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Anisotropic three-dimensional quantum Hall effect in topological nodal-line semimetals
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The three-dimensional (3D) quantum Hall effect (QHE) has been intensely studied in Weyl semimetals and
Dirac semimetals in recent years. Here, we study the 3D QHE in nodal-line semimetal through calculating the
Hall conductivity numerically in a nodal-line semimetal slab. It is found that the Hall conductivity in nodal-
line semimetal is anisotropic with respect to the magnetic field, Fermi energy, and sample thickness when the
magnetic field is perpendicular to or parallel to the nodal line. The Hall conductivity is symmetric with respect
to the energy of the nodal line in both cases. When the Fermi energy deviates from the nodal line, a Hall plateau
appears and the plateau is wider and higher for the magnetic field parallel to the nodal line than perpendicular to
the nodal line. For magnetic field dependence, the Hall conductivity follows 1/B dependence when the magnetic
field is perpendicular to the nodal line, while it is independent on the magnetic field parallel to the nodal line.
Moreover, the Hall conductivity as a function of sample thickness is independent of the sample thickness for the
magnetic field perpendicular to the nodal line, while it is a increasing function for the magnetic field parallel to
the nodal line. We give a possible explanation for these anisotropies from the energy spectrum of Landau bands
under the magnetic field. This unique anisotropic 3D QHE can be a transport feature to recognize the topological
nodal-line semimetals.

DOI: 10.1103/PhysRevB.110.045413

I. INTRODUCTION

In recent years, three-dimensional (3D) quantum Hall ef-
fect (QHE) in topological semimetals has attracted great
interest in condensed matter physics [1–16]. Topological
semimetals are 3D phases of matter with gapless electronic
structures protected by topology and symmetry. Weyl and
Dirac semimetals are the famous topological semimetals, in
which the low-energy excitations can be described by Weyl
and Dirac equations [17–26]. In Weyl and Dirac semimetals,
the conduction and valence bands touch at discrete points,
which are called Weyl nodes. The surface states in Weyl and
Dirac semimetals are Fermi arcs connected to the projections
of the bulk nodal points. In a Weyl semimetal with two Weyl
nodes, it is proposed that the Fermi arcs at opposite surfaces
can support the 3D QHE through the Weyl nodes [1]. Follow-
ing the theoretical prediction, this 3D QHE has been observed
in Dirac semimetal Cd3As2 in various experiments [27–33].

For topological nodal-line semimetals, the conduction and
valence bands intersect along a closed loop. The surface
states form the so-called drumhead-like surface states [34,35].
The nodal-line semimetal has been proposed theoretically or
confirmed experimentally in various systems, including [20],
graphene networks [36], Cu3XN family (X = Ni, Cu, Pd, Ag,
Cd) [37,38], alkali earth metals [39,40], group-IV tellurides

*Contact author: changmingqi@njust.edu.cn
†Contact author: njrma@hotmail.com

(SnTe, GeTe) [41], WHX family (W = Gd, Zr, Hf, La; H = Si,
Ge, SN, Sb; X = O, S, Se, Te) [42–51], CaTX family (T
= Cd, Ag; X = P, Ge, As) [52], Ta3SiTe6 [53], AlB2 [54],
Ca3P2 [35,55], and the cold atom system [56].

The transport feature of materials is one of the major
approaches to study the electronic properties of topological
materials. In nodal-line semimetal, the bulk states and surface
states produce a number of interesting transport phenomena,
such as De Haas–van Alphen quantum oscillations [42,43],
anisotropic magnetoresistance [45,46], spin-resolved trans-
port [57], weak localization and antilocalization [58], etc.
In Weyl and Dirac semimetals, the 3D QHE has been stud-
ied intensely. In Weyl semimetal, the Fermi arcs in opposite
surfaces form a complete Fermi loop supporting the QHE.
In Dirac semimetal, the Fermi arc surface in one surface
can form a complete Fermi loop, producing QHE. The
drumhead-like surface states in nodal-line semimetal should
also be able to host QHE. This topic has been studied using
non-Hermitian bulk theory [59]. Therefore, the 3D QHE in
nodal-line semimetal needs further research.

In this paper, we study the 3D QHE in nodal-line semimet-
als through numerically calculating the Hall conductivity of
a nodal-line semimetal slab. We get the anisotropic quantized
Hall conductivities which are dependent on the direction of
magnetic fields. The Hall conductivities under magnetic fields
along different directions show anisotropic as the function
of Fermi energy, magnetic field, and the thickness of the
slab. The Hall conductivity as a function of Fermi energy is
symmetric with respect to EF = 0. A wide plateau appears
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when the Fermi energy deviates from EF = 0. However, the
plateau for the magnetic field parallel to the nodal line is
higher and wider than that for the magnetic field perpendic-
ular to the nodal line. As for the magnetic field dependence,
the Hall conductivity follows the usual 1/B dependence
for the magnetic field perpendicular to the nodal line. How-
ever, the Hall conductivity is independent of the magnetic field
parallel to the nodal line. As for the thickness dependence,
the Hall conductivity is independent of the thickness of the
sample when the thickness is greater than a critical value for
the magnetic field perpendicular to the nodal line, while the
Hall conductivity is an increasing function for the magnetic
field parallel to the nodal line. We give a possible explanation
for these anisotropies from the energy spectrum of Landau
bands under the magnetic field. This unique anisotropic 3D
QHE can be a transport feature to recognize the nodal-line
semimetals.

The rest of the paper is organized as follows. In Sec. II, we
introduce the model Hamiltonian of a nodal-line semimetal.
In Sec. III, we numerically calculate the Landau bands for
B||z and B||y. In Sec. IV, we present the Hall conductivity
calculated numerically in a nodal-line semimetal slab when
the magnetic field is applied. In Sec. V, we give a possible
explanation for the anisotropic Hall conductivities. The final
section contains a brief summary.

II. MODEL

We consider a 3D model of nodal-line semimetal
[57,58,60],

H = Akzσx + M
(
k2

0 − k2
)
σz, (1)

where (σx, σz) are the Pauli matrices, and k = (kx, ky, kz ) is
the wave vector. A, M, and k0 are the model parameters. The
energy dispersion of this model is

Ek
± = ±

√
A2k2

z + M2
(
k2

0 − k2
)2

, (2)

with ± for the conductance and valence bands. The model has
a line node defined by k2

y + k2
z = k2

0 and kz = 0 with the same
energy E = 0.

The topology of this model can be obtained. Take the
transverse wave vector k|| = (kx, ky) as a parameter. For

|k||| =
√

k2
x + k2

y < k0 inside the nodal line, this model is
a topological insulator with an energy gap. One can ver-
ify that the Berry phase γB = π is nontrivial with γB =
i
∫ ∞
−∞ dkz〈u−(k)|∂kz u−(k)〉. Otherwise, the model is a nor-

mal insulator with γB = 0 for |k||| > k0. Therefore, for k||
inside the nodal line, the nontrival Berry phase leads to the
drumhead-like surface states enclosed by the the projection of
the nodal loop onto the surface at an open boundary. For k||
outside the nodal line, the model becomes a normal insulator,
and no surface states show up.

In Fig. 1, we plot the energy spectrum of nodal-line
semimetal in the momentum space and the drumhead-
like surface states. The line node lies on the kx-ky plane.
For the surface parallel to the kx-ky plane, the surface states
on the boundary are enclosed by the projection of the nodal
line, forming the drumhead-like surface states. For the surface
perpendicular to the kx-ky plane, the projection of the nodal

FIG. 1. The energy spectrum of the nodal-line semimetal in mo-
mentum space, and the illustration of surface states. The nodal lines
are labeled as green lines. The surface states are labeled on the
boundary as green surface and lines.

line is a straight line. The anisotropic surface states in nodal-
line semimetal may lead to the anisotropic property.

III. LANDAU BANDS

First, we consider the case when a magnetic field along the
z direction is applied. The energy spectrum is quantized to
Landau bands dispersing with kz. The vector potential under a
Landau gauge is A = (0, Bx, 0). Using the Pierls transforma-
tion, the wave vector is replaced by

k =
(

kx, ky + x

�2
B

, kz

)
, (3)

with �2
B = h̄/|eB|. We introduce the ladder operators

a = �B√
2

[
kx − i

(
ky + x

�2
B

)]
, (4)

a† = �B√
2

[
kx + i

(
ky + x

�2
B

)]
. (5)

With the ladder operators, the Hamiltonian Eq. (1) can be
written as

H =
[
−ωM

(
a†a + 1

2

) + Mk Akz

Akz ωM
(
a†a + 1

2

) − Mk

]
, (6)

with ωM = 2M/�2
B, Mk = M(k2

0 − k2
z ).

The energy bands in the magnetic field are given by

E±(n, kz ) = ±
√

A2k2
z + M2

[
k2

0 − 2

�2
B

(
n + 1

2

)
− k2

z

]2

, (7)

Let us focus on the band crossing of the Landau levels. The
band crossing point must occur at kz = 0. Therefore, we only
consider the Landau levels

E±(n, 0) = ±
∣∣∣∣Mk2

0 − ωM

(
n + 1

2

)∣∣∣∣, (8)
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FIG. 2. The Landau level bands of a nodal-line semimetal with periodic boundary condition as a function of wave vector kz for (a) B||z
and as a function of wave vector ky for (b) B||y. The magnetic fields are B = 4 T (blue dashed line), B = 5 T (green solid line), and B = 8 T
(red dash-dotted line). The red dotted lines in (a) are the bottom of conduction bands and the valence-band maximum. The black lines dotted
in (b) are the bottom of dominant conduction bands and the maximum of the dominant valence band. The other parameters are M = 5 eV nm2,
A = 0.5 eV nm, and k0 = 0.3 nm−1.

The band crossing point is at EF = 0. Setting E±(n, 0) = 0,
we will find that only when the magnetic field B satisfies the
function

Bn
z = h̄k2

0

2e
(
n + 1

2

) , n = 0, 1, 2, . . . , (9)

the energy gaps will be closed.
When the magnetic field is along the y direction, the vector

potential is A = (Bz, 0, 0) under a Landau gauge. Using the
Pierls transformation, the wave vector is

k =
(

kx + z

�2
B

, ky, kz

)
, (10)

and the ladder operators are

a = �B√
2

[
kz − i

(
kx + z

�2
B

)]
, (11)

a† = �B√
2

[
kz + i

(
kx + z

�2
B

)]
. (12)

Using the ladder operator, the Hamiltonian can be written as

H =
[−ωM

(
a†a + 1

2

) + M ′
k

A√
2lB

(a + a†)
A√
2lB

(a + a†) ωM
(
a†a + 1

2

) − M ′
k

]
(13)

with ωM = 2M/�2
B, M ′

k = M(k2
0 − k2

y ).
We numerically calculate the energy bands of Landau lev-

els using the periodic boundary condition for the magnetic
field along the z direction in Fig. 2(a) and for the magnetic
field along the y direction in Fig. 2(b). We choose three
different magnetic fields B = 4 T, 5 T , and 8 T to see the
evolution of Landau bands. When the magnetic field along
the z direction is B7

z ≈ 4 T calculated using Eq. (9) with
k0 = 0.3 nm−1, the energy gap of Landau bands is closed as
shown by the blue dashed line in Fig. 2(a). As the magnetic
field is increased, the bandwidth between adjacent bands be-
comes wider, which can be seen from the green solid line

and the red dash-dotted line in Fig. 2(a). In Fig. 2(b), when
the magnetic field is along the y direction, the Landau bands
show an obvious difference. There is no energy gap between
the valence and conduction bands. The first Landau levels of
valence and conduction bands are nearly independent of the
magnetic field. These anisotropic Landau bands may result
in anisotropic transport signatures, e.g., the anisotropic Hall
conductivity.

For a nodal-line semimetal slab with magnetic field along
the z direction, the Hamiltonian H (kx, ky, kz ) is replaced
by H (−i∂x, ky + x/�2

B,−i∂z ). We calculate the Landau lev-
els using the basis |s, φi(x), φn(z)〉 = |χs〉 ⊗ |φi(x)〉 ⊗ |φn(z)〉
with [1]

χ1 =
[

1

0

]
, χ2 =

[
0

1

]
, (14)

φi(x) =
√

2

Lx
sin

[
iπ

Lx

(
y + Lx

2

)]
, n = 0, 1, 2, . . . , (15)

φn(z) =
√

2

Lz
sin

[
nπ

Lz

(
z + Lz

2

)]
, n = 0, 1, 2, . . . . (16)

It is found that φi(−Lx/2) = φi(Lx/2) = 0 and φn(−Lz/2) =
φn(Lz/2) = 0 satisfy the open boundary condition. When
the magnetic field is along the y direction, the Hamiltonian
H (kx, ky, kz ) is replaced by H (kx + z/�2

B,−i∂y,−i∂z ). We cal-
culate the Landau levels using the same method as above.

In Fig. 3, we plot the Landau levels of a nodal-line
semimetal slab under magnetic fields along the z and y direc-
tion using open boundary condition. Figures 3(a)–3(c) show
the Landau levels for the magnetic field along the z direction.
Figures 3(d)–3(f) show the Landau levels for the magnetic
field along the y direction. Comparing Figs. 2 and 3, we can
see the evolution of Landau levels from periodic boundary
condition to open boundary condition. From these Landau
levels with open boundary condition, we can explain the quan-
tized sheet Hall conductivity of a nodal-line semimetal slab as
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FIG. 3. The Landau level bands of a nodal-line semimetal slab with open boundary condition for (a–c) B||z and (b–f) B||y. The magnetic
fields are (a), (c), (d), (f) B = 5 T and (c), (d) B = 8 T . The thicknesses along the magnetic field are (a), (b), (d), (e) L = 100 nm, (c) L =
150 nm, and (f) L = 125 nm. From these Landau levels, we can explain the quantized sheet Hall conductivity as shown in Figs. 4–6. Take
(a) as an example: when Fermi energy is 0 < EF < 0.036 eV, six Landau levels cross the Fermi energy, therefore the sheet Hall conductivity
is 6(e2/h), which can be confirmed from Fig. 4. The other parameters are the same as in Fig. 2.

shown in Figs. 4–6. Take Fig. 3(a) as an example: when Fermi
energy is 0 < EF < 0.036 eV, six Landau levels cross the
Fermi energy, therefore the sheet Hall conductivity is 6(e2/h),
which can be confirmed from Fig. 4.

IV. ANISOTROPIC HALL CONDUCTIVITY

We numerically calculate the Hall conductivity of a nodal-
line semimetal slab with open boundary condition in a
magnetic field using the Kubo formula [1,9]

σα,β = e2h̄

iVeff

∑
δ,δ′ 	=δ

〈δ|vα|δ′ 〉〈δ′ |vβ |δ〉 fδ′δ

(Eδ − Eδ′ )(Eδ − Eδ′ + i�)
, (17)

where α, β = x, y, z, |δ〉 is the eigenstate of energy Eδ for H
in a magnetic field, Veff is the volume of the slab, vα and vβ

are the velocity operators, fδ′δ = f (Eδ′ ) − f (Eδ ), and f (x) is
the Fermi distribution. The disorder can be introduced in the
Kubo formula via the level broadening �. For a small �, the
Hall conductivity can be obtained as the real part of Eq. (17).

To numerically calculate the Hall conductivity, we use
the bases |s, υ, φn〉 = |χs〉 ⊗ |υ〉 ⊗ |φn〉, where |υ〉 is the har-
monic oscillator eigenfunction, and

χ1 =
[

1

0

]
, χ2 =

[
0

1

]
, (18)

FIG. 4. In a nodal-line semimetal slab, the sheet Hall conduc-
tivity as a function of Fermi energy for B||z (red line) and B||y
(black line) with B = 5 T , Lz = Ly = 100 nm and � → 0 (solid
line), � = 10 meV (dotted line). The variations of the first plateau
away from EF = 0 are labeled in the figure. The variations of the
first plateau for B||z away from EF = 0 are right at EF = ±0.036 eV
as the red dotted line shown in Fig. 2(a). The variations of the first
plateau for B||y away from EF = 0 are right at EF = ±0.083 eV as
the black dotted line shown in Fig. 2(b). The other parameters are
M = 5 eV nm2, A = 0.5 eV nm, and k0 = 0.3 nm−1.
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FIG. 5. The sheet Hall conductivity σ s
H as a function of magnetic

field B for B||z (red line) at EF = 0.01 eV, Lz = 100 nm and for B||y
(black line) at EF = 0.04 eV, Ly = 100 nm. The inset shows the Hall
conductivity as a function of 1/B. The black arrows label the critical
magnetic fields according to Eq. (9). The parameters can be found in
Fig. 4

and for the magnetic field along the z direction,

φn(z) =
√

2

Lz
sin

[
nπ

Lz

(
z + Lz

2

)]
, n = 0, 1, 2, . . . , (19)

for the magnetic field along the y direction,

φn(y) =
√

2

Ly
sin

[
nπ

Ly

(
y + Ly

2

)]
, n = 0, 1, 2, . . . .

(20)

FIG. 6. The sheet Hall conductivity σ s
H as a function of the thick-

ness of the slab L for B||z (red line) at EF = 0.01 eV, B = 5 T and
for B||y (black line) at EF = 0.04 eV, B = 5 T . Here, the thickness
is along the direction of the magnetic field. The parameters can be
found in Fig. 4.

Apparently, φn(−L/2) = φn(L/2) = 0 satisfies the open
boundary condition. Here, L is the thickness along the mag-
netic field. The matrix elements of the Hamiltonian (6)
and (13) on the bases can be obtained as

Hss′,υυ ′,mn = 〈s, υ, φm|H |s′, υ ′, φn〉. (21)

The eigenenergies and eigenstates of the Hamiltonian matrix
can be calculated numerically and the wave function for an
eigenstate of energy Eδ is

δ (x, z) =
∑
s,υ,n

Cδ,sυnϕυ (x)φn(z), (22)

where {Cδ,sυn} are the superposition coefficients and ϕυ (x) =
〈x|υ〉.

The elements 〈δ|vx|δ′ 〉, 〈δ|vy|δ′ 〉, and 〈δ′ |vz|δ〉
in the Kubo formula can be calculated based on the ve-
locity operators vx = 1/h̄ ∂H/∂kx, vy = 1/h̄ ∂H/∂ky, vz =
1/h̄ ∂H/∂kz, and the wave function δ of the energy Eδ .
The sheet Hall conductivity for the nodal-line semimetal slab
is defined by σ s

H = σH L. Substituting the numerical results
of the Hamiltonian matrix into the Kubo formula, we can
numerically calculate the sheet Hall conductivity.

For the magnetic field along the z direction, the numer-
ical results are calculated using Hamiltonian (6). And, the
Hall conductivity σ H

xy can be calculated by substituting the
〈δ|vx|δ′ 〉 and 〈δ|vy|δ′ 〉 into the Kubo formula. When the
magnetic field is along the y direction, the Hamiltonian (13)
needs to be taken into account. The Hall conductivity σ H

xz can
be calculated by substituting the 〈δ|vx|δ′ 〉 and 〈δ|vz|δ′ 〉
into the Kubo formula. For the magnetic field along the z and y
directions, we numerically calculate the Hall conductivities as
the functions of Fermi energy, magnetic field, and the sample
thickness in Figs. 4–6, respectively. The Hall conductivity
shows well-formed integer quantized plateaus.

In Fig. 4, we plot the sheet Hall conductivity as a function
of Fermi energy for magnetic field B = 5 T and the thick-
ness of the slab along the direction of the magnetic field is
L = 100 nm. As shown in Fig. 4, the Hall conductivity is
anisotropic for the magnetic field along the z and y directions.
In both cases, because the energy bands in Fig. 2 for B||z
and B||y are symmetrical with respect to EF = 0, the Hall
conductivities are symmetrical with respect to EF = 0. The
value of Hall conductivity changes dramatic when the Fermi
energy is near the EF = 0. As the Fermi energy changes
from negative to positive, the Hall conductivity jumps from
−6e2/h to 6e2/h for B||z and −9e2/h to 9e2/h for B||y.
The ±9e2/h Hall plateaus for B||y are wider than ±6e2/h
for B||z. In Fig. 4, we label the energies in which the first
plateaus change. We also label the energies with red dotted
lines in Figs. 2(a) and 3(a) and black dotted lines in Figs. 2(b)
and 3(b). In Fig. 2(a), the red dotted lines are right at the
bottom of conduction bands and the valence bands maximum.
In Fig. 2(b), the black dotted lines cross the first Landau
levels of conduction and valence bands and the bottom and
top of the second Landau levels of the conduction band and
valence band, respectively. According to Fig. 3, we can get the
sheet Hall conductivity by counting the Landau levels of the
Fermi energy crossing. From the Landau levels of a nodal-line
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semimetal slab as shown in Fig. 3(a), for B||z, when Fermi
energy is −0.036 eV < EF < 0.036 eV, six Landau levels
cross the Fermi energy, therefore the sheet Hall conductivity is
±6e2/h. For B||y, nine Landau levels cross the Fermi energy
when −0.083 eV < EF < 0.083 eV. As a result, the sheet
Hall conductivity is ±9e2/h. These results are consistent with
those in Fig. 4.

We also consider the effect of disorder using the same
method as Ref. [1]. A finite temperature kBT plays a similar
role to the disorder. For disorder � = 10 meV, or equivalently,
about 115 K in temperature, the Hall plateaus are stable for
magnetic field along the y and z directions as shown in Fig. 4.

In Fig. 5, we plot the sheet Hall conductivity as a func-
tion of magnetic field at EF = 0.01 eV for B||z and at EF =
0.04 eV for B||y. The thickness of the slab along the direction
of the magnetic field is L = 100 nm. The features of Hall
conductivity as a function of magnetic field are remarkably
different for magnetic applied along the z and y directions.
For the magnetic field B||z, the Hall conductivity follows the
usual 1/B dependence as shown in the inset of Fig. 5. We
label the Bn

z with n = 3, 4, 5, 6, 7 using Eq. (9) in Fig. 5. It
is easy to find that the variations of plateaus are right at the
Bn

z . Therefore, the plateau width in the inset of Fig. 5 can be
calculated according to Eq. (9),

�

(
1

B

)
= 1

Bn
z

− 1

Bn−1
z

= 2e

h̄k2
0

. (23)

We also find that for Bn
z < B < Bn−1

z , the Hall conductivity
is quantized at n (e2/h), which can be checked from Fig. 5.
However, the situation is different for B||y. Because the first
Landau levels of the conduction band and valence band are
nearly independent of the magnetic field at EF = 0.04 eV, the
Hall conductivity shows a straight plateau at σH = 9(e2/h)
independent of the magnetic field, as shown in Fig. 5. The
plateau of sheet Hall conductivity varies as the Landau
levels of nodal-line semimetal change with the magnetic
fields. As shown in Figs. 3(a) and 3(b), for B||z, six
Landau levels cross EF = 0.01 eV at B = 5 T , while four
Landau levels cross EF = 0.01 eV at B = 8 T . As a result,
the sheet Hall conductivities are σ s

H = 6(e2/h) at B = 5 T and
σ s

H = 4(e2/h) at B = 8 T , which can be confirmed in Fig. 5.
For B||y, nine Landau levels cross EF = 0.04 eV at B = 5 T
and 8 T as shown in Figs. 3(d) and 3(e). Therefore, the sheet
Hall conductivities are the same σ s

H = 9(e2/h) for B = 5 T
and 8 T in Fig. 5.

In Fig. 6, we plot the sheet Hall conductivity as a func-
tion of the sample thickness at EF = 0.01 eV, B = 5 T for
B||z and at EF = 0.04 eV, B = 5 T for B||y. Here, the thick-
ness is along the direction of the applied magnetic field.
The thickness-dependent Hall conductivity is also anisotropic.
For B||z, using the parameters in Fig. 6, when the thickness
L < 64 nm, the Hall conductivity changes drastically. When
the thickness L > 64 nm, the Hall conductivity is shown to
be independent of the thickness. For B||y, the Hall conduc-
tivity increases as the thickness increases. We can explain
the thickness dependence of sheet Hall conductivity using a
similar method. As shown in Figs. 3(a) and 3(c), for B||z,
six Landau levels cross EF = 0.01 eV for L = 100 nm and

L = 150 nm. As a result, the sheet Hall conductivities are both
σ s

H = 6(e2/h). Therefore, the sheet Hall conductivity is shown
to be independent of the thickness for B||z. For B||y, nine
Landau levels cross EF = 0.04 eV for L = 100 nm and 11
Landau levels cross EF = 0.04 eV for L = 125 nm as shown
in Figs. 3(d) and 3(f). The sheet Hall conductivities are σ s

H =
9(e2/h) for L = 100 nm and σ s

H = 11(e2/h) for L = 125 nm,
as shown in Fig. 6. Therefore, the sheet Hall conductivity
is an increasing function for B||y. Similar to the situation in
Weyl semimetal, the sheet Hall conductivities are independent
of the thickness when the magnetic field is perpendicular to
the Fermi arc states, while they are an increasing function
of thickness for the magnetic field parallel to the Fermi arc
states. In nodal-line semimetal, the sheet Hall conductivi-
ties are also independent of the thickness for the magnetic
field perpendicular to the drummer-head surface states. When
the magnetic field is parallel to the drummer-head surface
states, the sheet Hall conductivity is an increasing function of
thickness.

V. DISCUSSION

From the results obtained above, we can discuss how the
surface states influence the 3D QHE in nodal-line semimetal.
As shown in Fig. 1, for the surface parallel to the nodal
line, the projection of a nodal line on the surface forms a
drumhead-like surface state. For the surface perpendicular to
the nodal line, the projection of the nodal line is just a straight
line. The anisotropic surface states give rise to the anisotropic
QHE in nodal-line semimetal. For the magnetic field along
the z direction, which is perpendicular to the drumhead-like
surface state, it is similar to the case in Ref. [1]. The quantized
sheet Hall conductivity of drumhead-like surface states shows
1/B dependence and independence from the thickness. On
the other hand, for the magnetic field along the y direction,
the QHE of the straight line surface states shows indepen-
dence from the magnetic fields and increases as the thickness
increase.

In Fig. 3, the Landau levels of a nodal-line semimetal
slab with open boundary condition contain the information
of surface states. According to Fig. 3, we can explain the
sheet Hall conductivity calculated using the Kubo formula by
counting the Landau levels that cross the Fermi energy. For
the magnetic field along the z direction, in Figs. 3(a) and 3(b),
six Landau levels cross EF = 0.01 eV for B = 5 T , while
four Landau levels cross EF = 0.01 eV at B = 8 T . Therefore,
σ s

H = 6(e2/h) for B = 5 T and σ s
H = 4(e2/h) for B = 8 T ,

consistent with the 1/B dependence. In Figs. 3(a) and 3(c),
six Landau levels cross the Fermi energy near EF = 0 for
the thickness L = 100 nm and 150 nm, therefore the sheet
Hall conductivity is 6(e2/h) independent of the thickness,
consistent with that in Fig. 6. As for the magnetic field along
the y direction, in Figs. 3(d) and 3(e), nine Landau levels cross
EF = 0.04 eV for B = 5T and B = 8T , therefore the sheet
Hall conductivities are 9(e2/h) independent of the magnetic
field in Fig. 5. In Figs. 3(d) and 3(f), nine Landau levels
cross EF = 0.04 eV at L = 100 nm, while 11 Landau levels
cross EF = 0.04 eV at L = 125 nm, therefore the sheet Hall
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conductivities are 9(e2/h) for L = 100 nm and 11(e2/h) for
L = 125 nm, consistent with Fig. 6.

It is important to consider that some Hall plateaus originat-
ing from quantized surface states may be resistant to impurity
scattering, while others stemming from bulk states may be
susceptible to breakdown under such scattering. In Sec. IV,
we consider the effect of disorder on the Hall plateaus via level
broadening. However, the impurity effects cannot be simply
attributed to level broadening. Impurity effects may also lead
to level mixing or inter- and/or intravalley scattering. There-
fore, it is necessary to systematically investigate the effects
of impurity. Here, according to the results obtained above,
we can give a qualitative analysis of the impurity effects. For
the magnetic field along the z direction, the Hall conductiv-
ities are independent of the thickness. This could mean that
the Hall conductivities are entirely due to the surface states.
Therefore, the Hall plateaus may be resistant to impurity scat-
tering. For the magnetic field along the y direction, the Hall
conductivities are dependent on the thickness, meaning that
Hall conductivities are stemming from bulk states. As a result,
these Hall plateaus may be susceptible to breakdown under
such scattering. A quantitative analysis of impurity effects,
including bulk impurity and surface impurity, will be done in
our further research.

In experiment, anomalous Hall effect [61,62] and 3D
anisotropic magnetoresistance [45] have been observed in
nodal-line semimetal. However, less attention has been paid
to the Hall conductivity of nodal-line semimetal. We antici-
pate that this anisotropic QHE will be observed in nodal-line
semimetal.

VI. SUMMARY

In summary, we numerically study the 3D QHE in topo-
logical nodal-line semimetals through calculating the Hall
conductivity of a nodal-line semimetal. We find that the Hall
conductivities are anisotropic when the magnetic fields along
different directions are applied. The anisotropy of Hall con-
ductivity manifests itself in the dependence of magnetic field,
Fermi energy, and the thickness along the direction of the
magnetic field. The Hall conductivity as a function of Fermi
energy is symmetric with respect to EF = 0. A wide quan-
tized Hall plateau shows up when Fermi energy deviates from
EF = 0. The anisotropy is reflected in that the plateau of B||y
is bigger and wider than that for B||z. As for the magnetic
field dependence, the Hall conductivity for B||z follows the
usual 1/B dependence. However, the Hall conductivity is
independent of the magnetic field B||y. As for the thickness
dependence, the Hall conductivity is independent of the thick-
ness of the sample when the thickness is greater than a critical
value for B||z. However, the Hall conductivity is an increasing
function for B||y. We also explain this anisotropic 3D QHE
from the Landau bands under magnetic fields. Our study
demonstrate the anisotropic 3D QHE in nodal-line semimetal.
This unique anisotropic 3D QHE can be a transport feature to
recognize the nodal-line semimetals.
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