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Topological quantum computation by way of braiding of Majorana fermions is not universal quantum
computation. There are several attempts to make universal quantum computation by introducing some additional
quantum gates or quantum states. However, there is a serious problem in embedding an M-qubit quantum gate
in the N-qubit system with N > M. This is an inherent problem to the Majorana system, where quantum gates
for logical qubits become nonlocal in terms of physical qubits in general because braiding operations preserve
the fermion parity. For instance, the CZ gate could not be embedded in the three-qubit system. We overcome this
embedding problem by introducing 2(N + 1)-body interactions of Majorana fermions in the N-qubit system. A
universal set of quantum gates is constructed for N logical qubits, leading to topological-nontopological hybrid
universal quantum computation. It would be more robust than conventional universal quantum computation
because the quantum gates generated by braiding are topologically protected.
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I. INTRODUCTION

A quantum computer is a promising next-generation com-
puter [1–3]. In order to execute any quantum algorithms,
universal quantum computation is necessary [4–6]. There are
various approaches to realize universal computation including
superconductors [7], photonic systems [8], quantum dots [9],
trapped ions [10], and nuclear magnetic resonance [11,12].
The Solovay-Kitaev theorem dictates that only the Hadamard
gate, the T gate (π/4 phase-shift) gate, and the CNOT gate are
enough for universal quantum computation. These one-qubit
and two-qubit quantum gates can be embedded in larger qubits
straightforwardly in these approaches.

Braiding of Majorana fermions is the most promising
method for topological quantum computation [13–17]. There
are various approaches to materialize Majorana fermions such
as fractional quantum Hall effects [16,18–20], topological
superconductors [21–27], and Kitaev spin liquids [28,29].
However, it can generate only a part of Clifford gate [30,31].
The entire Clifford gates are generated for two qubits but not
for more than three qubits [31]. Furthermore, only the Clifford
gates are not enough to exceed classical computers, which is
known as the Gottesman-Knill theorem [32–34].

There is a proposal [13] that the two-body and four-body
Majorana interaction operators are enough for universal quan-
tum computation, where the four-body operation is given by
B(4)

1234 ≡ exp[i(π/4)γ4γ3γ2γ1]. In addition, there are several
attempts to make universal quantum computation based on
Majorana fermions [20,24,30,35–44] . It is claimed that the
addition of the T gate or the magic state |0〉 + eiπ/4|1〉 is
enough for universal quantum computation because the ele-
mentary gates of the Solovay-Kitaev theorem are constructed.
It is known as the magic state distillation. In these proposals
it is taken for granted that an M-qubit quantum gate can be
embedded in the N-qubit system when N > M. However,

there are reports [45,46] to doubt it, where the CNOT gate
and the CZ gate cannot be embedded in three logical qubits.
Furthermore, it is impossible to construct the CCZ gate for
three logical qubit systems. This problem has not so far been
addressed seriously.

In this work, we investigate the origin of this embedding
problem peculiar to the Majorana system. Because braiding
preserves the fermion parity, it is necessary to construct log-
ical qubits from physical qubits by taking a parity definite
basis. We point out that a local quantum gate for logical qubits
corresponds to a nonlocal quantum gate for physical qubits
in general. Then it is highly nontrivial to embed an M-qubit
quantum gate in the N-qubit system with N > M in general.
Even if the Hadamard gate, the T gate and the CNOT gate are
constructed, it is not enough for universal quantum computa-
tion unless they can be embedded in the N-qubit system.

We overcome this embedding problem by introducing
2(N + 1)-body interactions of Majorana fermions in the
N-qubit system preserving the fermion parity. Instead of em-
bedding a certain gate in the N + 1 physical system, we
construct the concerned gate with the use of 2(N + 1)-body
interactions from the beginning so as to respect the Solovay-
Kitaev theorem. We systematically construct the Hadamard
gate, the T gate, the CNOT gate, and then Cs -phase shift
gates, CsNOT gates, CsSWAP gates, and others with an ar-
bitrary positive integer s. We have required the fermion parity
preservation because it is beneficial to use the braiding process
as much as possible due to its topological protection. By
combining topological quantum gates generated by braiding
and additional quantum gates generated by many-body in-
teractions of Majorana fermions, topological-nontopological
hybrid universal quantum computation is possible. It would
be more robust than conventional universal quantum compu-
tation because the quantum gates generated by braiding are
topologically protected.
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II. PHYSICAL QUBITS AND LOGICAL QUBITS

Majorana fermions are described by operators γα satisfy-
ing the anticommutation relations {γα, γβ} = 2δαβ . The braid
operator is defined by [14]

Bαβ = exp
[π

4
γβγα

]
= 1√

2
(1 + γβγα ). (1)

It satisfies B4
αβ = 1 and there is a corresponding antibraiding

operator B−1
αβ = B3

αβ .
We adopt the dense encoding of Majorana fermions. The

qubit basis is defined by [14]

|nN nN−1 · · · n1n0〉physical

≡ (c†
0)n0 (c†

1)n1 · · · (c†
N−1)nN−1 (c†

N )nN |0〉, (2)

with nα = 0 or 1, where ordinary fermion operators are con-
structed from two Majorana fermions as

cα = (γ2α+1 + iγ2α+2)/2. (3)

2(N + 1) Majorana fermions constitute N + 1 physical
qubits.

The braiding operation preserves the fermion parity,

Pαβ ≡ iγβγα, (4)

since it commutes with the braid operator Bαβ , [Bαβ, Pαβ ] =
0. It means that if we start with the even-parity state
|00 · · · 0〉physical, then the states after any braiding process
should have even fermion parity. Therefore, in order to
construct N logical qubits |nN · · · n2n1〉 logical, N + 1 physi-
cal qubits |nN · · · n2n1n0〉even

physical are necessary [47–49], where∑N
α=0 nα = 0 mod 2. We use the following abbreviation:

|ψN 〉even
phys ≡ |nN · · · n2n1n0〉even

physical, (5)

|ψN 〉logi ≡ |nN · · · n2n1〉logical. (6)

There are (N + 1)! correspondences between the logical
and physical qubits in general. However, we adopt the follow-
ing unique correspondence. When the logical qubit |ψN 〉logi is
given, we associate to it a physical qubit |ψN 〉even

phys by adding

one qubit n0 uniquely so that
∑N

α=0 nα = 0 mod 2. On the
other hand, when a physical qubit |ψN 〉even

phys is given, we asso-
ciate to it a logical qubit |ψN 〉logi just by eliminating the qubit
n0 . An example reads as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N︷ ︸︸ ︷
|0, · · · , 0, 0, 0〉
|0, · · · , 0, 0, 1〉
|0, · · · , 0, 1, 0〉
|0, · · · , 0, 1, 1〉
|0, · · · , 1, 0, 0〉
|0, · · · , 1, 0, 1〉

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

logical

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N+1︷ ︸︸ ︷
|0, · · · , 0, 0, 0, 0〉
|0, · · · , 0, 0, 1, 1〉
|0, · · · , 0, 1, 0, 1〉
|0, · · · , 0, 1, 1, 0〉
|0, · · · , 1, 0, 0, 1〉
|0, · · · , 1, 0, 1, 0〉

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

even

physical

.

(7)

We represent this correspondence as

|ψN 〉logi ⇔ |ψN 〉even
phys. (8)

This correspondence is different from those in the previous
works [13,45,46,48–50]. Accordingly, the detailed braiding
process for quantum gates are slightly different from the pre-
vious ones [45,46,48–50].

A local quantum gate for logical qubits corresponds to a
nonlocal quantum gate for physical qubits. For example, in
order to flip the qubit state from 0 to 1 in the third qubit in
logical qubits in Eq. (7), it is necessary to flip the first and
fourth qubits simultaneously in physical qubits.

III. EMBEDDING PROBLEM

There is a serious problem inherent to the Majorana system
in embedding an M-qubit quantum gate in the N-qubit system
with N > M. For example, the CZ gate is defined for the
two-qubit system, which is trivially embed in the three-qubit
system in usual quantum computation. However, this is not the
case in quantum computation based on Majorana fermions.
Indeed, it is impossible to realize the CZ gate only by braiding
in the three-qubit system.

The embedding is defined as follows. Let us embed an M-
qubit quantum gate in the N-qubit system with M = N − 1.
The action of the braiding operator Bαβ on the (N − 1) logical
qubits is represented by a quantum gate U even

αβ represented by
a 2N−1 × 2N−1 matrix U even

αβ as

Bαβ |nN−1 · · · n1n0〉even
phys = U even

αβ |nN−1 · · · n1〉logi. (9)

If the action of the braiding operator Bαβ on the N logical
qubits is represented by the quantum gate I2 ⊗ U even

αβ as

Bαβ |nN nN−1 · · · n1n0〉even
phys = (I2 ⊗ U even

αβ

)|nN nN−1 · · · n1〉logi,

(10)

then the embedding is said to be possible.
We examine the condition (10). The additional qubit nN is

either 0 or 1. When nN = 0, Eq. (9) leads to

Bαβ |0nN−1 · · · n1n0〉even
phys = |0〉 ⊗ U even

αβ |nN−1 · · · n1〉logi, (11)

because
∑N−1

α=0 nα = 0 mod 2. However, when nN = 1,
because

|1nN−1 · · · n1n0〉even
phys = |1〉 ⊗ |nN−1 · · · n1n0〉 odd

phys (12)

with
∑N−1

α=0 nα = 1 mod 2, we obtain

Bαβ |1nN−1 · · · n1n0〉even
phys = |1〉 ⊗ U odd

αβ |nN−1 · · · n1〉logi, (13)

where U odd
αβ is defined by the formula corresponding to Eq. (9)

in the parity-odd sector. When U odd
αβ = U even

αβ , the embed-
ding is possible because the condition (10) is satisfied with
Eqs. (11) and (13). On the other hand, when U odd

αβ �= U even
αβ ,

the embedding is impossible because the condition (10) is
violated. We present an explicit example of the case where
U odd

αβ �= U even
αβ in Appendix A 1: See (A11).

IV. QUANTUM GATES

A. 2M-body interactions

We overcome the embedding problem by introducing 2M-
body interactions to construct quantum gates acting on the N
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logical qubits. We define the 2M-body operator acting on N +
1 physical qubits by

B(2M )
α1α2···α2M

(θ ) ≡ exp
[
i(M−1)θγα2M · · · γα2γα1

]
= cos θ + iM−1γα2M · · · γα2γα1 sin θ. (14)

It keeps the parity, [B(2M )
α1α2···α2M−1α2M

, Pαβ ] = 0, with the fermion
parity operator (4), where γα and γβ are arbitrary Majorana
operators. It satisfies the unitary condition,(

B(2M )
α1α2···α2M−1α2M

(θ )
)†B(2M )

α1α2···α2M−1α2M
(θ ) = I. (15)

We introduce an abbreviation,

B(2M )
α (θ ) ≡ exp[iM−1θγα+2M−1γα+2M−2 · · · γα+1γα]. (16)

In what follows we adopt the convention that the direct prod-
uct UN ⊗ · · · ⊗ U2 ⊗ U1 of one-qubit gates U1, U2, . . . , and
UN acts on the N logical qubit state |nN · · · n2n1〉logi, where U1

acts on the first qubit n1, U2 acts on the second qubit n2, and
so on.

B. Braid operator

The simplest one is the two-body operator B(2)
αβ (θ ). It is the

braiding operation with the choice of θ = π/4,

Bαβ = B(2)
αβ

(π/4). (17)

C. Unitary gates

In the following, we study the action of the many-body
interaction on a quantum gate for the N logical qubit system,

B(2M )
α1α2···α2M

(θ )|ψN 〉even
phys = U |ψN 〉logi, (18)

which defines the quantum gate U represented by a 2N × 2N

matrix.

D. T gate

The T gate UT is given by setting θ = π/8, which is an
essential element of universal quantum computation. First, the
local rotation along the z axis is executed by the two-body
interaction acting on the N-qubit system,

B(2)
2n+1,2n+2(θ )|ψN 〉even

phys = I2N−n ⊗ Rz(2θ ) ⊗ I2n−1 |ψN 〉logi,

(19)

where Rz(θ ) = exp[−iθσz/2] for n � 2. The T gate acting on
the n qubit in the N-qubit system is given by

UT |ψN 〉logi = B(2)
2n+1,2n+2(π/8)|ψN 〉even

phys. (20)

E. Hadamard gate

We construct the Hadamard gate acting on the nth qubit of
N logical qubits as

U (n)
H ≡ I2N−n ⊗ UH ⊗ I2n−1 , (21)

where

UH = Rz

(π
4

)
Rx

(π
4

)
Rz

(π
4

)
, (22)

FIG. 1. (a) Decomposition of the CZ gate into a sequential
application of the S gates and the inverse of the SS gate. (b) Decom-
position of the CCZ gate into a sequential application of the T gates
the TTT gate, and the inverse of the TT gates. (c) Decomposition
of the CsZ gate into a sequential application of π/2s+1 phase shift
gate Uφ ≡ e−iπ/2s+1σz , Uφφ ≡ e−iπ/2s+1σz⊗σz , Uφ3 ≡ e−iπ/2s+1σz⊗σz⊗σz ,

and Uφs ≡ e−iπ/2s+1⊗s
1 σz .

with Rx(θ ) = exp[−iθσx/2] . The local rotation along the x
axis is executed by the 2n-body interaction,

B(2n)
2 (θ )|ψN 〉even

phys = I2N−n ⊗ Rx(2θ ) ⊗ I2n−1 |ψN 〉logi, (23)

with the use of the abbreviation (16). Hence, the Hadamard
gate acting on the nth qubit of N logical qubits is

U (n)
H |ψN 〉 logi = B(2n)

2

(π
8

)
B2n+1,2n+2

(π
8

)
B(2n)

2

(π
8

)
|ψN 〉even

phys,

(24)

by setting 2θ = π/4.

F. CZ gates

The CZ gate for two-qubit systems is decomposed into the
product of the ZZ rotation Rzz and the Z rotation Rz for the
controlled and the target qubits,

UCZ = eιπ/4U −1
SS (US ⊗ US), (25)

where we have defined the S gate US ≡ exp[−iπσz/4] and the
SS gate USS ≡ exp[−iπσz ⊗ σz/4]. See Fig. 1(a). The CZ gate
U m→n

CZ with the controlled qubit m and the target qubit n in N
qubits is given by

U m→n
CZ |ψN 〉 logi =B(4)

2m+1,2m+2,2n+1,2n+2

(
−π

4

)
× B2m+1,2m+2

(π
4

)
B2n+1,2n+2

(π
4

)
|ψN 〉even

phys.

(26)

See Eq. (B44) for the three-logical-qubit system and Eq. (B48)
for the four-logical-qubit system in Appendix B5.
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FIG. 2. (a1) Construction of the CNOT gate from the CZ gate
and the Hadamard gates. (a2) Construction of the CCNOT (Toffoli)
gate from the CCZ gate and the Hadamard gates. (a3) Construction
of the CsNOT gate from the CsZ gate and the Hadamard gates.
(b1) Construction of the SWAP gate from three CNOT gates. (b2)
Construction of the CSWAP (Fredkin) gate from three Toffoli gates.
(b3) Construction of the CsSWAP gate from the CsNOT gates.

G. Universal quantum computation

According to the Solovay-Kitaev theorem, universal quan-
tum computation is possible provided the Hadamard gate,
the T gate, and the CNOT gate UCNOT are given. Instead of
the CNOT gate we may use the CZ gate UCZ because of the
relation

UCNOT = (I2 ⊗ UH )UCZ(I2 ⊗ UH ), (27)

where the Hadamard gate is applied to the second qubit. See
Fig. 2(a1). By using Eq. (26), we obtain the CNOT gate U m→n

CNOT
with the controlled qubit m and the target qubit n embedded
in N qubits.

The SWAP gate is decomposed into a sequential applica-
tion of three CNOT gates

USWAP = U 1→2
CNOTU 2→1

CNOTU 1→2
CNOT, (28)

as shown in Fig. 2(b1).
The CCZ gate is decomposed into a sequential application

of the T gates, the inverse of the TT gates and the TTT gate,

UCCZ = eiπ/8UTTT
(
U 13

TT

)−1(
U 23

TT

)−1(
U 12

TT

)−1
(UT ⊗ UT ⊗ UT ),

(29)

where we have defined the T gate UT , the TT gate UTT, and
the TTT gate UTTT,

UT = exp [−iπσz/8], UTT = exp [−iπσz ⊗ σz/8],

UTTT = exp [−iπσz ⊗ σz ⊗ σz/8], (30)

as shown in Fig. 1(b).
The Toffoli (CCNOT) gate is constructed by applying the

Hadamard gate to the CCZ gate as in

UToffloi = (I4 ⊗ UH )UCCZ(I4 ⊗ UH ). (31)

See Fig. 2(a2). The Fredkin (CSWAP) gate is constructed by
a sequential application of three Toffoli gates as in

UFredkin = U (3,2)→1
Toffoli U (3,1)→2

Toffoli U (3,2)→1
Toffoli , (32)

where U (p,q)→r
Toffoli indicates that the controlled qubits are p and

q while the target qubit is r. See Fig. 2(b2).

Similarly, we systematically construct the Cs-phase shift
gate as shown in Fig. 1(c). Details are shown in Eq. (C7) in
Appendix C.

The CsNOT gate is constructed from CsZ gate as

UCsNOT = (I2s−2 ⊗ U (s)
H

)
UCsZ
(
I2s−2 ⊗ U (s)

H

)
, (33)

where the Hadamard gate is applied to nth qubit. See
Fig. 2(a3).

The CsSWAP gate is constructed from the CsZ gate as

UCsSWAP = U 1→1
CsNOTU 2→2

CsNOTU 1→1
CsNOT, (34)

where U p→p
CsNOT indicates that the target qubit is p and the others

are controlled qubits, where p indicates the complementary
qubits of the qubit p. See Fig. 2(b3).

Appendixes B and C are prepared for detailed analysis in
the case of small qubits to make clear a general analysis for
the N-qubit system.

V. EXPERIMENTAL REALIZATION

The two-body operation is realized by the unitary dynamics
during 0 � t � T ,

Bαβ (θ ) = exp[θγβγα] = exp [iHt/h̄], (35)

with H = (h̄θ/iT )γβγα . A 2N-body Majorana operation is
realized by a dynamics driven by 2N-body interaction of
Majorana fermions during 0 � t � T ,

B(2N )
α (θ ) = exp [iHt/h̄], (36)

with H = (iN−2h̄θ/T )γ2Nγ2N−1 · · · γ2γ1.
There are two possible experimental realizations. One is

based on topological superconductors. 2N-body interaction is
represented in terms of the N-body density operator [51],

γ2α1−1γ2α1γ2α2−1γ2α2 · · · γ2αN −1γ2αN

= iN
(
2ρα1 − 1

)(
2ρα2 − 1

) · · · (2ραN − 1
)
, (37)

by using the realization iγ2α−1γ2α = 2ρα − 1, where ρα =
c†
αcα . The other is the Kitaev spin liquid system. 2N-body

Majorana interactions are written in the form [75,77]

γ A
α1

γ B
α1

γ A
α2

γ B
α2

· · · γ A
αN

γ B
αN

∝ σ z
α1

σ z
α2

· · · σ z
αN

. (38)

See Appendix D for details.

VI. DISCUSSIONS

We have analyzed the embedding problem inherent to the
Majorana system and shown that universal quantum compu-
tation is possible by introducing many-body interactions of
Majorana fermions. The proposed quantum gates based on
many-body interactions of Majorana fermions are not topo-
logically protected. It is an interesting problem to construct
quantum algorithm, where the number of topologically pro-
tected quantum gates are maximized and the decoherence
problem is minimized.

We have adopted the dense encoding described by Eq. (7),
where 2(N + 1) Majorana fermions are used for N qubits. On
the other hand, 4N Majorana fermions are used for N qubits
in the sparce encoding [24,78]. The embedding problem also
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exists in the sparce encoding, which is solved by introduc-
ing many-body Majorana interactions as in the case of the
dense encoding. The dense encoding is more efficient than the
sparce encoding because the number of the necessary gates is
smaller. See details in Appendix E.

In passing we note that quantum simulation on Majorana
fermions is studied in superconducting qubits [52–54]. In
addition, the Kitaev chain is realized in coupled quantum dots
[55].
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APPENDIX A: RESULTS ON CONVENTIONAL BRAIDING

1. Embedding

We consider a one-dimensional chain of Majorana
fermions and only consider the braiding between adjacent Ma-
jorana fermions. We denote Bα ≡ Bα,α+1. The braid operators
Bα satisfies the Artin braid group relation [56]

BαBβ = BβBα for |α − β| � 2,

BαBα+1Bα = Bα+1BαBα+1. (A1)

The embedding of an M-qubit quantum gate to an N-qubit
system with M < N is a nontrivial problem in braiding of
Majorana fermions. There are two partial solutions. One is
setting additional qubits to be 0 as ancilla qubits, where every
quantum gates can be embedded. The other is not to use the
braiding B1. We discuss both of these in what follows.

2. One logical qubit

We discuss how to construct the one logical qubit [14].
Two ordinary fermions c1 and c2 are introduced from four
Majorana fermions as

c1 = 1
2 (γ1 + iγ2), c2 = 1

2 (γ3 + iγ4). (A2)

The basis of physical qubits is given by

|ψ1〉physical

= (|0〉, c†
1|0〉, c†

2|0〉, c†
1c†

2|0〉)t

≡ (|0, 0〉physical, |0, 1〉physical, |1, 0〉 physical, |1, 1〉physical )
t .

(A3)

By taking the even-parity basis as

|ψ1〉logical =
(|0〉

|1〉
)

logical

⇔
(|0, 0〉

|1, 1〉
)

physical

≡ |ψ1〉even
physical,

(A4)

the one logical qubit is constructed by projecting the two
physical qubits. This is the simplest example of Eq. (7) in the
main text.

Quantum gates

The braid operator B1 is written in terms of fermion
operators,

B1 = 1√
2

(1 + γ2γ1) = 1√
2

(1 + ic†
1c1 − ic1c†

1), (A5)

which operates on the two physical qubits (A3) as [14]

B1|ψ1〉physical = e−iπ/4

⎛
⎜⎜⎝

1 0 0 0
0 i 0 0
0 0 1 0
0 0 0 i

⎞
⎟⎟⎠
⎛
⎜⎜⎝

|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

physical

≡ U1

⎛
⎜⎜⎝

|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

physical

. (A6)

Taking the even-parity basis, the action is

B1|ψ1〉 even
physical = e−iπ/4

(
1 0
0 i

)(|0〉
|1〉
)

logical

≡ U even
1

(|0〉
|1〉
)

logical

. (A7)

The braid operator B1 is represented by

U even
1 = e−iπ/4US, (A8)

in terms of the S gate defined by

US ≡ diag(1, i), (A9)

when it acts on the one logical qubit.
On the other hand, taking the odd-parity basis in Eq. (A6),

the action is

B1|ψ1〉 even
physical = e−iπ/4

(
i 0
0 1

)(|0〉
|1〉
)

logical

≡ U odd
1

(|0〉
|1〉
)

logical

. (A10)

It follows from Eq. (A7) and Eq. (A10) that

U even
1 �= U odd

1 . (A11)

This is the simplest example of the embedding problem in the
main text. In the following, we only consider the even parity.

In what follows we represent Eq. (A7) or generalized ones
by

B1 
 U1 (A12)

or generalized ones, where B1 acts on even-parity physical
qubits which is represented by a matrix U1 acting on logical
qubits.

The braid operator B2 is written in terms of fermion
operators,

B2 = 1√
2

(1 + γ3γ2)

= 1√
2

(1 + ic2c†
1 + ic†

2c†
1 − ic2c1 − ic†

2c1). (A13)

045417-5



MOTOHIKO EZAWA PHYSICAL REVIEW B 110, 045417 (2024)

FIG. 3. (a) Square-root of NOT gate, (b) S gate, (c) Pauli Z gate, (d) Pauli X gate, (e) Pauli Y gate, and (f) Hadamard gate.

It operates on the two physical qubits as [14]

B2|ψ1〉physical = 1√
2

⎛
⎜⎜⎝

1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

physical

= Uxx

⎛
⎜⎜⎝

|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

physical

, (A14)

where

Uxx ≡ 1√
2

⎛
⎜⎜⎝

1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

⎞
⎟⎟⎠ = exp

[
−i

π

4
σx ⊗ σx

]
.

(A15)

In the even-parity basis, the action is

B2|ψ1〉 even
physical = 1√

2

(
1 −i
−i 1

)
|ψ1〉logical

= exp
[
−i

π

4
σx

]
|ψ1〉logical ≡ Rx|ψ1〉logical.

(A16)

It is represented as

B2 
 1√
2

(
1 −i
−i 1

)
= e−iπ/4U√

X , (A17)

where U√
X is the square root of X gate defined by

U√
X ≡ 1

2

(
1 + i 1 − i
1 − i 1 + i

)
. (A18)

The corresponding braiding is shown in Fig. 3(a).
The braiding operator B3 is written in terms of fermion

operators,

B3 = 1√
2

(1 + γ4γ3) = 1√
2

(1 + ic†
2c2 − ic2c†

2), (A19)

which operates on two physical qubits (A3) as [14]

B3|ψ1〉physical = e−iπ/4

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 i

⎞
⎟⎟⎠
⎛
⎜⎜⎝

|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

physical

.

(A20)

In the even-parity basis, the action is the same as (A8),

B3 
 e−iπ/4US, (A21)

where the S gate is defined by (A9). The corresponding braid-
ing is shown in Fig. 3(b).

The Pauli Z gate UZ is given by double braiding of B3,

UZ ≡ diag(1,−1) = U 2
S 
 iB2

3 . (A22)

The corresponding braiding is shown in Fig. 3(c).
The Pauli X gate (NOT gate) is given [16] by double

braiding of B2,

UX ≡
(

0 1
1 0

)

 iB2

2 . (A23)

The corresponding braiding is shown in Fig. 3(d).
Then, the Pauli Y gate is given by sequential applications

of B2 and B3,

UY ≡
(

0 −i
i 0

)
= iUXUZ 
 −B2

2B2
3 . (A24)

The corresponding braiding is shown in Fig. 3(e).
The Hadamard gate is defined by

UH ≡ 1√
2

(
1 1
1 −1

)
. (A25)

It is known to be generated by triple braids as [45,50]

UH 
 iB2B3B2. (A26)

The corresponding braiding is shown in Fig. 3(f).

3. Two logical qubits

In order to construct two logical qubits, we use six Ma-
jorana fermions γ1, γ2, γ3, γ4, γ5, and γ6. Three ordinary
fermion operators are given by

c1 = 1
2 (γ1 + iγ2), c2 = 1

2 (γ3 + iγ4),

c3 = 1
2 (γ5 + iγ6). (A27)
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FIG. 4. The braiding process for Pauli gates. (a) Pauli Z gate embedded in the first qubit, (b) Pauli Z gate embedded in the second qubit,
(c) two Pauli Z gates are embedded in the first and the second qubits, (d) Pauli X gate embedded in the first qubit, (e) Two Pauli X gates are
embedded in the first and the second qubits, (f) Hadamard gate embedded in the first qubit, and (g) Hadamard gate embedded in the second
qubit.

The basis of physical qubits are given by

physical = (|0〉, c†
1|0〉, c†

2|0〉, c†
1c†

2|0〉, c†
3|0〉, c†

1c†
3|0〉, c†

2c†
3|0〉, c†

1c†
2c†

3|0〉)t

≡ (|0, 0, 0〉physical, |0, 0, 1〉physical, |0, 1, 0〉 physical, |0, 1, 1〉physical, |1, 0, 0〉physical, |1, 0, 1〉 physical, |1, 1, 0〉physical, |1, 1, 1〉physical )
t .

(A28)

The explicit braid operators on the physical qubits are

B1 = I2 ⊗ I2 ⊗ US,

B2 = I2 ⊗ Uxx,

B3 = I2 ⊗ US ⊗ I2,

B4 = Uxx ⊗ I2,

B5 = US ⊗ I2 ⊗ I2. (A29)

Two logical qubits are constructed from three physical qubits
as ⎛

⎜⎜⎝
|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

logical

⇔

⎛
⎜⎜⎝

|0, 0, 0〉
|0, 1, 1〉
|1, 0, 1〉
|1, 1, 0〉

⎞
⎟⎟⎠

even

physical

. (A30)

In the logical qubit basis, the braiding operators are repre-
sented as

B1 
 e−iπ/4diag(1, i, i, 1),

B2 
 I2 ⊗ Rx,

B3 
 e−iπ/4diag(1, i, 1, i),

B4 
 Uxx,

B5 
 e−iπ/4diag(1, 1, i, i), (A31)

where Rx is defined by (A16) and Uxx is defined by (A15).

a. Pauli gates

The two-qubit Pauli gates are defined by

σk2 ⊗ σk1 , (A32)

where k1 and k2 take 0, x, y, and z. The Pauli Z gates are
generated by braiding B2k+1 with odd indices,

I2 ⊗ σZ 
 iB2
3, σZ ⊗ I2 
 iB2

5, σZ ⊗ σZ 
 −B2
5B2

3 .

(A33)

They are summarized as

(σZ )n2 ⊗ (σZ )n1 
 (iB2
5

)n2
(
iB2

3

)n1
, (A34)

where n1 and n2 take 0 or 1.
The Pauli X gates are generated by braiding with even

indices B2k ,

I2 ⊗ σX 
 iB2
2, σX ⊗ σX 
 iB2

4, I2 ⊗ σX 
 −B2
4B2

2 .

(A35)

It should be noted that B2
4 does not generate I2 ⊗ σX but

generates σX ⊗ σX . We show the braiding for Pauli gates in
Fig. 4.

Pauli Y gates are generated by sequential applications
of Pauli X gates and Pauli Z gates based on the relation
UY = iUXUZ . Thus, all of Pauli gates for two qubits can be
generated by braiding.

b. Hadamard gates

The Hadamard gate acting on the first qubit can be embed-
ded as

I2 ⊗ UH 
 iB2B3B2. (A36)

The Hadamard gate acting on the second qubit can be embed-
ded as

UH ⊗ I2 
 −B1B2B3B4B3B2B1. (A37)

These correspond to Eq. (21) in the main text. It requires
more braiding than the previous results [46,50], where three
braiding are enough. It is due to the choice of the correspon-
dence between the physical and logical qubits.
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FIG. 5. Braiding process for various two-qubit quantum gates. (a) CZ gate, (b) CNOT gate, (c) SWAP gate, (d) anti-CX gate, (e) iSWAP
gate, (f) DCNOT gate, (g) Molmer-Sorensen gate, (h) cross-resonance gate, and (i) Hadamard gate.

c. Quantum gates for two logical qubits

It is known that the controlled-Z (CZ) gate

UCZ = diag(1, 1, 1,−1) (A38)

is generated as [46]

UCZ 
 e−iπ/4B−1
5 (B3)−1B1. (A39)

See Fig. 5(a).
It is also known that the controlled-NOT (CNOT) gate

UCNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ (A40)

is generated by seven braiding [31,45,46], where braiding are
given by

UCNOT 
 −e−iπ/4B−1
5 B1B2B3B1B2B1. (A41)

See Fig. 5(b). On the other hand, there is a quantum circuit
decomposition formula,

UCNOT = (I2 ⊗ UH )UCZ(I2 ⊗ UH ), (A42)

which involves nine braiding.
The SWAP gate is defined by

USWAP ≡

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠, (A43)

which is realized by seven braiding as

USWAP 
 eiπ/4(B3)−1(B4)−1(B5)−1B3B4B3B1. (A44)

See Fig. 5(c). This is smaller than the previous result
using 15 braiding [46] based on the quantum circuit
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decomposition,

USWAP = (I2 ⊗ UH )UCZ(I2 ⊗ UH )(UH ⊗ I2)UCZ(UH ⊗ I2)(I2 ⊗ UH )UCZ(I2 ⊗ UH ). (A45)

We list up various quantum gates generated by braiding.
The anti-CNOT gate is defined by [57]

UCX ≡

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, (A46)

which is generated by seven braiding

UCX 
 eiπ/4B−1
5 B−1

1 B−1
2 B3B1B2B1. (A47)

It can be decomposed into UCX = (I2 ⊗ UX )UCNOT. If we use
this relation, then nine braiding are necessary. See Fig. 5(d).

The iSWAP gate is defined by

UiSWAP ≡

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠, (A48)

which is realized by the six braiding

UiSWAP 
 −B3B4B5B3B4B3. (A49)

See Fig. 5(e).
The double CNOT gate is defined by [58]

UDCNOT ≡

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠, (A50)

which is realized by

UDCNOT 
 B−1
2 B−1

3 B−1
4 B−1

5 B1B2B3B4. (A51)

See Fig. 5(f).
The Mølmer-Sørensen gate is defined by [59]

UMS ≡ 1√
2

⎛
⎜⎜⎝

1 0 0 i
0 1 −i 0
0 −i 1 0
i 0 0 1

⎞
⎟⎟⎠, (A52)

which is realized by

UMS 
 −iB3B4B5B4B3B1B1. (A53)

See Fig. 5(g).
The cross-resonance gate is defined by [60]

UCR ≡ 1√
2

⎛
⎜⎜⎝

0 0 1 i
0 0 i 1
1 −i 0 0
−i 1 0 0

⎞
⎟⎟⎠, (A54)

which is realized by

UCR 
 −B4B4B1B2B3B2B1. (A55)

See Fig. 5(h).

We define the entangled Hadamard gate by

U (2)
H =

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

⎞
⎟⎠, (A56)

which is realized by

U (2)
H 
 −e−iπ/4B5B4B3B2B1. (A57)

See Fig. 5(i). It is different from the cross product of the
Hadamard gates,

U (2)
H �= UH ⊗ UH . (A58)

We note that it is obtained by a permutation of the third and
fourth columns of the cross product of the Hadamard gates
given by

UH ⊗ UH =

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠, (A59)

which leads to a relation

UH ⊗ UH = UCNOTU (2)
H . (A60)

Hence, it is realized by

UH ⊗ UH 
 −B−1
5 B1B2B3B1B2B1B5B4B3B2B1. (A61)

Both U (2)
H and UH ⊗ UH are the Hadamard gates and they are

useful for various quantum algorithms.

d. Equal-coefficient states

The equal-coefficient state is constructed as

iB1B2B3B4B5|0, 0〉logical

= 1
2 (|0, 0〉logical + |0, 1〉logical + |1, 0〉logical + |1, 1〉logical )

≡ 1
2

(|0〉decimal
logical + |1〉decimal

logical + |2〉decimal
logical + |3〉decimal

logical

)
,

(A62)

where | j〉decimal
logical is a decimal representation of qubits. It is a

fundamental entangled state for two qubits.

4. Four physical qubits and three logical qubits

We use eight Majorana fermions to construct three logical
qubits,

c1 = 1
2 (γ1 + iγ2), c2 = 1

2 (γ3 + iγ4),

c3 = 1
2 (γ5 + iγ6). c4 = 1

2 (γ7 + iγ8). (A63)

The explicit braid actions on the physical qubits are

B1 
 exp
[
−i

π

4
I8 ⊗ σz

]
= I8US,

B2 
 exp
[
−i

π

4
I4 ⊗ σx ⊗ σx

]
= I4Uxx,

B3 
 exp
[
−i

π

4
I4 ⊗ σz ⊗ I2

]
= I4US ⊗ I2,

B4 
 exp
[
−i

π

4
I2 ⊗ σx ⊗ σx ⊗ I2

]
= I2 ⊗ Uxx ⊗ I2,

045417-9



MOTOHIKO EZAWA PHYSICAL REVIEW B 110, 045417 (2024)

FIG. 6. Pauli gates embedded in three qubits. (a) Pauli Z gate embedded in the first qubit, (b) Pauli Z gate embedded in the second qubit,
(c) Pauli Z gate embedded in the third qubit, (d) Pauli X gate embedded in the first qubit, (e) two Pauli X gates are embedded in the first and
second qubits, and (f) Two Pauli X gates are embedded in the second third qubits.

B5 
 exp
[
−i

π

4
I2 ⊗ σz ⊗ I4

]
= I2 ⊗ US ⊗ I4,

B6 
 exp
[
−i

π

4
σx ⊗ σx ⊗ I4

]
= Uxx ⊗ I4,

B7 
 exp
[
−i

π

4
σz ⊗ I8

]
= US ⊗ I8. (A64)

Three logical qubits are constructed from four physical qubits
as ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0, 0, 0〉
|0, 0, 1〉
|0, 1, 0〉
|0, 1, 1〉
|1, 0, 0〉
|1, 0, 1〉
|1, 1, 0〉
|1, 1, 1〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

logical

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0, 0, 0, 0〉
|0, 0, 1, 1〉
|0, 1, 0, 1〉
|0, 1, 1, 0〉
|1, 0, 0, 1〉
|1, 0, 1, 0〉
|1, 1, 0, 0〉
|1, 1, 1, 1〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

even

physical

. (A65)

Explicit matrix representations for the braiding operator are

B1 
 e−iπ/4diag(1, i, i, 1, i, 1, 1, i)

= exp

[
− iπ

4
σz ⊗ σz ⊗ σz

]
,

B2 
 I4 ⊗ Rx,

B3 
 e−iπ/4diag(1, i, 1, i, 1, i, 1, i) = e−iπ/4I4 ⊗ US,

B4 
 I2 ⊗ Uxx,

B5 
 e−iπ/4diag(1, 1, i, i, 1, 1, i, i) = e−iπ/4I2 ⊗ US ⊗ I2,

B6 
 Uxx ⊗ I2,

B7 
 e−iπ/4diag(1, 1, 1, 1, i, i, i, i) = e−iπ/4US ⊗ I4. (A66)

a. Pauli gates

The three-qubit Pauli gates are defined by

σk3 ⊗ σk2 ⊗ σk1 , (A67)

where k1, k2, and k3 take 0, x, y, and z. The Pauli Z gates are
generated by braiding operators B2k+1 with odd indices

I2 ⊗ I2 ⊗ σZ ⇔ iB2
3, I2 ⊗ σZ ⊗ I2 ⇔ iB2

5,

σZ ⊗ I2 ⊗ I2 ⇔ iB2
7, (A68)

They are summarized as

(σZ )n3 ⊗ (σZ )n2 ⊗ (σZ )n1 ⇔ (iB2
7

)n3
(
iB2

5

)n2
(
iB2

3

)n1
, (A69)

where n1, n2, and n3 take 0 or 1.
The Pauli X gates are generated by braiding operators with

even numbers,

I2 ⊗ I2 ⊗ σX 
 iB2
2, I2 ⊗ σX ⊗ σX 
 iB2

4,

σX ⊗ σX ⊗ I2 
 iB2
6 . (A70)

We show the corresponding braiding in Fig. 6. It is impossible
to construct logical gates corresponding to

I2 ⊗ σX ⊗ I2 and σX ⊗ I2 ⊗ I2 (A71)

solely by braiding. This problem is solved by introducing
many-body interactions of Majorana fermions as in Eq. (B37).

The other Pauli gates can be generated by sequential appli-
cations of the above Pauli gates.

b. Diagonal braiding

We first search braiding operators for the quantum gates
generated by odd double braiding,

Udiag 
 (B2
7

)n3
(
B2

5

)n2
(
B2

3

)n1
. (A72)

There are eight patterns represented by the Pauli Z gates,

diag(1, 1, 1, 1, 1, 1, 1, 1) 
 I2 ⊗ I2 ⊗ I2,

diag(1,−1, 1,−1, 1,−1, 1,−1) 
 I2 ⊗ I2 ⊗ σZ ⇔ iB2
3,

diag(1, 1,−1,−1, 1, 1,−1,−1) 
 I2 ⊗ σZ ⊗ I2 ⇔ iB2
5,

diag(1, 1, 1, 1,−1,−1,−1,−1) 
 σZ ⊗ I2 ⊗ I2 ⇔ iB2
7,

diag(1,−1,−1, 1, 1,−1,−1, 1) 
 I2 ⊗ σZ ⊗ σZ ⇔ −B2
5B2

3,
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diag(1, 1,−1,−1,−1,−1, 1, 1) 
 σZ ⊗ σZ ⊗ I2 ⇔ −B2
7B2

5,

diag(1,−1, 1,−1,−1, 1,−1, 1) 
 σZ ⊗ I2 ⊗ σZ ⇔ −B2
7B2

3,

diag(1,−1,−1, 1,−1, 1, 1,−1) 
 σZ ⊗ σZ ⊗ σZ

⇔ −iB2
7B2

5B2
3 . (A73)

Next, we search real and diagonal gates obtained by the
following odd braiding:

(B7)n3 (B5)n2 (B3)n1 . (A74)

We search states whose components are ±1. There are four
additional quantum gates, whose traces are zero TrUdiag = 0,

diag(1,−1,−1,−1, 1, 1, 1,−1) ⇔ iB−1
4 B3B2B1,

diag(1,−1, 1, 1,−1,−1, 1,−1) ⇔ iB−1
3 B4B2B1,

diag(1, 1,−1, 1,−1, 1,−1,−1) ⇔ iB−1
2 B3B4B1,

diag(1, 1, 1,−1, 1,−1,−1,−1) ⇔ −iB−1
4 B−1

3 B−1
2 B1.

(A75)

In addition, there are additional quantum gates, whose traces
are nonzero TrUdiag �= 0,

diag(1,−1,−1,−1,−1,−1,−1, 1) 
 −B4B3B2B1,

diag(1,−1, 1, 1, 1, 1,−1, 1) 
 B−1
4 B−1

3 B2B1,

diag(1, 1,−1, 1, 1,−1, 1, 1) 
 B−1
4 B−1

2 B3B1,

diag(1, 1, 1,−1,−1, 1, 1, 1) 
 B−1
3 B−1

2 B4B1.

(A76)

It is natural to anticipate that the CZ gate and the CCZ
gate are generated by even braiding because they are diagonal
gates. However, this is not the case by checking all 43 patterns
of braiding. As a result, the even braiding do not generate the
CZ gates,

I2 ⊗ UCZ = diag(1, 1, 1,−1, 1, 1, 1,−1),

UCZ ⊗ I2 = diag(1, 1, 1, 1, 1, 1,−1,−1), (A77)

and the CCZ gate,

UCCZ = diag(1, 1, 1, 1, 1, 1, 1,−1). (A78)

This problem is solved by introducing many-body interactions
of Majorana fermions as shown in the main text.

c. Hadamard gates

The Hadamard gate can be embedded in the first qubit as

I2 ⊗ I2 ⊗ UH 
 iB2B3B2, (A79)

as in the case of (A36). We also find that the Hadamard gate
can be embedded in the third qubit as

UH ⊗ I2 ⊗ I2 
 −iB1B2B3B4B5B6B5B4B3B2B1. (A80)

These correspond to Eq. (21) in the main text. On the other
hand, it is hard to embed the Hadamard gate in the second
qubit I2 ⊗ UH ⊗ I2. It is possible by introducing many-body
interactions of Majorana fermions. The Hadamard gate for the
N th qubit is given by

UH ⊗ I2N−2 
 B1B2 · · ·B2N−1B2NB2N−1 · · ·B2B1 (A81)

FIG. 7. [(a) and (b)] iSWAP gate embedded in three-qubit sys-
tems. (c) Three-qubit Hadamard transformation.

up to a phase factor.

d. Two-qubit quantum gates embedded in three-qubit
quantum gates

The iSWAP gate can be embedded in a three-qubit topo-
logical gate because it does not involve B1 and is given by

I2 ⊗ UiSWAP 
 −B3B4B5B3B4B3. (A82)

See Fig. 7(a). We also find the iSWAP gate can be embedded
as

UiSWAP ⊗ I2 
 −B5B6B7B5B6B5. (A83)

See Fig. 7(b).

e. Three-qubit quantum gates

We find that the three-qubit Hadamard transformation is
generated as

U (3)
H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


 −B7B6B5B4B3B2B1. (A84)

See Fig. 7(b). It is different from the cross product of the
Hadamard gate,

UH ⊗ UH ⊗ UH

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A85)
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There is a relation

UH ⊗ UH ⊗ UH = −U3PU (3)
H , (A86)

where U3P is defined by

U ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A87)

It is impossible to generate the W state by braiding

|W〉logical = 1√
3

(|000〉logical + |010〉logical + |100〉logical ),

(A88)

because the number of the nonzero terms of the W state is
3, which contradicts the fact that the number of the nonzero
terms must be 1, 2, 4, and 8 for three-qubit states generated
by braiding.

f. Embedding problem of the CZ gate

The CZ gate is given by the braiding e−iπ/4B−1
5 (B3)−1B1

for two logical qubits, whose matrix representation is

diag(1, 1, 1,−1, i,−i,−i,−i), (A89)

once it is embedded in three logical qubits. They are different,

e−iπ/4B−1
5 (B3)−1B1 �= I2 ⊗ UCZ

= diag(1, 1, 1,−1, 1, 1, 1,−1). (A90)

In general, M-quantum gates cannot be embedded in N qubit.
We solve the problem by introducing many-body interaction
of Majorana fermions in Eq. (26) in the main text

5. N logical qubits

The braid representation of 2N + 2 Majorana fermions is
equivalent to the π/2 rotation in SO(2N + 2), suggested by
the fact that braid operators are represented by the Gamma
matrices [47,48]. The number of the braid group is given by
[19]

|Image(B2n)| =
{

22n−1(2n)! for n=even

22n(2n)! for n=odd
. (A91)

The iSWAP gate is embedded as

Ik−2
2 ⊗ UiSWAP ⊗ IN−k

2 
 B2k+1B2k+2B2k+3B2k+1B2k+2B2k+1

(A92)

up to a phase factor.

a. Diagonal braiding

We consider odd braiding defined by

Bodd(n1, n2, . . . , nk ) ≡ B2nk−1B2nk−1−1 · · ·B2n1−1, (A93)

where nk is an integer satisfying 1 � nk � N + 1. They are
Abelian braiding because there are no adjacent braiding.

Then, there are only 4k patterns. Especially, we consider odd
double braiding defined by

(Bodd)2 ≡ (iB2
2nk−1

)(
iB2

2nk−1−1

) · · · (iB2
2n1−1

)
(A94)

are interesting because they are identical to

(Bodd)2 
 (σZ )mk (σZ )m2 · · · (σZ )m1 , (A95)

where mk = 0, 1. Namely every Pauli gates constructing from
the Pauli Z gate can be generated.

Next, we consider even braiding defined by

Beven(n1, n2, . . . , nk ) ≡ B2nkB2nk−1 · · ·B2n1 . (A96)

They are also the Abelian braiding, where each braiding
commutes each other. We also consider even double braiding
defined by

(Beven)2 ≡ (iB2
2nk

)(
iB2

2nk−1

) · · · (iB2
2n1

)
. (A97)

On the other hand, it is impossible to construct the Pauli X
gate except for the first qubit.

b. Hadamard transformation

The Hadamard transformation is used for the initial pro-
cess of various quantum algorithm such as the Kitaev phase
estimation algorithm, the Deutsch algorithm, the Deutsch-
Jozsa algorithm, the Simon algorithm, the Bernstein-Vazirani
algorithm, the Grover algorithm, and the Shor algorithm. It is
generated by the braiding

U (N )
H 
 B2N+1B2N · · ·B2B1, (A98)

up to a phase factor. The equal-coefficient state is generated
as

U (N )
H |0, 0〉logical ∝

2N∑
j=1

| j〉logical, (A99)

where | j〉logical is the decimal representation of the qubit.

APPENDIX B: 2N-BODY UNITARY EVOLUTION

1. Quantum gates for one logical qubit

The two-body Majorana operator B1(θ ) is written in terms
of fermion operators,

B1(θ ) = cos θ + γ2γ1 sin θ

= [cos θ + (ic†
1c1 − ic1c†

1) sin θ ], (B1)

which operates on two physical qubits (A3) as

B1(θ )|1〉physical=

⎛
⎜⎜⎝

e−iθ 0 0 0
0 eiθ 0 0
0 0 e−iθ 0
0 0 0 eiθ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

physical

.

(B2)

Taking the even-parity basis, the action is

B1(θ )|1〉even
physical = e−iθ

(
1 0
0 e2iθ

)(|0〉
|1〉
)

logical

. (B3)
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It is the arbitrary phase-shift gate. Especially, by setting θ =
π/8, the T gate is constructed as

UT ≡ diag(1, eiπ/4). (B4)

It is identical to the rotation along the z axis,

B1(θ ) 
 Rz(2θ ), (B5)

with

Rz(θ ) ≡ exp

[
−i

θ

2
σz

]
=
(

e−iθ/2 0
0 eiθ/2

)
. (B6)

The operator B2 is written in terms of fermion operators,

B2(θ ) = cos θ + γ3γ2 sin θ

= cos θ + (ic2c†
1 + ic†

2c†
1 − ic2c1 − ic†

2c1) sin θ, (B7)

which operates on two physical qubits (A3) as [14],

B2(θ )physical

=

⎛
⎜⎜⎝

cos θ 0 0 −i sin θ

0 cos θ −i sin θ 0
0 −i sin θ cos θ 0

−i sin θ 0 0 cos θ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

physical

.

(B8)

In the even-parity basis, the action is

B2(θ ) =
(

cos θ −i sin θ

−i sin θ cos θ

)
≡ Rx(2θ ), (B9)

which is identical to the rotation along the x axis,

B2(θ ) = Rx(2θ ), (B10)

with

Rx(θ ) ≡ exp

[
−i

θ

2
σx

]
=
(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)
. (B11)

The operator B3(θ ) is written in terms of fermion operators

B3(θ ) = cos θ + γ4γ3 sin θ = cos θ + (ic†
2c2 − ic2c†

2) sin θ,

(B12)

which operates on two physical qubits (A3) as [14]

B3(θ )|1〉physical=

⎛
⎜⎜⎝

e−iθ 0 0 0
0 e−iθ 0 0
0 0 eiθ 0
0 0 0 eiθ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

physical

.

(B13)

In the even-parity basis, the action is the same as (B3),

B3(θ )|1〉even
physical = e−iθ

(
1 0
0 e2iθ

)(|0〉
|1〉
)

logical

. (B14)

The rotation along the y axis is defined by

Ry(θ ) ≡ exp

[
−i

θ

2
σy

]
, (B15)

and is realized by the sequential operations

Ry(θ ) = Rz

(π
2

)
Rx(θ )Rz

(
−π

2

)
. (B16)

2. Three physical qubits

Next we study the six Majorana fermion system. The ex-
plicit actions on the physical qubits are

B1(θ ) 
 exp [−iθ I4 ⊗ σz] = I2 ⊗ I2 ⊗ Rz(2θ ),

B2(θ ) 
 exp [−iθ I2 ⊗ σx ⊗ σx] = I2 ⊗ Uxx(θ ),

B3(θ ) 
 exp [−iθ I2 ⊗ σz ⊗ I2] = I2 ⊗ Rz(2θ ) ⊗ I2,

B4(θ ) 
 exp [−iθσx ⊗ σx ⊗ I2] = Uxx ⊗ I2,

B5(θ ) 
 exp [−iθσz ⊗ I4] = Rz(2θ ) ⊗ I4. (B17)

3. Two logical qubits

Two logical qubits are constructed from three physical
qubits by taking the even-parity basis. The action of B1(θ )
to the logical qubit is

B1(θ ) 
 diag(e−iθ , eiθ , eiθ , e−iθ ), (B18)

which is identical to the ZZ interaction

B1(θ ) 
 Uzz(2θ ), (B19)

with

Uzz(θ ) ≡ exp

[
−i

θ

2
σz ⊗ σz

]
. (B20)

The action of B4(θ ) on the logical qubit is

B4(θ ) 


⎛
⎜⎜⎝

cos θ 0 0 −i sin θ

0 cos θ −i sin θ 0
0 −i sin θ cos θ 0

−i sin θ 0 0 cos θ

⎞
⎟⎟⎠,

(B21)

which is identical to the xx interaction

B4(θ ) 
 Uxx(2θ ), (B22)

with

Uxx(θ ) ≡ exp

[
−i

θ

2
σx ⊗ σx

]
. (B23)

The action of B3(θ ) and B5(θ ) on the logical qubit is

B3(θ ) 
 diag(e−iθ , eiθ , e−iθ , eiθ ) = I2 ⊗ Uz(θ ),

B5(θ ) 
 diag(e−iθ , e−iθ , eiθ , eiθ ) = Uz(θ ) ⊗ I2. (B24)

The action of B2(θ ) on the logical qubit is

B2(θ ) 


⎛
⎜⎜⎝

cos θ −i sin θ 0 0
−i sin θ cos θ 0 0

0 0 cos θ −i sin θ

0 0 −i sin θ cos θ

⎞
⎟⎟⎠,

(B25)

which is rewritten in the form of

B2(θ ) 
 I2 ⊗ Rx(2θ ),

B2345(θ ) 
 Rx(2θ ) ⊗ I2. (B26)
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a. Controlled phase-shift gate

We find

B6(θ3)B3(θ2)B1(θ1)


 diag(e−i(θ1+θ2+θ3 ), ei(θ1+θ2−θ3 ), ei(θ1−θ2+θ3 ), ei(−θ1+θ2+θ3 ) ).
(B27)

The controlled phase-shift gate with an arbitrary phase is
constructed by setting θ1 = −θ2 = −θ3 = −θ ,

B5(−θ )B3(θ )B1(θ ) 
 diag(e−iθ , e−iθ , e−iθ , e3iθ )

= e−iθ diag(1, 1, 1, e4iθ ). (B28)

Especially, the CZ gate is constructed by setting θ = π/4.

b. Controlled-unitary gate

It is known that the controlled unitary gate is constructed
as [61]

UC-U = (I2 ⊗ UA)UCNOT(I2 ⊗ UB)UCNOT(I2 ⊗ UC ) (B29)

with

UA ≡ Rz(β )Ry

(γ
2

)
, UB ≡ Ry

(
−γ

2

)
Rz

(
−β + δ

2

)
,

UC ≡ Rz

(
δ − β

2

)
, (B30)

because

UAUBUC = I4 (B31)

and

UAXUBXUC = Rz(β )Ry(γ )Rz(δ) = U1bit. (B32)

In the Majorana system, the basic rotations are not along the y
axis but the x axis. The similar decomposition is possible only
by using the rotations along the z and x axes as

UA = Rz

(
β + π

2

)
Rx

(γ
2

)
,

UB = Rx

(
−γ

2

)
Rz

(
−β + δ

2

)
,

UC = Rz

(
δ − β − π

2

)
. (B33)

The proof is similar. First, we have

UAUBUC = 1,

where we have used the relation

Rj (θ1)Rj (θ2) = Rj (θ1 + θ2) (B34)

for j = x, y, and z. Next, we have

UAXUBXUC = U1bit,

where we have used the relation

R(θ )X = XR(−θ ). (B35)

Hence, the controlled unitary gate is implemented by two-
body Majorana interaction.

4. Four physical qubits

We consider eight Majorana fermion system. The explicit
actions on four physical qubits are given by

B1 
 I8 ⊗ Rz(2θ ),
B2 
 I4 ⊗ Uxx(θ ),
B3 
 I4 ⊗ Rz(2θ ) ⊗ I2,

B4 
 I2 ⊗ Uxx(θ ) ⊗ I2,

B5 
 I2 ⊗ Rz(2θ ) ⊗ I4,

B6 
 Uxx(θ ) ⊗ I4,

B7 
 Rz(2θ ) ⊗ I8, (B36)

where Rz is defined in (B6) and Uxx is defined in (B23). We
summarize results on constructing full set of Pauli Z gate for
three logical qubits in the following table:

Four physical qubits Three logical qubits
B12(θ ) exp [−iθ I8 ⊗ σz] exp [−iθσz ⊗ σz ⊗ σz]
B34(θ ) exp [−iθ I4 ⊗ σz ⊗ I2] exp [−iθ I4 ⊗ σz]
B56(θ ) exp [−iθ I2 ⊗ σz ⊗ I4] exp [−iθ I2 ⊗ σz ⊗ I2]
B78(θ ) exp [−iθσz ⊗ I8] exp [−iθσz ⊗ I4]

B(4)
1234(θ ) exp [−iθ I4 ⊗ σz ⊗ σz] exp [−iθσz ⊗ σz ⊗ I2]

B(4)
1256(θ ) exp [−iθ I2 ⊗ σz ⊗ I2 ⊗ σz] exp [−iθσz ⊗ I2 ⊗ σz]

B(4)
1278(θ ) exp [−iθσz ⊗ I2 ⊗ I2 ⊗ σz] exp [−iθ I2 ⊗ σz ⊗ σz]

B(4)
3456(θ ) exp [−iθ I2 ⊗ σz ⊗ σz ⊗ I2] exp [−iθ I2 ⊗ σz ⊗ σz]

B(4)
3478(θ ) exp [−iθσz ⊗ I2 ⊗ σz ⊗ I2] exp [−iθσz ⊗ I2 ⊗ σz]

B(4)
5678(θ ) exp [−iθσz ⊗ σz ⊗ I2 ⊗ I2] exp [−iθσz ⊗ σz ⊗ I2]

B(6)
123456(θ ) exp [−iθ I2 ⊗ σz ⊗ σz ⊗ σz] exp [−iθσz ⊗ I4]

B(6)
123478(θ ) exp [−iθσz ⊗ I2 ⊗ σz ⊗ σz] exp [−iθ I2 ⊗ σz ⊗ I2]

B(6)
125678(θ ) exp [−iθσz ⊗ σz ⊗ I2 ⊗ σz] exp [−iθ I4 ⊗ σz]

B(6)
345678(θ ) exp [−iθσz ⊗ σz ⊗ σz ⊗ I2] exp [−iθσz ⊗ σz ⊗ σz]

B(8)
12345678(θ ) exp [−iθσz ⊗ σz ⊗ σz ⊗ σz] exp [−iθ I8]

(B37)
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It follows from Eq. (B37) that

B12(θ ) ≈ B345678(θ ), B34(θ ) ≈ B125678(θ ),

B56(θ ) ≈ B123478(θ ), B78(θ ) ≈ B123456(θ ),

B1234(θ ) ≈ B5678(θ ), B1256(θ ) ≈ B3478(θ ),

B1278(θ ) ≈ B3456(θ ), (B38)

showing that the complementary operators Bα (θ ) and Bα (θ )
give an identical logical quantum gate, where α indicates
the complementary set of α. For instance, α = 56 and α =
123478 in the case of N = 4.

5. Three logical qubits

Three logical qubits are constructed from four physical
qubits by taking the even-parity basis,

B12 
 diag(e−iθ , eiθ , eiθ , e−iθ , eiθ , e−iθ , e−iθ , eiθ )

= exp [−iθσz ⊗ σz ⊗ σz],

B23 
 I2 ⊗ I2 ⊗ Rx(2θ ),

B34 
 exp [−iθ I2 ⊗ I2 ⊗ σz] = I2 ⊗ I2 ⊗ Rz(2θ ),

B45 
 I2 ⊗ Uxx(2θ ),

B56 
 exp [−iθ I2 ⊗ σz ⊗ I2] = I2 ⊗ Rz(2θ ) ⊗ I2,

B67 
 Uxx(2θ ) ⊗ I2,

B78 
 exp [−iθσz ⊗ I4] = Rz(2θ ) ⊗ I4. (B39)

We find that controlled-controlled phase shift gate cannot
be implemented only by diagonal braiding. It is proved by
counting the number of the degrees of freedom. We need to
tune seven parameters for the diagonal quantum gates. On the
other hand, there are only three independent angle because the
diagonal operators are B1, B3, and B5. Hence, it is impossible
to construct controlled-controlled phase shift gate in general.
However, this problem is solved by introducing many-body
Majorana interaction,

UCCφ 
 B12

(
φ

8

)
B34

(
φ

8

)
B56

(
φ

8

)
B78

(
φ

8

)

× B(4)
1234

(
−φ

8

)
B(4)

1278

(
−φ

8

)
B(4)

1256

(
−φ

8

)
. (B40)

Especially, the CCZ gate is constructed as follows:

UCCZ 
 B12

(π
8

)
B34

(π
8

)
B56

(π
8

)
B78

(π
8

)
× B(4)

1234

(
−π

8

)
B(4)

1278

(
−π

8

)
B(4)

1256

(
−π

8

)
. (B41)

The Toffoli gate (i.e., CCNOT gate) is constructed by applying
the Hadamard gate to the CCZ gate as in

UToffloi = (I4 ⊗ UH )UCCZ(I4 ⊗ UH ). (B42)

See Fig. 2(a2) in the main text.
The Fredkin (i.e., CSWAP) gate is constructed by sequen-

tial applications of three Toffoli gates as in

UFredkin = U (3,2)→1
Toffoli U (3,1)→2

Toffoli U (3,2)→1
Toffoli . (B43)

See Fig. 2(b2) in the main text.

For example, the CZ gate in three qubits are embedded as

U 3→2
CZ = UCZ ⊗ I2 = eiπ/4B56

(π
4

)
B78

(π
4

)
B(4)

5678

(
−π

4

)
,

U 3→1
CZ = eiπ/4B34

(π
4

)
B78

(π
4

)
B(4)

3478

(
−π

4

)
,

U 2→1
CZ = I2 ⊗ UCZ = eiπ/4B34

(π
4

)
B56

(π
4

)
B(4)

3456

(
−π

4

)
,

(B44)

where U p→q
CZ indicates that the controlled qubit is p and the

target qubit is q. The CCφ phase-shift gate acting on three
logical qubits in given by

UCCφ = eiφ/8B12

(
φ

8

)
B34

(
φ

8

)
B56

(
φ

8

)
B78

(
φ

8

)

× B(4)
1234

(
−φ

8

)
B(4)

1278

(
−φ

8

)
B(4)

1256

(
−φ

8

)
.

(B45)

Especially, the CCZ gate is constructed as follows:

UCCZ = eiπ/8B12

(π
8

)
B34

(π
8

)
B56

(π
8

)
B78

(π
8

)
× B(4)

1234

(
−π

8

)
B(4)

1256

(
−π

8

)
B(4)

1278

(
−π

8

)
. (B46)

6. Four logical qubits

We summarize results on constructing full set of Pauli Z
gate for four logical qubits in the following table:

Four logical qubits
B12(θ ) exp [−iθσz ⊗ σz ⊗ σz ⊗ σz]
B34(θ ) exp [−iθ I8 ⊗ σz]
B56(θ ) exp [−iθ I4 ⊗ σz ⊗ I2]
B78(θ ) exp [−iθ I2 ⊗ σz ⊗ I4]
B9,10(θ ) exp [−iθσz ⊗ I8]

B(4)
1234(θ ) exp [−iθσz ⊗ σz ⊗ σz ⊗ I2]

B(4)
1256(θ ) exp [−iθσz ⊗ σz ⊗ I2 ⊗ σz]

B(4)
1278(θ ) exp [−iθσz ⊗ I2 ⊗ σz ⊗ σz]

B(4)
1290(θ ) exp [−iθ I2 ⊗ σz ⊗ σz ⊗ σz]

B(4)
3456(θ ) exp [−iθ I2 ⊗ I2 ⊗ σz ⊗ σz]

B(4)
3478(θ ) exp [−iθ I2 ⊗ σz ⊗ I2 ⊗ σz]

B(4)
3490(θ ) exp [−iθσz ⊗ I4 ⊗ σz]

B(4)
5678(θ ) exp [−iθ I2 ⊗ σz ⊗ σz ⊗ I2]

B(4)
5690(θ ) exp [−iθσz ⊗ I2 ⊗ σz ⊗ I2]

B(4)
7890(θ ) exp [−iθσz ⊗ σz ⊗ I4]

, (B47)

where 0 is an abbreviation of 10. The CZ gate is embedded as

U 2→1
CZ = I4 ⊗ UCZ 
 B34

(π
4

)
B56

(π
4

)
B(4)

3456

(
−π

4

)
,

U 3→2
CZ = I2 ⊗ UCZ ⊗ I2 
 B56

(π
4

)
B78

(π
4

)
B(4)

5678

(
−π

4

)
,

U 4→3
CZ = UCZ ⊗ I4 
 B78

(π
4

)
B9,10

(π
4

)
B(4)

7890B
(4)
7890,
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U 3→1
CZ = B34

(π
4

)
B78

(π
4

)
B(4)

3478

(
−π

4

)
,

U 4→2
CZ = B56

(π
4

)
B9,10

(π
4

)
B(4)

5690

(
−π

4

)
. (B48)

The CCCφ gate is explicitly constructed as

UC3φ =B34

(
φ

16

)
B56

(
φ

16

)
B78

(
φ

16

)
B90

(
φ

16

)

× B(4)
1234

(
φ

16

)
B(4)

1256

(
φ

16

)
B(4)

1278

(
φ

16

)

× B(4)
1290

(
φ

16

)
B(4)

3456

(
− φ

16

)
B(4)

3478

(
− φ

16

)

× B(4)
3490

(
− φ

16

)
B(4)

5678

(
φ

16

)
B(4)

5690

(
− φ

16

)

× B(4)
7890

(
− φ

16

)
B(4)

12

(
− φ

16

)
. (B49)

7. N + 1 physical qubits

We consider the 2N + 2 Majorana fermion system. The
explicit actions of the adjacent braiding on N + 1 physical
qubits are given by

B12(θ ) 
 I2N ⊗ Rz(2θ ),

B34(θ ) 
 I2N−2 ⊗ Rz(2θ ) ⊗ I2,

· · ·
B2n−1,2n(θ ) 
 I2N−2n+2 ⊗ Rz(2θ ) ⊗ I2n−2,

· · ·
B2N+1,2N+2(θ ) 
 Rz(2θ ) ⊗ I2N , (B50)

for odd numbers, and

B23(θ ) 
 I2N−2 ⊗ Uxx(θ ),

· · ·
B2n,2n+1(θ ) 
 I2N−2n ⊗ Uxx(θ ) ⊗ I2n−2,

· · ·
B2N,2N+1(θ ) 
 Uxx(θ ) ⊗ I2N−2, (B51)

for even numbers, where

Rz(θ ) ≡ exp [−i(θ/2)σz] = diag(e−iθ/2, eiθ/2) (B52)

is the rotation along the z axis acting on one qubit and

Uxx(θ ) ≡ exp [−i(θ/2)σx ⊗ σx] (B53)

is the XX gate acting on two qubits.

APPENDIX C: N LOGICAL QUBITS

N logical qubits are constructed from N + 1 even physical
qubits based on the correspondence,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N︷ ︸︸ ︷
|0, · · · , 0, 0, 0〉
|0, · · · , 0, 0, 1〉
|0, · · · , 0, 1, 0〉
|0, · · · , 0, 1, 1〉
|0, · · · , 1, 0, 0〉
|0, · · · , 1, 0, 1〉

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

logical

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N+1︷ ︸︸ ︷
|0, · · · , 0, 0, 0, 0〉
|0, · · · , 0, 0, 1, 1〉
|0, · · · , 0, 1, 0, 1〉
|0, · · · , 0, 1, 1, 0〉
|0, · · · , 1, 0, 0, 1〉
|0, · · · , 1, 0, 1, 0〉

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

even

physical

.

(C1)

The explicit actions of the braiding on even physical qubits
corresponding to Eq. (B50) are

B12(θ ) 
 exp

⎡
⎣−iθ

N⊗
j=1

σz

⎤
⎦,

B34(θ ) 
 I2N−2 ⊗ Rz(2θ ),

· · ·
B2n−1,2n(θ ) 
 I2N−2n+2 ⊗ Rz(2θ ) ⊗ I2n−4

= exp [−iθ I2N−2n+2 ⊗ σz ⊗ I2n−4],

· · ·
B2N−3,2N−2(θ ) 
 I2 ⊗ Rz(2θ ) ⊗ I2N−2n−4

= exp [−iθ I2 ⊗ σz ⊗ I2N−2n−4],

B2N+1,2N+2(θ ) 
 Rz(2θ ) ⊗ I2N−2n−2

= exp [−iθσz ⊗ I2N−2n−2], (C2)

for odd numbers, where the local z rotation Rz(2θ ) is made
for an arbitrary qubit. Those corresponding to Eq. (B51)
are

B23(θ ) 
 I2N−2 ⊗ Rx(2θ ),

B45(θ ) 
 I2N−4 ⊗ Uxx(2θ ),

B67(θ ) 
 I2N−6 ⊗ Uxx(2θ ) ⊗ I2,

· · ·
B2n,2n+1(θ ) 
 I2N−2−2n ⊗ Uxx(2θ ) ⊗ I2n−2,

· · · ,

B2N,2N+1(θ ) 
 Uxx(2θ ) ⊗ I2N−4, (C3)

for even numbers, where only the local x rotation Rx(2θ )
acting on the first qubit is made by the braiding B23(θ ), while
Uxx(2θ ) is given by Eq. (B23). On the other hand, by using
2N + 2-body interactions of Majorana fermions, the local x
rotation is made as in

B23(θ ) 
 I2N−2 ⊗ Rx(2θ ),

B(4)
2 (θ ) 
 I2N−4 ⊗ Rx(2θ ) ⊗ I2,

B(6)
2 (θ ) 
 I2N−6 ⊗ Rx(2θ ) ⊗ I4,

· · ·
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B(2N−2)
2 (θ ) 
 I2 ⊗ Rx(2θ ) ⊗ I2N−4,

B(2N )
2 (θ ) 
 Rx(2θ ) ⊗ I2N−2, (C4)

with B(2N )
α (θ ) defined by Eq. (16) in the main text, where

Rx(θ ) ≡ exp

[
−i

θ

2
σx

]
=
(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)
(C5)

is the rotation along the x axis acting on one qubit.
Any one-qubit gate is given by

U1bit(θ, φ) = ei(φ+π )/2Rz(φ + π )UH Rz(θ )UH

=
(

cos θ
2 −i sin θ

2

ieiφ sin θ
2 −eiφ cos θ

2

)
. (C6)

The Cs-phase shift gate is a diagonal operator. Using the
relation

UCsφ = e
iφ

2s+1

2s+1−1∏
q=1

exp

⎡
⎣ (−1)Mod2

∑s+1
p=1 ps

2s+1

s+1⊗
p=1

(σz )qp

⎤
⎦ (C7)

with qp = 0, 1, it is constructed as

UCsφ = e
iφ

2s+1

2n∏
q=1

Bodd,q

(
φ

2s+1

) 2s−1∏
r=1

Beven,r

(
− φ

2s+1

)
, (C8)

where Bodd contains odd number of σz operators for logical
qubits, while Beven contains even number of σz operators for
logical qubits. By setting φ = π , we obtain the CrZ gate.

For example,

UCφ ≡ {1, 1, 1, eiφ} = eiφ/4e− iφ
4 I2⊗σz e− iφ

4 σz⊗I2 e
iφ
4 σz⊗σz ,

UCCφ ≡ {1, 1, 1, 1, 1, 1, 1, eiφ}
= eiφ/8e− iφ

8 I2⊗I2⊗σz e− iφ
8 I2⊗σz⊗I2 e− iφ

8 σz⊗σz⊗I2 e
iφ
8 I2⊗σz⊗σz e

iφ
8 σz⊗I2⊗σz e

iφ
8 σz⊗σz⊗I2 e− iφ

8 σz⊗σz⊗σz ,

UCCCφ ≡ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, eiφ}
= eiφ/16e− iφ

16 I2⊗I2⊗I2⊗σz e− iφ
16 I2⊗I2⊗σz⊗I2 e− iφ

16 I2⊗σz⊗I2⊗I2 e− iφ
16 σz⊗I2⊗I2⊗I2

× e
iφ
16 I2⊗I2⊗σz⊗σz e

iφ
16 I2⊗σz⊗I2⊗σz e

iφ
16 σz⊗I2⊗I2⊗σz e

iφ
16 I2⊗σz⊗σz⊗I2 e

iφ
16 σz⊗I2⊗σz⊗I2 e

iφ
16 σz⊗σz⊗I2⊗I2

× e− iφ
16 I2⊗σz⊗σz⊗σz e− iφ

16 σz⊗I2⊗σz⊗σz e− iφ
16 σz⊗σzI2⊗⊗σz e− iφ

16 σz⊗σz⊗σz⊗I2 e
iφ
16 σz⊗σz⊗σz⊗σz . (C9)

The Toffoli (CCNOT) gate is constructed by applying the
Hadamard gate to the CCZ gate as in

UToffloi = (I4 ⊗ UH )UCCZ(I4 ⊗ UH ). (C10)

See Fig. 8(a1). The Fredkin (CSWAP) gate is constructed by
sequential applications of three Toffoli gates as in

UFredkin = U (3,2)→1
Toffoli U (3,1)→2

Toffoli U (3,2)→1
Toffoli , (C11)

where U (p,q)→r
CZ indicates that the controlled qubits are p and

q while the target qubit is r. See Fig. 8(b1).

FIG. 8. (a1) Construction of the CCNOT gate from the CCZ
gate and the Hadamard gates. (a2) Construction of the CnNOT gate
from the CnZ gate and the Hadamard gates. (b1) Construction of
the Fredkin gate from three Toffoli gates. (b2) Construction of the
CnSWAP gate from the CnNOT gates.

The CnNOT gate is constructed from CnZ gate as

UCnNOT = (I2n−2 ⊗ UH )UCnZ (I2n−2 ⊗ UH ), (C12)

where the Hadamard gate is applied to nth qubit. See
Fig. 8(a2).

The CnSWAP gate is constructed from the CnZ gate as

UCnSWAP = U 1→1
CnNOTU 2→2

CnNOTU 1→1
CnNOT, (C13)

where U p→p
CnNOT indicates that the target qubit is p and the others

are controlled qubits, where p indicates the complementary
qubits of the qubit p. See Fig. 8(b2).

Diagonal gates

We construct an arbitrary diagonal gate in terms of braiding
and many-body interactions. We show that it is possible to
construct any 2N+1 diagonal operators based on 2(N + 1)-
body Majorana interactions. There are N+1CM patterns of
2M-body unitary evolutions in 2(N + 1) physical qubits. By
taking a sum, we have

∑N+1
M=1 N+1CM = 2N+1 independent

physical qubits. They produce 2N independent logical qubits
because there are complementary operators Bα (θ ) and Bα (θ )
which produce the same logical qubits. See Appendix B4 with
respect to the complementary operators. On the other hand,
there are 2N independent many-body Majorana operators.
Hence, it is possible to construct arbitrary diagonal operators
by solving appropriate linear equations.
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APPENDIX D: EXPERIMENTAL REALIZATION

The two-body operation is realized by the unitary dynamics
during 0 � t � T ,

Bαβ (θ ) = exp[θγβγα] = exp [iHt/h̄], (D1)

with H = (h̄θ/iT )γβγα . A 2N-body Majorana operation is
realized by a dynamics driven by 2N-body interaction of
Majorana fermions during 0 � t � T ,

B(2N )
α (θ ) = exp [iHt/h̄], (D2)

with H = (iN−2h̄θ/T )γ2Nγ2N−1 · · · γ2γ1.

1. Topological superconductor realization

In topological superconductors, Majorana fermions are
constructed from fermion operators,

cα = (γ2α−1 + iγ2α )/2. (D3)

The fermion density operator is rewritten in terms of Majorana
operators as

ρα = c†
αcα = (1 + iγ2α−1γ2α )/2, (D4)

or iγ2α−1γ2α = 2ρα − 1. The four-body interaction necessary
in universal computation is represented in terms of the density
operator as γ2α−1γ2αγ2b−1γ2β = −(2ρα − 1)(2ρβ − 1). It is
realized by the Coulomb interaction.

In the similar way, 2N-body interaction is represented in
terms of the N-body density operator

γ2α1−1γ2α1γ2α2−1γ2α2 · · · γ2αN −1γ2αN

= iN
(
2ρα1 − 1

)(
2ρα2 − 1

) · · · (2ραN − 1
)
, (D5)

which is realized by a many-body interaction [51] and derived
as an effective interaction by integrating out the high-energy
excitations. Hence, the many-body Majorana interactions nec-
essary for universal quantum computation are experimentally
feasible.

2. Spin system realization

In the Kitaev spin liquid model [28], Majorana fermion
operators are constructed from spin operators. It is realized
in qubits [62,63], trapped ions [64], cold atoms [65,66],
and quantum dots [67]. Spin operators are transformed into
Majorana fermion operators by using the Jordan-Wigner
transformation [68–74] defined by σ−

i = �ici, σ+
i = �ic

†
i ,

σ z
i = c†

i ci − 1
2 , where ci (c†

i ) is the fermion annihilation (cre-
ation) operators, �i =i−1

j=1 exp[iπc†
i ci], σ+ = 1

2 (σ x + iσ y),

and σ− = 1
2 (σ x − iσ y). We introduce Majorana fermion op-

erators,

γ A
2 j = c2 j + c†

2 j, γ B
2 j = −i(c2 j − c†

2 j ),

γ A
2 j+1 = −i(c2 j+1 − c†

2 j+1), γ B
2 j+1 = c2 j+1 + c†

2 j+1. (D6)

The spin operators are rewritten in terms of Majorana fermion
operators as

σ x
2 j−1σ

x
2 j = iγ A

2 j−1γ
A
2 j, σ

y
2 jσ

y
2 j+1 = −iγ A

2 jγ
A
2 j+1,

σ z
2 j−1 = −iγ A

2 j−1γ
B
2 j−1, σ z

2 j = iγ A
2 jγ

B
2 j . (D7)

The Ising interaction gives the four-body Majorana interaction

σ z
2 j−1σ

z
2 j = γ A

2 j−1γ
B
2 j−1γ

A
2 jγ

B
2 j . (D8)

The three-body interaction of spins in the form of σ z
1σ z

2σ z
3

is experimentally realized in a superconducting qubit system
[75,76], which gives the six-body Majorana interaction

σ z
α1

σ z
α2

σ z
α3

∝ γ A
α1

γ B
α1

γ A
α2

γ B
α2

γ A
α3

γ B
α3

. (D9)

The N-body Ising interaction is realized in qubit systems [77],
which gives 2N-body Majorana interactions

σ z
α1

σ z
α2

· · · σ z
αN

∝ γ A
α1

γ B
α1

γ A
α2

γ B
α2

· · · γ A
αN

γ B
αN

. (D10)

Hence, the many-body Majorana interactions necessary for
universal quantum computation are experimentally feasible.

APPENDIX E: SPARCE ENCODING

We use 2N + 2 Majorana fermions to construct N logical
qubits in the dense encoding discussed in the main text. On
the other hand, it is necessary to use 4N Majorana fermions to
construct N logical qubits in the sparce encoding, where there
is a correspondence,(|0〉

|1〉
)

logical

=
(|0, 0〉

|1, 1〉
)

physical

(E1)

for each qubit.
Universal quantum computation is not possible only by

braiding but is possible by adding many-body interactions
as in the case of the dense encoding. Especially, 2N-body
interactions are necessary for N-qubit universal quantum com-
putation as shown in the following.

1. One logical qubit

We use four Majorana fermions for one logical qubit. The
correspondence between the physical and logical qubits are(|0〉

|1〉
)

logical

=
(|0, 0〉

|1, 1〉
)

physical

. (E2)

It is the same as the dense encoding. Hence, one qubit gate for
the sparce encoding is identical to that for the dense cording.

2. Two logical qubits

We use eight Majorana fermions for two logical qubits. The
correspondence between the physical and logical qubits are⎛

⎜⎜⎝
|0, 0〉
|0, 1〉
|1, 0〉
|1, 1〉

⎞
⎟⎟⎠

logical

⇔

⎛
⎜⎜⎝

|0, 0, 0, 0〉
|0, 0, 1, 1〉
|1, 1, 0, 0〉
|1, 1, 1, 1〉

⎞
⎟⎟⎠

physical

. (E3)

Logical quantum gates made by the braiding operators are

B12(θ ) = B34(θ ) = B(4)
125678(θ ) = B(4)

345678(θ ) 
 I2 ⊗ Rz(2θ ),

B23(θ ) 
 I2 ⊗ Rx(2θ ),

B45(θ ) 
 I4 cos θ,

B56(θ ) = B78(θ ) = B(4)
123456(θ ) = B(4)

123478(θ ) 
 Rz(2θ ) ⊗ I2,

B67(θ ) 
 Rx(2θ ) ⊗ I2. (E4)
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We note that different braiding operators give the same quan-
tum gate such as B12(θ ) and B34(θ ). They are not sufficient
for universal quantum computation.

In addition, four-body Majorana operators realize logical
quantum gate,

B(4)
1234(θ ) = B(4)

5678(θ ) = B(4)
12345678(θ ) 
 e−iθ I4,

B(4)
1256(θ ) = B(4)

1278(θ ) = B(4)
3456(θ ) = B(4)

3478(θ )


 exp [−iθσz ⊗ σz]. (E5)

Hence, two-qubit universal quantum computation is possible
by introducing four-body Majorana operators.

3. Three logical qubits

We use 12 Majorana fermions for three logical qubits. The
correspondence between the physical and logical qubits are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0, 0, 0〉
|0, 0, 1〉
|0, 1, 0〉
|0, 1, 1〉
|1, 0, 0〉
|1, 0, 1〉
|1, 1, 0〉
|1, 1, 1〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

logical

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0, 0, 0, 0, 0, 0〉
|0, 0, 0, 0, 1, 1〉
|0, 0, 1, 1, 0, 0〉
|0, 0, 1, 1, 1, 1〉
|1, 1, 0, 0, 0, 0〉
|1, 1, 0, 0, 1, 1〉
|1, 1, 1, 1, 0, 0〉
|1, 1, 1, 1, 1, 1〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

physical

. (E6)

Quantum gates made by the braiding operators are

B12(θ ) = B34(θ ) 
 exp [−iθ I4 ⊗ σz] = I4 ⊗ Rz(2θ ),

B23(θ ) 
 I4 ⊗ Rx(2θ ),

B56(θ ) = B78(θ ) 
 exp [−iθ I2 ⊗ σz ⊗ I2]

= I2 ⊗ Rz(2θ ) ⊗ I2,

B9,10(θ ) = B11,12(θ ) 
 exp [−iθσz ⊗ I4] = Rz(2θ ) ⊗ I4,

B45(θ ) = B89(θ ) 
 I8 cos θ,

B67(θ ) 
 I2 ⊗ Rx(2θ ) ⊗ I2,

B10,11(θ ) 
 Rx(2θ ) ⊗ I4. (E7)

We note that different braiding operators give the same quan-
tum gate such as B12(θ ) and B34(θ ). They are not sufficient
for universal quantum computation.

In addition, four-body Majorana operators realize logical
quantum gates,

B1234(θ ) = B5678(θ ) = B9,10,11,12(θ ) 
 e−iθ I8,

B1256(θ ) = B1278(θ ) = B3456(θ ) = B3478(θ )


 exp [−iθ I2 ⊗ σz ⊗ σz],

B129,10(θ ) = B12,11,12(θ ) = B349,10(θ ) = B34,11,12(θ )


 exp [−iθσz ⊗ I2 ⊗ σz],

B5678(θ ) = B569,10(θ ) = B56,11,12(θ ) = B789,10(θ )

= B78,11,12(θ ) 
 exp [−iθσz ⊗ σz ⊗ I2], (E8)

and six-body Majorana operators realize a logical quantum
gate,

B34569,10(θ ) = B3456,11,12(θ ) 
 exp [−iθσz ⊗ σz ⊗ σz].
(E9)

Hence, three-qubit universal quantum computation is possible
by introducing four-body and six-body Majorana operators.

APPENDIX F: GENERALIZED BRAID GROUP RELATION

We consider the case θ = π/4. The Artin braid group
relation reads [78],

BαBβ = BβBα for |α − β| � 2,

BαBα+1Bα = Bα+1BαBα+1. (F1)

It is identical to the extraspecial 2 group [79]

M2
α = −1, MαMα+1 = −Mα+1Mα,

MaMβ = MβMα, for |α − β| � 2, (F2)

by setting

B(4)
α = 1√

2
(1 + Mα ). (F3)

It is straightforward to show that(
M (4)

α

)2 = −1,

M (4)
α M (4)

α+1 = −M (4)
α+1M (4)

α ,

M (4)
α M (4)

α+2 = M (4)
α+2M (4)

α ,

M (4)
α M (4)

α+3 = −M (4)
α+3M (4)

α ,

M (4)
a M (4)

β = M (4)
β M (4)

α for |α − β| � 4, (F4)

when we set

M (4)
α ≡ iγ4γ3γ2γ1. (F5)

It is a generalization of the extraspecial 2 group. Correspond-
ingly, we obtain a generalized braiding group relation,

B(4)
α B(4)

α+1B(4)
α = B(4)

α+1B(4)
α B(4)

α+1,

B(4)
α B(4)

α+3B(4)
α = B(4)

α+3B(4)
α B(4)

α+3, (F6)

and

B(4)
α B(4)

β = B(4)
β B(4)

α (F7)

for |α − β| = 2 and |α − β| � 4. In the similar way, we find(
M (2N )

α

)2 = −1, M (4)
α M (4)

α+2n−1 = −M (4)
α+2n−1M (4)

α ,

M (4)
α M (4)

α+2n = M (4)
α+2nM (4)

α ,

M (4)
a M (4)

β = M (4)
β M (4)

α for |α − β| � 2N, (F8)

for 1 � n � N . Hence, the 2N-body Majorana operators sat-
isfy a generalized braiding group relation,

B(2N )
α B(2N )

α+2n−1B(2N )
α = B(2N )

α+2n−1B(2N )
α B(2N )

α+2n−1, (F9)

and

B(2N )
α B(2N )

β = B(2N )
β B(2N )

α (F10)

for |α − β| = 2n, |α − β| � 2N , and for 1 � n � N .
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