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Light-hole spin confined in germanium
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The selective confinement of light holes (LHs) in a tensile-strained germanium (Ge) quantum well is studied
by mapping the electronic structure of Ge1−xSnx/Ge/Ge1−xSnx heterostructures as a function of Sn content,
residual strain, and Ge well thickness. It is shown that above 12 at.% Sn and below 0.4% residual compressive
strain in the barriers, the tensile strain in Ge becomes sufficiently large to yield a valence band edge with
LH-like character, thus forming a quasi two-dimensional LH gas in Ge. The LH ground state has a larger
in-plane effective mass than that of heavy holes (HHs) in Si1−yGey/Ge/Si1−yGey quantum wells. Moreover,
LHs in optimal Ge1−xSnx/Ge/Ge1−xSnx heterostructures are found to exhibit a strong g-tensor anisotropy, with
the in-plane component one order of magnitude larger than that of HHs in typical planar systems. Two of three
structure-inversion-asymmetry Rashba parameters, both of which are critical in electric-dipole-spin-resonance
experiments, are effectively 10 times the size of the cubic Rashba parameter in HH quantum wells. In the regime
of LH selective confinement, every layer of the heterostructure is of direct bandgap, which can be relevant for
efficient optical photon-spin qubit interfaces. This work discusses the broad landscape of the characteristics of
LH spin confined in Ge to guide the design and implementation of LH spin-based devices.
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I. INTRODUCTION

Hole spins in group-IV planar gated quantum dots
are promising candidates for robust and scalable qubits
[1–7]. Developing these qubits has been so far exclu-
sively based on heavy-hole (HH) states, as the materials
currently used are restricted to compressively strained germa-
nium (Ge) heterostructures. Interestingly, the advent of the
germanium/germanium-tin (Ge/Ge1−xSnx) material system
provides an additional degree of freedom to tailor the va-
lence band character in tensile-strained Ge, thus paving the
way to implement silicon-compatible platforms for light-hole
(LH) spin qubits [8,9]. These LH qubits share many of the
advantages benefiting the HH ones but also bring about other
attractive characteristics pertaining to LHs and Ge/Ge1−xSnx

heterostructures. These include a strong Rashba-type spin-
orbit interaction (SOI) [9] and an efficient coupling with
proximity-induced superconductivity [10] in addition to the
bandgap directness [11] relevant to coupling with optical pho-
tons. These characteristics can expand the functionalities of
hole spin qubits by facilitating the implementation of hybrid
superconductor-semiconductor devices and photon-spin inter-
faces.

Although Ge1−xSnx semiconductors have been the sub-
ject of extensive studies in recent years, research in this
area has mainly been focused on integrated photonics and
optoelectronics leveraging Ge1−xSnx strain- and composition-
dependent bandgap [11] leaving their spin properties practi-
cally unexplored [9,12–14]. As a matter of fact, studies on
hole spin in Ge/Ge1−xSnx are still conspicuously missing in
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the literature. Herein, this work addresses the dynamics of
LH spin confined in Ge1−xSnx/Ge/Ge1−xSnx heterostructures
and elucidates the key parameters affecting its behavior as a
function of strain, well thickness, Sn content, and magnetic
field orientation. First, the article describes and discusses
the electronic structure of tensile-strained Ge on Ge1−xSnx.
Second, the parameters defining the band alignment of the
Ge1−xSnx/Ge/Ge1−xSnx quantum well are introduced and the
criteria for LH confinement in Ge are established. The third
section outlines the Hamiltonian of the in-plane motion of
LHs for out-of-plane and in-plane magnetic fields yielding
LH parameters such as the effective mass, the g-tensor, and
the Rashba-SOI parameters. LH-HH mixing within the LH
ground state is investigated in the fourth section. It is im-
portant to note that the focus here is on LH properties in
the planar system without the effects of electrostatic in-plane
confinement introduced in quantum dot systems. [9]

II. LH QUANTUM WELL IN Ge1−xSnx/Ge/Ge1−xSnx

A. Ge1−xSnx/Ge/Ge1−xSnx heterostructure

Before delving into the details of the electronic structure
of Ge/Ge1−xSnx, it is instructive to examine the strain-related
behavior of bulk Ge. Figure 1(a) outlines the effect of tensile
strain on the band structure of bulk Ge calculated by 8-band
(full lines) and 4-band (dashed lines) k · p theory. Here, the
calculations assume a bi-isotropic biaxial strain in the (001)-
plane without any shear deformations, which is expected for
an ideal [001]-oriented epitaxial growth [8,15]. Under these
conditions, the fourfold degeneracy of the VB edge at the �

point is lifted yielding two spin-degenerate LH and HH bands.
In the case of tensile strain, the VB edge is LH-like, whereas
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FIG. 1. (a) Bulk dispersion near the � point (‖k‖ � 2.5 nm−1 in
both directions) of relaxed Ge (left) and tensile-strained Ge (right)
computed by the 8-band (full lines) and the 4-band (dashed lines)
k · p frameworks. The nonzero components of the strain tensor are
εxx = εyy = 2% and εzz = −2(c12/c11)εxx ≈ −1.3%. The conduction
band was obtained from an effective mass approximation in the
4-band computations. (b) Schematic illustration of the proposed
Ge1−xSnx/Ge/Ge1−xSnx heterostructure. (c) Band alignment profile
of a Ge1−xSnx/Ge/Ge1−xSnx quantum well for selected barrier pa-
rameters. In this case, �E1,2,3 and LBO are positive. εxx in each layer
is written in parentheses.

in the broadly studied compressively strained Ge, the VB edge
is of the HH type. As discussed in the following, there is a
threshold of tensile strain beyond which it becomes possible
to control and selectively manipulate spin 1/2 LHs instead of
spin 3/2 HHs.

The proposed heterostructure consists of a
Ge1−xSnx/Ge/Ge1−xSnx quantum well grown on silicon
[8], as illustrated in Fig. 1(b). Thick Ge1−xSnx buffer
layers with an increasing Sn content from the Ge virtual
substrate (VS) up to the bottom Ge1−xSnx barrier prevents the
propagation of defects and dislocations near the Ge quantum
well [8]. The lattice mismatch between Ge1−xSnx and Ge
(with Sn contents above ∼10 at. %) is leveraged to achieve
high tensile strain in the coherently grown Ge quantum well.
A top Ge1−xSnx barrier is then grown on the tensile-strained
Ge layer. As shown in the following, careful engineering of
the lattice strain and Sn content leads to a direct bandgap Ge
LH quantum well.

B. Band alignment and LH confinement

The energy band alignment of the Ge1−xSnx/Ge/Ge1−xSnx

heterostructure is computed within the assumption that the

in-plane lattice constant a‖ is the same in each layer, which
is consistent with a pseudomorphic epitaxial growth. The in-
plane components εxx and εyy of the strain tensor in a material
i are given by εxx = εyy = a‖/ai

0 − 1, where ai
0 is the lattice

constant of the fully relaxed material i. The out-of-plane strain
component εzz then follows immediately from the relation
εzz = −2(c12/c11)εxx, where c11 and c12 are the material elas-
tic constants (see Table I) and εkl = 0 if k �= l [15]. Three
parameters determine completely the band alignment of the
Ge1−xSnx/Ge/Ge1−xSnx heterostructure: the Sn content x, the
in-plane strain εBR in the barriers, and the in-plane strain in
the Ge well εW. Since the latter can be counted for from the
condition that a‖ is constant along the growth direction z,
only the barrier composition and strain (x, εBR) are required
to evaluate the band alignment.

A typical band alignment is displayed in Fig. 1(c) for x =
0.13 and εBR = −0.125%. In this instance, HHs and electrons
are pushed away from Ge and form a continuum of states
in the Ge0.87Sn0.13 barriers. Meanwhile, LHs are selectively
confined in Ge, thereby forming a LH quantum well. Here,
the combination of large strain in Ge (εW = 1.95%) with
small εBR pushes the LH ground state (LH1) above the HH
continuum, leading to the possibility, at very low hole density,
to populate only LH1 and thus to create a pure quasi two-
dimensional LH gas in Ge. Such system is achievable only in
a specific region of the parameter space (x, εBR), depending
on four energy offsets [see Fig. 1(c)]:

�E1 = max(LH) − max(HH), (1)

�E2 = ELH1 − max(HH), (2)

�E3 = ELH1 − min(LH), (3)

LBO = max(LH) − min(LH)

= �E1 − �E2 + �E3. (4)

Here, max(LH) and min(LH) are the energies at the bottom
and top of the LH quantum well, respectively, and max(HH) is
the energy at the edge of the HH continuum. The zero energy
point is placed on the ground LH subband (i.e., ELH1 = 0).
Band offsets �E1 and LBO (LH band offset) do not depend
on the well thickness w.

Figure 2(a) presents a two-dimensional map of band offsets
LBO and �E1 with x and εBR as independent parameters. The
corresponding strain in the Ge well εW is also shown (black
dotted lines) only for the tensile strain regime (εW > 0). The
Ge indirect-to-direct transition occurs at εW = 1.68% (solid
black line) according to the parameterization described in
Appendix A. Similarly, the Ge1−xSnx barriers exhibit bandgap
directness above the dashed-dot blue line. Constant LBO are
indicated by the solid red curves, where LBO = 0 corresponds
to a completely flat LH profile along the growth direction. Fi-
nally, dashed red curves indicate constant �E1, where �E1 =
0 corresponds to the LH band edge in Ge sitting at the same
energy as the HH band edge in the barriers. As discussed in
the following, a large and positive �E1 allows LH1 to emerge
from the continuum for sufficiently thick quantum wells.

LHs are confined in Ge if and only if LBO > 0. However,
depending on �E1 and the well thickness w, these confined
LHs could be situated within the HH continuum (negative
�E2). In the region �E1 � 0, LHs can never emerge from
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FIG. 2. (a) Two-dimensional contour map of band offsets �E1

and LBO, strain in Ge, and bandgap directness as a function of x and
εBR at T = 300 K. Contour lines for LBO and �E1 are given at 0, 50,

and 100 meV. The star indicates the system from Fig. 1(c). (b) Min-
imal well thickness w0 (solid lines) required for a LH-like valence
band edge as a function of εBR at fixed Sn content in the barriers.
Dashed lines are the Ge critical growth thickness hc estimated from
the People and Bean relation. Solid circles indicate where w0 = hc

for a given x. For x = 0.10, hc ≈ 46 nm at εBR = 0.

the continuum since the bottom of the LH well is below
the HH band edge. However, if �E1 > 0, there is a minimal
quantum well thickness w0 for which LH1 emerges from the
continuum. This lower bound depends on both Sn content and
lattice strain (i.e., x and εBR) in the barriers and is plotted
in Fig. 2(b) (solid lines). At w = w0, the energy required
for LH1 to escape the well is exactly LBO − �E1 (i.e., the
strain-induced HH-LH splitting in the barriers). w0 → ∞ on
the �E1 = 0 curve, whereas w0 = 0 if the barriers are fully
relaxed. In addition to the lower bound w0 < w, the maximum
strain energy that the Ge quantum well can accommodate also
introduces an upper bound on w. This upper bound is given by
the Ge critical growth thickness hc, beyond which misfit dis-
locations start to appear at the interfaces and tensile strain in
Ge is strongly suppressed. The dashed lines in Fig. 2(b) show
an estimation of hc based on the People and Bean formula
[16,17]. Here, this model is applied for the critical thickness
of a Ge layer with equilibrium lattice constant aGe

0 ≡ a0(0)
pseudomorphically grown on Ge1−xSnx with lattice constant
a0(x)(1 + εBR).

III. LH SPIN PROPERTIES

A. Effective masses and spin parameters

In this section, the LH subband effective mass, the out-of-
plane and in-plane g factors, and the Rashba parameters are
computed as a function of Sn content in the Ge1−xSnx barriers
(x) and well thickness w. These parameters give important
information on how LHs move in the plane and how they
respond to magnetic fields. Despite being intrinsic to a given
subband (here, the focus is given to the lowest subband LH1),
there is generally a significant influence from neighboring
levels through inter-subband couplings. Moreover, the wave-
function spread across interfaces can also influence subband
parameters. In heterostructures such as Ge/Si1−yGey quantum
wells, where both types of holes are confined into the same
layer and the band offsets are large, intersubband coupling is
significant to an energy scale comprising only a few tens of
subbands due to quantization effects. For instance, it is often
a reasonable approximation to include the coupling to only 1
or 2 LH subbands for a HH ground state [18], or around 50
LH subbands when band offsets are taken into account [19].
In Ge/Ge1−xSnx quantum wells, intersubband couplings must
include ∼102 subbands due to the neighboring continuum.
Moreover, small LBOs leading to a sizable spread of LH1
into the barriers require an accurate description of the subband
envelopes. To address these effects, a numerical approach is
employed instead of a variational method for the envelope
problem [9]. Moreover, due to the nearby continuum, the
coupling from the 200 closest subbands to LH1 are taken into
account. Our implementation of k · p theory and how strain is
incorporated into the model is described in Appendix B.

From the point of view of 8-band k · p theory, a subband
such as LH1 always consists of the superposition of spin
1/2 CB electron, LH, and split-off (SO) hole envelopes. At
k‖ = 0, this can be written as

|η, σ 〉 =
∣∣∣∣1

2
,
σ

2

〉
c

|c〉 +
∣∣∣∣3

2
,
σ

2

〉
|�〉 + σ

∣∣∣∣1

2
,
σ

2

〉
|s〉, (5)

where σ = ±1 is a pseudo-spin quantum number and
〈z | c, �, s〉 = ψc,�,s(z) are the CB, LH, and SO envelope func-
tions, respectively. To avoid any confusion, “LH” subbands
(e.g., LH1) are designated as η subbands to distinguish them
from their LH envelope component. The kets | 3

2 , σ
2 〉 ≡ | j, m〉

and so on are the bulk Bloch states. The additional contribu-
tion from HHs away from k‖ = 0 is investigated in the next
section. An η subband is normalized according to

1 =
∑

τ={c,�,s}
〈τ | τ 〉, (6)

with 〈� | �〉 > 〈c | c〉 and 〈� | �〉 > 〈s | s〉 for a level such as
LH1. For instance, the SO contribution 〈s | s〉 in LH1 is typ-
ically smaller than 10% for the range of barrier and well
parameters considered here, but it plays an important role in
the effective mass calculations, as discussed in the following.
The CB contribution 〈c | c〉 in LH1 is around 5%, where the
envelopes |c〉 are antisymmetric with respect to the center of
the well and have their maximal amplitude near the interfaces.

For an out-of-plane magnetic field B = Bez, the in-plane
motion of |η, σ 〉 is described by an effective two-dimensional
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Hamiltonian (see Appendix C)

H⊥
eff = α0γ K2

‖ + α0

λ2

g⊥
2

σz

+ iβ1(K−σ+ − h.c.) − iβ2
(
K3

+σ+ − h.c.
)

+ iβ3(K−K+K−σ+ − h.c.), (7)

where α0 = h̄2/(2m0) with m0 the free electron mass, K =
k + eA/h̄ is the mechanical wavevector, A = B/2(−yex +
xey) is the vector potential such that B = ∇ × A, and
k → −i∇ is the canonical wavevector. Notably, K2

‖ =
{K−, K+}/2 = K2

x + K2
y , 1/λ2 = [K−, K+]/2 = eB/h̄, and

K± = Kx ± iKy. The effective parameters in (7) are the fol-
lowing: γ = m0/m∗ is the in-plane inverse effective mass, g⊥
is the out-of-plane g factor, and β1,2,3 represent the three types
of Rashba splittings. The first is linear in K , whereas the last
two are cubic in K . Rashba parameters arise from space in-
version asymmetry. When a small DC electric field E = Ezez

is applied to an otherwise symmetric well, all β parameters
behave linearly with Ez and involve only odd powers of the
field:

βi = αiEz + O
(
E3

z

)
, (8)

where i = 1, 2, 3. For an in-plane magnetic field B =
B(ex cos φ + ey sin φ) with vector potential A = B(ex sin φ −
ey cos φ)z, the in-plane motion is instead described by

H‖
eff = α0γ k2

‖ + α0

λ2

g‖
2

(
e−iφσ+ + h.c.

)
+ iβ1(k−σ+ − h.c.) − iβ2

(
k3
+σ+ − h.c.

)
+ iβ3(k−k+k−σ+ − h.c.). (9)

The in-plane g factor is given by

g‖
2

= �{〈c | zgkz | c〉 − 2
〈+ | u′

+ | −〉}
−

√
2�

{
1√
3α0

〈c | zP | +〉 + 〈− | s〉
}
, (10)

where

|±〉 = |�〉 ± 2±1/2 |s〉 , (11)

u′
± = {zγ3, kz}±[zκ, kz], (12)

with γ3 a Luttinger parameter, κ the bulk hole g-factor,
and P the so-called Kane momentum matrix element (see
Appendix A). In the context of heterostructures, material pa-
rameters such as γ3, κ, or P are operators that act on envelope
functions. Importantly, they do not commute with kz and are
diagonal in position basis. For example, γ3 |z〉 = γ3(z) |z〉,
where the function γ3(z) gives the value of γ3 at coordinate
z. In (10), the z = 0 coordinate is chosen such that

〈z〉 =
∑

τ={c,�,s}
〈τ | z | τ 〉 = 0. (13)

This ensures, when setting kx = ky = 0, that g‖ is gauge
independent and corresponds to that at the subband edge.
This is because the quantum numbers k± are generally gauge
dependent, and if 〈z〉 = 0, taking the expectation value on
both sides of K± = k± ∓ ize±iφ/λ2 gives 〈K±〉 = k±, and thus

associates to k± the gauge independent quantity 〈K±〉. Equa-
tion (10) reduces to the well-known |g‖| = 4κ in the special
case of 4-band Luttinger Hamiltonian with LBO → ∞. The
in-plane effective mass γ , the g-factor components, and the
three Rashba parameters αi are plotted as a function of x and
w in Fig. 3 panels (a)–(c), and (d)–(f), respectively. A negative
g means that the spin-down level (σ = −1) is closer to the
bandgap than the spin-up level.

B. LH-HH mixing

In the vicinity of k‖ = 0, η subbands acquire a small HH
component in addition to the three terms in (5), resulting in a
η-HH mixed state |ψ, k‖〉. For LH1, this can be written as (up
to a normalization constant and to first order in k):

|ψ, k‖〉 = |η, σ 〉 − iσα0k−σ

∣∣∣∣3

2
,

3σ

2

〉∑
l

T x
l |hl〉

ELH1 − EH
l

+ . . . ,

(14)

where | 3
2 , 3σ

2 〉 is the HH bulk Bloch state, |hl〉 is the l-th HH
envelope with energy EH

l at k‖ = 0, and the coefficients T x
l

are

T x
l = 〈hl |

(
P√
2α0

|c〉 −
√

3iu+ |−〉
)

, (15)

u± = {γ3, kz} ± [κ, kz]. (16)

To first order in k, mixing is stronger between η and HH
subbands with opposite parity (from kz terms in T x

l ) and
with the same spin component sign (i.e., |η, σ 〉 couples with
| 3

2 , 3σ
2 〉). The HH contribution ρ in the mixed subband |ψ, k‖〉

is given by the sum of the absolute square of each coefficient
in front of HH terms. By symmetry, only even powers of k
must appear in ρ:

ρ = ak2
‖ + O(k4), (17)

where a can be found from (14):

a = α2
0

∑
l

|T x
l |2(

ELH1 − EH
l

)2 . (18)

The expression ρ ≈ ak2
‖ is valid for small k‖ such that ρ �

1. In general, ρ lies in the interval [0, 1] with ρ = 0 (ρ = 1)
corresponding to a pure η (HH) subband.

ρ as a function of kx is displayed in Fig. 4(a) for w = 6 nm
and w = 10 nm at x = 0.13. When kx is small, the parabolic
term in (17) fits well the numerically computed ρ. Mixing
decreases with increasing energy splitting between LH1 and
the HH continuum, as indicated by smaller ρ at the larger
well thickness w = 10 nm. This remains true for different Sn
compositions, as illustrated in Fig. 4(b) where a is plotted as
a function of w and x for εBR = 0.

IV. DISCUSSION

The preceding results demonstrate that the lattice mismatch
between Ge1−xSnx alloys and Ge provides an additional de-
gree of freedom to engineer the tensile strain required to
confine LHs in Ge. According to Fig. 2(a), the region of
interest, as defined by the parameters (x, εBR), lies in the
range where x is above 0.12 and the compressive strain in
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FIG. 3. LH1 subband parameters as a function of the well thickness and x for fully relaxed Ge1−xSnx barriers (εBR = 0). (a) Inverse effective
mass γ . (b) Out-of-plane g factor. (c) In-plane g factor. (d), (e), and (f) are α1, α2, and α3 Rashba parameters, respectively. The calculations
were carried out for a well thickness in the 5–15 nm range. The data displayed here are for thicknesses separated by a 2 nm step.

the barriers εBR is below −0.4% (i.e., |εBR| � 0.4%). In this
range, all band offsets �Ei are positive and the Ge layer is
of direct bandgap. Ge1−xSnx layers at Sn content in the pro-
posed range have already been demonstrated experimentally
[11]. However, the addition of a highly tensile strained Ge
layer on top of strain-relaxed Ge1−xSnx is still under develop-
ment. For instance, the authors in Ref. [8] reported a 1.65%
tensile-strained Ge quantum well on partially relaxed
Ge0.854Sn0.146 barriers with a residual strain to εBR ≈
−0.54%. This system would be located near the crossing
between the 0 meV �E1 line and the 50 meV LBO line in
Fig. 2(a), very close to the optimal region of interest men-
tioned earlier. Strain relaxation in the barriers is necessary
to enhance confinement in Ge, while relaxing the criterion
of minimal well thickness w0 required for a LH-like valence
band edge (�E2 > 0). The ideal amount of strain relaxation
for a given barrier Sn content can be estimated from Fig. 2(b).
For example, a barrier with x = 0.14 does not allow a LH-like
valence band edge for |εBR| > 0.542% compressive strain.
The additional requirement w0 < hc, where hc is the critical
thickness of Ge, further reduces the range of |εBR| to around
<0.5% compressive strain. Reducing the amount of Sn in the
barriers relaxes the limit imposed by the critical thickness hc,
but at the cost of a smaller LBO. In contrast, increasing x
to 0.18 for instance slightly increases the range for |εBR| to
around <0.525%, and increases significantly the LBO and
�E1 [Fig. 2(a)] but at the expense of a smaller hc and a
narrower window w0 < w < hc, but still in the range typically
achievable in epitaxial growth experiments.

The in-plane effective mass γ [Fig. 3(a)] shows a strong
dependence on both x and w, with small γ expected from the
general rule that LHs are heavier in the plane than HHs. There

is also an interesting feature where the dispersion changes
from a hole-like (γ < 0) to an electron-like (γ > 0) curvature
at k‖ = 0. In the hole-like regime, the valence band edge is
formed by a single valley located at k‖ = 0. In contrast, in the
electron-like regime, the valence band edge consists of four
valleys, each located a distance k∗

0 from k‖ = 0 along the four
equivalent 〈110〉 crystallographic directions in the quantum
well plane. For instance, for a 5 nm well at x = 0.13 and
εBR = 0, the valley minima are located at k∗

0 ≈ 0.0813 nm−1

away from k‖ = 0. For larger wavevectors, the dispersion
goes away from the bandgap as required, owing to k4-terms or
higher that are not taken in account by the effective Hamiltoni-
ans (7) and (9). According to Fig. 3(a), electron-like subbands
occur for small w and large x. This effect takes place for two
reasons. The first is when the LH subband anticrosses a neigh-
boring HH subband such that the curvature is inverted at k‖ =
0. This is typical in systems where the ground state is HH-like
and the first LH subband is allowed to mix strongly with the
first excited HH subband [20], or when the LH subband is
close to a HH continuum (e.g., when w is small). When a LH
is far from neighboring HH levels (e.g., when tensile strain
is large), mixing decreases, as illustrated in Fig. 4(b), and
becomes too weak to invert the curvature. The second reason
for a curvature change is related to the anticrossing between
the LH and the SO bands in the bulk dispersion of Ge for
kz > 0 [Fig. 1(a)]. This anticrossing results in a curvature sign
change of the LH band at some point k∗

z such that the bulk
energy dispersion E (kx, ky; kz ) has a hole-like (electron-like)
curvature when kz is fixed to a value smaller (larger) than k∗

z
and kx,y are close to zero. For a quantum well along the z direc-
tion, the reciprocal-space envelope functions ψ̃ (kz ) become
wider for thinner wells and thus get a larger contribution from
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FIG. 4. (a) HH contribution ρ as a function of the wavevector
kx for a quantum well thickness w = 6 nm and w = 10 nm. Dashed
lines correspond to the quadratic approximation ρ ≈ ak2

‖ . (b) Coef-
ficient a as a function of w and x. The data displayed here are for
thicknesses separated by a 2 nm step.

the electron-like regions in k-space, resulting in a dispersion
with inverted curvature at k‖ = 0.

A major difference with η subbands is the large g‖ com-
pared to HH systems [6,7,21–23]. A comparison between g‖
and g⊥ reveals an anisotropy for well thicknesses away from
∼10 nm. Both components have a stronger dependence on
w than on x but have opposite behavior with w due to how
they couple with neighboring subbands. For the out-of-plane
component, g⊥ ∼ 2κ for large w because the coupling with
neighboring levels becomes weaker as LH1 gets further from
the continuum. In contrast, the in-plane g-factor does not
depend on couplings with neighboring HH levels [c.f. (10)]
and is instead more influenced by the spatial distribution of the
envelopes across the layers. Thus, for large (small) w, g‖ ∼ 4κ

with κ being that of Ge (Ge1−xSnx).
Another peculiar feature associated with η subbands is the

absence of direct connection between γ and g⊥ in contrast
with HHs (i.e., see Eq. (5) in Ref. [24]). Perturbation theory
gives the following for γ and g⊥:

γ = �η + C + D, (19a)

g⊥
2

= Gη

2
− C + D, (19b)

where �η, Gη are described in Appendix B, whereas C and D
are described in Appendix C. For HHs, a similar expansion
would give

γ H = �H + C′, (20a)

gH
⊥
2

= GH

2
+ C′. (20b)

In the latter case, one can combine the equations for γ H

and gH
⊥ to eliminate the C′ term, resulting in an expression

involving only the mass and the g-factor [24,25]:

gH
⊥
2

= GH

2
− �H + γ H. (21)

However, the result is different for η subbands due to the
additional D term in (19). The latter is also related to the
nonzero β1 coefficient of η subbands [9].

Rashba parameters follow the general behavior αi → 0 as
w increases. This is caused by a reduced sensitivity of the
wavefunction to electric fields when the level does not spread
as extensively into the barriers. Although the quantum well
is characterized by relatively small LBOs (� 100 meV) and
small out-of-plane LH effective masses, the device operation
can comfortably sustain realistic DC electric fields along the
growth direction regardless of the well thickness and LBO
without inducing any envelope leak into the barriers. In de-
vices where space inversion symmetry needs to be broken,
such as in electric dipole spin resonance (EDSR) experiments,
this should not be an issue as the relevant Rashba parameter α3

for EDSR, (which is proportional to γ2 + γ3) is one order of
magnitude larger than the α2 Rashba parameter (proportional
to γ2 − γ3), thus requiring smaller out-of-plane fields [9].

V. CONCLUSIONS

This work demonstrates how Ge1−xSnx/Ge/Ge1−xSnx

heterostructures can be tailored to achieve a selective con-
finement of LHs in Ge while pushing HHs into the Ge1−xSnx

barriers. For a sufficiently large Sn content (x > 0.12), small
residual compressive strain in the barriers (|εBR| < 0.4%),
and a well thickness w > w0, the LH ground state emerges
from within the HH continuum, thus yielding a pure LH-like
valence band edge (�E2 > 0). This regime also corresponds
to a direct bandgap in both the well and its barriers, owing to
the large tensile strain in the Ge well and the high Sn content
in the barriers. Satisfying the condition of �E2 > 0 imposes
a threshold for residual strain in the barriers beyond which a
LH-like VB edge becomes virtually impossible.

The in-plane effective mass, the out-of-plane and in-plane
g-factor, and the Rashba parameters α1,2,3 were computed by
explicitly taking in account the spread of the LH envelopes
into the barriers and the coupling with the neighboring HH
continuum. Small inverse effective masses γ are obtained. A
peculiar sign change in γ appearing for small well thicknesses
(w � 7 nm) is observed and attributed to the proximity of the
LH to the HH continuum (larger LH-HH mixing) and the
contribution of the SO band in the LH spinor. An increasingly
strong anisotropy in the g-factor components is also observed
for well thicknesses away from ∼10 nm. Most notably, the
in-plane component of the g-tensor is significantly larger than
what is expected in HH systems. A nonzero linear Rashba
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parameter α1 was obtained, as anticipated for LH systems,
with an α3 coefficient one order of magnitude larger than α2.

ACKNOWLEDGMENTS

O.M. acknowledges support from NSERC Canada (Dis-
covery Grant and Alliance Quantum CQS2Q Consortium),
Canada Research Chairs, Canada Foundation for Innovation,
PRIMA Québec, Defence Canada (Innovation for Defence
Excellence and Security, IDEaS), the European Union’s Hori-
zon Europe research and innovation program under Grant
Agreement No. 101070700 (MIRAQLS), the U.S. Army Re-
search Office Grant No. W911NF-22-1-0277, and the Air
Force Office of Scientific and Research Grant No. FA9550-
23-1-0763.

APPENDIX A: PARAMETERIZATION OF Ge1−xSnx

The material parameters for the Ge1−xSnx alloy were cal-
culated in the full composition range by interpolating the
parameters from pure Ge and pure Sn:

A(x) = (1 − x)AGe + xASn − x(1 − x)b. (A1)

Here, 0 � x � 1 is the alloy fraction and b is a bowing
constant for the parameter A if necessary. For temperature-
dependent quantities such as the lattice constant or the
bandgaps, we apply (A1) on the temperature-dependent pa-
rameters of the alloy’s constituents. For instance, the bandgap
of Ge1−xSnx at the � point, Eg� (x, T ), is given by

Eg� (x, T ) = (1 − x)EGe
g� (T ) + xESn

g� (T ) − x(1 − x)b�,

(A2)
where

EGe
g� (T ) = E0,Ge

g� − αGe
� T 2

βGe
� + T

(A3)

and similar equations for Sn and the L valley. The average VB
energy Ev,avg is given by Ev,avg = Ev − �/3, where Ev is the
VB edge energy and � is the spin-orbit splitting [15].

The electron effective mass mL
c� and the electron gL factor

were calculated following the approach in Ref. [31] to make
them consistent with the bandgaps and spin-orbit couplings
listed in Table I. The Luttinger parameters γ L

1,2,3 were inter-
polated between pure Ge and Ge0.80Sn0.20 using the data from
Ref. [40], giving

γ L
i = γ

L,Ge
i

(
1 − x

0.2

)
+ γ

L,GeSn
i

( x

0.2

)
− bi

x

0.2

(
1 − x

0.2

)
,

(A4)

with γ
L,Ge
i listed in Table I, γ

L,GeSn
1 = 29.2108, γ

L,GeSn
2 =

12.2413, γ L,GeSn
3 = 13.7387, and b1 = 20.3391, b2 = 9.6609,

b3 = 9.8187.
The Kane momentum matrix element P, which couples the

two conduction bands to the six valence bands, is known to
sometimes cause spurious solutions, often appearing as levels
within the bandgap or with violently oscillating envelopes
[41–43]. The approach employed here to eliminate spurious

TABLE I. Input parameters with bowings for the 8-band k · p
model.

Parameter Germanium Tin Bowing

Lattice constant

a0(Å, 300 K) 5.657956a 6.489417b −0.083c*

Energy gaps

E 0
g� (eV) 0.8981b −0.413b 2.46d*

E 0
gL (eV) 0.740o 0.100c 1.23k*

α� (10−4 eV/ K) 6.842e −7.94d

αL(10−4 eV/ K) 4.561e

β� (K) 398e 11d

βL (K) 210e

� (eV) 0.290b 0.770f −0.100c

Ev,avg (eV) 0 0.69g

Elastic constants

c11 (GPa) 124b 69.0b

c12 (GPa) 41.3b 29.3b

c44 (GPa) 68.3b 36.2b

Deformation potentials†

ac� (eV) −8.24h −6.00l

acL (eV) −1.54h −2.14m

av (eV) 1.24h 1.58m

b (eV) −2.86i −2.7n

Effective mass and spin parameters

mL
c� (m0) 0.0386 −0.057

γ L
1 13.38j

γ L
2 4.24j See Eq. (A4)

γ L
3 5.69j

κL 3.41f –11.84f

gL −2.77 86.6

†The convention a = ac − av is used.
*See Eq. (A2).
aReference [26].
bReference [27].
cReference [28].
dReference [29].
eReference [30].
fReference [31].
gReference [32].
hReference [15].
iReference [33].
jReference [34].
kReference [35].
lReference [36].
mReference [37].
nReference [38].
oReference [39].

solutions is described in Ref. [41] and consists of rescaling P:

P2 = 3h̄2

2mL
c�

(
2

Eg�
+ 1

Eg� + �

)−1

. (A5)

The remote band contributions in the Luttinger parame-
ters are then re-adjusted [34] according to P ≡ √

α0Ep given
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in (A5):

γ1 = γ L
1 − Ep

3Eg
(A6)

γ2,3 = γ L
2,3 − Ep

6Eg
(A7)

κ = κL − Ep

6Eg
(A8)

g = gL + 2Ep

3Eg

�

Eg + �
(A9)

m0

mc�
= m0

mL
c�

− 2Ep

3Eg

3Eg/2 + �

Eg + �
= 0. (A10)

APPENDIX B: k · p FRAMEWORK

Our implementation of k · p theory is based on the model
presented in Ref. [44], which is an extension of standard k · p
frameworks [34,45] for heterostructures with finite energy
band offsets at the interfaces (i.e., when a proper ordering
between material parameter operators and kz is critical).

The 8-band k · p Hamiltonian can be written as a sum of
different contributions:

H = Hk + HSO + Hε + V. (B1)

The first term, Hk , depends on the mechanical wavevec-
tor K = k + eA/h̄. It automatically includes the Zeeman
Hamiltonian through the relation K × K = eB/(ih̄). In the
Cartesian basis

BX ={|S+〉 , |S−〉 , |X+〉 , |Y +〉 , |Z+〉 , |X−〉 , |Y −〉 , |Z−〉},
(B2)

Hk is given by

Hk =
[

Hk
cc 12×2 ⊗ Hk

cv

12×2 ⊗ Hk†
cv 12×2 ⊗ Hk

vv

]
+

[
HB 0
0 HB ⊗ 13×3

]
,

(B3)

with

Hk
cc = Eg +

∑
α

KαAKα + iα0

2

∑
αβγ

εαβγ Kα (g − g0)Kβσγ ,

(B4)

Hk
cv = [iPKx iPKy iPKz], (B5)

(
Hk

vv

)
i, j =

{∑
α KαMKα + Ki(L − M )Ki i = j

KiN+Kj + KjN−Ki i �= j
, (B6)

HB = iα0g0

2

∑
αβγ

εαβγ KαKβσγ , (B7)

where εαβγ is the Levi-Civita tensor, A = α0m0/mc� = 0 [see
(A10)], and g0 ≈ 2 is the free electron g-factor. The term HB

arises from the interaction of the free electron spin with the
magnetic field [44].

The second term in (B1), HSO, includes the effects of the
SO band and is proportional to the spin-orbit gap �:

HSO = �

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 −i 0 0 0 1
0 0 i 0 0 0 0 −i
0 0 0 0 0 −1 i 0
0 0 0 0 −1 0 i 0
0 0 0 0 −i −i 0 0
0 0 1 i 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B8)

Strain is incorporated by means of the Bir-Pikus formalism
[46], resulting in the term

Hε =
[

H ε
cc 0

0 12×2 ⊗ H ε
vv

]
, (B9)

with

H ε
cc = 12×2acTr{ε}, (B10)

(
H ε

vv

)
i, j =

{
mTr{ε} + (l − m)εii i = j
nεi j i �= j

. (B11)

Finally, the potential energy V = Ev,avg + eEzz. The pa-
rameters L, M, N±, l , m, and n are related to the usual
Luttinger parameters and deformation potentials by⎡

⎢⎢⎣
L
M

N+ + α0

N− − α0

⎤
⎥⎥⎦ = −α0

⎡
⎢⎢⎣

1 4 0 0
1 −2 0 0
0 0 3 3
0 0 3 −3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

γ1

γ2

γ3

κ

⎤
⎥⎥⎦, (B12)

⎡
⎣ l

m
n

⎤
⎦ =

⎡
⎣1 2 0

1 −1 0
0 0

√
3

⎤
⎦

⎡
⎣av

b
d

⎤
⎦. (B13)

A change of basis from BX to the so-called angular mo-
mentum basis BJ brings the Hamiltonian H in a 2 × 2 block
diagonal matrix (each block being 4 × 4) when evaluated with
B = 0 and kx = ky = 0:

H0 ≡ U †
X←JH (kx = ky = 0, B = 0)UX←J =

[
H+ 0
0 H−

]
,

where

BJ =
{∣∣∣∣1

2
,

1

2

〉
c

,

∣∣∣∣3

2
,

1

2

〉
,

∣∣∣∣1

2
,

1

2

〉
,

∣∣∣∣3

2
,

3

2

〉
,

∣∣∣∣1

2
,−1

2

〉
c

,

∣∣∣∣3

2
,−1

2

〉
,

∣∣∣∣1

2
,−1

2

〉
,

∣∣∣∣3

2
,−3

2

〉}
, (B14)

UX←J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −s2 0 s6 −s3 0
0 0 0 −is2 0 −is6 is3 0
0 s23 −s3 0 0 0 0 0
0 −s6 −s3 0 0 0 0 s2

0 −is6 −is3 0 0 0 0 −is2

0 0 0 0 0 s23 s3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B15)

045409-8



LIGHT-HOLE SPIN CONFINED IN GERMANIUM PHYSICAL REVIEW B 110, 045409 (2024)

Hσ = V + �

3
+

⎡
⎢⎢⎣

Eg� 0 0 0
0 0 0

† −� 0
0

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

kzAkz i
√

2/3Pkz −iσPkz/
√

3 0
−α0kzγ+kz

√
8σα0kzγ2kz 0

† −α0kzγ1kz 0
−α0kzγ−kz

⎤
⎥⎥⎦

+ Tr{ε}

⎡
⎢⎢⎣

ac 0 0 0
av 0 0

† av 0
av

⎤
⎥⎥⎦

+ bδε

⎡
⎢⎢⎣

0 0 0 0
−1

√
2σ 0

† 0 0
1

⎤
⎥⎥⎦, (B16)

with s2 = 1/
√

2, s3 = 1/
√

3, s6 = 1/
√

6, s23 = √
2/3, σ =

±1 the pseudo-spin index, γ± = γ1 ± 2γ2, and δε = εxx − εzz

(all shear components in the strain tensor vanish). Since H+
and H− differ only by a minus sign in the LH-SO and the
CB-SO coupling elements, both share the same energy spec-
trum (Kramers’ degeneracy) and the eigenstates of H− are
the time-reversed eigenstates of H+. Additionally, Hσ is itself
block diagonal: one 3 × 3 block representing a CB-LH-SO
superposition (or a η level) and one 1 × 1 block representing
a pure HH level (or H for short). Eigenstates of Hσ are thus
either of type η or H (with pseudo-spin σ ):

|η, σ 〉 =
∣∣∣∣1

2
,
σ

2

〉
c

|c〉 +
∣∣∣∣3

2
,
σ

2

〉
|�〉 + σ

∣∣∣∣1

2
,
σ

2

〉
|s〉, (B17a)

|H, σ 〉 =
∣∣∣∣3

2
,

3σ

2

〉
|h〉. (B17b)

The energies and eigenstates of H+ are computed for each
set of quantum well parameters (x, εBR and w) with the substi-
tution kz → −i∂z, without any assumptions on the shape of the
envelopes. We choose a grid spacing of 0.01 nm for the finite
differences and keep the 200 subbands that are the closest to
LH1 (N = Nη + NH = 200). We found that N = 200 is large
enough for the effective parameters in (7) and (9) to converge.

We diagonalize H away from kx = ky = 0 and B = 0
by first projecting H onto the orthonormal basis (B17).
This brings H to a 4 × 4 block-matrix form (with to-
tal dimension 2N × 2N), where each block consists of all
the subbands of one aforementioned type (H or η, spin
up/down) and couplings thereof. Taking the basis ordering
B0 = {|H+〉 , |η+〉 , |η−〉 , |H−〉} (and bold characters to em-
phasize that we are in basis B0), the Hamiltonian H when B is
perpendicular to the plane is given by

H = E0 + α0

[
Mγ K2

‖ + 1

2λ2
Mg

+ (
iM1K− + M2K2

− + h.c.
)]

, (B18)

where E0 = diag{EH, Eη, Eη, EH} are the energies associated
to H0 (EH,η are also diagonal) and

Mγ = diag{�H,�η,�η,�H}, (B19a)

Mg = diag{GH, Gη,−Gη,−GH}, (B19b)

M1 =

⎡
⎢⎢⎣

0 Tx 0 0
0 0 Tη 0
0 0 0 Tx†

0 0 0 0

⎤
⎥⎥⎦, (B19c)

M2 =

⎡
⎢⎢⎣

0 0 µ 0
0 0 0 µ†

δ† 0 0 0
0 δ 0 0

⎤
⎥⎥⎦, (B19d)

with (assuming A = 0 and g0 = 2):

�H
l,l ′ = − 〈hl | γ1 + γ2 |hl ′ 〉 , (B20a)

GH
l,l ′ = − 〈hl | 6κ |hl ′ 〉 , (B20b)

�
η

j, j′ = −1

3
〈+ j | γ1 + γ2 |+ j′ 〉 − 2

3
〈− j | γ1 − 2γ2 |− j′ 〉 ,

(B20c)

Gη

j, j′ = 〈c j | g |c j′ 〉 − 2 〈+ j | κ |+ j′ 〉

− 4

3

(〈+ j |+ j′ 〉 − 〈− j |− j′ 〉
)
, (B20d)

T η

j, j′ = 1√
6α0

(〈c j | P |+ j′ 〉 + 〈+ j | P |c j′ 〉
)

+ i 〈c j | [g/2, kz] |c j′ 〉
− i

(〈+ j | u+ |− j′ 〉 − 〈− j | u− |+ j′ 〉
)
, (B20e)

T x
l, j = 〈hl |

(
P√
2α0

|c j〉 −
√

3iu+ |− j〉
)

, (B20f)

μl, j =
√

3

2
〈hl | γ2 + γ3 |+ j〉 , (B20g)

δl, j =
√

3

2
〈hl | γ2 − γ3 |+ j〉 . (B20h)

Here, T x
l, j really is the same as in (15) but with the explicit

dependence on the η subband index j. When B is in-plane, the
Hamiltonian H is given by

H = E0 + α0

{
Mγ k2

‖ + 1

λ4
M′′

γ

+
[

i

(
M1 + 2

λ2
M′

2e−iφ − 1

λ2
M′

γ eiφ

)
k−

+ M2k2
− − 1

λ2
M′

1e−iφ − e−2iφ

λ4
M′′

2 + h.c.

]}
,

(B21)

where the Mi with primes are defined similarly to those with-
out primes [c.f. (B19)] but with

�
pH
l,l ′ = − 〈hl | zp(γ1 + γ2) |hl ′ 〉 , (B22a)

�
pη
j, j′ = −1

3
〈+ j | zp(γ1 + γ2) |+ j′ 〉

− 2

3
〈− j | zp(γ1 − 2γ2) |− j′ 〉 , (B22b)
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T ′η
j, j′ = 1√

6α0

(〈c j | zP |+ j′ 〉 + 〈+ j | zP |c j′ 〉
)

+ i 〈c j | [zg/2, kz] |c j′ 〉
− i

(〈+ j | u′
+ |− j′ 〉 − 〈− j | u′

− |+ j′ 〉
)

+ 1√
2

[〈s j |− j′ 〉 + 〈− j |s j′ 〉
]
, (B22c)

T ′x
l, j = 〈hl |

[
zP√
2α0

|c j〉 −
√

3

(
iu′

+ |− j〉 + 1√
2

|s j〉
)]

,

(B22d)

μ
p
l, j =

√
3

2
〈hl | zp(γ2 + γ3) |+ j〉 , (B22e)

δ
p
l, j =

√
3

2
〈hl | zp(γ2 − γ3) |+ j〉 , (B22f)

where p = 1 corresponds to one prime and p = 2 corresponds
to two primes. We point out that in basis B0, the strain compo-
nents and the SO energy � do not appear explicitly in H, since
they are already taken in account by the energies EH,η and the
envelope functions associated with H0. This is because H does
not contain any terms such as εiik j or � · k j .

APPENDIX C: PERTURBATIVE EXPANSION OF γ AND g⊥

A perturbative expansion of the k · p Hamiltonian for
small K‖ yields explicit formulas for the effective parameters

appearing in (7) and (9). This is obtained by means of a
Schrieffer-Wolff transformation (SWT) [34]. To this end, the
basis B0 is convenient since H is exactly diagonal when K‖
and B are zero (see Appendix B for the notation). The zero-th
order terms in the SWT are directly the energies E0. The
first-order terms are given by the diagonal elements in the
nonzero blocks of the matrices Mi. For instance, the first-
order contribution to the effective mass of η subbands are
the diagonal entries of �η. Similarly, the Rashba parameter
β1 = α0T η

j, j . The in-plane g factor stems from the M′
1 term in

(B21), which has a nonvanishing block in the (η+, η−) sub-
space, thus yielding g‖ = −2T ′η

j, j [c.f. (10)]. Besides β1 and
g‖, the effective parameters in (7) and (9) require a second- or
third-order SWT to be described exactly. In particular, γ and
g⊥ are exactly described by second-order perturbation only.
For the j-th η subband, the terms C and D in (19) correspond
to the second-order corrections, and are given by

C = α0

∑
l

∣∣T x
l, j

∣∣2

Eη
j − EH

l

, (C1)

D = α0

∑
j′ �= j

|T η

j, j′ |2
Eη

j − Eη

j′
. (C2)

For the l-th HH subband, the C′ term in (20) is

C′ = α0

∑
j

∣∣T x
l, j

∣∣2

EH
l − Eη

j

. (C3)
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