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Long-range Cooper pair splitting by chiral Majorana edge states
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We analyze the transport properties of a Cooper pair splitter device composed of two-point electrodes in
contact with a ferromagnetic/superconductor (F/S) junction constructed on the surface of a topological insulator
(TI). For the pair potential in the S region, we consider s- and d-wave symmetries, while for the F region, we
focus on a magnetization vector normal to the TI surface. Nonlocal transport along the F/S interface is mediated
by chiral Majorana edge states, with chirality controlled by the polarization of the magnetization vector. We
demonstrate that crossed Andreev reflections slowly decay with the separation of the electrodes in standard clean
samples. Our system exhibits a maximum Cooper-pair-splitting efficiency of 80% for a symmetrical voltage
configuration, even in high-temperature superconductor devices.
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I. INTRODUCTION

In recent years, various solid-state systems with entangled
electrons have been proposed for potential applications in
quantum teleportation and computing [1]. Among these stand-
out Cooper pair splitter devices, in which the electron pairs are
stretched and extracted from the superconductor through non-
local processes known as crossed Andreev reflections (CARs)
[2–4]. The basic structure of such devices consists of a su-
perconducting region (S) connected to two normal electrodes
(N) separated by a distance of the order of the superconduct-
ing coherence length ξ0 [2–32]. Various designs incorporate
intermediate quantum dots [30,33–42] and anisotropic su-
perconductivity [2,11,43–45], and indeed, some of these
have been realized experimentally [14,15,17,19,24,35–37].
For subgap voltages, CARs compete with local Andreev
reflections (AR) and elastic cotunneling (EC) between elec-
trodes. Then, the pair-splitting efficiency is highly dependent
on suppressing these secondary processes by appropriately
setting the system parameters. While some systems could
achieve an efficiency of 100% under ideal conditions, impu-
rities or defects present in samples can lead to quantum noise
and decoherence processes [46,47].

Topological superconductors (TSs) offer a potential solu-
tion to this problem by presenting surface Andreev bound
states (SABSs) topologically protected against perturbations,
preserving the discrete symmetries of the system [48–55].
Zero-energy SABSs are Majorana modes, quasiparticles that
are their own antiparticle and exhibit nontrivial statistics. This
characteristic makes them promising candidates for imple-
mentation in topological quantum computing devices [56–61].
Additionally, placing a conventional superconductor in con-
tact with the surface of a topological insulator (TI) could give
rise to an artificial chiral p-wave TS phase accompanied by
chiral Majorana edge states (CMESs) at the interface with a
magnetic domain or ferromagnetic region (F) [62–77].

In the last decade, several Cooper pair splitter devices on
the surface of a TI have been proposed. Most of these are

F/S/F planar junctions where exchange fields in the F regions
influence the efficiency of CAR processes, their doping levels,
interface transparency, or the pair potential symmetry (s or
d) [78–82]. However, transport across interfaces in this con-
figuration results in oscillating CAR conductance that decays
rapidly over distances on the order of ξ0 due to the media-
tion of evanescent states. Nevertheless, numerical calculations
have revealed that the presence of a TS phase with chiral
p-wave symmetry, as theorized for Sr2RuO4, may lead to
nonlocal, unidirectional transport that is independent of the
electrode spacing [83].

In this work, we investigate the spatial dependence and
Cooper-pair-splitting efficiency of CMES-mediated CAR pro-
cesses at the interface of an F/S planar junction on the surface
of a TI. In the F region, the TI is in contact with a ferro-
magnetic insulator with a magnetization vector normal to the
surface. In the S region, the TI is proximitized by an intrinsic
s- or d-wave superconductor. For s symmetry, we observe that
the CMESs lead to nonoscillating, long-range unidirectional
CAR transport between the electrodes. This transport has a
decay length of the order of 102ξ0 for samples with a typical
number of impurities, similar to that found in [83]. However,
in our system, the chirality can be controlled by the magneti-
zation polarization of the F region, and the superconductivity
is more robust against impurities compared to other potential
chiral TSs like Sr2RuO4 [84,85]. In a Cooper pair splitter
configuration, we suppress EC processes by applying sym-
metrical bias voltages to the electrodes, thereby achieving a
maximum splitting efficiency of 80%. An analogous behavior
is expected for dx2−y2 symmetry; however, in this case, the
samples must be exceptionally clean to avoid altering the
superconducting state [86].

This article is structured as follows: Sec. II discusses the
model of the system and contains a derivation of each region’s
Hamiltonian and transport observables. Section III examines
a toy model with infinite magnetization, analyzes the dis-
persion relations of CMESs, and derives expressions for the
conductance and the splitting efficiency as a function of the
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FIG. 1. Cooper pair splitter device consisting of an F/S junction
on the surface of a TI and two metallic electrodes separated by a
distance d . The F/S interface is formed through the proximity effect
on the TI. CAR transport between electrodes is primarily mediated
by the CMES at the F/S interface.

electrodes separation. Section IV presents the numerical cal-
culations of observables for a system with finite magnetization
and analyzes the dependence of CAR conductance on both
the electrode separation and the magnetization value. Finally,
Sec. V presents the conclusions of this work.

II. THEORETICAL FRAMEWORK AND TRANSPORT
OBSERVABLES

The Cooper pair splitter device analyzed in this work is
illustrated in Fig. 1. The system consists of an F/S planar
junction constructed on the surface of a TI, in contact with two
thin metallic electrodes. The F/S junction is formed through
the proximity effect on the TI surface as follows: the left
region is brought into contact with a ferromagnetic insulator
(F), while the right region is brought into contact with a
spin-singlet intrinsic superconductor (S), which can be either
conventional (s wave) or high temperature (d wave). The two
thin metal electrodes, denoted by a and b, are subjected to the
same voltage bias V and are separated by a certain distance d
on the TI surface within region F.

The elementary excitations of the superconducting state
induced in the S region are described by the Bogoliubov–de
Gennes (BdG) Hamiltonian [50,51,62,64,87,88]

ĤBdG =
(

Ĥs �̂

�̂† −Ĥ†
s

)
, (1)

where Ĥs = vF (σ̂ × p̂)z − EF σ̂0 is the effective Hamiltonian
of the TI surface around the � point. Here, vF represents the
speed of the charge carriers at the Fermi level of the normal
TI, p̂ = −ih̄∇r is the momentum operator, σ̂ = (σ̂x, σ̂y, σ̂z )
is the vector of Pauli matrices in the spin subspace, and σ̂0

is the corresponding identity matrix. EF denotes the Fermi
level of the system [89,90]. The induced superconducting
order parameter is given by �̂ = �0cos[β(2θ + α)]iσ̂y, where
θ is the polar angular coordinate (β = 0 for s-wave sym-
metry, β = 1 for d-wave symmetry, α = 0 for dx2−y2 , and
α = π/2 for dxy). In the weak coupling limit (EF � �0),
the system’s properties are predominantly determined by the
states near the Fermi surface (ψ̂e � (1,−ieiθ , 0, 0)T /

√
2 and

ψ̂h � (0, 0,−1, ie−iθ )T /
√

2). When projecting ĤBdG onto this

basis of states, we obtain the following effective spinless
anisotropic order parameter with mixed symmetry:

�eff = 〈ψ̂e|ĤBdG|ψ̂h〉 = i�0 cos[β(2θ + α)]e−iθ . (2)

To describe the normal left region F with an induced ex-
change field perpendicular to the surface, M = M ẑ, we set
�̂ = 0̂ in (1) and introduce the corresponding Zeeman-type
term ĤZ = Mσ̂z to the Ĥs Hamiltonian. This term breaks the
time-reversal symmetry of (1) at the F/S interface, inducing
topologically protected CMESs [62,63,65]. It will be assumed
that EF = 0 for region F to ensure that transport occurs only
on the TI surface [65].

The transport properties of this kind of two-dimensional
(2D) junction can be described using a Hamiltonian approach
[91,92], where adjacent regions of the system are coupled
through a tight-binding Hamiltonian (refer to Appendix A).
The equilibrium Green’s functions for each isolated region
are derived analytically using the asymptotic solution method
[73,93–95] (see Appendixes B to D for technical details).
Then, the equilibrium Green’s functions for the entire system
are computed nonperturbatively in the hopping parameters
by solving an algebraic Dyson equation with the equilibrium
Green’s functions of the regions. Finally, the system’s trans-
port properties are calculated in terms of the nonequilibrium
(or Keldysh) Green’s functions, which can be expressed in
relation to their equilibrium counterparts under a stationary
regime.

For low voltages (eV � �0), an electron incident on an
electrode can either be reflected as a hole within the same
electrode (AR process), transmitted as an electron to the
second electrode (EC process), or reflected as a hole at
the second electrode (CAR process), which corresponds to
Cooper-pair-splitting under time reversal [2–4,26,36,41]. For
a configuration with symmetrical voltages (Va = Vb = V ),
only AR and CAR processes contribute to the current of the
system (e.g., as evaluated at electrode a)

Ia = IAR,a + ICAR, (3)

where the contribution of AR processes to the current is given
by

IAR,a = 2e

h

∫
RAR,a(E )(naN,e − naN,h)dE , (4)

with RAR,a being the local Andreev reflection coefficient given
by

RAR,a(E ) = Tr
(
�̂aN,eĜr

aaS,eh�̂aN,hĜa
aaS,eh

)
. (5)

Here, Ĝa(r)
aa′S represents the advanced (retarded) equilibrium

Green’s function of the system, evaluated at the coordinates
of the point contact electrodes inside the S region. �̂aN,μ =
2π [t̂†

a ρ̂aN t̂a]μμ are the level width matrices, with μ = (e, h)
being a Nambu index, t̂a being the hopping matrix in spin
space between electrode i and the F/S junction, and ρ̂aN =
−Im(ĝr

aN )/π being the density of states matrix of electrode
a with the retarded (advanced) equilibrium Green’s function
ĝr(a)

aN ; naN,e/h(E ) = fa(E ∓ eVa) represents the corresponding
Fermi-Dirac occupancy functions. On the other hand, the
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CAR contribution to the current is given by

ICAR = 2e

h

∫
TCAR,ab(E )(naN,e − nbN,h)dE , (6)

where the respective transmission coefficient TCAR,ab is given
by

TCAR,ab(E ) = Tr
(
�̂aN,eĜr

abS,eh�̂bN,hĜa
baS,eh

)
. (7)

Despite the formal resemblance of the last expressions to
the more traditional Blonder Tinkham Klapwijk formalism,
they are applicable beyond the tunnel limit approximation
([t̂a]σσ ′ � h̄vF ) and involve all perturbation orders with re-
spect to the hopping parameters between regions [91]. In
our system, there is only competition between CAR and AR
processes, which is reflected in the expression for the total
differential conductance across electrode a (σa = dIa/dV ) at
T = 0,

σa(V ) = 2σ0[TCAR(V ) + TCAR(−V ) + 2RAR,a(V )], (8)

where σ0 = 2e2/h is the quantum of conductance and the
Cooper-pair-splitting efficiency is defined as [26,36,41]

η = 4σ0
TCAR(V ) + TCAR(−V )

σa(V ) + σb(V )
. (9)

For η to be equal to 1, the local Andreev reflections are
completely suppressed. It is convenient to compare the CAR
conductance (8) with the electronic conductance of the system
in its normal state and null magnetization for d = 0:

σee,0 = σ0TEC(0). (10)

III. TOY MODEL

First, we consider the system depicted in Fig. 1 under
conditions of high doping in the S region (EF � �0, ke/h �
kF ), high magnetization of the F region (M � �0), and
the tunnel limit for the electrode couplings (refer to Ap-
pendixes B to D for further details). Under these conditions,
the Green’s function of the system, evaluated at the point con-
tact of the electrodes with the F/S interface, is represented by
(C15) with xa = xb = 0 and yb − ya = d , where the integrand
Ĝr,a

RR(E , 0, 0, q) � ĝr,a
S0 (E , q) corresponds to the equilibrium

Green’s function of the uncoupled S region (B3),

ĝr,a
S0 (E , q) = −1

h̄vF

⎛
⎜⎜⎝

K 0 Ne−iφ+ 0
1 0 0 0

Neiφ− 0 K 0
0 0 −1 0

⎞
⎟⎟⎠, (11)

with q � kF sin θ being the conserved wave vector along the
interface,

K = i

D

(
1 − γ 2

0 e−i�ϕ
)
, N = −γ0

D
(eiθ + e−iθ ),

D = eiθ + γ 2
0 e−iθ e−i�ϕ , (12)

γ0 =
√

E − �

E + �
, � =

√
E2 − �(θ )2. (13)

For the case of a strong magnetic barrier, the dispersion
relation of the SABS is obtained from the poles of the Green’s

(arb units.)A(E,q)

0

I3

(b)

I3

(d)

1 0 1
q/kF

1−

0

1

E/
Δ

(a)

    d 2     2x -y
    dxy

    s

1− 0
q/kF

(c)

1

1−

0

1

E/
Δ

−

FIG. 2. (a) Surface Andreev bound states at the F/S interface
with infinite magnetization obtained from expression (14) (M →
−∞). The opposite polarization of M changes the function’s parity.
Spectral density A evaluated at the F/S junction interface for a su-
perconductor with (b) s-wave, (c) dx2−y2 , and (d) dxy symmetry. In all
three cases, the presence of chiral Majorana edge states is observed.

function (11) and can be expressed as

E = ±|�eff |cos(�ϕ/2), (14)

�+ = �eff (θ ), �− = �eff (π − θ ),

�ϕ = ϕ+ − ϕ−, ϕ± = arg(�±), (15)

where �eff is the effective surface gap given by (2). It is
important to note that our model aligns with the general ex-
pression for SABSs [96] and is consistent with those found
for planar F/S junctions in TIs with finite magnetizations
[62,63,65]. In Fig. 2(a), CMES dispersion curves are shown
for s-wave, dx2−y2 , and dxy symmetries. These states are also
depicted in Figs. 2(b) and 2(c), where the spectral density
A(q, E ) = Tr[ρ̂F/S (q, E )] evaluated at the interface of an F/S
junction with infinite magnetization is shown for different
symmetries of the pair potential.

The dispersion relation is linear in q for s-wave symmetry
but undulated for d-wave symmetries. Note that the densities
of states for both s-wave and dx2−y2 symmetries present a
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FIG. 3. (a) Crossed Andreev reflection conductance σCAR(V =
0) along the F/S interface as a function of distance d for s-wave
symmetry with infinite magnetization (16), EF = 13�0, and different
values of ε in the tunnel limit. All curves in (a) are normalized to c0

(17). (b) Curves of σCAR(V = 0) for the different symmetries with
infinite magnetization, EF = 13�0, and ε = 0.002 �0. The dashed
black line represents the fit with the analytic function (16) for s-wave
symmetry. All curves in (b) are normalized to σee,0 (10).

high value and have the same chirality near q = 0, while for
dxy it becomes symmetrical and diffuse. In all instances, the
dispersion relations are odd functions of q, and the polariza-
tion of magnetization in the F region defines their chirality.
The following section shows that these states account for the
solid chiral character of nonlocal transport processes along the
interface.

For s-wave symmetry and V = 0, the calculation of (7) can
be performed analytically, resulting in

σCAR(d ) = c0

[
�(sd )

(
1 + ε

�0

)]2

e−d/λ, (16)

c0 = σ0�̃e,b�̃h,a(2π iL/h̄vF )2(kF /π )6, (17)

where �(x) is the Heaviside step function, s = −sgn(M ),
�̃μ,iN ≡ Tr[�̂μ,iN ], ε is the imaginary part of the excitation
energy, and λ = �0/2εkF = ξ0(h̄vF /2πεkF ) represents the
characteristic decay length of CAR processes along the in-
terface. Here, ξ0 = π�0/h̄vF is the coherence length of the
conventional superconductor. The curves in Fig. 3(a) show the
behavior of σCAR(d ) for different values of ε.

Note that the electron-hole component of the Green’s func-
tion exhibits unidirectional behavior (odd with distance) and
approaches the step function in the limit ε → 0. Since ε ∼
h̄/2�τ , with �τ representing the quasiparticle lifetime, it
is expected that for weak-disorder junctions, these processes
have a long range (decay length on the order of 102ξ0),
similar to that observed in a 2D intrinsic p-wave chiral su-
perconductor (Appendix E) or a three-dimensional one [83].
In this case, the propagating CMES present along the F/S
interface favorably mediates the CAR processes and confers
their chirality and topological protection. It is essential to
highlight that this distance-dependent behavior contrasts with
that obtained for conventional superconductors with s-wave
[σCAR(d ) ∝ e−2d/πξ0/d3] or d-wave [σCAR(d ) ∝ 1/d2] super-
conductivity [44].

(b)(a) (c)

FIG. 4. Maps of crossed Andreev reflection conductance σCAR(V = 0) in the tunnel limit as a function of the b electrode coordinates over
the S region with the a electrode fixed at the F/S interface [ra = (0, 0), rb = (x, y)] for infinite magnetization of the F region and (a) s-wave,
(b) dx2−y2 , and (c) dxy symmetry for the S region. A logarithmic scale is used for σCAR.
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Although the conductance increases with the Fermi level
of the S region, the direct AR conductance is approximately
a quarter of that of the CAR. According to formula (9),
the splitting efficiency percentage will reach a maximum of
80% for symmetrical voltages [�(0) = 1/2]. In Fig. 3(b), the
behavior of σCAR(V = 0) for infinite magnetization across
different symmetries of the pair potential is observed. For
the dx2−y2 symmetry case, the results are qualitatively similar
to those of the s-wave symmetry due to the mediation of
CMESs around q = 0 [Fig. 2(c)] and because �ϕ = 0 for
most of the integration interval (except in the neighborhood
of θ = ±π/4 nodes). However, there are slight additional
oscillations due to the angular dependence of �(θ ). Both sym-
metries, s wave and dx2−y2 , closely align with the analytical
result (16).

For the dxy case, the overall amplitude is lower than in
the previous cases. Here, σCAR(V = 0) is an even function
of d with two small maxima flanking d = 0. This behavior
is attributed to the presence of two low-density counterprop-
agating CMESs around q = 0 [Fig. 2(d)]. Mathematically,
because �ϕ = π for the integration interval, D has real roots,
and analytical integration is impossible. Furthermore, nu-
merical computation shows an even behavior with distance,
decreasing proportionally to ∼1/d2, as in the conventional dxy

case [44]. The mixed symmetry of the effective surface pair
potential (2) and the corresponding nodal dispersion relation
for SABSs with counterpropagating CMESs (14) [Fig. 2(d)]
prevent the dxy symmetry from presenting the characteristic
zero bias conductance peak associated with the zero-energy
flat SABS of the conventional dxy case.

All these behaviors are also visualized in Fig. 4, where
maps of σCAR(V = 0) are shown for the S region as a function
of rb=(x, y), with ra fixed at the F/S interface with infinite
magnetization. As observed in Figs. 4(a) and 4(b) for s-wave
and dx2−y2 symmetries, respectively, the strong chirality of the
nonlocal transport arises from the presence of CMESs around
k = 0. In contrast, for the dxy case, a symmetrical interference
pattern is observed due to the low spectral density of these
states at q = 0.

IV. COOPER PAIR SPLITTER DEVICE WITH FINITE
MAGNETIZATION IN THE F REGION

In this section, we examine the system depicted in Fig. 1
with finite magnetization in region F. As shown in Fig. 5(a),
σCAR exhibits an oscillatory decay towards the interior of
region S over distances of approximately 5ξ0. In contrast, it
decays smoothly towards region F (x < 0), with a character-
istic length that decreases with the value of |M|. Across the
interface, σCAR exhibits the behavior discussed above for the
F/S interface for s-wave symmetry, as illustrated in Fig. 5(b),
corresponding to the maxima in Fig. 5(a). The results for the
s-wave symmetry show that the propagating CMESs facilitate
long-range CAR transport along the F/S interface. Similarly,
for the dx2−y2 symmetry, analogous results were obtained
despite the presence of nodes in �(θ ). This is because the
longitudinal transport predominantly occurs along the lobes
of �(θ ). This observation suggests the potential for achieving
long-range CAR in high-temperature superconductors. In
Fig. 6, we analyze the effect of the magnitude of M on the

FIG. 5. Crossed Andreev reflection conductance σCAR(V = 0)
for s-wave symmetry in the tunnel limit (a) as a function of the
perpendicular distance to the interface F/S interface x for a constant
electrode separation d = y = 1.7ξ0 and (b) as a function of y for the
points labeled in (a). In both panels, M = −10 �0. All curves are
normalized as in Fig. 3(b).

CAR conductance at the interface. Figure 6(a) displays the
curves of σCAR(V = 0) for s-wave symmetry as a function
of d for various magnetization values. As seen in Fig. 6(a),
the maximum CAR conductance increases with the value of
|M|, but at a decelerating rate until it reaches a limit value for
|M| = ∞. A similar trend is observed for dx2−y2 symmetry in
Fig. 6(b), but with the same undulations as in Fig. 3. Another
important aspect is that the decay length of σCAR decreases
with magnetization until it reaches the minimum value of
λ = �0/2εkF for the infinite case.

Additionally, Fig. 7(a) shows the Cooper-pair-splitting ef-
ficiency as a function of the distance along the F/S interface
for various M values. As can be seen, the efficiency becomes
increasingly chiral as the magnetization increases at the same
time as its maximum value in the range 0 < d < ξ0 gradually
increases from 0.5 to ∼0.8. Figure 7(b) further reveals that
efficiency rapidly reaches its peak for magnetization values
on the order of �0. Beyond this point, it remains constant for
both s-wave and dx2−y2 symmetries.
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FIG. 6. Crossed Andreev reflection conductance σCAR(V = 0) in
the tunnel limit (a) for s-wave symmetry and (b) for dx2−y2 and
different values of magnetization (EFR = 13 �0, ε = 0.002 �0). All
curves are normalized as in Fig. 3(b).

Finally, Fig. 8 shows the effect of the transparency of the
coupling between the normal electrodes and the F/S junction
(see Appendix C). As can be seen in the plot, the normal-
ized CAR conductance decreases globally and exhibits the
characteristic behavior of the tunnel limit for values of the
normalized hopping parameter t̃i less than 0.7. However, for
higher values of t̃i approaching the transparent limit, the CAR
conductance presents a minimum around d ∼ ξ0. This is as-
sociated with the momentary increase in the local Andreev
reflections at the electrode point contacts. Despite this varia-
tion, the CAR conductance still preserves its long-range chiral
character and efficiency above 0.58 for d > 1.5ξ0, indicating
that this behavior is independent of the contact barrier trans-
parency.

V. CONCLUSIONS

We examined the efficiency of crossed Andreev reflection
processes in a Cooper pair splitter device composed of two
thin metal electrodes in contact with an F/S junction formed
on the surface of a TI through the proximity effect. We con-
sidered a magnetization vector normal to the TI surface for
the F region and an induced s- and d-wave superconducting
order parameter for the S region. The compelling spinless
chiral p-wave symmetry at the F/S interface presents chiral
Majorana edge states. The chirality of these states can be

FIG. 7. Cooper-pair-splitting efficiency η as a function of (a) the
electrode separation d for s-wave symmetry and different values of
M and (b) magnetization for both s- and d-wave symmetries with
d = 1.6ξ0.

FIG. 8. Crossed Andreev reflection conductance σCAR(V = 0)
for s-wave symmetry, with M = −10�0 and different values of the
normalized hopping amplitude t̃ (ε = 0.002 �0). The inset shows the
dependence of the maximum efficiency ηmax for different values of t̃ .
All curves are normalized as in Fig. 3(b).
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controlled by the magnetization polarization. Using a simple
analytical model, we demonstrated that the conductance of
crossed Andreev reflection mediated by chiral Majorana edge
states along the F/S interface does not oscillate with electrode
separation and exhibits slow decay in low-disorder samples
(long-range behavior). Under a symmetrical voltage configu-
ration, our system achieved a maximum splitting efficiency
of 80% and remained stable with electrode separation for
M ∼ �0. Our results are also valid for the dx2−y2 symmetry
and could easily be extrapolated to finite temperatures, paving
the way for potential experimental realization in high-Tc su-
perconductors.
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APPENDIX A: HAMILTONIAN APPROACH AND
CALCULATION OF THE NONLOCAL CURRENT

OF THE SYSTEM

For a superconducting system with two contacts (as in a
Cooper pair splitter device), the Hamiltonian has the form
[91,92,95,97]

Ĥ = Ĥa + Ĥb + Ĥs + Ĥas + Ĥbs, (A1)

with Ĥa,b,s being the Hamiltonians of normal electrodes a and
b and the superconducting region s and Ĥis being the hopping
Hamiltonians between the point electrode i and region s,

Ĥis = ti
∑
σ,σ ′

eiφi (τ )/2ĉ†
iσ b̂iσ ′ + H.c., (A2)

where σ, σ ′ =↑,↓ are the spin projection indices in the z
direction and φi(τ ) = φ0 + 2(EF,i − EF,s)τ/h̄ are the time-
dependent gauge phases induced by the gradient of the
chemical potential in the vicinity of electrode i = a, b with
region S. Here, ti is the hopping amplitude at this contact
point, ĉiσ are the annihilation operators for electrode i, and
b̂iσ are the annihilation operators at the point of region S in
contact with electrode i. In the Heisenberg picture the average
current in contact i is given by

Ii(τ ) = −e

〈
d

dτ
N̂i(τ )

〉

= iti
e

h̄

∑
σ,σ ′

[〈ĉ†
iσ (τ )b̂iσ ′ (τ )〉 − 〈b̂†

iσ ′ (τ )ĉiσ (τ )〉], (A3)

which can be expressed in terms of the Keldysh Green’s
functions as

Ĝαβ

i jkl (τα, τ ′
β ) = −i〈T̂c[D̂q,ki(τα )D̂†

q,l j (τ
′
β )]〉, (A4)

D̂ki(τ ) = (d̂ki↑(τ ), d̂ki↓(τ ), d̂†
ki↑(τ ), d̂†

ki↓(τ ))T , (A5)

with i, j = a, b representing the contact indices, k, l = N, S
being the region indices (d̂niσ = ĉiσ , d̂siσ = b̂iσ ), α, β = +,−
being the indices of the Keldysh temporal contour, and T̂c be-
ing the Keldysh temporal ordering operator. Assuming normal

electrodes on the surface of the TI, the hopping Hamiltonian
(A2) takes the form of (B8). Considering the two possible
choices of boundary conditions, the average current acquires
a factor of 2 [73,97]. In a stationary situation, the average
current in electrode i can be expressed in the energy space
as

Ii = e

h

∫
dETr(τ̂z[t̂iĜ

+−
iSN (E ) − t̂†

i Ĝ+−
iNS (E )]), (A6)

with τ̂k representing the Pauli matrices in Nambu space and t̂i
being the self-energy matrix associated with (A2); we employ
shorthand notation for repeated indices (ii → i). Using the
Dyson equations [92]

Ĝ+−
iSN (E ) = Ĝ+−

iS (E )t̂ T
i ĝa

iN (E ) + Ĝr
iS (E )t̂ T

i ĝ+−
iN (E ), (A7)

Ĝ+−
iNS (E ) = ĝ+−

iN (E )t̂iĜ
a
iS (E ) + ĝr

iN (E )t̂iĜ
+−
iS (E ), (A8)

the average current can be written in terms of Green’s func-
tions evaluated over a single type of region as

Ii = e

2h

∫
dETr{τ̂zt̂

†
i [ĝ+−

iN (E )t̂iĜ
−+
iS (E )

−ĝ−+
iN (E )t̂iĜ

+−
iS (E )]} , (A9)

where the unperturbed Keldysh Green’s functions of the elec-
trodes are given by

ĝ+−
iN (E ) = 2π iρ̂iN (E )n̂iN (E ), (A10)

ĝ−+
iN (E ) = −2π iρ̂iN (E )[τ̂0 ⊗ σ̂0 − n̂iN (E )], (A11)

with n̂iN (E ) = diag(ni,e↑(E ), ni,e↓(E ), ni,h↑(E ), ni,h↓(E )) be-
ing the occupation matrix of electrode i.

By considering the following Dyson equation, the nonequi-
librium Green’s functions can be expressed in terms of the
local and nonlocal equilibrium Green’s functions of the sys-
tem (γ = +−,−+) [73,97]:

Ĝγ
iS = Ĝr

iSt̂†
i ĝγ

iN t̂iĜ
a
iS + Ĝr

i jSt̂iĝ
γ
jSt̂†

i Ĝa
jiS , (A12)

which in turn are obtained from the equilibrium Green’s func-
tion of the isolated regions ĝr/a

i jk by a Dyson equation of the
form

Ĝr/a
i jk = ĝr/a

i jk + ĝr/a
imk�̂mnĜr/a

n jk , (A13)

where the coupling self-energies between regions �̂mn =
�̂T

nm ≡ t̂ (m, n = L, S) correspond to the matrix form of Ĥis.
By defining the expression

Ii j = e

h

∫
dETrτzρ̄iN

[
n̂iN Ĝr

i jSρ̄ jN − Ĝr
i jSρ̄ jN n̂ jN

]
Ĝa

i jS ,

(A14)

the total average current induced in electrode i takes the form

Ii = Iii + Ii j, (A15)

with j �= i. Expressing (A14) in terms of matrices in the
Nambu subspace we obtain expressions (4), (6), and (3)
for a symmetrical voltage configuration. For independent (or
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different) voltages, Ii j presents an EC contribution given by

IEC = 2e

h

∫
TEC,i j (E )(niN,e − n jN,e)dE , (A16)

TEC,i j (E ) = Tr
(
�̂iN,eĜr

i jS,ee�̂ jN,eĜa
jiS,ee

)
. (A17)

APPENDIX B: ASYMPTOTIC SOLUTION METHOD FOR
GREEN’S FUNCTIONS IN TIs [73]

For a region in a planar junction with translational in-
variance along the y axis, the advanced (a) and retarded (r)
Green’s functions can be expressed as

ĝr,a(E , x, x′, y − y′) =
∫

dqeiq(y−y′ )ĝr,a(E , x, x′, q), (B1)

where the integrand satisfies the inhomogeneous equation

[(E ± iε) − Ĥ (x, q)]ĝr/a(E , x, x′, q) = δ(x − x′), (B2)

with E being the excitation energy of the system, q being the
conserved wave vector along the interface, and ε being an
infinitesimal scalar. These Green’s functions can be expressed
in terms of the asymptotic solutions of the system as

ĝ(x, x′) =
{∑

μ,ν=e,h Ĉμν�̂
μ
<(x)�̂νT

> (x′) x < x′,∑
μ,ν=e,h Ĉ′

μν�̂
ν
>(x)�̂μT

< (x′) x > x′,
(B3)

where Ĉμν (ν = e, h) are matrix coefficients determined by
Eq. (B2) and �̂

μ
<,>(x) represent the asymptotic solutions of Ĥ .

These solutions obey specific boundary conditions at the left
(<) and right (>) edges of region i. For the right semi-infinite
superconducting region S, these solutions involve processes as
conventional reflections (μ = ν) and branch exchange e − h
(μ �= ν) at the interface:

�̂e
<(x) = ψ̂e

−(x) + ree
L ψ̂e

+(x) + reh
L ψ̂h

−(x), (B4)

�̂h
<(x) = ψ̂h

+(x) + rhh
L ψ̂h

−(x) + rhe
L ψ̂e

+(x),

�̂e
>(x) = ψ̂e

+(x), �̂h
>(x) = ψ̂h

−(x), (B5)

where ψ̂
μ

h (x) are eigensolutions of ĤBdG(x, q) that propagate
in the ηx̂ (h = ±1) direction and rμν

i are the reflection coeffi-
cients on the left (L) or right (R) edge defined by the chosen
boundary conditions. For the left magnetic normal region F,
there are no e − h conversion processes (reh

R = rhe
R = 0):

�̂e
>(x) = ψ̂e

+(x) + ree
R ψ̂e

−(x), (B6)

�̂h
>(x) = ψ̂h

−(x) + rhh
R ψ̂h

+(x),

�̂e
<(x) = ψ̂e

−(x), �̂h
<(x) = ψ̂h

+(x). (B7)

The surface of a TI lacks open boundaries, allowing for
the selection of artificial boundary conditions as long as the
corresponding ĤT ensures a transparent coupling between the
regions on the TI surface. In this work, we adopt the boundary
conditions �̂

μ

<,↓(xL ) = �̂
μ

>,↑(xR) = 0 for the spin components
of spinors at the left xL and right xR edge of each region. Con-
sequently, the coupling Hamiltonian ĤT assumes the specific

form

ĤT = t
∫

dqĉ†
q,L↓ĉq,R↑+H.c., (B8)

with t = h̄vF being the transparent hopping amplitude be-
tween adjacent regions. Thus, the equilibrium Green’s func-
tions of the coupled system Ĝkl = Ĝr/a(xk, x′

l ) (xk in region k)
can be determined by a Dyson equation of the form of (A13):

Ĝkl = ĝkδkl + ĝkδkm�̂mnĜnl , (B9)

where the self-energies �̂LR = �̂T
RL = tτz(σx − iσy) ≡ t̂ cor-

respond to the matrix form of ĤT . This boundary condition
corresponds physically to a high-intensity magnetic barrier
(M → ±∞), where the spinor components with spin pro-
jection opposite to the magnetization direction become null.
Therefore, to model large magnetization values and doping
levels for the left region, it suffices to exclude the coupling
with the F region and consider only the right semi-infinite
region with an open boundary condition.

APPENDIX C: PARAMETERS OF THE MAGNETIC
REGION’S GREEN’S FUNCTION

The spectrum of Hamiltonian (1) for the magnetic region
in a TI surface is

Ee/h = ±(
√

(h̄vF |k|)2 + M2 − EF ), (C1)

with eigenspinors

ψ̂e
η (r) = eiqyeηikex

(
ϕ̂e

ε, 0
)T

,

ψ̂h
η (r) = eiqyeηikhx

(
0, ϕ̂h

ε

)T
, (C2)

where

ϕ̂e
η = (Me

+,−ηiMe
−eηiθe )T /

√
2, (C3)

ϕ̂h
η = (ηiMh

+eηiθh , Mh
−)T /

√
2, (C4)

Me
± = √

E + EF ± M/
√

E + EF , (C5)

Mh
± = √

EF − E ± M/
√

EF − E , (C6)

eiθμ ≡ h̄vF (kμ + iq)/|k|, (C7)

and with the wave vector in the x direction,

ke/h = sgn(EF ± E )

√
(EF ± E )2 − M2

(h̄vF )2
− q2, (C8)

where sgn sets the correct sign for the valence band. For the
chosen boundary conditions, the reflection coefficients are

ree
R = −1, rhh

R = e−2iθh . (C9)

Integrating Eq. (B2) between x′ − 0+ and x′ + 0+, we get
the following constraint relation:

ĝ(x′ + 0+, x′) − ĝ(x′ − 0+, x′) = i

h̄vF
(τz ⊗ σy). (C10)

From this expression, we obtain the matrix coefficients of (B3)
for this region:

Ĉμν = Ĉμμδμν , Ĉμμ = Ĉ′
μμ = Ĉee, (C11)
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Ĉee = −i

h̄vF

(
Ne

cosθe

τ0 + τz

2
+ Nh

cosθh

τ0 − τz

2

)
, (C12)

Ne/h = EF ± E√
(EF ± E )2 − M2

. (C13)

For the studied system, the contact points of the electrodes
with the F region are modeled as heavily doped magnetic
leads,

ĝr(a)
i � −i

h̄vF

(
g̃ 0
0 −g̃∗

)
, g̃ =

(
0 1
0 i

)
. (C14)

The effect of finite width L of the electrodes is modeled by
a weight factor f (q) in the Fourier transform (B1) of the
equilibrium Green’s functions of the junction [98,99],

Ĝr,a
i j (E ) →

∫
dq | f (q)|2eiq(y j−yi )Ĝr,a(E , x j, xi, q), (C15)

f (q) = 〈k1|q〉
√

k2
F − q2, (C16)

〈k1|q〉 =
√

π

L3
y

cos(qL/2)

k2
1 − q2

. (C17)

This factor is proportional to the transverse wave vector of
states at the superconducting region and depends only on
the first transverse mode of the electrode. (k1 = π/L). The
normalized hopping parameter t̃ between electrodes and the
F/S region is related to this factor by the expression t̃ =
t
√

F0/h̄vF , with

F0 =
∫

dq| f (q)|2. (C18)

APPENDIX D: PARAMETERS OF THE
SUPERCONDUCTING REGION’S GREEN’S FUNCTION

The excitation spectrum of Hamiltonian (1) for the super-
conducting region is

E (k) =
√

(h̄vF |k| − EF )2 + |�̂|2, (D1)

where |�̂| = Tr(�̂†�̂)/2 [100]. The associated eigenspinors
are given by

ψ̂e
η (x) = eηikex

(
u0ϕ̂

e
η,−iv0e−iφησyϕ̂

e
η

)T
,

ψ̂h
η (x) = eηikhx

(−iv0σyϕ̂
h
η, u0 e−iφη ϕ̂h

η

)T
, (D2)

where the coherence factors are defined as

u0 =
√

1

2

(
1 + �

E

)
,

v0 =
√

1

2

(
1 − �

E

)
, (D3)

� =
√

E2 − |�|2
and the spinors ϕ̂μ

η (μ = e, h) are defined by the expressions

ϕ̂e
η = (

1,−ηieηiθe
)T

/
√

2, (D4)

ϕ̂h
η = (

ηieηiθh , 1
)T

/
√

2, (D5)

with the wave vector in the x direction

ke/h =
√

(EF ± �)2

h̄2v2
F

− q2. (D6)

For the chosen boundary conditions, the reflection coeffi-
cients are

ree
L = 1

Y

(
e−iθe − γ 2

0 e−iθh
)
e−iφ− ,

reh
L = − 1

Y
γ0(e−iθe e−iφ+ + eiθe e−iφ− ),

rhe
L = − 1

Y
γ0(e−iθh e−iφ+ + eiθh e−iφ− ),

rhh
L = − 1

Y

(
eiθe − γ 2

0 eiθh
)
e−iφ+ ,

Y = γ 2
0 e−iθh e−iφ+ + eiθe e−iφ− , γ0 = v0/u0.

In this case the matrix coefficients of (B3) are given by

Ĉee = − 1

h̄v

1

C2 + BF − AH

⎛
⎜⎜⎝

H 0 −C B
0 H −F −C
C B −A 0

−F C 0 −A

⎞
⎟⎟⎠,

Ĉhh = �Ĉee, Ĉeh = Ĉhe = 0,

where

A = i(e−iθe + eiθe ) − �iγ 2
0 (e−iθh + eiθh ),

B = iγ0�(eiθh e−iφ+ + e−iθh e−iφ− )

−iγ0(eiθe e−iφ+ + e−iθe e−iφ− ),

C = γ0(e−iφ+ − e−iφ− )(� − 1),

F = iγ0�(e−iθh e−iφ+ + eiθh e−iφ− )

− iγ0(e−iθe e−iφ+ + eiθe e−iφ− ),

H = iγ 2
0 (e−iθe + eiθe )e−iφ+e−iφ−

−�i(e−iθh + eiθh )e−iφ+e−iφ− ,

� = reh
L /rhe

L .

APPENDIX E: CAR PROCESSES IN CONVENTIONAL
CHIRAL p-WAVE SUPERCONDUCTIVITY

For a conventional superconductor, the element eh of the
Green’s function evaluated at the edge of a semi-infinite re-
gion is given by

ĝr,a
S0,eh(E , q) = −2im

h̄2D
γ0eiϕ− (E1)

×
[

1

ke
+ 1

kh
+ D(1 − ei�ϕ )

2(1 − γ 2)

(
1

ke
− 1

kh

)]
,

(E2)

D = (
1 − γ 2

0 e−i�ϕ
)
, (E3)

with m being the mass of the electron. For chiral p-wave
symmetry �(θ ) = �0eiθ , and then eiϕ+ = eiθ = −e−iϕ− , and
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for E = 0 + iε and EF � �0 (ke ≈ kh) we get

ĝr,a
S0,eh(0, θ ) ≈ −4m

h̄2

δe−iθ

(1 − δ2e−2iθ )

1

kF cosθ
,

δ =
√

ζ − ε

ζ + ε
, ζ =

√
ε2 + �2

0. (E4)

Expressing the corresponding integral (C15) in terms of
q ≈ kF sinθ , we obtain for (8)

σCAR(d ) = σ0�̃e,b�̃h,a

(
4mL

h̄2

)2(kF

π

)4

�2(sd )e−d/λ, (E5)

which has a dependence on the electrode separation d identi-
cal to that of the case studied above for a TI in contact with a
conventional s-wave superconductor.
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