in which a maximally entangled state is achieved.
(d) Infidelity versus the value of the longitudinal matrix element
ηS,z, after evolving Hfull for a time tg = π/4J̃⊥, with gz/gx = 2 and
φS = 0, and for the gate parameters used in Sec. IV B, with a fixed
ramp duration tramp = 0.5 × 2π/�ph.
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Hamiltonian is equivalent to Eq. (28),

HI,eff =
∑

i

�̃

2
σ̃ z

i − �̃(a†a + 1/2)σ̃ z
i

− J̃⊥(σ̃+
1 σ̃

−
2 + σ̃−

1 σ̃
+
2 ) − J̃‖

2
σ̃ z

1 σ̃
z
2 , (B2)

but with a reduced Rabi frequency,

�̃ = �

[
1 − �2/4 + δω2

8ω2
10

]
, (B3)

and modified couplings

J̃⊥ =
∑

ν=1,2,3

{ |g−
ν |2

�ν −�
+ |g+

ν |2
�ν +�

}
, J̃‖ =

∑
ν=1,2,3

|g‖
ν |2
�ν

(B4)

and

�̃ =
∑

ν=1,2,3

{ |g−
ν |2

�ν −�
− |g+

ν |2
�ν +�

}
. (B5)

Here �1 = �ph, �2 = 2ωph −�ph, and �3 = ωph; g±
1 =

1
2 gxχ0(χ̃0 ± χ̃1ei2φS ), g±

2 = 1
2 gxχ0χ̃0, and g±

3 = gzχ̃0; and

g‖
1,2 = gxχ0 and g‖

3 = 0. Also, χ0 = 1 − (δω/ω10)2, χ̃0 = 1 −
�2/(4ω2

10), and χ̃1 = �/(4ω10).
In Fig. 7(c), the dashed line shows the evolution of the

concurrence as a function of time for Hamiltonian (B2) for
ηL,z/ηL,x = 2. Note that this matches the evolution given by
Hfull and thus validates the effective Hamiltonian in Eq. (B2).
To further check the equivalence, we define our gate according
to Hamiltonian (B2), with gate time tg = π/(4J̃⊥), and com-
pare its evolution with that of Hfull by using the state fidelity.
In particular, in Fig. 7(d), we simulate the full Hamiltonian
to calculate the resulting error E as a function of ηS,z/ηS,x, and
for two different values of the Rabi frequency � = �ph/4 and
� = �ph/3, with a fixed ramp time tramp = 0.5 × 2π/�ph.
These parameters are close to the optimal values identified in
Fig. 4(a). In addition, we choose ηL,z/ηL,x = 2 and set φS = 0
for concreteness. We see that for these parameters the full
model agrees with the predictions of the effective Hamiltonian
up to errors of E � 10−4 for all values ηS,z/ηS,x � 5, without
any other adjustments.

We conclude that while making a RWA and neglecting off-
resonant coupling terms is not strictly valid in our setup, the
corrections are purely coherent and can be accounted for by a
renormalization of the effective model parameters. Since these
adjustments do not significantly affect any of the incoherent
errors, they do not change any of the conclusion derived in the
main part of the paper.

APPENDIX C: DERIVATION OF THE EFFECTIVE
SPIN MODELS

A common technique to derive phonon-mediated effec-
tive spin-spin interactions is based on the Schrieffer-Wolff
transformation (SWT). For any Hamiltonian of the form H =
H0 + V , where H0 (V ) is the free (interaction) term, the SWT
implements a change of basis states via the unitary transfor-
mation eiS , where S fulfills the condition [S,H0] = iV . If the

interaction is small, i.e., ||V ||  ||H0||, then the transformed
Hamiltonian takes the form Heff = eiSHe−iS ≈ H0 + i

2 [S,V ],
which is valid up to second order in V .

In our case, the Hamiltonian describing the interaction of
two spins with the cavity mode is given by

H0 + V =
N∑

i=1

�i

2
σ̃ z

i +�pha†a + gi[a
†�i + a�†

i ]. (C1)

In addition, to account for the effect of dissipation, we include
the coupling of the phonon mode to a Markovian environment,

Hc−b(t ) = √
κ[ae−iω10t B†(t ) + a†eiω10t B(t )], (C2)

where the bosonic operators B(t ) and B†(t ), with
[B(t ),B†(t ′)] ∼ δ(t − t ′), represent short-lived excitations in
the bath.

After applying the SWT to the full Hamiltonian,
the resulting transformed Hamiltonian H̃eff = eiS[H0 + V +
Hc−b(t )]e−iS reads

H̃eff ≈ Heff + Hc−b(t ) + √
κ (i[S, a]B†(t )e−iω10t + H.c.),

(C3)

where the first term contains the effective spin-spin interaction

Heff = H0 − 1

2

∑
i, j

gig j

∑
μ,μ′

ζμγμ′
[
σ̃
μ
i a, σ̃ μ′

j a + H.c.
] + H.c.,

(C4)

while the last term describes the effective interaction between
the spins and the bath operators B. Here S takes the form

S = i
∑

i

∑
μ=+,−,z

giζμ
(
aσ̃ μ

i − H.c.
)
, (C5)

where

ζμ = γμ

�+ βμ�
, (C6)

with γ+,−,z = cos2 (θ/2), − sin2 (θ/2), sin (θ )/2, and
β+,−,z = −1, 1, 0.

Under the usual Born-Markov approximation, tracing out
the bath leads to an effective description via the master equa-
tion

ρ̇ = −i[Heff , ρ] +
∑
μ

�−
μD[S†

μ]ρ + �+
μD[Sμ]ρ

+ κ (nth + 1)D[a]ρ + κnthD[a†]ρ. (C7)

Here S̃μ = ∑
j (g j/g)σ̃ μ

j , �−
μ = κg2(nth + 1)ζ 2

μ, and �+
μ =

κg2nthζ
2
μ. After some simplifications, the dissipative spin part

reduces to Eq. (32) in the main text.
Finally, we note that a similar derivation can be pursued

for the multimode case studied in Sec. VI. In that case, the
original Hamiltonian reads

H0 + V �
N∑

k=1

�kc†
kck +

N∑
i=1

�̃i

2
σ̃ z

i

+
N∑

i,m

gibik (c†
k�

−
i + ck�

+
i ), (C8)
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and the corresponding operator for the SWT is

S = i
∑
i,k

∑
μ

gibikζμ
(
ck σ̃

μ
i − H.c.

)
, (C9)

where

ζμ,k = γμ

�k + βμ�
. (C10)

After a RWA, for which J⊥,‖
i j ,� jk  |�k −�k′ |, |�k|, |�k ±

�i| is required, we obtain the effective spin Hamiltonian in
Eq. (56). The master equation then reads

ρ̇ = −i[Heff , ρ] +
∑
μ,k

�−
μ,kD[S†

μ,k]ρ + �+
μ,kD[Sμ,k]ρ

+
∑

k

κ (nth + 1)D[ck]ρ + κnthD[c†
k]ρ, (C11)

where S̃μ,k = ∑
i(gi/g)bik σ̃

μ
i , �−

μ,k = κg2(nth + 1)ζ 2
μ,k , and

�+
μ,k = κg2nthζ

2
μ,k . Note that here we considered all normal

modes to be in an stationary thermal state with an average
number of phonons nth, which is a good approximation if
4λ  ωph.

APPENDIX D: ERROR ESTIMATES

As the basis to calculate the influence of the different
errors on the spin dynamics, we assume that the latter can
be described by the Hamiltonian H = H0 + Hg + HE (t ). Here
H0 = �̃

∑
i σ̃

z
i /2 +�pha†a, Hg is the ideal gate Hamiltonian

given in Eq. (36), and HE (t ) accounts for the additional per-
turbation that we want to investigate. By assuming that the
influence of HE (t ) on the spin dynamics is small, we can write
the qubit state at the end of the gate sequence as ρq(tg) ≈
ρid +�ρq(tg), where ρid = ei(H0+Hg)tgρq(0)e−i(H0+Hg)tg is the
targeted state. The deviation �ρq(tg) can be estimated in
second-order perturbation theory by the Nakajima-Zwanzig
equation,

�ρq(tg) ≈ −
∫ tg

0
dt ′

∫ t ′

0
dt ′′Trph{[H ′

E (t ′),

× [H ′
E (t ′′), ρq(0) ⊗ ρth]]}, (D1)

where H ′
E (t ) = ei(H0+Hg)t HE (t )e−i(H0+Hg)t . The corresponding

error contribution is then given by

E (tg) = |Trq{ρq(0)�ρq(tg)}|. (D2)

In the main text, we discuss three types of error whose
influence we can calculate using Eq. (D1): (i) phonon-induced
decoherence, characterized in Appendix C; (ii) the influence
of magnetic field fluctuations, discussed in Secs. III A and
III B; and (iii) the influence of the thermal Stark shift. In
order to carry out these calculations explicitly, we make an-
other simplification by replacing H ′

E (t ) → eiH0t HE (t )e−iH0t .
This simplifies the calculations but ignores the influence of
the gate Hamiltonian on the qubit evolution and the error is
only estimated by its action on the initial state. Therefore, to
compensate for this approximation, we evaluate the error for
both the initial state ρq(0) and the final state ρid and take the
average.

1. Phonon-induced spin decoherence

In the case of the phonon-induced spin decoherence, we
identify HE (t ) with the effective spin-bath interaction de-
scribed by the last term in Eq. (C3), and Eq. (D1) simplifies to

�ρq(tg) ≈ tg
∑
μ=±,z

∑
i, j

�
μ
i jDi, j[σ̃μ]ρq(0). (D3)

For gi = g j = g and a pure initial state, the error reads

Eκ ≈ tg

∣∣∣∣∣∣
∑
μ

�μ
∑

i j

〈
σ̃
μ
i

〉〈(
σ̃
μ
j

)†〉 − 〈(
σ̃
μ
j

)†
σ̃
μ
i

〉∣∣∣∣∣∣. (D4)

For both the initial and the final state, |0̃1̃〉 and |�〉, the result
is Eκ ≈ (�+ + �−)tg, where

�+ + �− = g2κ (2nth + 1)

4

[
1

(�ph −�)2
+ 1

(�ph +�)2

]
.

(D5)

2. Magnetic noise

In the case of external magnetic field fluctuations, we as-
sume the fluctuating field ξi(t ) to be static during the duration
of the gate, i.e., HE (t ) = ∑

j B j σ̃
z
j , where Bj = δξ 2

j /(4�),
with δξ 2

i = ξ 2
i − 〈ξ 2

j 〉. Equation (D1) then simplifies to

�ρq(tg) ≈ −t2
g

∑
i, j

〈BiBj〉Di, j[σ̃z]ρq(0), (D6)

where 〈BiBj〉 = δi j

(4�)2 (〈ξ 4
j 〉 − 〈ξ 2

j 〉2). For Gaussian variables

〈ξ 4
j 〉 = 3σ 4 and 〈ξ 2

j 〉 = σ 2. For the state |�〉, the resulting
error is Eϕ ≈ t2

gσ
4/(4�2), while for the state |0̃1̃〉 the re-

sult is zero. The mean value thus gives Eϕ ≈ t2
gσ

4/(8�2) =
1
2 (tg/T�

2 )2.

3. Stark-shift dephasing

In the case of the Stark-shift dephasing, Eq. (D1)
simplifies to

�ρq(tg) ≈ −
∑

i j

�i� jDi, j[σ̃z]ρq(0)

×
∫ tg

0
dt ′

∫ t ′

0
dt ′′〈δn̂(t ′′)δn̂(0)〉, (D7)

where we used the stationarity of the bosonic state, i.e.,
〈δn(t ′)δn(t ′′)〉 = 〈δn(t ′′)δn(t ′)〉 = 〈δn(t ′ − t ′′)δn(0)〉. For a
thermal oscillator

〈δn(τ )δn(0)〉 = nth(nth + 1)e−κτ , (D8)

and∫ tg

0
dt ′

∫ t ′

0
dτ 〈δn(τ )δn(0)〉= nth(nth + 1)

κ2
[e−κtg − (1 − κtg)].

(D9)

For �i = � j = � and for the state |�〉, we then obtain the
result in Eq. (47).
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APPENDIX E: RESIDUAL SPIN-PHONON
ENTANGLEMENT

The Hamiltonian that governs the two-qubit interaction is
of the form

H = �pha†a +
N∑

i=1

�i

2
σ̃ z

i + gi[a
†�i + a�†

i ], (E1)

which, after the SWT, becomes Heff . While the actual evolu-
tion followed by the system is given by ρ(t ) = e−iHtρinieiHt ,
in our approximation we assume that the state evolves
as ρeff (t ) = e−iHeff tρinieiHeff t instead. The error associated
with this inaccuracy can be quantified by calculating the
state infidelity between ρ(t ) and ρeff (t ), i.e., Es-ph = 1 −
|Tr{ρeff (t )ρ(t )}|. Since Heff = eiSHe−iS , this gives

Es-ph = 1 − ∣∣Tr{ρinie
−iSI eiSρinie

−iSeiSI }∣∣, (E2)

where SI (t ) = eiHeff t Se−iHeff t . Note that if SI (tg) = S, then the
error associated with the residual spin-phonon entanglement
vanishes, Es-ph = 0. As a worst-case scenario, we take SI (tg)
to be −S. Then,

Es-ph ≈ 1 − |Tr{ρinie
i2Sρinie

−i2S}|. (E3)

Expanding the exponentials in powers of S and using
Trph{(a†)nρth} = 0 = Trph{anρth} and Trph{a†aρth} = nth, we
finally obtain

Es-ph ≈ 4g2

∣∣∣∣∣
∑
μ,μ′

ζμζμ′nth[〈S̃μ〉〈S̃†
μ′ 〉 − 〈S̃†

μ′ S̃μ〉],

+ ζμζμ′ (nth + 1)[〈S̃†
μ〉〈S̃μ′ 〉 − 〈S̃μ′ S̃†

μ〉]
∣∣∣∣∣, (E4)

where S̃μ and ζμ follow the definition given in Appendix C.
For the spin state |0̃1̃〉, this gives

Es-ph ≈ 4g2(ζ 2
+ + ζ 2

−)(2nth + 1), (E5)

and, for θ = π/2,

Es-ph ≈ g2(2nth + 1)

[
1

(�ph −�)2
+ 1

(�ph +�)2

]
. (E6)

With the help of the adiabatic ramp for �(t ), the error can be
reduced to Es-ph ≈ (g/�ph)2(2nth + 1).

APPENDIX F: PARAMETER OPTIMIZATION

In this Appendix we summarize the derivation of the
optimal driving parameters and the resulting minimal gate
error. We first do so for a conventional, i.e., undriven, cavity
QED system with Hamiltonian H = �pha†a + ∑

j g(σ+
j a +

σ−
j a†). In this case we obtain the effective interaction

Heff = −J⊥(σ+
1 σ

−
2 + σ−

1 σ
+
2 ) with J⊥ = g2/�ph. At time tg =

π/4J⊥, Heff transforms the state |e, g〉 into the entangled state
|�〉 = (|e, g〉 + i|g, e〉)/

√
2. For static dephasing, an error es-

timate similar to the one above gives

E � g2κ

�2
ph

(2nth + 1)tg + 1

2
(tg/T ∗

2 )2. (F1)

FIG. 8. The green lines represent Eκ+ϕ (normalized by
Emin
κ ) versus x = �/�ph for different values of Emin

κ /E0
ϕ =

[10−4, 10−2, 10−1, 100, 101, 102]. Round markers represent the exact
minima, while diamond markers represent the approximate minima
at �opt/�ph = (1 + ropt )−1 given in Eq. (44).

A minimization of this expression with respect to the de-
tuning �ph yields an optimal value of �opt = (4κ (2nth +
1)g4(T ∗

2 )2/π )1/3. After inserting this value back into the ex-
pression for E we obtain the result stated in Eq. (15).

Let us now consider the case of dressed qubits, as discussed
in Sec. IV B. For a fixed detuning �ph, we aim at minimizing
the error term Eϕ + Eκ , which can be written as

Eκ+ϕ = Emin
κ

1 + x2

1 − x2
+ E0

ϕ

(1 − x2)2

x2
, (F2)

where Emin
κ = πκ (2nth + 1)/(4�ph ), E0

ϕ = π2

8 (gT ∗
2 )−4, and

x = �/�ph. The optimal value of xopt, for which Eκ+ϕ has its
minimum, can be found exactly. However, the corresponding
expression is too complicated to be of use. Therefore, we fo-
cus on the limit x ≈ 1, where (�ph −�)  �ph. Physically,
this limit is most relevant when both the detuning �ph and
the Rabi frequency � can be made arbitrarily large, and, thus,
Emin
κ  E0

ϕ . In this limit, we rewrite x as x = (1 + r)−1 with
r  1, and we obtain

Eκ+ϕ ≈ Emin
κ

r
+ 4E0

ϕr2, (F3)

whose minimum,

Emin
κ+ϕ ≈ 3

(
Emin
κ

2E0
ϕ

)1/3
, (F4)

is obtained at ropt = 1
2 (Emin

κ /E0
ϕ )1/3. This is consistent with our

assumption � ≈ �ph, for which we then obtain the result in
Eq. (44).

In Fig. 8, we plot Eκ+ϕ (normalized by Emin
κ ) versus the

ratio �/�ph (solid lines) for different ratios of Emin
κ /E0

ϕ . The
minimal error obtained for each curve (blue dots) is compared
with the approximate analytic prediction from above (red
diamonds). Although this result has been derived under the
assumption Emin

κ /E0
ϕ  1, it gives a very accurate prediction

over a wide range of parameters. Thus we conclude that
Eq. (44) provides a very reliable estimate for the minimally
achievable gate error, given that there are no constraints on �
and �ph and that the spin-phonon entanglement error, Es-ph, is
negligible.
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FIG. 9. Adiabatic ramps. (a) State infidelity versus the normal-
ized ramp time tr = tramp�ph/(2π ). (b) Optimized infidelity Emin

s-ph

versus the Rabi frequency �. (c) Optimized ramp time topt
r versus

the Rabi frequency.

APPENDIX G: ADIABATIC RAMPS

In all our numerical simulations, we optimize the gate
performance by introducing adiabatic ramps of the Rabi fre-
quency. These ramps are assumed to be of the shape �(t ) =
� sin2[π (t − tm)/(2tramp)] at the beginning (tm = 0) and at the
end (tm = tg) of each operation. In particular, in Sec. IV A, the
ramp duration tramp is chosen to minimize the spin-phonon
entanglement error. This optimization is done by solving
the Schrödinger equation for the time-evolution operator,
ih̄U̇ (t ) = H (t, tramp)U (t ), for Hamiltonian (26) (without ex-
ternal dephasing terms) and for different values of tramp and �.
After calculating the reduced density matrix ρq resulting from
the application of U (tg) on |�〉 ⊗ |0〉ph, we compare this state
with the ideal final state Ug|�〉 using the state fidelity F . In
Fig. 9(a) we show the resulting error, E = 1 − F , as a function
of the ramp time tramp and for � = �ph/4. Note that the first
minimum at tramp ≈ 0.5 × 2π/�ph already achieves an error
of ∼10−5 (at T = 0 K). One can follow the procedure for
different values of �, and choose the value of tramp according
to the minima in E . The result of this optimization is shown
in Figs. 9(b) and 9(c), where the minimized error Emin

s-ph and the
ramp time tramp are plotted as a function of the Rabi frequency
�. The procedure followed in Sec. V C is similar, but in that
case, both tramp and �ε are optimized to achieve the minimum
spin-phonon entanglement error Emin

s-ph.

APPENDIX H: DETAILS ABOUT THE NUMERICAL
SIMULATIONS OF THE CCDD METHOD

For the exact numerical simulations of the CCDD method
we consider the bare qubit Hamiltonian,

HSiV(t ) = �(t )

2
σx −�ε(t ) sin (�t − ϕr )σy, (H1)

which is equivalent to Eq. (50) in the main text, except for
the additional phase ϕr . This offset is used compensate phase
shifts that arise due to the ramps in �(t ).

More precisely, we consider the time dependence for �(t )
discussed in Appendix G and with a constant �ε(t ) = �ε

for tramp < t < tg − tramp and �ε(t ) = 0 otherwise. In this
case the dressed states accumulate an additional phase ϕr =∫ tramp

0 ds�(s) = �tramp/2, which must be accounted for when
determining the exact shape of the two qubit gate. The result-
ing gate operation is then given by

Ug = e−iϕxσx e−iϕzσzU ′
g, (H2)

where U ′
g = e−iH ′

gtg , with H ′
g given in Eq. (52) and for a gate

time of tg = π/(4J ′
⊥). The phases are ϕx = �tg/2 + ϕr and

ϕz = �ε

2
tg − ε

2
sin (�tg) cos (ϕx/2). (H3)

To evaluate the gate error, the ideal target state, e.g., Ug|�〉,
is compared (using the state fidelity F) with the reduced
density matrix ρq resulting from the application of the master
equation in Eq. (14). Note that in this case the Hamiltonian is

H (t ) = HSiV(t ) +�pha†a +
∑

i

gi(σ
+
i a + σ−

i a†), (H4)

with HSiV(t ) as defined in Eq. (H1).

APPENDIX I: MODE-CONTINUUM LIMIT

In this Appendix we summarize the derivation of the main
analytic results for the coherent and incoherent processes in
an extended phononic crystal lattice.

1. Spin-spin interactions

In the mode-continuum limit, we can write the sum over all
modes

∑
k as the integral 1

�k

∫ kmax

kmin
dk = N+1

π

∫ π

0 dk, such that

J‖
i j = gig j

π

∫ π

0
dk

sin (ki) sin (k j)

�0 + 4λ sin2 (k/2)
, (I1)

or

J‖
i j = gig j

2π�0(1 + x‖)

∫ π

0
dk

cos [k(i − j)] − cos [k(i + j)]

1 − sin θ‖ cos k
,

(I2)

where x‖ = 2λ/�0 and sin θ‖ = x‖/(1 + x‖). Now we make
use of

I (θ,N ) =
∫ π

0
dk

cos (kN )

1 − sin θ cos k
= π

cos θ

(2 sin2 (θ/2)

sin θ

)|N |
,

(I3)

to arrive at the result given in Eq. (60). Similarly, one obtains
the corresponding expression for J⊥

i j .

Note that when deriving the results for J‖,⊥
i j ,

∑
m � jm or

other coupling terms, we disregard the terms that depend
on |i + j|, while keeping those depending on |i − j|. This is
based on the fact that, for 0 < θ < π/2, the following holds:

d−1 = 2 sin2 (θ/2)

sin θ
< 1. (I4)
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Since I (θ, |i + j|) ∝ d−|i+ j|, far from the edges of the crystal,
I (θ, |i + j|) goes to zero.

2. Deterministic Stark shift

Similarly to the single-mode case, the coupling to many
modes will also lead to a deterministic Stark shift of the
dressed qubit states given by

∑
k � jk (〈c†

kck〉 + 1/2) [see
Eq. (56)]. We assume a sufficiently narrow-band phonon lat-
tice such that 〈c†

kck〉 ≈ nth for all k. Then, far from the edges,
|2 j| � 1, we obtain∑

k

� jk ≈ g2
i

4�0

∑
μ=+,−

βμ√
1 + xμ − x‖

√
1 + xμ + x‖

. (I5)

Note that by taking the single-mode limit, λ → 0 or x‖ → 0,
we obtain the expression in Eq. (31).

3. Stark-shift dephasing

Following the analysis presented in Appendix D 3, we can
quantify the single-qubit dephasing error produced by Stark

shift, in the single-mode case, as

EN=1
j ≈ �2

j Re

[∫ tg

0
dt ′

∫ t ′

0
dt ′′〈δn̂ j (t

′′)δn̂ j (0)〉
]
. (I6)

We can also apply this expression to the multimode case,
with the difference that in that case the local mode at site j
couples not only to the bath but also to the other modes in
the system. Consequently, the correlation function Cnn(τ ) =
〈δnj (τ )δn j (0)〉 can be expressed as

Cnn(τ ) = nth(nth + 1)
∑
k,k′

b2
jkb2

jk′ei[(�k−�k′ )−κ]τ , (I7)

where we assumed all normal modes to be in a stationary
thermal state with an average number of phonons nth. In the
mode-continuum limit, this becomes

Cnn(τ ) = 4nth(nth + 1)

π2

∫ π

0
dk

∫ π

0
dk′ sin2(k j) sin2(k′ j)ei[(�k−�k′ )−κ]τ , (I8)

Note that in the small-bandwidth limit 4λ  1/tg, the phase factors ei[(�k−�k′ )τ ≈ 1 for all relevant times and Eq. (I8) reduces to
Eq. (D8). On the other hand, in the large-bandwidth limit 4λ � 1/tg, where also κ � 1/tg, we obtain∫ t∼tg

0
dτ Cnn(τ ) ≈ 4nth(nth + 1)

π2

∫ π

0
dk

∫ π

0
dk′ sin2(ki) sin2 (k′i)

κ + i2λ(cos k − cos k′)
κ2 + 4λ2(cos k − cos k′)2

. (I9)

For our analysis we only care about the real part of Eq. (I9). Also, we can analytically solve

I (k) =
∫ π

0
dk′ sin2 (k′ j)

κ2 + 4λ2(cos k − cos k′)2
= π

4λκ
Im[tan(z){1 − (αk )|2 j|}], (I10)

where αk = 2 sin2(z/2)/ sin(z) and sin(z) = 2λ/(2λ cos k − iκ ). Assuming that site j is far from the edges, we have I (k) ≈
π

4λκ [tan(z) − c.c.]/(2i). Under the same approximation we find that

Re

[∫ t∼tg

0
dτ Cnn(τ )

]
= nth(nth + 1)

πλ

∫ π

0
dk sin2(k j) I (k)

( π

4λκ

)−1
≈ nth(nth + 1)

2πλ

∫ π

0
dk I (k)

( π

4λκ

)−1
. (I11)

In summary, the Stark-dephasing error in the multimode case is

EN→∞
j ≈ �2

j tg,m Re

[∫ τ

0
dτ 〈δn j (τ )δn j (0)〉

]
≈ �z

iitg,m Im

[∫ π

0

dk√
(cos k − iκ/2λ)2 − 1

]
, (I12)

where tg,m is the gate time in the multimode case and �z
i, j = �i� jnth(nth + 1)/(2πλ) is a characteristic dephasing rate. While

for two qubits coupled via an on-site mode the gate time is tg ≈ J−1
i,i , for two qubits sitting in neighboring sites the gate time will

be tg,m ≈ J−1
i,i+1 ∼ 10J−1

i,i .
We numerically solve the integral in Eq. (I12), I, for the parameters considered in the main text, i.e., ωph = 0.05�0, and

Q = 106, and for a bandwidth 2λ/�0 ≈ 1 (κ/2λ ≈ κ/�0 ≈ 2 × 10−5) and obtain Im[I] ≈ 10. The corresponding single-qubit
dephasing error is then

EN→∞
j ≈ �2

i

πJi,iλ
nth(nth + 1) × 100, (I13)

while in the single-mode case we found the scaling

EN=1
j ≈ �2

i

Ji,iκ
nth(nth + 1) (I14)

instead. Therefore, in the waveguide limit the thermal dehasing error is reduced by a factor of about (κ/πλ) × 100 ≈ 10−3.
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Individual-atom control in array through phase modulation,
arXiv:2310.19741.

[84] V. J. Martínez-Lahuerta, L. Pelzer, K. Dietze, L. Krinner, P. O.
Schmidt, and K. Hammerer, Quadrupole transitions and quan-
tum gates protected by continuous dynamic decoupling, Quant.
Sci. Technol. 9, 015013 (2024).

[85] X. Li, M. C. Kuzyk, and H. Wang, Honeycomblike phononic
networks of spins with closed mechanical subsystems, Phys.
Rev. Appl. 11, 064037 (2019).

[86] X.-J. Sun, W.-X. Liu, H. Chen, C.-Y. Wang, H.-Z. Ma, and
H.-R. Li, Protected two-qubit entangling gate with mechani-
cal driven continuous dynamical decoupling, Commun. Theor.
Phys. 74, 065101 (2022).

045419-20

https://doi.org/10.1103/PhysRevApplied.17.024041
https://doi.org/10.1103/PhysRevX.8.041027
https://doi.org/10.1103/PhysRevApplied.20.044037
https://doi.org/10.1103/RevModPhys.95.025003
https://doi.org/10.1103/PhysRevB.79.041302
https://doi.org/10.1103/PhysRevA.85.040302
https://doi.org/10.1088/1367-2630/17/4/043008
https://doi.org/10.1103/PhysRevB.96.245418
https://doi.org/10.1103/PRXQuantum.5.020339
https://doi.org/10.1103/PhysRevLett.110.263002
https://doi.org/10.1103/PhysRevLett.117.140501
https://doi.org/10.1103/PhysRevLett.121.130501
https://doi.org/10.1119/1.18210
https://doi.org/10.1134/1.1790024
https://doi.org/10.1103/PhysRevLett.125.120504
https://doi.org/10.1088/1367-2630/14/11/113023
https://doi.org/10.1002/prop.201600071
https://doi.org/10.1103/PhysRevA.96.013850
https://doi.org/10.1038/s41467-017-01159-2
https://doi.org/10.1088/1367-2630/abd2e5
https://doi.org/10.1103/PhysRevApplied.13.024021
https://doi.org/10.1038/s41467-023-36196-7
https://arxiv.org/abs/2310.19741
https://doi.org/10.1088/2058-9565/ad085b
https://doi.org/10.1103/PhysRevApplied.11.064037
https://doi.org/10.1088/1572-9494/ac69c5

