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Large quantum nonreciprocity in plasmons dragged by drifting electrons
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Collective plasmon modes, riding on top of drifting electrons, acquire a fascinating nonreciprocal dispersion
characterized by ωp(q) �= ωp(−q). The classical plasmonic Doppler shift arises from the polarization of the
Fermi surface due to the applied DC bias voltage. Here, we predict an additional quantum contribution to the
plasmonic Doppler shift originating from the quantum metric of the Bloch wavefunction. We systematically com-
pare the classical and quantum corrections to the Doppler shifts by investigating the drift-induced nonreciprocal
plasmon dispersion in graphene and in twisted bilayer graphene. We show that the quantum plasmonic Doppler
shift dominates in moiré systems at large wave vectors, yielding plasmonic nonreciprocity up to 20% in twisted
bilayer graphene. Our findings highlight the significance of the quantum corrections to plasmonic Doppler shift in
moiré systems and motivate the design of innovative nonreciprocal photonic devices with potential technological
implications.
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I. INTRODUCTION

Light propagates symmetrically in opposite directions
in conventional optical systems. This is a consequence
of the time-reversal invariance of Maxwell’s equations or
Lorentz’s reciprocity principle [1–4]. Breaking reciprocity
for asymmetric light propagation is conventionally done by
magneto-optical approaches, which require large magnetic
fields and limit the efficiency for nanoscale devices and on-
chip integration [5]. To remedy this, nonreciprocal plasmonics
in atomically thin two-dimensional (2D) materials, such as
graphene, present opportunities for direction-dependent light
propagation at the nanoscale. This is crucial for enabling com-
pact devices in classical and quantum information processing,
nonreciprocal devices for Faraday rotation, isolation, one-way
waveguiding, and nonreciprocal cavities [6–8]. These make
them a valuable addition to the nanophotonics toolbox [9–11].

Nonreciprocity in bulk plasmon dispersion can intrinsi-
cally arise in noncentrosymmetric magnetic materials. This
is induced either by the dipolar distribution of the quantum
metric or by the “chiral Berry” plasmons at the boundary
of magnetic materials [12–15]. A more promising and con-
trollable route for extrinsic breaking of Lorentz reciprocity
is biasing the plasmonic material with a direct current. This
induces nonreciprocal plasmons with a dispersion that differs
for plasmons propagating along or opposite to the direction of
the drifting carriers. This approach is minimally invasive for
on-chip architectures, and it is known as the plasmonic Fizeau
drag or Doppler effect [8,16–20]. Drift-induced nonreciprocal
plasmons in single-layer graphene (SLG) have been re-
cently predicted and demonstrated [16,18,20–23]. Using near-
field imaging techniques, the plasmonic Doppler shift was
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measured for SLG [16,17] with a wavelength shift δλp/λp ≈
2% for electron drift velocity u/vF ≈ 17% (given vF =
0.86 × 106 m/s) [16]. These studies are primarily focused on
the classical plasmonic Doppler shift, which primarily arises
from the displacement of the Fermi surface due to drift flow
(see Fig. 1) [16,18,20–23]. Additionally, the possibility of a
quantum Doppler shift has been recently proposed in moiré
systems owing to the band hybridization [19].

Motivated by these studies, we predict an exciting quantum
Doppler shift-induced plasmonic nonreciprocity, which origi-
nates from the quantum metric—a band geometric property of
the electron wavefunctions (see Fig. 1). Our investigation re-
veals that the classical correction varies linearly with the wave
vector, while the quantum correction varies quadratically with
the wave vector, as depicted in Fig. 1. We show that as flat
band moiré systems have a large effective interaction strength
and undamped plasmons at large wave vectors, twisted bilayer
graphene (TBG) can support a large plasmonic nonreciprocity
(∼20%) driven by quantum correction. As a consequence,
moiré materials in general and TBG in particular offers highly
tunable platforms for observing and designing devices based
on nonreciprocal light propagation [24–28].

II. NONRECIPROCAL PLASMONS WITH DC BIAS

The optical and plasmonic properties of a quantum system
can be described by the dynamical density-density response
function in the linear response of the applied electric field
[29–31]. Plasmons are calculated from the zeros of the real
part of the dielectric function. Within random-phase approxi-
mation (RPA), the dynamical dielectric function is calculated
as [29,32,33]

ε(q, ω) = 1 − Vq�(q, ω). (1)

Here, Vq = 2πe2/(κ|q|) denotes the 2D Fourier transform
of the Coulomb potential, κ denotes an effective back-
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FIG. 1. The drift-induced nonreciprocal plasmon dispersion has
both classical and quantum contributions. The classical frequency
shift 	ωC

p arises from the polarization of the Fermi surface induced
by the DC electric field. The solid and dashed lines represent the
Fermi surface in the absence and presence of drift flow (u) of carriers.
The quantum plasmonic Doppler shift, 	ωQ

p , arises from the quan-
tum metric Gab

s (k) of the electron wavefunction in the presence of
drifting charge carriers. The quantum metric is linked with the notion
of quantum distance D2

k,k−q between two Bloch states at different
momentum, k and k − q, respectively.

ground dielectric constant, and �(q, ω) represents dynamical
density-density response function [29,31,34].

We will treat the effect of externally applied DC current
in a nonperturbative fashion by capturing its impact on the
Fermi-Dirac distribution function [19,21,22]. In the hydro-
dynamic limit, we can model the drifting carrier distribution
function as [16,35,36]

f̃s,k =
{

exp

[
Es,k − u · k − μ

kBT

]
+ 1

}−1

, (2)

which nullifies the energy and momentum conserving
electron-electron collision integral [35]. Here, u denotes the
drift velocity of the quasiparticles, T denotes temperature, μ

denotes the chemical potential, and Es,k denotes Bloch band
energy at crystal momentum k with band index s of the sys-
tem. This drifting carrier distribution function induces a shift
of the Fermi surface by momentum δk = −meff u, in the small
u = |u| limit [19] (see Sec. S1 of the Supplemental Material
(SM) [37] for details). Here, meff denotes the effective mass
of the quasiparticles.

Using this approach, we can express the DC current-driven
noninteracting density-density response function for a 2D sys-
tem as [21,29,39]

�(q, ω) = gs

∑
s,s′

∫
d2k

(2π )2

( f̃s,k+q − f̃s′,k )F ss′
k+q,k

Es,k+q − Es′,k − ω − iη
. (3)

Here, f̃s,k is the modified Fermi-Dirac distribution function
at momentum k with band energies Es,k, gs denotes the total
degeneracy factor, and η is the broadening parameter. Here,
the important quantity is the band coherence factor F ss′

k+q,k =
|〈us,k+q|us′,k〉|2, which describes the overlap between two en-
ergy eigenstates at momentum k and k + q. We set h̄ = 1
throughout our calculations and explicitly mention it when
needed.

We first investigate the long-wavelength limit (q � kF ,
where kF denotes the Fermi wave vector) of the intraband
plasmon dispersion in the presence of drift flow. For that, we
expand the intraband band-overlap factor F ss

k,k+q up to O(q3)
[13,40], and obtain

F ss
k±q,k ≈ 1 − qaqbGab

s ∓ qaqbqc

2
∂kaGbc

s . (4)

Here, Gab
s (k) = [Re〈∂ka us,k|∂kbus,k〉 − ξ aξ b] represents intra-

band quantum metric (or the Fubini-Study metric), with
ξ a = i〈us,k|∂ka us,k〉 being the single band Berry connection
[13,24,41,42], and a, b, c denote cartesian directions. The
quantum metric measures the distance between two infinitesi-
mally close Bloch states in Hilbert space as [42,43] D2

k,k+dk =
1 − |〈us,k|us,k+dk〉|2 
 Gab

s (k)dkadkb.
We work in the dynamical long-wavelength limit, qvF <

ω � μ (vF denotes Fermi-velocity) to probe long-wavelength
plasmons. In this limit, we expand the real part of the density-
density response function in different orders of 1/ω. The
calculation details are discussed in Sec. S2 of the SM. We
obtain,

Re[�intra (q, ω)] = qaqbqc
Qu

abc

ω
+ qaqb

Du
ab

ω2
+ qaqbqc

Cu
abc

ω3

+ · · · . (5)

We have used the u superscript to denote their drift cur-
rent dependence. The expansion coefficients of Eq. (5) are
specified by

Qu
abc = −gs

∑
s,k

f̃s,k∂kaGbc
s (k), (6)

Du
ab = gs

∑
s,k

f̃s,k

(
∂2Es,k

∂ka∂kb

)
, (7)

Cu
abc = 2gs

∑
s,k

f̃s,k

(
va

s,k
∂2Es,k

∂kb∂kc

)
. (8)

Here, va
s,k = ∂Es,k/∂ka represents the band velocity com-

ponent. Qu
abc is the drift-induced quantum-metric dipole

[13,25,41,44]. It is analogous to the Berry curvature dipole
[45], with the Berry curvature [45] substituted by the quantum
metric. In Eq. (7), Du

ab is the drift-renormalized Drude weight.
In Eq. (8), Cu

abc arises from the polarization of the Fermi-
surface due to the momentum shift (δk) induced by the DC
bias.

We find that the odd 1/ω expansion coefficients in Eq. (6)
and Eq. (8) are crucial for supporting nonreciprocal plasmons
in the systems with �(q, ω) �= �(−q, ω). In the absence of
drift, Qu

abc and Cu
abc will be identically zero unless the system

intrinsically breaks the inversion and time-reversal symmetry,
simultaneously [13,15]. In that case, Qu=0

abc , and Cu=0
abc give rise

to intrinsic nonreciprocal plasmon modes in noncentrosym-
metric magnetic systems [13,15]. However, the unidirectional
flow of drifting electrons breaks both the time-reversal and
inversion symmetry, and it leads to an asymmetric Fermi-
distribution function, f̃s,k �= f̃s,−k. Therefore, the k integration
of Eq. (6) and Eq. (8) are nonzero, yielding finite values
of Qu

abc and Cu
abc in the presence of finite u in all quantum

systems.
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We obtain the plasmon frequency by solving for the roots
of Eq. (1) on the real axis [29], assuming the Landau damping
to be relatively small. Retaining terms up to ω3 in Eq. (5), we
can approximate the long wavelength nonreciprocal plasmon
dispersion. We calculate the drift-induced nonreciprocal plas-
mon dispersion for small q, up to linear order in u, to be (see
Sec. S3 of the SM for details)

ωu
p(q) ≈

√
q2VqDu + 	ωC

p + 	ωQ
p . (9)

Here, 	ωC
p = qCu/2Du captures the classical plasmon

Doppler shift, and 	ωQ
p = q3VqQu/2 is the quantum plasmon

Doppler shift.
Equation (9) captures the long-wavelength limit of non-

reciprocal plasmon dispersion for general quantum systems
with a DC current (retaining terms up to linear order in u).
Here, the first term captures the reciprocal plasmon disper-
sion with a drift velocity modified Drude weight, D0 → Du.
Both of the other terms capture the nonreciprocal dispersion,
as the sign of Qu and Cu depends on whether the plasmon
propagates along or opposite to the drift flow, i.e., q̂ · û =
±1. Of these two, the 	ωC

p term is a linear-in-q correc-
tion while the 	ωQ

p captures a quadratic correction to the
nonreciprocal plasmon dispersion (for unscreened Coulomb
interactions). The frequency shift 	ωC

p arises from the drift
velocity induced shift of the Fermi surface, and it is typi-
cally referred to as classical correction or classical plasmonic
Doppler shift [46]. In contrast, the second correction term
	ωQ

p in Eq. (9) has a completely quantum origin associated
with the quantum-metric dipole Qu. We term this correction
as quantum plasmonic Doppler shift, as it arises from the
nontrivial quantum geometry of the Bloch state [47]. This
additional correction to the Doppler shift is one of the main
findings of this manuscript. Interestingly, the quantum cor-
rection to the plasmonic Doppler shift can also be derived
from a semiclassical hydrodynamic description. We present
the semiclassical description of the plasmonic Doppler shift
in Sec. 4 of the SM.

To quantify the classical and quantum nonreciprocity, we
compute the percentage of nonreciprocity,∣∣ωu

p(q) − ωu
p(−q)

∣∣
ω0

p(q)
= √

q
Cu

Du

√
κ

2πe2D0︸ ︷︷ ︸
ηC

+ q3/2Qu

√
2πe2

κD0︸ ︷︷ ︸
ηQ

.

(10)

Here, ηC and ηQ denote the percentage of classical and
quantum plasmonic nonreciprocity, respectively, and we
have defined D0 ≡ Du=0. Having established the origin of
drift-induced quantum nonreciprocity, we next explore the
magnitude of these terms in two-dimensional electron gas
(2DEG), graphene, and twisted bilayer graphene.

III. QUANTUM NONRECIPROCITY
IN GRAPHENE AND 2DEG

We calculate Eq. (9) for 2DEG with parabolic dispersion
and graphene having linear dispersion to elucidate classical
and quantum nonreciprocity. The wavefunction of a 2DEG is
a single component object, and as a consequence, the band

overlap term Fk,k±q = 1. This can also be seen from the
fact that the Berry curvature and quantum metric vanish in
single-component systems. Thus, a 2DEG can only support
classical nonreciprocity with 	ωC

p = u · q, and the quantum
contribution vanishes completely. We obtain the drift-induced
plasmon dispersion for 2DEG from Eq. (9) to be

ωu
2DEG(q) ≈

√
2πne2

κm
q + u · q. (11)

Here, n is the 2DEG carrier density and m is the effective
mass. The detailed derivations are shown in Sec. S5 of the
SM [37].

In contrast to 2DEG, the low energy electronic states for
graphene is represented by 2D massless Dirac Hamiltonian,
specified by Hk = vF σ · k with σ = (σx, σy) being the vector
of the Pauli matrices and vF is the Fermi velocity [49]. This
Hamiltonian has two component spinor eigenstates, |k, s〉 =
(1/

√
2)(e−iθ s)T , with eigenvalues Es,k = svF |k| for conduc-

tion (s = 1) and valence (s = −1) band, respectively, and θ =
tan−1(ky/kx ). To understand the role of quantum geometry, we
calculate the band resolved quantum metric, and it is given
by Gxx

+ (k) = Gxx
− (k) = sin2 θ/(4k2). The corresponding band

overlap term can be evaluated using Eq. (4). For q = qx̂, it is
given by

F++
k±q,k ≈ 1 − q2

4k2
sin2 θ ± cos θ sin2 θ

q3

2k3
. (12)

To include the impact of the unidirectional drift flow u =
ux̂ in the Fermi-Dirac distribution, we model it for T = 0
as f̃+,k = �[kF (θ ) − k], where kF (θ ) = kF /[1 − β cos(θ −
φu)]. Here, β = u/vF , and φu is the angle between u and
plasmon wave vector q. With this modified Fermi-distribution
function, we can calculate the quantum metric dipole to be
Qu = γ gsu/(16π |μ|). Here, gs = 4 represents total spin and
valley degeneracy, μ is the chemical potential, and γ = q̂ · û.
For example, γ = +1 (−1) represents an up-stream (down-
stream) plasmon propagation with respect to the drift of the
charge carriers. We calculate the other expansion coefficients
of �(q, ω) in Eq. (5) to be

Du = gs|μ|
4π

W (β )

β
, Cu = γ

gsvF |μ|
8π

W (β )2

β
. (13)

Here, we have defined W (β ) = 2(1 −
√

1 − β2)/β and
this relativistic factor becomes unity as u → 0, or
limβ→0W (β )/β = 1 [21]. Combining these terms, we
calculate the long wavelength drift-induced nonreciprocal
plasmon dispersion for graphene to be (see Sec. S6 of the SM
[37] for detailed calculations)

ωu
p(q) ≈

√
2D0W (β )

κβ

√
q

[
1 + 12 − 16α2

ee

16

q

kTF

]

+ γ
W (β )

4β
uq + γ

αee

4kF
uq2. (14)

Here, D0 = e2μ/h̄2 is the noninteracting Drude weight at
T = 0 for the 2D massless Dirac Hamiltonian [48], αee =
e2/(κ h̄vF ) is the effective-fine structure constant, and kTF =
4αeekF and κ is the background dielectric constant. In
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TABLE I. The dependence of classical (ηC) and quantum (ηQ)
percentage of plasmonic nonreciprocity for graphene on the wave
vector, carrier density, and the effective-fine structure constant.

Graphene ηC = 	ωC
p (q)

ω0
p(q)

ηQ = 	ωQ
p (q)

ω0
p(q)

Wave vector q1/2 q3/2

Carrier density n−1/4 n−3/4

Effective fine structure (αee) α−1/2
ee α1/2

ee

Eq. (14), the last two nonreciprocal terms are calculated up
to linear order in the drift velocity [16,21].

In Eq. (14), the classical Doppler shift due to Cu is 	ωC
p =

γ [W (β )/4β]uq, which arises from the polarization of the
Fermi surface under DC field. Additionally, there is a quantum
correction in Eq. (14) originating from the quantum-metric
dipole Qu, and this quantum Doppler shift is given by 	ωQ

p =
γ (αee/4kF )uq2. This quantum correction goes as q2 and varies
with the carrier density as n−1/2. We calculate the classical
and quantum percentage of nonreciprocity in the plasmon
dispersion to be

ηC ≡ 	ωC
p (q)

ω0
p(q)

∼ 1

αee

W (β )

4β

u

vF

ω0
p(q)

|μ| , (15)

ηQ ≡ 	ωQ
p (q)

ω0
p(q)

∼ u

vF

ω0
p(q)

4|μ|
q

kF
. (16)

Here, ω0
p(q) = |μ|√2αee(q/kF )1/2 is the long-wavelength

plasmon dispersion for graphene without drift flow [50]. We
compare the dependence of both these corrections on dif-
ferent parameters such as wave vector, carrier density, and
the interaction strength in Table I. We find that the quantum
correction to the nonreciprocity is more sensitive to all these
parameters. In Fig. 2(a), we present the total nonreciprocal
plasmon dispersion in graphene for different drift velocities or

FIG. 2. (a) Plasmon dispersion for current-carrying graphene un-
der different carrier drift velocities, β = u/vF = 0.2, 0.4, and 0.6,
respectively. Here, vp = dωp/dq indicates the group velocity of plas-
mons. We have used αee = 0.9 for air/SLG/SiO2 interface [48] and
carrier density, n = 2.9 × 1012 cm−2 [16]. (b) Total percentage of
nonreciprocity |ωu

p(q) − ωu
p(−q)|/ω0

p(q) as a function of momentum
(q) for current-carrying graphene with different β. The dashed line
represents the classical percentage of nonreciprocity (ηC) as defined
in Eq. (15). The horizontal q axis has been scaled in terms of the
Fermi wave vector (kF) at the top of panel (b). For SLG, the percent-
age of nonreciprocity is mainly dominated by classical contribution
	ωC

p .

β. This includes both classical and quantum corrections. We
also show the classical and total percentage of nonreciprocity
separately in Fig. 2(b). For graphene, the total percentage of
nonreciprocity is mainly dictated by the classical contribution
with ηC [16]. The quantum correction is small in the range of
experimentally accessible wave vectors. This is because the
quantum correction 	ωQ

p ∼ αeeuq2 is smaller for small wave
vectors (q < kF ) with αee ≈ 1 [48]. The quantum correction
can become significant for a larger wave vector (q > kF ), but
the plasmon enters the particle-hole continuum region and
becomes Landau damped [50]. This suggests that the quan-
tum nonreciprocity of the plasmon dispersion can become
larger in moiré superlattices of graphene, which support more
significant αee � 1 [19], and long-lived plasmon for larger
wave vectors. Motivated by this, we investigate drift-induced
nonreciprocal plasmon dispersion in the moiré superlattice of
twisted bilayer graphene in the next section.

IV. LARGE PLASMONIC NONRECIPROCITY IN TWISTED
BILAYER GRAPHENE

Moire superlattices, in general, and TBG, in particular,
have attracted a lot of attention in near-field optical spec-
troscopy studies for probing novel collective plasmon modes
[14,28,52]. Here, we specifically focus on the nature of drift-
induced nonreciprocal plasmons in magic angle TBG.

The moiré superlattice has a large periodicity, of the order
of tens of nanometers, for a small twist angle (θ ). The real
space lattice constant is specified by LM = a/[2 sin(θ/2)],
where a ≈ 0.246 nm. This also leads to a smaller moiré
Brillouin zone, with a reciprocal lattice vector of magnitude
kM = kBG sin(θ/2), with kBG denoting the magnitude of the
reciprocal lattice for bilayer-graphene (BG). Due to the inter-
layer electronic coupling and modulation of Dirac fermions by
moiré superlattice potentials [51,53], the electronic band dis-
persion of small angle TBG shows distinct features compared
to SLG and Bernal-stacked BG. Near magic angle θ ≈ 1.05◦,
the low energy band structure of TBG has four quasiflat bands
(two for valley, and two for spin degeneracy) with minimal
bandwidth (∼8 meV) as shown in Fig. 3(a). The description
of the continuum model Hamiltonian is discussed in Sec. S7
of the SM [37,54–58]. As a consequence, the effective Fermi
velocity (veff ) of the carriers close to the charge neutrality
point becomes around veff ∼ 0.04vF , while SLG has vF =
0.86 × 106 m/s [see Fig. 3(b)]. As a consequence, the effec-
tive fine-structure constant in TBG, αee = e2/(κ h̄veff ), gets
significantly enhanced (αee ∼ 20 − 30) compared to SLG
having αee ≈ 1 [48]. We highlight this explicitly in Fig. 3(c)
by showing the variation of αee in the first conduction band
with doping.

To demonstrate the nonreciprocal plasmons in TBG,
we have numerically calculated the loss-function spectrum,
L(q, ω) = Im[−ε−1(q, ω)] including all the intra (s = s′)
and interband (s �= s′) transitions for both K and K′ val-
leys. We present the calculated loss-function spectrum in
pristine TBG (without drifting carriers) in Fig. 4(a). For
our calculations, we have used 2D Coulomb potential Vq =
2πe2/(κ|q|), with κ = 4.9 as the background static dielec-
tric constant for hBN [59], and T = 5K. The loss function
displays sharp peaks at the plasmon poles and shows the
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FIG. 3. (a) Band dispersion of twisted bilayer graphene near magic angle θ = 1.05◦ for K valley only. We have used u0 = 79.7 meV and
u1 = 97.5 meV in the continuum model [51]. The chemical potential is set at μ = 1.65 meV, corresponding to half-filling. (b) The variation
of effective Fermi-velocity (veff ) of TBG with charge filling factor ν in terms of Dirac fermion velocity (vF ≈ 0.87 × 106 m/s) of single-layer
graphene. Here, ne denotes the corresponding carrier density. (c) Variation of the effective fine structure constant αee for twisted bilayer
graphene with filling factor. αee > 10 for a significant region of the band occupancy.

long-lived nature of the intraband plasmons in TBG in the
terahertz frequency regime. In contrast to plasmons in SLG,
the intraband plasmon mode in TBG lies above the Pauli

blocking regions [ω0
p(q) � 2μ] [28]. It becomes undamped

from particle-hole excitations for large momentum as shown
in Fig. 4(a). On applying a finite DC bias voltage and

FIG. 4. (a) Colorplot of the loss function spectrum L(q, ω) = Im[−ε−1(q, ω)] in log scale for twisted bilayer graphene (TBG) encapsulated
in hBN (with κ = 4.9 [59]) at half-filling (μ = 1.65 meV) without any DC bias. We set wave vector q ‖ �m-Mm direction as shown in panel
(d). The cyan dashed line represents numerically evaluated plasmon dispersion by finding the roots of the dielectric function. (b) Loss function
spectrum of biased TBG in the presence carriers drifting with velocity u along the x direction. The plasmon dispersion exhibits asymmetry for
+q and −q wave vectors. (c) Nonreciprocal plasmon dispersion (shown by blue line) in TBG, without considering band geometric corrections
by setting F ss′

k+q,k = δss′ . This neglects all interband contributions in the density-density response function. (d) Colormap of the quantum metri,
Gxx

+ (k) for the first conduction band in the K valley. (e) Nonreciprocal plasmon dispersion in TBG for different values of β = u/veff = 0.2,
0.4, and 0.6, respectively. (f) Total percentage of nonreciprocity (solid lines) in TBG with different β. The horizontal axis at the top of the
panel has been scaled in terms of the effective Fermi wave vector keff

F ≈ 71 μm−1. The dashed lines represent the classical percentage of
nonreciprocity (ηC) with band-overlap factor F ss′

k,k±q = δss′ . Here, quantum corrections dominate over classical contributions, particularly in
large wave vectors.
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enabling drifting charge carriers in TBG, the Fermi surface
shifts by momentum δk = −βkeff

F û where β = u/veff and
veff = keff

F /meff . Here, veff is the effective Fermi velocity, meff

denotes the effective mass of the carriers, and keff
F = μ/(h̄veff )

is the effective Fermi wave vector for TBG. We present the
drift current (along the x direction) induced nonreciprocal loss
function in the q − ω plane in Fig. 4(b). The nonreciprocal
nature of the plasmon dispersion with ωu

p(−q) �= ωu
p(q) can

be clearly seen. To investigate the classical correction in the
nonreciprocity, we have calculated nonreciprocal dispersion
in Fig. 4(c) by artificially setting the band-overlap factor,
F ss′

k,k+q = δss′ , where δss′ denotes the Kronecker delta function.
This approximation necessarily neglects all interband overlap
terms, as well as band geometric corrections in TBG, mapping
the TBG problem to a 2DEG case. The quantum corrections
arise primarily from the quantum metric [see Eq. (6)], which
dominates at larger wave vectors. This is because the plasmon
mode is undamped in TBG for larger wave vectors, which
allows to dominate 	ωQ

p (q) over 	ωC
p (q). We present the

distribution of the quantum metric in the 2D Brillouin zone
in Fig. 4(d).

Finally, we present the drift velocity dependence of the
plasmon dispersion in Fig. 4(e) by numerically solving Eq. (1)
for different (β = u/veff ) values. We show the corresponding
drift velocity dependence of the percentage of the plasmon
nonreciprocity in Fig. 4(f). The classical correction overes-
timates the nonreciprocity for small q values. Interestingly,
we find a significant increase in the percentage of total
nonreciprocity between two oppositely propagating plasmon
modes at larger wave vectors, driven predominantly by the
quantum corrections [see Fig. 4(c)]. The quantum Doppler
shift-induced plasmonic nonreciprocity can be more than 20%
for β ≈ 0.6. Furthermore, given the low value of veff in TBG,
and in other moiré materials in general, achieving a more
significant value of β in experiments should be feasible [60].

Our calculations strongly suggest that TBG and other
moiré platforms with relatively flat bands can be good can-
didates to observe a significant quantum plasmonic Doppler
effect. This is enabled by a rather large value of the effec-
tive interaction parameter (αee ∝ 1/veff ) originating from the
smaller band velocities in flat bands. It will be interesting to
probe this large nonreciprocity in near-field imaging exper-
iments [16,52]. Further, we note that all our calculations are
within the RPA, which misses out on exchange and correlation
effect [29]. Generally, RPA works very well for the plasmon
dispersion. In fact, the plasmonic Doppler shift, calculated
within RPA, explains the experimental dispersion for single-
layer graphene reasonably well [17]. However, subtle effects
in the plasmon nonreciprocity induced by exchange and cor-
relation effects cannot be ruled out completely.

V. CONCLUSION

In summary, our investigation into drift-induced nonre-
ciprocal plasmon dispersion in a general quantum system
has unveiled an intriguing quantum plasmonic nonreciprocity
alongside the well-established classical Doppler shift. The
classical correction (	ωC

p ) mainly arises from Fermi surface
polarization under a DC electric field. In contrast, the quantum
correction, (	ωQ

p ), stems from the quantum-metric dipole—
a fundamental band geometric property of the Bloch wave
function.

Explicitly examining single-layer graphene and the moiré
superlattice of twisted bilayer graphene, we observed dis-
tinct behaviors. In single-layer graphene, the classical term
(	ωC

p ∼ uq) predominantly governs the plasmonic Doppler
shift, with the quantum correction (	ωQ

p ∼ αeeuq2) being
relatively smaller owing to its q2 behavior with αee ≈ 1
[48]. Conversely, the quantum metric-induced plasmonic
quantum Doppler shift takes precedence in twisted bilayer
graphene. This dominance arises from a small band ve-
locity in the flat bands, resulting in a large effective fine
structure constant (αee ≈ 20 − 30). Additionally, plasmons
in twisted bilayer graphene remain practically undamped
even for large values of q/keff

F , allowing the αeeuq2 term
in 	ωQ

p to influence the dispersion. Consequently, twisted
bilayer graphene and other moiré systems can exhibit a plas-
monic nonreciprocity of 20% or higher for reasonable drift
velocities [60].

This exploration of drift-induced nonreciprocal plasmons
in twisted bilayer graphene advances the fundamental un-
derstanding of the subject and paves the way for novel
optoelectronic applications. Possibilities include the develop-
ment of plasmonic isolators [61], one-way waveguides [62],
and optical transmission [63].
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