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Subspace-restricted thermalization in a correlated-hopping model with strong Hilbert space
fragmentation characterized by irreducible strings
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We introduce a one-dimensional correlated-hopping model of spinless fermions in which a particle can hop
between two neighboring sites only if the sites to the left and right of those two sites have different particle
numbers. Using a bond-to-site mapping, this model involving four-site terms can be mapped to an assisted pair-
flipping model involving only three-site terms. This model shows strong Hilbert space fragmentation. We define
irreducible strings (ISs) to label the different fragments, determine the number of fragments, and the sizes of
fragments corresponding to some special ISs. In some classes of fragments, the Hamiltonian can be diagonalized
completely, and in others it can be seen to have a structure characteristic of models which are not fully integrable.
In the largest fragment in our model, the number of states grows exponentially with the system size, but the ratio
of this number to the total Hilbert space size tends to zero exponentially in the thermodynamic limit. Within this
fragment, we provide numerical evidence that only a weak version of the eigenstate thermalization hypothesis
(ETH) remains valid; we call this subspace-restricted ETH. To understand the out-of-equilibrium dynamics of
the model, we study the infinite-temperature time-dependent autocorrelation functions starting from a random
initial state; we find that these exhibit a different behavior near the boundary compared to the bulk. Finally, we
propose an experimental setup to realize our correlated-hopping model.
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I. INTRODUCTION

Thermalization and its violation in isolated quantum sys-
tems have been studied extensively over the last several years.
The strongest version of thermalization in closed quantum
systems is believed to be defined by the eigenstate thermaliza-
tion hypothesis (ETH) [1–4]. This hypothesis states that each
eigenstate in an ergodic system acts like a thermal ensem-
ble as far as local observables are concerned, namely, local
correlation functions in each eigenstate tend to the average
values calculated in the quantum mechanical microcanonical
ensemble at the same energy. Thus, expectation values of local
observables for all eigenstates for a sufficiently large system
show self-thermalization on their own.

This can be further categorized into two classes called
the strong and weak versions of ETH. In the first case, all
of the eigenstates of a given Hamiltonian satisfy the ETH
hypothesis, while in the latter case, it is obeyed by most of
the eigenstates, apart from some states which form a set of
measure zero in the thermodynamic limit. Well-known exam-
ples where strong ETH is not valid are quantum integrable
models which are either mappable to free systems [5,6] or are
solvable by the Bethe ansatz [7–9]. Strong ETH is also not
satisfied in many-body localized systems which have strong
disorder [10–13].

Recently, there has been a great deal of effort in identifying
systems for which the strong version of ETH is not valid.
One class of systems is quantum many-body scars [14–19].
Such systems have some special states called scar states which
are highly excited and have low entanglement-entropy. If an

initial state, which has a significant overlap with such eigen-
states compared to other states at the same energy, is evolved
in time, the long-time dynamics of correlation functions show
persistent oscillations. For a quantum ergodic system, such
overlaps should be a smooth function of energy; therefore,
the enhancement of overlaps for certain eigenstates compared
to others is not consistent with the strong ETH. However,
the presence of such states still satisfies the weak ETH with
respect to the full Hilbert space since the number of scar
states typically grows only polynomially with the system
size.

More interesting are systems that show Hilbert space frag-
mentation (HSF) [20], which we will focus on in this paper. In
these systems, the Hamiltonian takes a block-diagonal form in
a basis given by a product of local states, and the total number
of blocks increases exponentially with the size of the system.
This differs from what occurs when the system has a finite
number of continuous global symmetries; if there is a finite
number r of conserved quantities, the number of blocks grows
polynomially as V r , where V is the volume of the system. We
emphasize that if there is HSF, the ETH fails, in general, with
respect to the total Hilbert space. Another striking feature is
the presence of frozen states which are basis vectors that are
eigenstates of the Hamiltonian with zero energy. The number
of such frozen states grows exponentially with the system size.
The most interesting kind of HSF is strong fragmentation,
where the size of the largest fragment is exponentially smaller
than the full many-body Hilbert space.

There are some challenges in understanding different as-
pects of fragmented systems where the constants of motion
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cannot be expressed as integrals of local observables. Some
important steps towards a complete characterization are the
concepts of statistically localized integrals of motion [21]
(which is equivalent to our construction of IS), commutant
algebras [22], and the algebra of matrix product opera-
tors [23]; these uniquely label the disconnected subspaces
in several fragmented systems. Moreover, the construction
of commutant algebras further categorizes this mechanism
based on the basis states in which fragmentation takes place.
If the fragmentation occurs in a particle number basis, it is
called classical fragmentation [24,25], whereas fragmentation
happening in an entangled basis is dubbed as secondary frag-
mentation [26] or quantum fragmentation [22,27]. The model
studied in our paper will show classical fragmentation.

Examples of such systems for which the strong ETH is
not valid are systems with dipole conservation or conserved
magnetization [20,23–25,28–31]. In these systems, HSF oc-
curs due to strong constraints on the mobility of excitations.
However, there are also examples of HSF which do not in-
volve dipole conservation [26,27,32–37]. There are also some
studies of periodically driven models where HSF has been
found recently [38–40].

In this paper, we introduce and study a one-dimensional
correlated-hopping model of spinless fermions with terms
involving four consecutive sites. Using a bond-site mapping to
a dual lattice [30,31], this model can be mapped to an assisted
pair-flipping model that only has terms involving three sites.
We find that this system shows strong HSF.

To characterize the HSF in this system, we use the idea of
irreducible strings (ISs). The concept of ISs was introduced
several years ago to understand exponential fragmentation
(called many-sector decomposition at that time) in several
classical models such as a deposition-evaporation model of
k-mers [41,42] and a diffusing dimer model [43]. Recently, the
idea of ISs has been rediscovered and called statistically local-
ized integrals of motion. In particular, Rakovszky et al. [21]
have used the idea of statistically localized integrals of motion
to study various systems exhibiting strong HSF, and they
have also shown that correlation functions have a nonuniform
profile whose value near the boundary does not agree with the
microcanonical expectation value. A similar decimation and
reduction method has been used recently to understand HSF
in other models [22,44–46].

Remarkably, many features of our model can be under-
stood in terms of ISs, such as the total number of fragments
and total number of frozen states. We compute the size of
the largest fragment employing the idea of ISs and an enu-
merative combinatorics of characters [41–43,47], which we
have verified by direct numerical checks. We find that strong
ETH is not satisfied in our model, as suggested by an analysis
of the energy level spacing ratio [10,48,49] and expectation
values of few-body operators of all the eigenstates (without
resolving into fragments), which is always the case for a typi-
cal fragmented system [25]. A similar analysis for the largest
fragment indicates that this subspace is nonintegrable. We
provide evidence that a weaker form of subspace-restricted
ETH still holds within sufficiently large fragments which we
call typical fragments [22,24].

Next, we study the out-of-equilibrium dynamics in our
model to look for dynamical signatures of the lack of ther-

malization. We find that infinite-temperature autocorrelation
functions starting from a random initial state in the full Hilbert
space also show that strong ETH is not satisfied. Moreover, the
boundary autocorrelation function oscillates around a finite
saturation value at long times, which is much larger than the
bulk saturation value [21,22,25]. We provide an understanding
of the nonuniform profiles of the bulk and boundary spectra
by computing the lower bound of these two autocorrelation
functions using the Mazur inequality [50,51] and a knowledge
of the fragmentation structure of the model. We also study the
entanglement dynamics in the largest fragment. This confirms
our previous finding that ETH is not satisfied in the full
Hilbert space, but a weak subspace-restricted ETH is valid
within the largest fragment; in the literature this has been
dubbed Krylov-restricted thermalization [20,52] in the context
of models exhibiting HSF.

We conclude by presenting an experimentally realizable
t − V model with a spatial periodicity of four which can
generate our correlated-hopping model in a particular limit.
Another way to realize our model is through a periodically
driven system with an on-site potential with a spatial period-
icity of four sites. We find that for some particular driving
parameters, an interplay between dynamical localization (i.e.,
the effective hopping becoming zero as a result of the driv-
ing), resonances between different states, and density-density
interactions gives rise to precisely this model [39].

The plan of this paper is as follows. In Sec. II, we discuss
the Hamiltonian of our model, its global symmetries, and a
mapping to a model with three-site terms. In Sec. III, we
consider the three-site form of the model and discuss the
fragmentation of the Fock space, the number of fragments,
the number of frozen fragments, which contain only one
state each, and a description of some special fragments, in-
cluding the largest sector. Some details are relegated to the
Appendices. In Secs. IV–VII, we consider the four-site form
of the model. In Sec. IV, we provide evidence for ergod-
icity breaking and nonintegrability through the expectation
values of some local operators, the half-chain entanglement
entropy, and the distribution of the energy level spacing. In
Sec. V, we study dynamical signatures of HSF by looking
at the long-time behavior of autocorrelation functions and
the time evolution of the half-chain entanglement entropy. In
Sec. VI, we discuss how our model may arise in the large-
interaction limit of a variant of the t − V model in which
nearest-neighbor interactions have a period-four structure. For
the purposes of comparison, we discuss in Sec. VII a different
model with four-site terms which has been studied extensively
in recent years as an example of a system exhibiting HSF. We
show that this can be mapped to a model with three-site terms
which describes stochastic evolution of diffusing dimers on a
line. The complete structure of the HSF in the latter model
was found exactly many years ago using the idea of ISs [43].
We summarize our results and point out some directions for
future studies in Sec. VIII.

II. MODEL HAMILTONIAN AND SYMMETRIES

We consider a one-dimensional spinless fermionic model
which, for an infinitely large system, is described by the
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Hamiltonian

H1 =
∑

j

(n j − n j+3)2 (c†
j+1c j+2 + c†

j+2c j+1). (1)

Here c j (c†
j ) is a fermionic annihilation (creation) operator on

site j, and n j = c†
j c j can take values 0 or 1. This Hamiltonian

connects the following pairs of states involving four consecu-
tive sites:

1100 ↔ 1010,

0101 ↔ 0011. (2)

We define a spin variable Zj = 2n j − 1 which can only take
the values ±1 at site j. Apart from translation and inversion
symmetries, this model has three additional global symme-
tries: total particle number C1 and two staggered quantities C2

and C3 given by

C1 =
∑

j

n j,

C2 =
∑

j

(−1) jZ2 jZ2 j+1,

C3 =
∑

j

(−1) jZ2 j−1Z2 j . (3)

Moreover, at half filling, this model is invariant under a mod-
ified particle-hole transformation given by c j ↔ (−1) j c†

j . It
turns out that these are only three of many other conserved
quantities which can be characterized in terms of a construct
called irreducible strings; this will be discussed in Sec. III.

The energy spectrum of this model has an E → −E sym-
metry. This can be seen by noting that the transformation
c j → (−1) jc j and c†

j → (−1) jc†
j changes the Hamiltonian

H → −H .
The model in Eq. (1) can be mapped to a different model

with a Hamiltonian in which the degrees of freedom lie on the
bonds of the original lattice, and the new Hamiltonian is a sum
of terms involving only three consecutive sites; this makes it
easier to study the system. We map states for a bond ( j, j + 1)
to a state on the site j + 1/2 on the dual lattice following
the rules

|01〉 → |1〉, |10〉 → |1〉,
|00〉 → |0〉, |11〉 → |0〉. (4)

This is clearly a two-to-one mapping from the four-site model
to the three-site mode on the dual lattice. For example, the two
states 10101010 and 01010101 of the four-site model (these
states are related to each other by a particle-hole transforma-
tion) map to a single state 1111111 of the three-site model.

We see that the three-site model has two states 0 and 1 at
each site, and Eq. (2) implies that only the following transi-
tions are allowed for this model:

111 ↔ 010. (5)

The model is therefore described by a Hamiltonian which
involves only three consecutive sites of the dual lattice,

H2 =
∑

j

n j+1(d†
j d†

j+2 + d j+2d j ), (6)

FIG. 1. (a) Processes allowed in original correlated-hopping
model with terms involving four consecutive sites. (b) Mapping of
bonds to sites. (c) The bond-site mapping converts the correlated-
hopping model to an assisted pair-flipping model with terms
involving three consecutive sites. Here filled and empty circles rep-
resent occupied and unoccupied sites, respectively.

where n j = d†
j d j . This rule implies that a pair of spinless

fermions can be created or annihilated on two next-nearest-
neighbor sites provided that the site in the middle is occupied.
It is important to note that this three-site Hamiltonian does
not conserve the total particle number unlike the four-site
model. A summary of the original and final Hamiltonians in
Eqs. (1) and (6) and the bond-site mapping connecting the two
is shown in Fig. 1.

III. FRAGMENTATION OF THE HILBERT SPACE

In this section, we will show how kinetic constraints in our
model shatters the Hilbert space leading to an exponentially
large number of fragments in the local number basis. The
fragmentation structure can appear in a variety of forms, such
as frozen fragments consisting of a single eigenstate of the
Hamiltonian and fragments with a finite or exponentially large
number of states.

A. Irreducible strings

We first discuss the fragmentation structure in the three-site
model which allows the transition described in Eq. (5); the
analytical treatment is much simpler in the three-site lan-
guage. It is convenient to define a Hamiltonian which only
has matrix elements between the states 010 and 111. We use
the Jordan-Wigner transformation between spinless fermions
and spin-1/2 operators, and define Pauli matrices σα

j at site
j (where α = x, y, z), so states 1 and 0 at site j correspond to
σ z

j = ±1. In terms of the Pauli spin operators, the Hamiltonian
in Eq. (6) becomes

H3 =
∑

j

(σ+
j−1σ

+
j+1 + σ−

j−1σ
−
j+1)

(1 + σ z
j

2

)
. (7)

Note that this expression differs from H2 in that it is defined in
terms of Pauli spin operators which commute at different sites.
This is an assisted spin-flipping Hamiltonian in which a pair of
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FIG. 2. Illustration of IS construction for a given binary string
configuration.

spins can flip on next-nearest-neighbor sites provided the site
in the middle has spin ↑. The number of states in a system
with L sites is 2L. We note that this model does not have
any conventional global quantum numbers, such as total Sz or
dipole moment. We will consider open boundary conditions
(OBCs) to perform our analysis of fragmentation. One should
note that the transition rules shown in Eq. (7) imply that

11110 ↔ 01010 ↔ 01111. (8)

This implies that a string of four 1’s can move across either a
0 or a 1 (trivially). This will be important later to understand
different features of the HSF occurring in this model.

We will show below that the model in Eq. (7) has an
exponentially large number of fragments. These fragments are
most easily characterized in terms of a construction called an
IS which acts as an exponentially large number of conserved
quantities. This construction of an IS is a variation of the
construction used earlier in Refs. [41–43]. This is defined as
follows.

A basis configuration is characterized by a binary string
of length L, e.g., 0011010 · · · . We read the string from left
to right, move the first occurrence of 1111 to the left end of
the string, and then delete it. This reduces the length of the
string by 4. We repeat this till no further reduction is possible.
Then, we read the remaining string from left to right, and
change the first occurrence of 010 to 111. If this generates
a 1111, we move it to the leftmost end and delete this to get a
string of reduced length. The steps 1111 → φ (null string) and
010 → 111 are repeated, till no further change can be made.
The final string is the IS corresponding to the initial string. As
an example, one can see that the IS for the string configuration
01111010101 reduces to 001 by the rules mentioned above;
this is depicted in Fig. 2.

The usefulness of the IS construction comes from the ob-
servation that two states belong to the same fragment if and
only if they have the same IS. To prove this assertion, we note
that the strings 01111 and 11110 are obtainable from each
other as shown in Eq. (8). Hence, one may treat a group of
four adjacent 1’s as a block that can slide across a 0, and can
slide across a 1 trivially. Thus, we can push any such blocks
of 1111 to the left end of the system and delete them.

An IS of length L − 4r corresponds to a root state of
length L which has 4r 1’s at the left. We also note that for
each of the steps going from the initial string to the root
state, the inverse steps are also allowed through the transitions
010 ↔ 111. Hence, if two configurations have the same root
state, they can be reached from each other. The Hilbert space

TABLE I. Values of M(n) versus n.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

M(n) 1 2 4 7 11 18 29 47 76 123 199 322 521

fragment corresponding to a given IS is spanned by all the
configurations that have that IS. Thus, the IS acts as a unique
label for the fragment.

B. Determining the number of fragments

To calculate the number of fragments, it is convenient to
define a number M(n) which is the number of distinct IS of
length n. We know that an IS cannot contain the substrings
010 or 1111 anywhere. Using this fact, we can calculate
M(n), for n > 3, using a transfer matrix method as shown in
Appendix A.

It is convenient to define M(0) = 1. Clearly, M(1) = 2,
M(2) = 4, and M(3) = 7. The results for the first few values
of M are given in Table I. Given M(n), the number of frag-
ments of length L with OBC is given by

NOBC(L) =
�L/4�∑
r=0

M(L − 4r), for L > 4. (9)

The resulting values are used to analytically calculate the
NOBC(L), given in Table II; we have verified these values
numerically. We also list the corresponding values for PBC
found numerically using a method described in Appendix A.
However, an analytical estimation of the number of fragments
with PBC is not so straightforward by the transfer matrix
method due to the fermionic nature of the degrees of freedom.
We show in Appendix A that both NOBC and NPBC grow
asymptotically as τ L, where τ = (

√
5 + 1)/2 	 1.618 is the

golden ratio.

C. Description of frozen fragments

The model contains an exponentially large number of
eigenstates that do not participate in the dynamics; we call
these frozen states. The frozen states | f j〉 are all product
states in the particle number basis and are annihilated by
the Hamiltonian so H | f j〉 = 0. Hence, these states are zero-
energy eigenstates of the model Hamiltonian. Two trivial
examples of such states in the four-site language are fully
empty and fully occupied states in the particle number basis,
i.e., | · · · 0000 · · · 〉 and | · · · 1111 · · · 〉, respectively.

In a frozen state, there cannot be any occurrence of sub-
strings 010 or 111, and the length of the IS must be L. It is
then straightforward to set up a transfer matrix to determine
the exact numbers of such states N frozen(L) for a system of

TABLE II. Values of NOBC and NPBC versus L obtained by nu-
merical enumeration.

L 4 5 6 7 8 9 10 11 12

NOBC 12 20 33 54 88 143 232 376 609
NPBC 10 13 20 32 59 81 131 207 363
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size L. The details of the calculation are given in Appendix B.
We find that the number of frozen fragments for a system of
size L grows as 1.466L for large L.

We note here that the frozen states possess many of the
features of quantum many-body scars. They have exactly zero
energy (and hence lie in the middle of the energy spectrum),
and this does not change if the coefficients of the terms in
the Hamiltonian in Eq. (1) are taken to be random numbers
instead of all being set equal to 1. Further, since the frozen
states are all product states in real space, they trivially have
zero entanglement entropy between any two parts of a system
with either OBC or PBC.

D. Description of some simple integrable fragments

We will now present some examples of fragments which
consist of more than one state (and are therefore not frozen)
but in which the Hamiltonian dynamics is integrable.

The first example of an integrable fragment is a set of
multiple “blinkers” each of which flips back and forth between
two states. For example, we can have an IS of the form

· · · 00011100111000 · · · .

These fragments consist of a sea of 0’s with islands of three
consecutive sites that can flip between 010 and 111 but are
fully localized in space. The general state in such a fragment
can be obtained by concatenating the substrings 0, 1110, and
0100. For a system with OBC, the number of states in the
fragment can be found by defining a transfer matrix T follow-
ing a procedure similar to the one given in Appendix A. We
find that T is a 8×8 matrix whose characteristic polynomial is
given by λ5(λ3 − λ2 − 1). The largest root of this equation
is approximately 1.466 [see Eqs. (B2) and (B3)], and the
number of states therefore grows with system size as 1.466L

asymptotically. For each blinker, labeled by an integer j =
1, 2, . . . , r, we can introduce a Pauli matrix τ z

j which is equal
to ±1 for 111 and 010, respectively. The number of states in
this fragment is equal to 2r , and the effective Hamiltonian is
given by Heff = ∑r

j=1 τ x
j . It is then easily seen that the energy

eigenvalues for this fragment are given by
∑r

j=1 e j , where
each e j can take values ±1.

The second example we consider is a fragment whose IS is
made of L − 4 0’s. The configuration will have a single sub-
string 1111 or a single substring 101 in a sea of zeros; the total
number of such states is 2L − 5. We can think of these as the
states of a particle which can be either in a state a j+3/2 = 1111
at sites ( j, j + 1, j + 2, j + 3), where j = 1, 2, . . . , L − 3,
or in a state bj = 101 at sites ( j − 1, j, j + 1), where
j = 2, L − 1. The Hamiltonian can take the state |aj+3/2〉
to either |bj+1〉 or |b j+2〉. This gives us a tight-binding
model of a particle that moves on a finite line with 2L − 5
sites. We then find that the energy levels of this effective
Hamiltonian are

Ek = 2 cos[πk/(2L − 4)], where k = 1, . . . , 2L − 5. (10)

E. Description of the largest fragment

We now consider the largest fragment, which includes all
the states reachable from the configuration of all 1’s. The
corresponding IS reduces to one of the four possibilities φ

(null string) or 1 or 11 or 111. Let DL denote the size of
the fragment corresponding to the IS given by 111 · · · 111,
i.e., 1 repeated L times. We will compute the generating
function

V (x) =
∞∑

L=0

DLxL. (11)

Following a lengthy calculation whose details are shown in
Appendix C, we obtain the expression

V (x) = 1

1 − x − (
1−√

1−12x4

6x

) . (12)

Writing this in the form given in Eq. (11), we find that the
growth of DL for large L is determined by the singularities
of V (x) lying closest to the origin [41–43]. According to
Eq. (12), these singularities lie at x4

0 = 1/12, namely, the
fourth roots of 1/12. Hence, DL grows as (1/|x0|)L, i.e.,
1.861L for large L. To confirm this, we Taylor expand Eq. (12)
which generates the series

V (x) = 1 + x + x2 + 2x3 + 3x4 + 4x5 + 6x6 + 12x7 + 19x8 + 28x9 + 46x10 + 92x11 + 150x12 + 232x13 + 396x14

+792x15 + 1315x16 + 2092x17 + 3646x18 + 7292x19 + 12258x20 + 19864x21 + 35076x22 + 70152x23 + · · · . (13)

This series expansion shows that D4k+3 = 2D4k+2, where k =
0, 1, 2, . . .; this has been derived in general in Appendix C.
We have checked that these numbers agree perfectly with
those obtained by brute force numerical enumeration. We
note that the exponential growth rate of the largest sec-
tor with L is slower than the total number of states 2L,
and goes to zero in the limit of large L, which establishes
the strong fragmentation [25] of the Hilbert space in this
model.

F. Typical and atypical fragments

Having discussed the idea of IS and seen several examples
of fragments, it may be useful to introduce the idea of typical
and atypical fragments. It is difficult to rigorously differen-
tiate between the two but we will proceed heuristically as
follows.

We first show the distribution of fragment numbers for dif-
ferent system sizes with OBC in Fig. 3. A fragment size equal
to 1 (left edge of the figure) corresponds to frozen fragments
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FIG. 3. Plot showing the distribution of number of fragments ver-
sus sizes of fragments for four different system sizes, L = 13, 14, 15,
and 16, with OBC.

which are discussed in Sec. III C. The largest fragment (right
edge of the figure) will be discussed in Sec. III E.

We can qualitatively estimate the average size of a frag-
ment as follows. While the dimension of the total Hilbert
space is 2L, we saw earlier that the number of fragments
grows asymptotically as τ L. We may therefore expect a typical
fragment to have a size of the order of (2/τ )L 	 1.236L . For
L = 13, 14, 15 and 16, this goes from about 16 to 30. Indeed,
we see that 16 − 30 lies near the middle of the ranges of
fragment sizes shown in Fig. 3.

Next, we examine numerically if there is any relation be-
tween the size of a fragment and the length of its IS. This
is shown in Fig. 4 for L = 14, and we observe that the two
quantities appear to be inversely related. (Note that the IS
lengths can only be equal to L, L − 4, L − 8, L − 12, . . .).
We see from the figure that two fragments with the same IS
length may have different sizes, but we find numerically that
the ratio of the sizes of two such fragments seems to go as a
power of L rather than an exponential in L. Frozen fragments
have only one state each and the length of their IS is equal to
L; hence they correspond to the point at the bottom right of
Fig. 4.

We may now define an atypical fragment as (i) one whose
IS has a length l where L − l � L, namely, 1 − l/L → 0

FIG. 4. Plot of the sizes of fragments versus the lengths of their
IS for L = 14 with OBC.

as L → ∞, and (ii) expectation values of local operators in
the eigenstates within such fragments do not show a thermal
behavior, i.e., do not tend to the microcanonical ensemble
average value. With this definition, both frozen fragments
(which have l = L) discussed in Sec. III C and the simple
integrable fragments discussed in Sec. III D are atypical. On
the other hand, the largest fragment and other fragments with
short IS are all typical. (In fact, every fragment whose IS
starts with zero, one, two, or three 1’s followed by n 0’s,
where n � L, has a size which grows exponentially as 1.861L

just like the largest fragment). The significance of a typi-
cal fragment is that it is expected to behave like a standard
macroscopic ensemble, and we may expect a weak version of
ETH to hold within it. Thus, the idea of typical and atypical
fragments can provide a rough guide to understanding the
different thermalization behaviors of different fragments.

We have found numerically that the ground state and low-
lying excited states generally lie in the largest fragment and
other fragments which have comparable numbers of states
(as mentioned in the previous paragraph). Thus the low-
energy properties of this model are dominated by the largest
fragments.

IV. SUBSPACE-RESTRICTED ETH IN SYSTEMS WITH
STRONG HILBERT SPACE FRAGMENTATION

The existence of atypical fragments, like the frozen states
and integrable fragments (for example, fragments with n
blinkers), implies that strong ETH is not satisfied with respect
to the full Hilbert space in our model. This motivates us to
modify the ETH as follows. Suppose that a Hamiltonian in
a basis given by products of local states has a fragmented
structure, such that energy eigenstates have nonzero compo-
nents only within a single fragment. Then it seems natural to
postulate that in each fragment, correlation functions of local
observables calculated in the eigenstates of the Hamiltonian
will tend to values corresponding to a restricted microcanoni-
cal ensemble, in which all the the eigenstates (except for a set
of measure zero) having a given energy density are equally
likely. We will call this a weak subspace-restricted ETH. In
our model, this should be satisfied in all the typical fragments
but it need not be satisfied in atypical fragments.

We will now check the validity of a weak version of ETH
within the largest fragment, as well as the validity of ETH
in other sectors in the full Hilbert space at half-filling for
the four-site model. We first examine the variation of expec-
tation values of local observables for all eigenstates of the
Hamiltonian and the variation of the half-chain entanglement
entropy SL/2 as a function of the energy E without resolving
the fragmentation structure. In Figs. 5(a) and 5(b), we show
the expectation values of the local observables 〈nL/2〉 and
〈nL/2+1nL/2〉 as a function of the energy density E/L for all
the eigenstates for three different system sizes, L = 12, 14
and 16. We see that the widths of the distributions do not
decrease significantly with increasing system sizes. Moreover,
we also analyze the standard deviations of the differences
of 〈E |A|E〉 − 〈A〉E , where |E〉 denotes an eigenstate of the
Hamiltonian at energy E , and 〈A〉E is the microcanonical
expectation value of A at energy E obtained by averaging over
eigenstates within an energy window �E/L = 0.025 [53].
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FIG. 5. Scatter plots of (a) 〈nL/2〉 and (b) 〈nL/2+1nL/2〉 for all
the eigenstates as a function of energy density E/L for different
system sizes, L = 12, 14, and 16. In all three cases, the widths of the
distribution do not appear to decrease significantly with increasing L.
The standard deviation σA of 〈nL/2〉 and 〈nL/2+1nL/2〉 as a function of
Hilbert space dimension D in an energy window of �E/L = 0.025
are shown in (c) and (d). The values of σA do not decrease signif-
icantly with increasing Hilbert space dimensions similar to (a) and
(b); this behavior is also not consistent with strong ETH.

For our case, we consider A to be nL/2 and nL/2+1nL/2, and
then examine the standard deviation σA as a function of the
total Hilbert space dimension D at half filling, as shown in
Figs. 5(c) and 5(d). In both cases, we observe that the values
of σA do not change notably with increasing values of D. This
confirms that the strong version of diagonal ETH is not valid
in our model within the full Hilbert space at half filling. A
similar behavior was seen earlier in other models showing
HSF [1,2].

Next, we discuss the spectrum of the half-chain entangle-
ment entropy SL/2 as a function of energy E for the full Hilbert
space (without resolving the individual fragment) at half fill-
ing with OBC for three different system sizes, L = 14, 16, and
18. This is shown in Figs. 6(a)–6(c). In all three figures, we see
that many low-entanglement states are present in the middle
of the spectrum. Further, the values of entanglement entropies
for all the eigenstates are much smaller than the thermal value
Spage = (L ln 2 − 1)/2 [54], shown by the dash-dot lines; this
again shows that ETH with respect to the full Hilbert space
is not satisfied. Moreover, the entropies of the eigenstates do
not lie within a narrow band when plotted against the energy.
Rather they are distributed over a wide range of values which
are all much smaller than the thermal value; this is exactly
opposite of what is typically observed for a system obeying
strong ETH. Also, the width of the entanglement entropy
spectrum does not shrink with increasing L unlike a thermal
system, indicating a manifestly nonthermalizing behavior as a
consequence of strong HSF.

FIG. 6. (a)–(c) Plots showing the half-chain entanglement en-
tropy SL/2 versus E for the full Hilbert space at half filling for
L = 14, 16, and 18, respectively, with OBC. In all three cases, the
entanglement entropies of all eigenstates do not lie within a narrow
band and they have values much smaller than the thermal value
shown by the dash-dot lines at the top. Also, the widths of the spectra
do not decrease with increasing L, indicating that strong ETH is
not valid. (d) Plot showing the probability distribution of r̃ for the
sorted eigenspectrum for the full Hilbert space at half filling for an
18-site system with OBC. (To break any discrete symmetries, we add
a small uniformly distributed random on-site potential with strength
w = 0.01. The disorder preserves the fragment structure of the full
Hilbert space). The distribution P(r̃) follows a Poison curve with
〈r〉 	 0.383.

We next study the energy-level spacing distribution which
is often studied to probe whether a model is integrable or
nonintegrable [10,48,49]. It is well-known from the theory
of random matrices that nonintegrable systems described by
random matrices show level repulsion, but integrable models,
or models with extra conserved quantities do not. To quantify
the degree of level repulsion in a model, it is often better to
study the level-spacing ratios rather than the level-spacing
distribution of the sorted eigenspectrum. To do so, we de-
fine the level-spacing ratios of the sorted eigenspectrum by
rn = δn+1/δn, where δn = En+1 − En and En is the nth energy
eigenvalue. If a system is integrable, r follows the Poisson
distribution, i.e., P(r) = 1/(1 + r)2, while nonintegrable sys-
tems described by real Hermitian Hamiltonians follow the
Gaussian orthogonal ensemble (GOE) distribution [55,56]
which is given by the distribution

P(r) = 27

8

(r + r2)

(1 + r + r2)5/2
. (14)

It is also convenient to study the distribution of r̃, which is
defined as

r̃n = min(δn+1, δn)

max(δn+1, δn)
= min(rn, 1/rn). (15)
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FIG. 7. (a), (b) Plots showing the half-chain entanglement entropy SL/2 versus E for the largest fragment produced by enumerating the
root configuration 1010 · · · 1010 in the four-site model for L = 22 (the fragment size is 19 864) with OBC with (a) no disorder and (b) a small
uniformly distributed disorder with strength w = 0.01, respectively. (a) The entropies for most of the eigenstates within this fragment lie within
a narrow band, apart from some low-entanglement outlying eigenstates in the middle of the spectrum. (b) The spectrum in the presence of
disorder exhibits identical features. In both cases, the red dash-dot line denotes the entanglement entropy of a random state within this particular
fragment. (c) Plot of the probability distribution P(r̃) versus r̃ for case (b). P(r̃) obeys the GOE distribution, indicating nonintegrability of this
fragment.

For the two classes mentioned above, the distribution of r̃ fol-
lows P(r̃) = 2P(r) θ (1 − r), where 〈r̃〉 = 0.386 for Poisson
and 0.536 for GOE.

To numerically compute the level-spacing statistics of the
consecutive energy levels for the sorted spectrum of the full
system, we add a small uniformly distributed random on-
site potential with strength w = 0.01 for an 18-site system
of L = 18 with OBC to break all the discrete symmetries
and to eliminate any accidental degeneracies [22,24,57]. We
note that the presence of an on-site disorder preserves the
fragmentation structure of the full Hilbert space. In addi-
tion, we also impose the half-filling condition to choose a
particular C1 symmetry sector, but we do not restrict the
analysis within particular C2 and C3 symmetry fragments
since these two global symmetries are only well-defined for
L = 4n. As shown in Fig. 6(d), we see that the distribution
of r̃, called P(r̃), is indistinguishable from a Poisson curve
with 〈r̃〉 	 0.383; this is very close to the value observed
for an integrable system. The exponentially large number of
dynamically disconnected fragments act as large number of
conserved quantum numbers that forbid level repulsion as in
an integrable system [57,58]. Finally, we study the behavior of
the largest fragment generated by enumerating the root state
1010 · · · 1010 for the original model with terms involving
four consecutive sites for L = 22 with OBC (the size of this
fragment is 19 864). In the three-site model, this state reduces
to the state 111 · · · 111, which generates the largest fragment.
In Fig. 7(a), we show the entanglement entropy as a function
of E for the largest fragment. We see that the entropies of
most of the eigenstates fall on a curve, with a small number
of outlying low-entanglement eigenstates in the middle of the
spectrum. In Fig. 7(b), we perform the same analysis with
a small uniformly distributed random on-site disorder with
strength w = 0.01 to discard any discrete symmetries and to
avoid any accidental degeneracies [22,24]. (The random on-
site disorder preserves the fragment structure). We see that the
spectrum in this case shows features identical to the previous
case; further, it stabilizes the low-entanglement eigenstates, as
can be seen in Fig. 7(b). We find that the consecutive energy
level spacing statistics for the eigenstates within this fragment

with small disorder is consistent with GOE level statistics with
〈r̃〉 	 0.524, which is close to the GOE value. This points to-
wards nonintegrability of the largest fragment [24], as shown
in Fig. 7(c).

In Figs. 8(a) and 8(b), we show the average values of
nL/2 and nL/2+1nL/2 for all eigenstates within this subspace
for L = 14, 16, 18, and 20 where the fragment sizes are
232, 792, 2092, and 7292, respectively. We see that the width
of this distribution becomes narrower with increasing system
size. We then perform the same analysis as Figs. 5(c) and 5(d)
within the largest fragment in Figs. 8(c) and 8(d). We see that
the standard deviations σA of local observables decrease with
increasing values of fragment size D. Moreover, σA approxi-
mately scales as 1/

√
D with some deviation, which has been

seen earlier in the ETH obeying systems [53]. This behavior
again indicates that the subspace-restricted diagonal ETH is
satisfied within this fragment. However, there are some out-
lying states which do not show thermal behavior as shown in
Figs. 8(a) and 8(b).

We also observe numerically that the largest fragment con-
tains a large number of states, NE=0, with exactly zero energy.
The variation of NE=0 with size DL of the largest fragment
(L is the system size) is presented in Table III, and Fig. 9

TABLE III. Table showing system size L, size DL of the largest
fragment generated from the root state 1010....1010 in the four-site
model, and the number of zero energy states NE=0 in this fragment.

L DL NE=0

6 4 2
8 12 2
10 28 6
12 92 6
14 232 22
16 792 24
18 2092 80
20 7292 90
22 19864 308
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FIG. 8. Plots of (a) 〈nL/2〉 and (b) 〈nL/2+1nL/2〉 for all eigenstates
within the largest fragment of the full Hilbert space. Most of the
eigenstates within this fragment show a thermal behavior. In both
cases, the bulk of the distribution becomes narrower with increasing
L, but with some outlying states which do not fit within a narrow
window of values of 〈nL/2〉 and 〈nL/2+1nL/2〉. The standard deviations
σA of 〈nL/2〉 and 〈nL/2+1nL/2〉 as a function of the size D of the largest
fragment within an energy window of �E/L = 0.025 are shown in
(c) and (d). We see that the values of σA decrease with increasing
sizes of largest fragment, which approximately scale as 1/

√
D with

a slight deviation. The decreasing values of σA with increasing frag-
ment size supports the subspace-restricted ETH within the largest
fragment.

shows a log-log plot of NE=0 versus DL. The numerical fitting
indicates that NE=0 grows as D0.59

L . It has been shown earlier
in some models [59,60] that there are index theorems which
give a lower bound on the growth of NE=0 versus DL. In these
models, index theorems imply that NE=0 �

√
DL. Figure 9

implies that such a square root bound is also satisfied by the
largest fragment in our four-site model. However, we have not

FIG. 9. Log-log plot of the number of zero energy states NE=0

versus size DL of the largest fragment for system size L. The numer-
ical fitting shows that NE=0 grows as D0.59

L .

FIG. 10. (a) Expectation values of two few-body observables
A = nL/2 and nL/2+1nL/2 for all eigenstates within the fragment gen-
erated from a root state 10100010010010101010 for L = 20 in the
four-site model. (b) Plot showing the difference between the expecta-
tion values of the observables for an eigenstate at energy E and their
microcanonical value obtained by averaging over eigenstates within
an energy window of �E = 0.025. The analysis shown in (b) has
been performed for one-fifth of the eigenstates in the middle of the
spectrum.

been able to derive this bound analytically due to the lack of
a simple structure of the states and of the Hamiltonian within
this fragment. Finally, we note that the square root bound also
holds for the full Hilbert space. This is because the frozen
states are trivially zero-energy eigenstates of the Hamiltonian,
and we saw in Sec. III C that the number of such states grows
asymptotically as 1.466L . This is much larger than a square
root bound since

√
2L 	 1.414L .

We thus see that the largest fragment contains a large
number of zero energy states, and many of these have an
anomalously low entanglement entropy, as shown in Fig. 7(a).
The presence of these exceptional states implies that the
subspace-restricted ETH is satisfied with the largest fragment
in a weaker sense.

In Figs. 10(a) and 10(b), we study the thermal behavior
of eigenstates within a fragment generated from a randomly
chosen root state 10100010010010101010 for L = 20 in the
four-site model; this fragment has dimension D = 574. This
root state reduces to 1110011011011111111 due to bond-site
mapping, whose IS, 11100110110, has length (L + 3)/2 in
the three-site model, unlike the largest fragment which has the
shortest IS. In Fig. 10(a), we show the expectation values of
two local observables nL/2 and nL/2+1nL/2 for all eigenstates
within this fragment. In Fig. 10(b), we show the difference
between the expectation values of the same two observables
〈E |A|E〉 for an eigenstate at energy E from their micro-
canonical expectation value 〈A〉E obtained by averaging over
eigenstates within an energy window �E = 0.025 about E .
Moreover, we consider one-fifth of the total eigenstates with
energies lying in the middle of the spectrum while doing this
analysis. As this difference is centered around zero, it implies
that each eigenstate satisfies diagonal ETH within this frag-
ment. One can therefore conclude that all typical fragments
satisfy subsector-restricted thermalization in our model in the
thermodynamic limit.

Despite the fact that ETH is not valid with respect to the
full Hilbert space as shown in Figs. 5 and 6, expectation
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values of local observables of eigenstates within sufficiently
large fragments still satisfy the ETH as we see in Figs. 7
and 8. Therefore, sufficiently large fragments still satisfy the
ETH even in the case of strongly fragmented systems. This
is also dubbed Krylov-restricted thermalization in the litera-
ture [20,24,37]. This kind of restricted thermalization has a
significant impact on the dynamics of the system, in particu-
lar, an atypical dynamical behavior of correlation functions,
which we will discuss in the next section.

V. DYNAMICAL SIGNATURES OF HILBERT
SPACE FRAGMENTATION

In this section, we will study autocorrelation functions of
the fermion number at different sites of the four-site model.
We will see that these provide dynamical signatures of the
absence of thermalization due to HSF.

A. Long-time behavior of autocorrelation functions

As a signature of the lack of thermalization due to strong
HSF, we first investigate the behavior of the time-dependent
correlation function

Cj (t ) = 〈ψ |(n j (t ) − 1/2)(nj (0) − 1/2)|ψ〉, (16)

where nj is the fermion number operator at site j, |ψ〉 being a
typical random initial state in the full Hilbert space, which is
chosen to have the form |ψ〉 = ∑

j a j | f j〉, with
∑

j |a j |2 = 1,
where the a j’s are random numbers and | f j〉 denote Fock
space basis states. We will consider the case of half filling
and open boundary conditions.

In thermal equilibrium, the autocorrelation function is ex-
pected to decay to zero as 1/L for a system of length L. In
Fig. 11(a), we study the boundary autocorrelator C1(t ) for a
system size L = 18 with OBC at half filling for a random
initial state in the Hilbert space. We find persistent oscillations
around a finite saturation value of about 0.115 (shown in the
inset of the plot) up to a long time t ∼ 103. We then study
the same function in the middle of the system, CL/2(t ), for
the same system size in Fig. 11(b). We observe that CL/2(t )
saturates to a much smaller value of about 0.045 (shown inset
of the plot) at long times. In a similar manner, we show the
same quantities for L = 20 in Figs. 11(c) and 11(d). We see
that the behaviors of C1(t ) and CL/2(t ), including the period
of oscillations, do not significantly change with increasing
system size. However, both quantities oscillate around finite
saturation values given by 0.113 and 0.04, respectively (shown
in the insets of the plots), which are slightly smaller compared
to Figs. 11(a) and 11(b), respectively. We therefore conclude
that the boundary correlator behaves in a different manner
from the bulk correlator.

Further, strong HSF leads to a nonuniform profile of corre-
lation functions near the edge of the chain in our model model
as observed earlier in this context for other models [21,22,25].
We examine the robustness of this nonuniform profile near the
edge against perturbations by including two types of terms
in the four-site Hamiltonian. The first one is a uniformly
distributed random on-site potential of strength w = 0.1, and
the results are shown in Figs. 12(a) and 12(c). The second one

FIG. 11. (a), (b) Plots showing the long-time behaviors of the
boundary and bulk correlators, C1(t ) and CL/2(t ), respectively, start-
ing from a typical random initial state at half filling with OBC for
L = 18. (c), (d) Similar plots for L = 20. (a) C1(t ) oscillates around
a finite saturation value of about 0.115 at long times, revealing
nonthermal behavior near the boundary of the system. (b) CL/2(t )
oscillates around a finite saturation value of about 0.045, which is
much smaller than the boundary case. (c) C1(t ) for this case oscillates
around a finite saturation of about 0.113 at long times, which is
slightly smaller compared to that observed in (a). (d) In this case, CL/2

again shows similar behavior as (b), but oscillates around a saturation
value (∼0.04), again slightly smaller compared to (b). In all four
cases, the last ten oscillations for 970 � t � 1000 are shown in the
insets of the plots.

involves the Hamiltonian

H ′ =
∑

j

[(n j−1 − n j+2)2 − ε](c†
j c j+1 + c†

j+1c j ), (17)

where ε = 0.1, giving the results shown in Figs. 12(b)
and 12(d). The first one breaks all the discrete symmetries
present in the four-site model but preserves the fragmentation
structure of the full Hilbert space. On the other hand, the
second one preserves all the discrete symmetries but modi-
fies the fragmentation structure of the full Hilbert space; the
number of fragments generally decreases for this case since
the ε terms connects certain states which are not connected
otherwise. As shown in Figs. 12(a) and 12(c), the long-time
behaviors of C1 and CL/2 in the first case remain the same as
in the unperturbed case, exhibiting an absence of thermaliza-
tion. For the second case, both correlators decay to zero after
showing a nontrivial intermediate-time dynamics, as can be
seen in Figs. 12(b) and 12(d).

We will now explain the long-time saturation value of the
autocorrelation functions by taking the fragmentation struc-
ture of the full Hilbert space into account. It can be shown
that the equilibrium value of Cj (t ) predicted by the ETH
hypothesis is zero for all values of j if our model thermalizes.
Therefore, the nonuniform profile of autocorrelation function
near the edge of the chain shown in Fig. 11 is an atypical
behavior which arises as a consequence of subspace-restricted
ETH due to strong HSF. This behavior can be explained with
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FIG. 12. (a), (b) Plots showing the long-time behavior of the
boundary correlator C1(t ) starting from a typical random initial state
for L = 18 at half filling with OBC in the presence of two kinds of
perturbations, uniformly distributed random disorder with disorder
strength w = 0.1, and the perturbation term with ε = 0.1 shown in
Eq. (17). (a) C1(t ) oscillates around a finite value of about 0.12 in
the long-time limit just as in the unperturbed case. (b) C1(t ) decays
to zero at long times after exhibiting a nontrivial intermediate-time
dynamics close to the saturation value of the unperturbed model.
(c), (d) Plots showing the long-time behaviors of bulk correlators,
CL/2(t ) starting from a random initial state again for the same two
cases. (c) CL/2(t ) in the presence of random disorder again shows
a behavior similar to the unperturbed case. (d) CL/2(t ) for this case
decays to zero at long times after exhibiting nontrivial intermediate-
time dynamics like the boundary case. In (a) and (c), the last ten
oscillations for 970 � t � 1000 are shown in the insets of the plots.

the help of the Mazur inequality [50], which applies to the
long-time averages of autocorrelation functions in the context
of thermalization. For quantum systems, an exact Mazur-type
equality was obtained by Suzuki [51], which takes into ac-
count existence of constants of motion in the problem. In
the same spirit, the value of the Mazur bound for fragmented
Hilbert spaces is changed by taking into account the structures
of invariant subspaces. We do this as follows.

We define Pi as the projection operator onto a particular
fragment Hi with size Di. The set of projectors onto differ-
ent fragments form a complete orthogonal set of conserved
quantities such that PiPj = δi jPj . Using these, we define the
long-time averaged autocorrelation functions,

Fj = lim
T →∞

1

T

∫ T

0
dt

〈(
n j (t ) − 1

2

)(
n j (0) − 1

2

)〉
, (18)

where n j is the fermion number operator at site j. These
satisfy the inequality due to Mazur [50]:

Fj �
∑

i

(
Tr

[
Pi

(
n j − 1

2

)
Pi

])2

DDi
≡ Cj (∞). (19)

Here Di is the dimensionality of the ith fragment and D is the
total Hilbert space dimension (here D = 2N ).

In Fig. 13(a), we plot the variation of the infinite-time
saturation values of boundary and bulk autocorrelation func-
tions, CM

1 (∞) and CM
L/2(∞), obtained using Eq. (19) for an

L−site system with OBC. We find that the Mazur bound in

FIG. 13. (a) Log-log plot showing the lower bounds of the
infinite-time boundary and bulk correlators predicted by the Mazur
inequality for different system sizes. In the bulk of the chain, the
Mazur bound follows a 1/L curve instead of 1/

√
L (as depicted

by two guiding lines), while near the edge of the chain the Mazur
bound shows a localized behavior and saturates to approximately
0.12. (b) The variation of the Mazur bound across the chain for
different sizes exhibits a nonuniform profile due to the strong HSF
in our model.

the bulk of the chain decays as 1/L for comparatively large
system sizes like the assisted pair-flipping model. On the
other hand, the Mazur bound at the boundary of the chain
saturates to approximately 0.12. We show the Mazur bound
as a function of the site index for different system sizes in
Fig. 13(b); this shows a nonuniform profile, being smaller
at the center compared to the ends. Further, HSF leads to
localization close to the edge of the chain which has been
dubbed statistical edge localization [20,21]; we see this in
the long-time behavior of boundary autocorrelation functions
shown in Figs. 11(a) and 11(b). We note here that the late-time
average of the bulk autocorrelator decaying with system size
as 1/L usually indicates thermal behavior of the bulk states.
On the other hand, the localized profile of the autocorrelator
near the edge shows the nonthermal nature of the boundary
spectrum. This implies that the nonlocal conserved quantities
arising due to HSF do not have any significant impact on the
thermal behavior of the bulk states for our model, in contrast

FIG. 14. (a), (b) Growth of entanglement entropy with time for
three different system sizes, L = 18, 20, and 22 with OBC, starting
from the Neel state, 101010 · · · . In all three cases, the entanglement
entropy quickly saturates to a volume law as shown in (b), which
is much smaller than the thermal value of the entropy for the full
system, Spage = (L ln 2 − 1)/2. The saturation values for all three
cases are very close to the entanglement for a random initial state
in the Hilbert space within largest fragment, depicted by the three
dashed lines in (a).
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TABLE IV. Energy costs arising from the Vj term in Eq. (20) for the left and right sides of various correlated-hopping processes for two
sets of patterns of Vj related to each other through translation by one site in the limit V1, V2, V3, V4 → ∞.

Pattern of Correlated-hopping Energy cost for left-hand side of Energy cost for right-hand side of
Vj process the process in the second column the process in the second column

V1 V2 V3 V4 1101 ↔ 1011 V1 − V2 − V3 −V1 − V2 + V3

V1 V2 V3 V4 0100 ↔ 0010 −V1 − V2 + V3 V1 − V2 − V3

V1 V2 V3 V4 1100 ↔ 1010 V1 − V2 + V3 −V1 − V2 − V3

V1 V2 V3 V4 0101 ↔ 0011 −V1 − V2 − V3 V1 − V2 + V3

V2 V3 V4 V1 1101 ↔ 1011 V2 − V3 − V4 −V2 − V3 + V4

V2 V3 V4 V1 0100 ↔ 0010 −V2 − V3 + V4 V2 − V3 − V4

V2 V3 V4 V1 1100 ↔ 1010 V2 − V3 + V4 −V2 − V3 − V4

V2 V3 V4 V1 0101 ↔ 0011 −V2 − V3 − V4 V2 − V3 + V4

to the boundary states. However, this numerical observation
requires a more careful investigation since our analysis has
only been carried out for rather small system sizes. In some
cases, it has been observed that such thermal behavior of the
bulk autocorrelators is an artifact of limited system sizes, and
the decay can deviate significantly from 1/L in the thermo-
dynamic limit. Specifically, the decay can go as 1/La where
a < 1 [44]. Recently, it has been shown using classical cellu-
lar automaton simulations that the saturation values of bulk
autocorrelators in many models with HSF described by IS
follow a 1/

√
L decay with system size [61].

B. Dynamics of entanglement entropy

To complement our previous findings, we study the dy-
namics of the entanglement entropy starting from the Neel
state 101010 · · · for three different system sizes, L = 18, 20,
and 22 with OBC. This is shown in Fig. 14(a). For all three
cases, we see that the entanglement entropy quickly saturates
to a volume law as shown in Fig. 14(b). Moreover, the sat-
uration value is much smaller than the thermal value of the
entropy of the full system, i.e., Spage = (L ln 2 − 1)/2 [54].
The saturation value for all three cases are found to be quite
close to the value of the entanglement entropy obtained for a
random state on the full Hilbert space within the largest HSF
sector, as depicted by the three dashed lines. These obser-
vations are in agreement with our previous findings, i.e., the
largest fragment obeys a weaker form of subsector-restricted
ETH [24].

VI. CORRELATED-HOPPING MODEL AS THE LARGE
INTERACTION LIMIT OF A t − V MODEL

In this section, we will show that our correlated-hopping
model involving terms with four consecutive sites can be
obtained by taking a particular large interaction limit of a
model of spinless fermions. We consider a model with a
nearest-neighbor hopping, which we will set equal to 1, and
nearest-neighbor density-density interaction terms and on-site
potentials which repeat with a periodicity of four sites.

We consider the Hamiltonian

H4 =
∑

j

[c†
j c j+1 + c†

j+1c j + Vj (2n j − 1)(2n j+1 − 1)], (20)

where Vj varies with j with period four, namely, V4 j+1 = V1,
V4 j+2 = V2, V4 j+3 = V3, and V4 j+4 = V4. We now consider
various correlated-hopping processes involving four consec-
utive sites, namely, 1101 ↔ 1011, 0100 ↔ 0010, 1100 ↔
1010, and 0101 ↔ 0011, for two different interaction patterns
which are related to each other through translation by one site.
We list the energy costs for the left and right sides of these
correlated-hopping processes in the limit V1, V2, V3, V4 → ∞
in Table IV. We see from the table that the interaction energy
costs will be equal for the left- and right-hand sides of the pro-
cesses in rows 3, 4, 6, and 7 (where the occupation numbers nj

are unequal on the first and fourth sites) if V1 = −V3 = V and
V2 = −V4 = V ′. Simultaneously, the interaction energies will
not be equal for the left- and right-hand sides of the processes
in rows 1, 2, 5, and 6 (where the occupation numbers are equal
on the first and fourth sites) if V, V ′ �= 0. Hence, in the limit
V → ±∞ and V ′ → ±∞, hopping between sites j + 1 and
j + 2 is allowed if and only if nj �= n j+3. Note that V and V ′
can differ from each other, in general.

Our analysis thus puts forward an experimentally realiz-
able model which reduces to the four-site correlated-hopping
model in the large interaction limit, namely, we have to con-
sider a model for which the Hamiltonian is given by Eq. (20),
with

V4 j+1 = −V4 j+3 = V,

and V4 j+2 = −V4 j+4 = V ′. (21)

Before ending this section, we point out that our correlated-
hopping model can also emerge as an effective Hamiltonian
due to an interplay between dynamical localization, reso-
nance, and interactions in a periodically driven system with an
on-site potential with a spatial periodicity of four sites [39].

VII. COMPARISON WITH A DIFFERENT MODEL
SHOWING HILBERT SPACE FRAGMENTATION

It is interesting to contrast various results for our model
and a different model showing HSF which has been studied
extensively [20,24,28,29]. This is again a one-dimensional
model with spinless fermions but with a Hamiltonian

H5 =
∑

j

[1 − (n j − n j+3)2] (c†
j+1c j+2 + c†

j+2c j+1). (22)
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>This Hamiltonian connects the following pairs of states in-
volving four consecutive sites:

1101 ↔ 1011,

0100 ↔ 0010. (23)

This comparison is particularly relevant for our study since
this model is also a correlated-hopping model involving four
consecutive sites just like ours. However, this model allows
nearest-neighbor hoppings if the sites to the left and right of
those two sites have equal particle numbers, unlike our model
which enables nearest-neighbor hoppings if the sites to the
left and right have different particle numbers. Defining n j =
c†

j c j as before, we find that there are three global symmetries:
total particle number C1, and two other quantities C4 and C5

given by

C1 =
∑

j

n j,

C4 =
∑

j

n2 jn2 j+1,

C5 =
∑

j

n2 j−1n2 j . (24)

As pointed out in Refs. [30,31], this model can be mapped
to a model with a Hamiltonian which involves three consecu-
tive sites. On doing the mapping in Eq. (4), we obtain a model
where only the following transitions are allowed:

110 ↔ 011. (25)

The Hamiltonian of this model is

H6 =
∑

j

n j+1(d†
j d j+2 + d†

j+2d j ), (26)

where n j = d†
j d j . This Hamiltonian is number conserving,

unlike the Hamiltonian in Eq. (6). Note, however, that the total
particle numbers

∑
j n j for the models in Eqs. (22) and (26)

are not related to each other in any simple way.
It turns out that a transition of the form given in Eq. (25)

was studied many years ago in a classical model of diffusing
dimers undergoing Markov evolution [43]. In that work, a
complete solution for the numbers and sizes of fragments
was found. For large system sizes, it was shown that the
number of fragments grows exponentially as τ L. The number
of frozen sectors is also found to grow as τ L [39], unlike our
model where it grows as 1.466L . Further, it was shown in
Ref. [43] that for a system with OBC, the different fragments
can be characterized uniquely by the numbers of three kinds
of short strings, namely, NA strings given by 11, NB given by
10, and NC given by 0. The number of states in a fragment
(NA, NB, NC ) was shown to be

DNA,NB,NC = (NA + NB + NC )!

NA!(NB + NC )!
. (27)

For a system with L sites, we must have 2NA + 2NB + NC =
L. The filling fraction of particles is given by (2NA + NB)/L.
The frozen fragments with DNA,NB,NC = 1 correspond to either
NA = 0 and 2NB + NC = L or NA = L/2 and NB = Nc = 0
(i.e., a string of L 1’s).

We can now find how the number of states in an arbitrary
fragment grows with L. We define

α = NA

L
, β = NB

L
, γ = NC

L
. (28)

These parameters satisfy α, β, γ � 0, and 2α+2β+γ = 1.
Eliminating β, we see that the parameters (α, γ ) lie in a
triangular region which is bounded by the lines α = 0, γ = 0
and 2α + γ = 1 (where β = 0). We now consider the limit
L → ∞ holding α, β, γ fixed. Using Eq. (27) and Stirling’s
approximation, we find that the number of states grows as μL,
where μ is a function of α, γ given by

μ(α, γ ) =
(

1
2 + γ

2

)(1+γ )/2

αα
(

1
2 + γ

2 − α
)(1+γ−2α)/2 . (29)

We thus see that μ(α, γ ) varies continuously over the trian-
gular region. The minimum value of μ(α, γ ) is equal to 1;
this occurs on the line (α = 0, 0 � γ � 1) and at the point
(α = 1/2, γ = 0). We will now find the maximum value of
μ(α, γ ). A numerical search shows that μ(α, γ ) attains its
maximum on the line 2α + γ = 1. On that line, Eq. (29)
simplifies to

μ(α) = (1 − α)1−α

αα (1 − 2α)1−2α
, (30)

where 0 � α � 1/2. We find analytically that this has a max-
imum at

α = 1

2

(
1 − 1√

5

)
	 0.2764, (31)

where μ = τ . The filling fraction at this point is 2α 	 0.5528.
Finally, we study if there is a t − V model similar to the

one discussed in Sec. VI, which reduces to Eq. (22) in the
large interaction limit. We consider a model of the form

H7 =
∑

j

[c†
j c j+1 + c†

j+1c j + Vjn jn j+1], (32)

where we again take Vj to vary with j with period four.
We carry out an analysis of the energy costs for the left-
and right-hand sides of Eq. (23) similar to the one shown in
Table IV. We then find that the energy costs on the two sides
of Eq. (23) are equal if V1 = V3 = V and V2 = V4 = V ′, where
V, V ′ are independent parameters. (Thus the interactions Vj

have a period-two structure rather than period-four). In the
limits V → ±∞ and V ′ → ±∞, hopping between sites j + 1
and j + 2 will be allowed if and only if nj = n j+3.

Finally, we note that if V = V ′, i.e., Vj = V for all j, the
model in Eq. (32) becomes the standard t − V model, and
is exactly solvable by the Bethe ansatz for a system with
PBC [62]. However, if V �= V ′, it is not known if the model
is exactly solvable. In the limit V = V ′ → ∞, the model is
called the folded XXZ model, and this has also been solved
by the Bethe ansatz [30,31].

VIII. DISCUSSION

We begin by summarizing our main results. We stud-
ied a one-dimensional correlated-hopping model of spinless
fermions with terms involving four consecutive sites having
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a few global symmetries. This can be mapped to an assisted
pair-flipping model with terms involving three consecutive
sites. We found that this model shows strong HSF in a particle
number basis, and time evolution starting from an arbitrary
basis state does not always lead to thermalization. In charac-
terizing the HSF in this model, we found it useful to define
an IS, analogous to the constructions used earlier [42,43]. The
IS provides us with an exponentially large number of con-
served quantities which completely characterize the structure
of the HSF. Using the IS, we determined the total number of
fragments, the number of frozen states, and the growth of the
size of the largest fragment with the system size. These results
were also verified using transfer matrix methods and explicit
enumerations.

We found that the energy level spacing distribution of the
eigenspectrum is approximately Poissonian, but the Hamilto-
nian within the largest fragment shows approximately GOE
level statistics. Our study of infinite-temperature autocorre-
lation functions and entanglement dynamics also indicated
the nonthermal behavior of our model. Further, the finite-size
Mazur bound analysis of infinite-temperature autocorrelation
functions near one end and inside the bulk of the system
pointed towards a thermal bulk spectrum with a non-thermal
boundary behavior. We also compared our results with another
correlated-hopping model involving four consecutive sites,
which has been extensively studied in the context of HSF.
Finally, we showed how our correlated-hopping model can be
realized in an experimental setting using a variant of the t − V
model of spinless fermions in a particular limit.

In brief, we have considered a model in which the basis
states are products of local two-dimensional Hilbert spaces. In
this basis, the Hamiltonian has a block diagonal structure due
to the existence of an infinite number of conserved quantities
given by IS. A given block (fragment) may be typical or
atypical. In a typical fragment, the expectation values of local
observables for most eigenstates at a particular energy tend to
the equilibrium values within that fragment. We have called
this a subspace-restricted weak ETH.

We end by suggesting possible directions for future re-
search. It would be useful to determine exactly how fast
different fragments grow with system size for an arbitrary
filling fraction in our model, similar to Eq. (27), which is
known for the diffusing dimer model [43]. It would also
be interesting to better understand the large number of zero
energy states in the largest fragment (in particular, to see if
some of them qualify as many-body scars) and to check if such
zero-energy states exist in other large fragments as well. The
transport properties vary significantly in different fragments
and it would be useful to understand this better [27,41,63–65].
The behaviors of bulk and boundary autocorrelation functions
for a typical random thermal state in the thermodynamic limit
need to be investigated [44]. Finally, it would be useful to
study the effects of disorder [28,57] and dissipation [66] in
this model. It would also be interesting to see if the concept
of ISs can be generalized to models where HSF occurs in an
entangled basis rather than in a product state in the particle
number basis.

We expect that our results can be experimentally tested in
cold-atom platforms [67,68], where spinless fermionic chains
with spatially periodic potentials and strong interactions can

be realized. Recently, thermalization in some particular frag-
ments of a model with HSF has been observed in a Rydberg
atom system in one dimension [69]. Another observation of
HSF has been reported in a superconducting processor in a
system exhibiting Stark many-body localization [70].

ACKNOWLEDGMENTS

We thank B. Pozsgay for useful discussions. S.A. thanks
MHRD, India for financial support through a PMRF.
D.S. thanks SERB, India, for funding through Project No.
JBR/2020/000043.

D.D. contributed to Secs. I–III and Appendices A–C.

APPENDIX A: CALCULATION OF NUMBER
OF FRAGMENTS

In this Appendix, we will show how the number of frag-
ments can be calculated using a transfer matrix method. As
we discussed earlier, IS cannot contain the substrings of 1111
and 010. This leads us to construct the following 8×8 transfer
matrix T (Ci,Cj ) in which the rows and columns Ci and Cj

denote configurations of three consecutive sites labeled as
111, 110, 101, 100, 011, 010, 001, and 000. We then have

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

The eigenvalues of T are analytically found to be τ , −1/τ , ±i,
and 0 (which has an algebraic multiplicity of 4), where τ =
(
√

5 + 1)/2 	 1.618 is the golden ratio. (The four nonzero
eigenvalues are the roots of the quartic equation z4 − z3 − z −
1 = 0.)

Table I shows that M(n) = M(n − 1) + M(n − 2) for
n � 4. We can use this recursion relation to show that

M(n) = τ n+1 +
(

− 1

τ

)n+1

(A2)

for n � 2. [Note that only two of the nonzero eigenvalues of
T appear in Eq. (A2)]. In fact, Eq. (A2) holds even for n = 0.
But for n = 1, the right-hand side of Eq. (A2) gives 3, while a
simple counting shows that M(1) is equal to 2. We now define
the generating function for M(n) as

G(z) =
∞∑

n=0

M(n)zn. (A3)

Using the values of M(n) given above, and summing the series
in Eq. (A3), we obtain

G(z) = τ

1 − zτ
− 1

τ + z
− z. (A4)

Given the values of M(n) in Table I and Eq. (A2), we find that
the number of fragments for a system with L sites and OBC is

In Fig. 15, we plot the number of fragments Nfrag versus L
for both OBC and PBC. In both cases, we see that Nfrag grows
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FIG. 15. Number of fragments (on a log scale) versus L for OBC
and periodic boundary condition (PBC). The numerical fittings show
that the numbers grow approximately as 1.62L and 1.60L for OBC
and PBC, respectively.

exponentially as 1.62L and 1.60L, which are consistent with
the analytically estimated value of τ L for OBC.

We note that in our numerical work, positive random hop-
pings uniformly distributed in the range [1,2] have been used
while counting the total number of fragments with PBC to
avoid any accidental cancellations of sums of matrix elements
of the Hamiltonian. As an example of an accidental can-
cellation, consider L = 4 with PBC. Then the state |1010〉
(which denotes the occupation numbers at sites 1, 2, 3, 4)
can go to |1111〉 in two possible ways, by the action of either
n3d†

2 d†
4 or n1d†

4 d†
2 . These two terms cancel each other due to

the anticommutation relation d†
2 d†

4 + d†
4 d†

2 = 0, which would
imply that |1010〉 and |1111〉 belong to different fragments.

APPENDIX B: CALCULATION OF NUMBER
OF FROZEN STATES

In this Appendix, we will show how the number of frozen
states can be calculated. Unlike the matrix T defined in
Eq. (A1), which is designed to remove the configurations 010
and 1111, we now need to remove the configurations 010 and
111 in order to find states which are not connected to any other
states (and are therefore frozen). We find that the required
transfer matrix is a 4×4 matrix whose rows and columns are
labeled as 11, 10, 01 and 00. The required matrix is then

T1 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 1
1 0 0 0
0 0 1 1

⎞
⎟⎟⎠. (B1)

We discover that one of the eigenvalues of T1 is zero, while
the other three are solutions of the cubic equation

λ3 − λ2 − 1 = 0. (B2)

The solutions of this equation are given by

λ = 1

3
+ 2

3
cos

[
1

3
cos−1

(
29

2

)
− 2πk

3

]
, (B3)

where k can take the values 0, 1, 2. We then find the three
eigenvalues to be 1.466 and −0.233 ± 0.793i approximately;
the magnitudes of the last two eigenvalues are less than 1.
Hence, the number of frozen states increases asymptotically as

1.466L . Note that this is a slower growth than the total number
of fragments which increases as 1.618L .

The number of frozen states can also be counted using the
fact that the number of such states, N frozen

OBC (L), with OBC is
given by the sum of all the matrix elements of T L−2

1 , for L � 3.
Defining Y = T L−2

1 , we have

N frozen
OBC =

4∑
i, j=1

Yi, j . (B4)

The counting of frozen states with PBC is slightly different
since we have to take care of the constraint that the states of
the four consecutive sites (L − 1, L, 1, 2) should not contain
either 111 or 010. Therefore, defining Y = T L−2

1 and taking
into account this additional constraint, we find that

N frozen
PBC (L) = Y (1, 2) + Y (1, 4) + Y (2, 3)

+Y (3, 1) + Y (3, 2) + Y (3, 4)

+Y (4, 1) + Y (4, 3) + Y (4, 4). (B5)

We have checked that the number of frozen states agree
exactly with the numerically obtained numbers for system
sizes L = 3 to 12. We note again that for PBC, we used
random hoppings which are uniformly distributed in the range
[1,2] to numerically compute the number of frozen states to
avoid any accidental cancellations between different matrix
elements of the Hamiltonian.

APPENDIX C: CALCULATION OF THE SIZE
OF THE LARGEST FRAGMENT
OF THE THREE-SPIN MODEL

We have seen that there are exponentially many frozen
fragments which have only one state each. Fragments contain-
ing n blinkers have size 2n. However, there are other fragments
which are much larger in size. We typically find that larger
fragments correspond to ISs with shorter length (see Fig. 4).
We will now study the largest fragments whose IS turns out to
consist of either the null string (φ), 1, 11, or 111.

We will use the method of enumerative combinatorics of
characters [41–43,47] to evaluate the size of the fragments of
the three-spin model with OBC whose IS consist of only φ or
1’s. For clarity, we will use the symbols A and B, rather than
0 and 1, to denote the two characters.

We define four formal infinite sums, U0, U1, U2, and U3 as
sums of all distinct strings made of characters A and B that
correspond to IS which can be φ, B, B2, or B3, respectively.
We assign a weight x and y to each occurrence of A and B, and
the weight of a string having p number of B’s and q number
of A’s is xp yq. We denote the sum of weights of these formal
series by U0(x, y), U1(x, y), U2(x, y), and U3(x, y).

In the sum of terms U0(x, y), there are terms which contain
no A’s and only 4r B’s, and other terms, which have an even
number of A’s, must have the following structure:

U0 = φ

1 − B4
+

∑
r=0,1,2,3

∑
X

Br

1 − B4
AWAX, (C1)

where W is the sum over all possible substrings of between
A’s that reduce to B, so AWA reduces to ABA and therefore to
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B3. Moreover, X must be reducible to Bs such that r + 3 + s
≡ 0 mod 4. Then writing the different possibilities of r mod 4
explicitly, we obtain

U0 = φ

1 − B4
+ φ

1 − B4
AWAU1 + B

1 − B4
AWAU0

+ B2

1 − B4
AWAU3 + B3

1 − B4
AWAU2. (C2)

Then the generating function U0 in Eq. (C2) is given by

U0(x, y) = 1

1 − x4
+ y2

1 − x4
W (x, y)U1(x, y)

+ xy2

1 − x4
W (x, y)U0(x, y)

+ x2y2

1 − x4
W (x, y)U3(x, y)

+ x3y2

1 − x4
W (x, y)U2(x, y), (C3)

where W (x, y) denotes the weight of W . Since AWA must
reduce to B3, it must contain an even number of A’s, and
y2W (x, y) must have terms of the form xry2s where r + 2s = 3
mod 4, r � 1, and s � 1. Hence we can write

y2W (x, y) = xy2H (x, y), (C4)

where H (x, y) has terms of the form xpy2q where p + 2q = 0
mod 4.

In a similar manner, one can show that the generating
functions U1, U2, and U3 can be written as

U1(x, y) = x

1 − x4
+ xy2

1 − x4
W (x, y)U1(x, y)

+ y2

1 − x4
W (x, y)U2(x, y)

+ x3y2

1 − x4
W (x, y)U3(x, y)

+ x2y2

1 − x4
W (x, y)U0(x, y), (C5)

U2(x, y) = x2

1 − x4
+ x3y2

1 − x4
W (x, y)U0(x, y)

+ x2y2

1 − x4
W (x, y)U1(x, y)

+ xy2

1 − x4
W (x, y)U2(x, y)

+ y2

1 − x4
W (x, y)U3(x, y), (C6)

U3(x, y) = x3

1 − x4
+ y2

1 − x4
W (x, y)U0(x, y)

+ x3y2

1 − x4
W (x, y)U1(x, y)

+ x2y2

1 − x4
W (x, y)U2(x, y)

+ xy2

1 − x4
W (x, y)U3(x, y). (C7)

The generating functions given above can be combined as

V (x, y) = U0(x, y) + U1(x, y) + U2(x, y) + U3(x, y). (C8)

Using the identity (1 + x + x2 + x3)/(1 − x4) = 1/(1 − x)
and Eq. (C4), we find that

V (x, y) = 1

1 − x − xy2H (x, y)
. (C9)

We now set y = x. Then U0, U1, U2, U3 will become polyno-
mials in x with terms whose degrees are equal to 0, 1, 2, 3,
mod 4, respectively, and H (x, y) = H (x) will become a poly-
nomial in x4. We then obtain

V (x) = 1

1 − x − x3 H (x)
, (C10)

where V (x) is the generating function of all strings that reduce
to B’s only, and xH (x) is related to ISs which reduce to a
single B. By direct examination of strings of lengths 0 − 3
(namely, φ → 1, B → x, BB → x2, BBB → x3, and ABA →
xy2 = x3 for y = x), we find that the first few terms in V (x)
and H (x) are given by

V (x) = 1 + x + x2 + 2x3 + · · · ,

H (x) = 1 + · · · . (C11)

Next, we can write V (x) as

V (x) = V0(x) + x V1(x) + x2 V2(x) + x3 V3(x), (C12)

where V0, V1, V2, and V3 are all polynomials in x4. Using
Eq. (C10) and the fact that V0, V1, V2, and V3 are polynomials
in x4, we can show that

V0(x) = V (x) + V (−x) + V (ix) + V (−ix)

4
,

= 1 − 2x4H

(1 − 2x4H )2 − x4(1 + x4H2)2
, (C13)

V1(x) = V (x) − V (−x) − iV (ix) + iV (−ix)

4x
,

= 1 − x4 + x8 H3

(1 − 2x4H )2 − x4(1 + x4H2)2
,

V2(x) = V (x) + V (−x) − V (ix) − V (−ix)

4x2
,

= 1 + x4H2

(1 − 2x4H )2 − x4(1 + x4H2)2
, (C14)

V3(x) = V (x) − V (−x) + iV (ix) − iV (−ix)

4x3
,

= 1 + H − x4 H2

(1 − 2x4H )2 − x4(1 + x4H2)2
. (C15)

Next, we can show that V3(x) = 2V2(x) as follows:
(1) Given a string in V2, one can add a 1 to the left to obtain

a string in V3. Further, this process is reversible, i.e., given a
string in V3 beginning with 1, one can delete the 1 to obtain a
string in V2.

(2). Next, given a string belonging to V2 that begins with a
0, one can add a 1 on the right side of the string to obtain a
string in V3. This process is also reversible: given a string in
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TABLE V. Sizes of fragments generated from the root states
1010 · · · 10 (or 0101 · · · 01) and 111 · · · 11 for the four-site and three-
site models, respectively, with OBC. We observe that two fragments
of identical sizes of the four-site model with L sites maps to a single
fragment originated from the root state 1111 · · · 11 of the three-site
model with L − 1 sites.

L Dfour-site
L Dthree-site

L

3 1 2
4 2 3
5 3 4
6 4 6
7 12 12
8 12 19
9 19 28
10 28 46
11 46 92
12 92 150
13 150 232
14 232 396
15 396 792
16 792 1315
17 1315 2092
18 2092 3646
19 3646 7292
20 7292 12258
21 12258 19864
22 19864 35076
23 35076 70152
24 70152 118990

V3 which begins with a 0 and ends with a 1, we can delete the
1 to obtain a string in V2 which begins with a 0.

(3) Finally, given a string in V2, that begins with a 1, we can
replace the 1 by a 0 and add a 0 at the right end of the string.
This procedure thus produces a string in V3. This mapping is
again reversible similar to rules 1 and 2.

Taking V3 = 2V2 into account and using Eqs. (C14)
and (C15), we obtain the following quadratic equation for
H (x):

3x4 H2 − H + 1 = 0,

which implies H (x) = 1 ± √
1 − 12x4

6x4
. (C16)

Equation (C11) tells us that we have to take the lower sign
(minus) in the expression for H (x) in Eq. (C16). We then
obtain the final expression

V (x) = 1

1 − x − (
1−√

1−12x4

6x

) . (C17)

This is Eq. (12) in the main text.

APPENDIX D: COMPARISON BETWEEN THE GROWTHS
OF THE LARGEST FRAGMENTS IN FOUR-SITE

AND THREE-SITE MODELS

In this Appendix, we compare the sizes of the fragments
generated from the root state, 1010 · · · 10 (or 0101 · · · 01)
of the four-site model with the one generated from the root

TABLE VI. Sizes of fragments generated from the root configu-
rations 1010 · · · (or 0101 · · · 01) and 111 · · · 111 for the four-site and
three-site model, respectively, with PBC. We note that for L = 4n,
the two states belong to the same fragment in the four-site model,
whereas for L = 4n + 2, the four-site model exhibits two different
fragments with the same size DL , one coming from the root configu-
ration 101010 · · · 10 and the other from 010101 · · · 01.

L Dfour-site
L Dthree-site

L

4 6 3
6 10 10
8 38 19
10 106 106
12 300 150
14 1156 1156
16 2630 1315
18 12826 12826
20 24516 12258
22 143980 143980
24 237980 118990
26 1630084 1630084

state, 111 · · · 111 of the three-site model. Note that both the
states 1010 · · · 10 and 0101 · · · 01 of the four-site model map
to the same state, 111 · · · 111, of the three-site model under
bond-site mapping. We first we compare the cases with OBC.
As evinced in Table V, the sizes of fragments originating from
either of the root states 1010 · · · 10 and 0101 · · · 01 of the
four-site model with L sites are exactly the same as the one
obtained from the root state 111 · · · 111 of the three-site model
with L − 1 sites. This can be anticipated from the fact that the
bond-site mapping mentioned in Sec. II maps two states of the
four-site model with L sites to a single state of the three-site
model with L − 1 sites with OBC.

Next, we compare the fragment sizes for the four-site and
three-site models with PBC. We will assume that the system
size L is even to take the periodicity of the four-site model
into account. As shown in Table VI, the size of the fragment
for the root state 1010 · · · 10 (or 0101 · · · 01) of the four-site
model is two times larger than that of the three-site model for
the root state 111 · · · 11 for L = 4n. This is due to the fact that
the global symmetries C2 and C3 of the four-site model, as dis-
cussed in Eq. (3), are well-defined for L = 4n, and hence, the
states 1010 · · · 10 and 0101 · · · 01 lie in the same symmetry
sector and belong to a single fragment for a system with PBC.
On the other hand, we find that two different fragments arise
from the root states 1010 · · · 10 and 0101 · · · 01 in the four-site
model whose sizes are the same as the single fragment of the
three-site model for a chain with L = 4n + 2 sites with PBC.
We also note that the two root states of the four-site model are
not connected to each other by the global symmetries C2 and

TABLE VII. Size of the fragment Di,L versus L obtained from
the root state 101000101000 · · · for the three-site model with OBC.

L 6 12 18 24

Di,L 7 107 1906 35259
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FIG. 16. Plot of the ratio of the size Di of the fragment of interest
to the total dimension D = 2L of the Hilbert space (shown on a log
scale) versus L for a system with with OBC. The ratio is seen to
decrease exponentially with L.

C3 for L = 4n + 2, and therefore they generate two different
fragments of identical sizes.

APPENDIX E: FRAGMENTATION STRUCTURE
OF THE FOUR-SITE MODEL AWAY

FROM HALF-FILLING

Here we will discuss strong HSF away from half filling
in our model. In doing so, we consider the following root
states of the four-site model with OBC, · · · 011110011110 · · ·
or · · · 10001100001 · · · , which correspond to filling fractions
ν = 2/3 and 1/3, respectively. Both states map to the state
· · · 101000101000 · · · in the three-site model with OBC. Tak-
ing this state as a root configuration of the three-site model,
we find the dimension of this Hilbert space fragment by nu-
merical enumeration for L = 6, 12, 18, and 24; the results
are shown in Table VII. We have chosen the system sizes to
be multiples of 6 to ensure that the pattern of the root state
remains invariant as the system size is increased.

In Fig. 16, we show how this fragment grows with L by
the numerical enumeration method. Moreover, the numerical
fitting indicates that the size of this particular fragment grows
as 1.68L/L0.54. This again implies that Di/D goes to zero
for L → ∞, with D being the total dimension of the Hilbert
space, which indicates strong HSF [25]. This observation
leads us to conclude that our four-site model exhibits strong
HSF [25] at arbitrary filling fractions.

In Figs. 17(a) and 17(b), we show the half-chain entangle-
ment entropy as a function of the energy E for the fragment
generated from the root state 011110011110 · · · at ν = 2/3
for the four-site model with L = 24 and OBC; the size of
this fragment is 4906. The spectrum shows that most of the
eigenstates lie close to a single curve as in a thermal system.
Nevertheless, there is also a small fraction of states in the

FIG. 17. (a) Plot of SL/2 versus E for the fragment generated
from the root state, 0111001110 · · · for L = 24 at filling fraction ν =
2/3 for the four-site model with OBC. The fragment size is 4906.
The dash-dot line indicates the value of the entanglement entropy of
a random state in this subspace. The entanglement spectrum contains
a small fraction of eigenstates with low entanglement entropy in
the middle of the spectrum. (b) The level spacing ratio analysis for
the same fragment in the presence of a small uniformly distributed
random disorder with disorder strength w = 0.01. The probability
distribution of r̃ is close to the GOE distribution with 〈r̃〉 	 0.51.

middle of the spectrum with anomalously low entanglement
entropy. We further perform an analysis of the energy level
statistics within this fragment after adding a small amount
of randomly distributed on-site disorder of strength w = 0.01
for the same reasons mentioned in Sec. IV. The probability
distribution of r̃ within this fragment is found to follow the
GOE with 〈r̃〉 	 0.51, which is close to the GOE value. The
fluctuations in the analysis of r̃ arise due to the limited system
sizes. Since we want to keep the 01110 pattern of the root state
intact while generating this sector, we must take L to be a mul-
tiple of six. We have to limit our analysis to L = 24 since the
next system size L = 30 is numerically very difficult. We find
that our model always exhibits strong HSF irrespective of the
filling unlike models where a transition from strong to weak
HSF can occur as a function of the filling fraction [64,71].
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